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Abstract. We study a model in which lifetime individual felicities are derived from

both present and past consumption streams. Each of these streams is discounted, the

former forward in the usual way, the latter backward. Parental influence refers to a state

of affairs in which an individual at date t evaluates consumption programs according to

some weighted average of his own felicity (as perceived at date t) and that of a “shadow

parent” at some date T > t). This simple model can be used, among other things, to

show that parental influence may have a positive impact on savings, that individuals

may exhibit impatience across alternatives that are positioned in periods adjacent to the

present, but patience across similar choices positioned in the more distant future, that

such impatience is attenuated as an individual grows older, and that lifetime choice plans

are generally time-inconsistent. The postulate of “backwards discounting” used in the

model may also be of intrinsic interest.
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1 Introduction

In this paper, we suggest a theory of parental influence based on the following ingredi-

ents. Assume that lifetime individual felicities are derived from both present and past

consumption streams. Each of these streams is discounted, the former forward in the

usual way, the latter backward. Parental influence refers to a state of affairs in which an

individual at date t evaluates consumption programs according to some weighted average

of his own felicity (as perceived at date t) and that of a “shadow parent” at some date

T > t). Think of the weight on the shadow parent as a measure of the degree of parental

influence. We derive two implications of this model.

First, we argue that our theory of parental influence gives rise naturally to some

of the experimental observations that motivate recent models of hyperbolic discounting

(see, e.g., Ainslie [1991], Loewenstein and Prelec [1992], Loewenstein and Thaler [1989],

Laibson [1997, 1998], and O’Donoghue and Rabin [1999]). The results are “natural”

in the sense that our approach asks for no departures from the widely-used notion of

geometric discounting. To be sure, wide usage does not mean that the geometric dis-

counting hypothesis is the correct one. But it is a minimal hypothesis, one which has

nice axiomatic features. In this sense it may be of interest to see how far one can go with

the simplest model of discounting.

Despite geometric discounting, the model addresses the observational anomalies (thus

far explained using hyperbolic discounting) because of a particular tradeoff. We postulate

that an individual needs to balance his notions of happiness (as evaluated by his current

self) with the notions that he knows he will value when he comes to some natural ending

point — say, retirement. He knows that at that latter stage he will look back at his

life. The consequent “reverse discounting” involved in looking back conflicts with the

“forward discounting” that his current self uses.

Second, we use the model to argue that a society with greater parental influence will
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display a higher rate of savings. We tentatively suggest this result as one possible expla-

nation for the phenomenon of higher savings rates in East Asia, where intergenerational

ties are commonly felt to be stronger than in Western Europe and North America. At

the very least, it should provoke some empirical questioning along these lines.

The theoretical argument for higher savings is made complicated, however, by the fact

that future planned savings will generally not be faithfully executed when the future rolls

around. This is the familiar time-inconsistency problem that accompanies hyperbolic

discounting, and accompanies our model as well. The particular form it takes here

is actually more acute than in the hyperbolic discounting model: individuals wish to

consume high amounts today, and they pass on the burden of savings to the future

even more disproportionately than in the hyperbolic discounting model. This is because

effective future discount factors (across neighboring periods) are strongly influenced by

the shadow parent, who discounts these periods backwards, as already discussed. This

greatly expands planned savings rates in the future, but not so in the present.

This motivates a consideration of equilibrium savings, in the spirit of Strotz [1956],

Phelps and Pollak [1968], and many others. By viewing future incarnations of the current

self as different agents, one might view the savings problem as a game across incarnations.

It turns out that in our model (with finite lifetimes and parametric restrictions on the one-

period utility function), there is a unique subgame-perfect equilibrium, which generates

(possibly time-dependent) savings rates at each date. We are able to track these savings

rates as parental influence is exogenously varied. They unambiguously increase with the

degree of such influence.

Our theory predicts that countries with closer family ties have higher savings rates

and assign higher values to education (human capital investment). There is some anec-

todal evidence in support of this phenomenon, though (especially given the importance

of the subject) there has been very little work on it.1

1East Asia, where family ties are known to be relatively strong, is perhaps the region that would
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Indeed, we are aware that we do not provide direct empirical support for our hypothe-

sis. Nevertheless, what makes the theory compelling is that a simple, plausible postulate

of parental influence simultaneously generates a number of different findings, ranging

from an explanation of “discount-switching” in experimental psychology to a prediction

of higher savings rates under certain cultural scenarios. Moreover, there are predictions

(such as those in part (ii) of Proposition 1 below) that may be hard to generate from

any other model.

Finally, we believe that the postulate of “backwards discounting” used in the model

may be of independent interest. Suppose you are hired to manage an individual’s con-

sumption stream over a span of years, after which she writes you a letter of recom-

mendation. Would you choose the consumption stream to maximize her (contractual)

lifetime utility at the initial date, or at the final date? The two streams are different, if

an individual at the end of the contract evaluates consumption profiles by discounting

backwards in time. This simple observation may throw some (guarded) light on why

parents disagree with children, on why politicians might inflate an economy at the end

of an election cycle, and may even serve as an evolutionary explanation for why we

might behave more patiently than our experimentally-deduced current discount factors

suggest.2 We complete the paper with some discussion of these issues.

provide strong support for this point of view. For instance, despite low interest rates, Japan’s savings

rate is much higher than the rest of the industrialized countries. According to International Monetary

Fund [1999a], in the last two decades, the interest rates (central bank discount rates) for Japan range

from 0.5 to 6%, while the rates for the US range from 4.5 to 8.5%, and for the Europe area from around

3 to around 11%. For the same period, the gross national savings rates for Japan range from 30 to 35%,

but range from 15 to 20% for the US, and 20 to 24 % in the Europe area. (See International Monetary

Fund [1999b].) Hayashi [1997] tests various hypotheses explaining this significant difference in the savings

rates using data on the US and Japan. One hypothesis that he mentioned but did not test is that the

Japanese are more patient than the Americans. Our paper offers an explanation for why this may be

true.
2After a first draft of this paper was written, we came across Caplin and Leahy [1999], which suggests
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2 Parental Influence

It is well known that a parent’s influence on the behavior of their children is very signifi-

cant (see, e.g., Hess and Torney [1967], Bandera [1977] and Moschis [1987], among many

others). Several aspects of this influence have been studied. Among other things, parents

have a significant impact on such outcomes as their children’s choice of career (Dryler

[1998]), their focus on academic excellence (Salili [1994]), their perception of leadership

(Harris and Hartman [1992]), their political attitudes (Hess and Torney [1967]), and on

characteristics such as home ownership (Henretta [1984]). A recent study by Bregman

and Killen [1999] show that parental influence was judged by adolescents and young

adults to be most important when their decisions focused on short-term goals. Some re-

cent literature in economics (Becker and Mulligan [1997], Bisin and Verdier [1998, 2000])

incorporates parental influence and upbringing as fundamental features of intergenera-

tional economic interaction.

A particularly important target for parental influence — and this is what we empha-

size here — is the attitude to consumption and savings. Moschis [1987, p. 77] summarizes

the literature thus: “[T]here appears to be reasonably good supportive evidence that the

family is instrumental in teaching young people basic rational aspects of consumption. It

influences the development of rational consumption orientations related to a hierarchy of

economic decisions delineated by previous writers...: spending and saving, expenditure

allocation, and product decisions, including some evaluative criteria.”

However, in our opinion, this form of influence extends far beyond deliberate at-

tempts by parents to inculcate rudimentary notions of financial budgeting in their chil-

dren, through the use of an allowance for instance. The appropriate channel of influence

may be more akin to what Hess and Torney [1967] have termed anticipatory socializa-

that backwards discounting may have normative significance for the evaluation of consumption streams

by a social planner, an observation we thoroughly agree with.
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tion: the acquisition of attitudes and values about adult roles that have only limited

relevance for the child but serves as a basis for subsequent adult behavior.3 In an in-

teresting and provocative essay, Brim [1966] views the socialization of an individual as

a series of complex interpersonal relationships embedded in that individual. At the cost

of some simplification, we might interpret this as stating that a particular personality

is nothing more than the weighted combination of other personalities in the “cognitive

neighborhood” of the individual in question. While staying away from the provocative

analogies with interactive systems, we do notice that our model is a special case of this

formulation, in which the attitudes of the “shadow parent” enter with some weight in

determining current choices.

Turning, now, to the specifics of our formulation, we have chosen the simplest way

in which a shadow parent situated at age 65, say, might disagree with the current self

situated at age 30. We assume that all selves have the same preference functional, but

that they discount both their future and their past.4 This gives rise to a minimal but

(in our opinion) cogent form of disagreement: the two selves will surely disagree on

intertemporal decisions to be taken between the age of 30 and 50, for instance. Parental

influence refers to a state of affairs in which the shadow parent’s preferences have been

partly internalized by the current self.

3As Ward [1974] describes it, such influence might be embodied in “implicit often unconscious learning

for roles which will be assumed sometime in the future”.
4Our assumption that these two discount factors are the same is purely for convenience and affects

none of the substantial points of the paper.
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3 A Model of Parental Influence

3.1 Preliminaries

We consider a discrete time model in which indices such as t, s and T are used to

designate integer periods. Let {cs} be a consumption sequence over these dates, and let

u be a one-period utility function defined on consumption at every date.

Our main postulate is that a person at date t discounts both the past and the future.

We use a common discount factor δ < 1 for both directions of discounting. This is not

at all necessary for the results that follow, but it helps in reducing notational clutter.

Parental influence can be modeled in several ways, and the particular route we choose

is by no means general. But it seems to us that the exploration of additional generality

will not detract from the main points that we have to make in this paper. We will

suppose that a person at date t places some weight on the utility experienced by his

current self, as well as some weight on a “shadow parent” which we denote by his self at

some (possibly) future date T (t).

Depending on whether time horizons are finite or infinite, T (t) may or may not

be persistently sensitive to t. Or it may be that T (t) is simply a fixed number that’s

independent of t — an age such as 65 that is viewed as a private retirement age. In the

exposition that follows we shall assume that the lifespan is finite and fixed at N (where

N ≥ T (t), to be sure). Nothing of substance will change if we consider infinite-horizon

models, but it can be argued that in the current context, the finite lifetime interpretation

is possibly more compelling. [With infinite lifetimes, what is the sense of placing some

additional weight on a finite future?]

Thus consider a person currently alive at date t. How might he evaluate lifetime

utility starting from some sequence of consumptions {cs}Ns=0? He attaches a weight of α
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to his “current self” at date t, who derives felicity

N∑
s=0

δ|t−s|u(cs),

while a weight of 1− α is placed on the felicity of the shadow parent, which is

N∑
s=0

δ|T (t)−s|u(cs).

Combining these two expressions, we see that our agent’s utility function may be written

in the form
N∑
s=0

d(t, s)u(cs), (1)

where d(t, s) can be thought of as the effective discount factor applied by a person at

date t to consumption at date s, and is given by

d(t, s) = αδ|s−t| + (1− α)δ|T (t)−s| (2)

3.2 Time Preference and Time Consistency

This simple model generates certain observed features in a natural way. First, it creates

time-inconsistency in individual decisions. This is almost immediate from examining the

sequence of effective discount factors given by (2). They are not geometric.

To understand this better, consider a person at date t, with a shadow parent of fixed

age T > t. He is asked to evaluate an intertemporal choice between dates s and s + 1

(where t < s < T ). This person (situated at date t) acts as if he places a weight of

αδs−t on his “current self” at date s. However, when date s actually rolls around, the

weight has changed to α, while the weight on the shadow parent T remains as before.

Now, the current self evaluates the choice by discounting s+ 1 at a factor δ relative to s,

but the shadow parent does exactly the opposite — he discounts backwards, as it were.

It follows that once the weights change, the evaluation of this choice will change. This

is at the root of the time-inconsistency.
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Moreover, the time-inconsistency is of a particular kind. It reveals a preference

for current consumption (once the decision time comes around). This phenomenon,

which has been well-documented, has often been captured by postulating non-geometric

preferences. The best-known of these is the hyperbolic class of discount factors (see

Laibson [1997, 1998] and Harris and Laibson [1999]). The hyperbolic class, indeed,

accounts for the following empirical regularity: discounting seems to be more active for

time delays that are situated in the immediate future, whereas delays situated at a more

distant date are viewed more neutrally. Thaler [1981] probably makes the point in the

cleanest way: a person might prefer an apple today to two apples tomorrow, but if the

same choice is presented for neighboring days 100 and 101, the expressed preference

may well be reversed. A postulate of hyperbolic discounting nicely fits some of these

features (see Ainslie [1991], Loewenstein and Prelec [1992], Laibson [1997], O’Donoghue

and Rabin (1999)).

It is of interest that our model of parental influence generates this phenomenon

(and related observations) without departing from the fundamental presumption that

all discounting is geometric. It is only as a consequence of parental influence that two

different discounting streams are mixed, generating a sequence of nongeometric effective

discount factors.

As an example, suppose that t = 30 and T (t) = 65, with weights α and 1−α. Notice

that preferences over the very near future (say years 30 and 31) are governed largely by

the (exponential) discount factor of the current self — the comparison 1 : δ matters far

more than the comparison δ34 : δ35. However, as the delay is pushed into the future — say

ages 50 and 51 — the bias towards the present exerted by the current self is increasingly

compensated for by the bias towards the future exerted by the shadow parent, and the

two effects cancel, from the vantage point of the thirty-year old. Finally, it is possible

that our thirty-year old current self may indeed exhibit negative discounting for ages

close to 65, as the preferences of the shadow-parent now outweigh the increasingly fragile

8



comparisons of his current self over these distant time periods.

The same sort of argument also shows how this anomaly tends to disappear with

advancing age. A fifty-year old with a 65 year old shadow will assign greater weight to

the shadow for the comparison 55–56 than the 30 year old assigned to the comparison

35–36. This makes the fifty-year old appear more patient.

Thus, viewed through the lens of the parental influence model, the “true” discount

factor δ is to be thought of as a “low” number, reflecting some innate predilection to-

wards high impatience. This impatience is diluted by the presence of a shadow parent,

because the shadow parent discounts “backwards” and compensates (partially) for innate

impatience.

Notice, however, that the parental influence model does yield predictions that are

qualitatively different from hyperbolic discounting. For instance, the moderating influ-

ence of the shadow parent disappears once we consider choices made at adjacent periods

very late in life (these are discounted “forwards” by all concerned parties). Thus impa-

tience should rise again for choices offered (to younger individuals) at hypothetical late

adjacent periods. We are unaware of empirical evidence that addresses this phenomenon.

To formalize these ideas, recall the effective discount factor d(t, s) from (2). For each

t and s ≥ t,

d(t, s) ≡ αδs−t + (1− α)δ|T (t)−s|.

Let

i(t, s) ≡ d(t, s)

d(t, s+ 1)

measure the degree of “one-period impatience” that person t feels regarding adjacent

choices at date s. Then we may summarize our discussion so far in the following way.

Proposition 1 [1] For each t, i(t, s) is a declining function of s for all s ∈ {t, t +

1, . . . , T (t) − 1}, but then jumps to its maximum value of 1/δ (and stays there) as s

crosses T (t).
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[2] If T (t) − t does not increase in t, i(t, t) is a nonincreasing function of t, strictly

decreasing whenever T (t)− t decreases in t.

The first part of the proposition states that from the vantage point of a person at date

t, the relative impatience across adjacent dates in the future declines as the future is

made more distant, being highest for choices between “today” and “tomorrow”. This

translates precisely into what Loewenstein and Prelec [1992] call the common difference

principle: “if a person is indifferent between receiving x > 0 and y > x at some later

time, ... then he or she will strictly prefer the better outcome if both outcomes are

postponed by a common amount [of time]”.

To get a sense of the “end points”, consider both i(t, t) (impatience regarding current

delays) and i(t, T (t)− t) (impatience concerning future delays). It is easy to see that

i(t, t) > 1 provided that
α

1− α
> δT−t−1, (3)

which will always be true if the current self and the shadow parent are sufficiently sep-

arated in time (or if α > 1/2 and there is some separation between current self and the

shadow parent). On the other hand,

i(t, T (t)) < 1 provided that
α

1− α
<

1

δT−t−1
, (4)

which will also be true if there is sufficient separation between the current self and the

shadow parent. Taken together, (3) and (4) suggest the following possibility: a person

at date t may be impatient (in a perfectly standard way) over adjacent periods in the

vicinity of the present, while he actually exhibits negative discounting for future periods!

The second part of the proposition states that the proclivity of a person to be impa-

tient over adjacent current choices is attenuated as that person grows older. Specifically,

this tendency towards moderation is observed as long as the shadow parent “grows” more

slowly than the current self. In particular, if the age of the shadow parent is fixed, ob-
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served patience must always increase in age. We are not sure whether empirical evidence

for this sort of phenomenon exists.

Proof of Proposition 1. Note that for s ∈ {t, t+ 1, . . . , T (t)− 1},

i(t, s) =
αδs−t + (1− α)δT (t)−s

αδs+1−t + (1− α)δT (t)−s−1
= w(t, s)(1/δ) + [1− w(t, s)]δ, (5)

where

w(t, s) ≡ αδs+1−t

αδs+1−t + (1− α)δT (t)−s−1
=

α

α+ (1− α) δ
T (t)−s−1

δs+1−t

.

It is easy enough to see from this expression that w(t, s) is declining in s. It follows from

(5) that i(t, s) is less than 1/δ, and in addition must be a declining function of s, for

fixed t, as long as s ∈ {t, t+ 1, . . . , T (t)− 1}.

For s ≥ T (t), note that

i(t, s) =
αδs−t + (1− α)δs−T (t)

αδs+1−t + (1− α)δs+1−T (t) = 1/δ,

and this completes the proof of the first part of the proposition.

To establish the second part, notice that that

w(t, t) =
α

α+ (1− α)δT (t)−t−2
,

which proves that w(t, t) is declining in t as long as the conditions of the proposition

hold. Using this information in (5), we see that i(t, t) must decline as well.

3.3 Parental Influence and Savings

We have already remarked on the inherent time-inconsistency present in a model of

parental influence. This complicates, to some extent, our evaluation of the effect of

parental influence on the rate of savings. A person at date t, far removed from his

shadow parent, may currently engage in high consumption, and then plan on saving

higher and higher fractions of his income as he gets into middle age and approaches the
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age of his shadow parent. Indeed, such plans are perfectly consistent with his preferences

at date t. The problem is, he may want to revise these decisions as he gets older.

Thus it is to be expected that while a calculation of optimal intertemporal consump-

tions and savings may show initial periods of high planned consumption and intermediate

periods of high planned savings, these features may not manifest themselves in observed

behavior once time-inconsistency is taken into account.

The purpose of this section is to examine these matters by looking at both planned

behavior and time-consistent (equilibrium) behavior.

The analysis that follows can, in principle, be conducted for all constant-elasticity

utility functions. That is, we can explicitly solve the model (both in its planned and

equilibrium incarnations) in this case. But the special case of logarithmic utility yields

particularly sharp predictions that are amenable to easy computation, and so we shall

stick to this particular formulation.

Moreover, we keep the background model of asset accumulation as simple as possible.

We suppose that a person lives for N periods and that his shadow parent’s age T (where

T ≤ N) is independent of his current age. As already discussed, let u(c) = ln c be his

per-period utility function and ct be his consumption in period t. The per-period interest

rate is given by r and the (forward and backward) discount factor is given by δ. Assume

that both lending and borrowing can take place at the rate of interest r. Assets are A0

to begin with, and the agent receives an an exogenous income stream {yt} over the dates

0, 1, . . . , N .

Let At denote assets in period t. Then, if ct is consumed at that date,

At+1 = (1 + r)(At + yt − ct).

Consider an agent at date t, planning his decisions for some period s ≥ t. He seeks to

maximize the expression in (1). Noting that the decisions up to s− 1 have already been
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made, this is tantamount to maximizing

α
N∑
τ=s

δτ−t ln cτ + (1− α)
N∑
τ=s

δ|τ−T | ln cτ .

Notice that — as far as the current self is concerned — we are still discounting back to

date t.

3.3.1 Planned Consumption and Savings

We begin by ignoring the time consistency problem and simply map out the profile of

optimal consumption and savings, viewed from the vantage point of a person at (nor-

malized) date 0. Even though it is isn’t hard to solve this problem by exploiting the

usual Euler equations, we will use an approach based on value functions. This has two

advantages. First, it will give us optimal policy functions for each period (not just con-

sumption and savings values), making it easier for us to compare changing attitudes

across time periods. Second, this is the approach that will be necessitated when we

solve the equilibrium problem (the one that takes the possibility of time consistency into

account).

To this end, it will be useful to keep track of two different “value functions”. The

first, which we denote by Vt, simply records the utility experienced by the current self

from date t onwards; we write this discounted back to date t. That is,

Vt(A) =
N∑
τ=t

δτ−t ln cτ ,

where in the sequel, the c’s will be optimal consumption decisions planned by the agent at

date 0. The second value function, which we denote by Wt, tracks the utility experienced

by the shadow parent (over the period t to N). This is always discounted to period T .

It is given by

Wt(At) =
N∑
τ=t

δ|τ−T | ln cτ .
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Notice that at date N , both these functions are trivially logarithmic, and are of the form

VN (A) = aN ln(A+ y) + bN , (6)

and

WN (A) = pN ln(A+ yN ) + qN , (7)

where aN = 1, pN = δN−T , and bN = qN = 0. Using the forms deliberately suggested

by (6) and (7), we conjecture that at any date t < N ,

Vt+1(A) = at+1 ln(A+Mt+1) + bt+1,

and

Wt+1(A) = pt+1 ln(A+Mt+1) + qt+1,

where the expression Ms simply records the present value of flow income from any date

s; that is,

Ms = ys +
ys+1

1 + r
+ · · ·+ yN

(1 + r)N−s
.

This conjecture helps us to set up the optimization problem (viewed from time 0) that

will be solved at date t: for any asset level A at date t,

max
c

α[δt ln c+ δt+1Vt+1(A
′)] + (1− α)[δ|t−T | ln c+Wt+1(A

′)],

where A′ is just (1 + r)[A− c+ yt].

It is easy to see that the solution to this problem is given by

c =
αδt + (1− α)δ|t−T |

αδt + (1− α)δ|t−T | + αat+1δt+1 + (1− α)pt+1
[A+Mt] ≡ λt[A+Mt]. (8)

Using this rule, we obtain corresponding forms for Vt and Wt. First,

Vt(A) = at ln(A+Mt) + bt,

where

at = 1 + δat+1 (9)
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and

bt = ln(λt) + δat+1[ln(1 + r) + ln(1− λt)] + δbt+1. (10)

Similarly,

Wt(A) = pt ln(A+Mt) + qt,

where

pt = δ|t−T | + pt+1 (11)

and

qt = δ|t−T | ln(λt) + pt+1[ln(1 + r) + ln(1− λt)] + qt+1. (12)

This completes (and justifies) the inductive step.

Equations (9) and (11) may be used to arrive at closed-form solutions for at and pt.

Doing so, we see that

at =
1− δN−t+1

1− δ
, (13)

while

pt =
δ[1− δT−t]

1− δ
+

1− δN−T+1

1− δ
for t < T, (14)

=
δt−T [1− δN−t+1]

1− δ
for t ≥ T. (15)

Combining (8), (9), and (11), we can simplify the optimal consumption ratio λt to

λt =
αδt + (1− α)δ|t−T |

αδtat + (1− α)pt
. (16)

This is the expression that we are interested in evaluating, with the help of the closed

forms (13) and (15). To this end, notice first that there is an intrinsic tendency for the

consumption ratio to drift upwards simply by virtue of the finite horizon nature of the

problem. For instance, in the last period, all of permanent income will be consumed. We

can benchmark this drift by setting α = 1 in the problem above, whereupon the situation

reduces to a perfectly standard life cycle problem. The consumption ratio sequence for
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this problem, which we denote by λ̄t, can be separately computed or arrived at by putting

α = 1 in (16) above and then using (13):

λ̄t =
1

at
=

1− δ
1− δN−t+1

. (17)

This benchmark helps us get a handle on the extent to which our model departs from

the standard formulation (in terms of predicting additional savings out of permanent

income). Using (16) and (17), form the ratio

θt ≡
λt
λ̄t

=
α+ (1− α)δ|t−T |−t

α+ (1− α)(pt/atδt)
, (18)

and observe that a value of θt = 1 implies that (at date t) there is no divergence between

the consumption ratios predicted by the two models. On the other hand, if θt < 1 then

the model of parental influence predicts a higher savings rate, and this effect is directly

related to the amount by which θ falls below unity.

To match the algebra with intuition, note that at any date t ≥ T , there is no difference

between the discounting exhibited by the current self and shadow parent. So consumption

behavior should be quite independent of the weights placed on these two selves, and in

particular should coincide with that of the standard model. Indeed, if we substitute the

value of at (from (13) and the value of pt (from (15) for t ≥ T ) in (18), we see that

θ = 1. For such time periods, there is no discrepancy (in consumption ratios) between

our model and the standard formulation.

The more interesting comparison is for dates that are less than T . The following

observation is critical: for all 0 ≤ t < T ,

δT−t <
pt
at
. (19)

This is easy enough to establish by direct computation, using (13) and (15).

Combining (19) with (18), it is easy to see that consumption ratios are lowered for

all periods upto the age of the shadow parent. [Later, once we describe the equilibrium

16



version, we shall attempt to provide quantitative estimates of the magnitude of this

effect.]

It should also be clear that if the agent increases the weight on his shadow parent,

then the savings rate increases at each date.

Finally, what is the relationship between the extent of divergence and time? At what

point over the agent’s lifetime do we observe maximal (planned) divergence from the

standard model?

It turns out, not surprisingly, that the answer to this question depends on the weight

that the agent attaches to the shadow parent. If this weight is high enough, the agent

wants future versions of himself to carry out the bulk of the savings. Formally, the

following is true:

Observation 1. There exists α̂ ∈ (0, 1] such that if α ≤ α̂, θt always increases in t;

while if α > α̂, θt first decreases and then increases in t.

The proof of this observation is relegated to the appendix. But a numerical example

may be useful: say a person starts at age 30. If this is normalized to zero, we may take

N = 50 and T = 35. If δ = 0.8 and equal weight is put on the shadow parent so that

α = 0.5, it is easy to compute that θt begins at 0.36, reaches its minimum of 0.02 at

t = 16, and goes back up to 1 at t = 35. For this value of δ, α̂ ≈ 0.0005. However, for

δ = 0.95, α̂ ≈ 0.19.

Notice that (apart from the intended illustration of Observation 1), the example shows

that the effects on savings are extremely large. However, because these outcomes are

not time-consistent, we return to the issue of magnitude when we study the equilibrium

problem.
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3.3.2 Equilibrium Consumption and Savings

Next, we take into account the fact that planned paths will not be honored by future

generations. This is precisely an instance of the general problem posed by Strotz [1956],

and analyzed by numerous authors (see, e.g., Phelps and Pollak [1968], Peleg and Yaari

[1973], and Bernheim and Ray [1987]). The idea is to treat each generation as a separate

player in a noncooperative game, and analyze the subgame perfect equilibria of such

a game. It is well known from O’Donoghue and Rabin (1999) that people taking into

consideration of this time-inconsistency (called sophisticates) could behave drastically

different from people who do not (called naifs).

In the logarithmic case (and with constant elasticity utility functions more generally),

we can solve this problem completely for the finite horizon case. It turns out that

there is a unique subgame perfect equilibrium, which can be described using backwards

recursion. We have already laid the groundwork for this in the previous section. To

retain comparability, it will actually help to abuse notation and use exactly the same

notation to describe value functions, consumption ratios, etc. We begin as before by

observing that in the last period N , the value functions are exactly in the form given

by (6) and (7), with the restrictions aN = 1, pN = δN−T , and bN = qN = 0. Therefore

conjecture that at some date t,

Vt+1(A) = at+1 ln(A+Mt+1) + bt+1,

and

Wt+1(A) = pt+1 ln(A+Mt+1) + qt+1,

Now we can state the problem that faces the agent at date t: for any asset level A,

max
c

α[ln c+ δVt+1(A
′)] + (1− α)[δ|t−T | ln c+Wt+1(A

′)],

where A′ is (1+r)[A−c+y], as before. Notice how in this problem the effective discount
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factors are different from those in the previous section. Solving this problem, we see that

c =
α+ (1− α)δ|t−T |

α+ (1− α)δ|t−T | + αat+1δ + (1− α)pt+1
[A+Mt] ≡ λt[A+Mt]. (20)

This gives us solutions for Vt and Wt. First,

Vt(A) = at ln(A+Mt) + bt,

where

at = 1 + δat+1 (21)

and

bt = ln(λt) + δat+1[ln(1 + r) + ln(1− λt)] + δbt+1. (22)

Similarly,

Wt(A) = pt ln(A+Mt) + qt,

where

pt = δ|t−T | + pt+1 (23)

and

qt = δ|t−T | ln(λt) + pt+1[ln(1 + r) + ln(1− λt)] + qt+1. (24)

This completes the inductive step. Notice that these forms look no different from those

in the previous problem (though the quantitative magnitudes of bt and qt will indeed be

different because of the new values of λt for the equilibrium problem).

As before, (21) and (23) yield closed-form solutions for at and pt:

at =
1− δN−t+1

1− δ
, (25)

and

pt =
δ[1− δT−t]

1− δ
+

1− δN−T+1

1− δ
for t < T, (26)

=
δt−T [1− δN−t+1]

1− δ
for t ≥ T. (27)
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Combining (20), (21), and (23), we can simplify the equilibrium consumption ratio

λt to

λt =
α+ (1− α)δ|t−T |

αat + (1− α)pt
. (28)

Notice that the solution to the at’s and the pt’s are precisely what they were in the

planned model (this gives the logarithmic case some extra sharpness). But the con-

sumption ratios are different (compare (28) with its predecessor (16)). Recalling that

consumption ratios in the standard model are given by λ̄t = 1/at, we can form our

measure of relative consumption ratios, just as we did before, by

θt ≡
λt
λ̄t

=
α+ (1− α)δ|t−T |

α+ (1− α)(pt/at)
, (29)

Note that a value of θt = 1 implies that (at date t) there is no divergence between the

consumption ratios predicted by the two models. As in the case of planned consumption

paths, it is easy to check that there is indeed no divergence between the two ratios when

t ≥ T .

For dates that are less than T , exactly the same observation as in (19) applies here:

for all 0 ≤ t < T ,

δT−t <
pt
at
. (30)

Combining (30) with (29), it is easy to see that consumption ratios are lowered for

all periods upto the age of the shadow parent. But we can say a bit more now than we

could in the planning exercise: as long as t < T , the extent of the divergence between

equilibrium consumption ratios and the ratios in the standard model must monotonically

decline over time. That is, the greatest impetus to savings comes at the earliest dates

(controlling for income, of course).

To check this, it is sufficient to see that δT−t increases over time, while pt/at declines,

and then apply these findings to (29).5

5It is immediate that δT−t increases with t for t < T . To check the claim for pt/at, note that this
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As we have argued (see the planned case), a monotonically decreasing divergence of

consumption ratios is not necessarily what an agent might want. In general, he would

like future incarnations of himself to do the bulk of the savings. In fact, it is easy to

check that the divergence ratios are larger under the planning problem than under the

equilibrium problem for every date t < T . But given time-inconsistency, he knows that

these large desired divergences are not going to be honored. This realization is built in

into the equilibrium problem.

We should note, however, that this result does not rule out a situation in which

equilibrium savings rates rise and then fall over time. See, for example, Table 1 in the

next section.

4 Discussion

It will be useful to summarize the foregoing analysis (including our findings in the planned

case) in the form of a proposition:

Proposition 2 Suppose that an agent faces an accumulation problem, and places weights

α on himself and 1− α on a shadow parent of fixed age T . Then

[1] In both the planning and equilibrium versions of the problem, consumption ratios (out

of permanent income) are lower relative to those obtained for the standard problem, at

every date t < T .

[2] For dates t ≥ T , there is no discrepancy between the consumption ratios.

[3] A larger weight on the shadow parent depresses consumption ratios even further (at

each date), in both the planning and equilibrium versions.

expression equals δ[1−δT−t]+[1−δN−T+1]

1−δN−t+1 ≡ δ[1−x]+[1−D]
1−Dx , where x = δT−t and D = δN−T+1. It is easy to

check (e.g., by differentiation) that this last expression is a monotonically decreasing function of x, while

x is itself an increasing function of t.
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Age Benchmark Weight on Shadow Parent

Model 0.1 0.2 0.3 0.4 0.5

30 14 25 34 43 52 59

40 24 32 39 46 53 59

50 25 29 34 39 43 48

Table 1: Savings Rates (%) in the Benchmark and Equilibrium Models.

[4] The planned divergence ratios are larger (at each date t such that 0 < t < T ) than the

equilibrium divergence ratios. Furthermore, the equilibrium divergence ratios monoton-

ically decline over time, while no such presumption can be entertained for the planned

divergence ratios (as described fully in Observation 1).

Just how large are these effects? We have already seen a numerical example for the

planned case, but we know that such planned divergences will not be observed. Hence it

is the equilibrium case that merits a more careful study. Table 1 provides some numerical

magnitudes for a particular parametric configuration. As our results are all analytical

and as the numbers are quite robust to changes in the parameters, we did not feel it

necessary to report on a wide variety of cases.

In what follows, we look at equilibrium savings rates for individuals of age 30, 40 and

50, when lifetime is taken to be 80 and the age of the shadow parent is set to a “retirement

age” of 65. The interest rate on wealth is 7%, and we use a discount factor of 0.95. Our

model individual receives a wage income of 1 unit per period until retirement, and begins

life at age 30 with an asset level of 2 units.6

To facilitate the use of everyday empirical observations, the savings rates we report

are not out of permanent income, but out of current income (which is wage income plus

6Alternative specifications are available on request from the authors.
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any interest income on assets). The results are fairly strong. The first column of the

table reports savings rates at various ages in a standard life-cycle “benchmark model”

(which is just our model with α set equal to unity). The second column does the same

for our equilibrium model when a low weight of 0.1 (that is, α = 0.9) is assigned to the

shadow parent. The effect on equilibrium savings, as Table 1 shows, is extremely strong.

Savings rates nearly double at age 30 and the positive effects at later ages, while not as

strong, are still significant.

As stated in Proposition 2, the bulk of the impact of parental influence takes place

in the earlier phases of life (in the equilibrium model). This is clearly borne out by the

table. Notice, however, that this does not preclude an increase in the savings rate over

time, followed even by a decline. Under the weight of a large accumulation of assets,

the natural tendency will be to curb savings somewhat in later years. This is obvious in

the post-retirement phase, of course. But our numerical computations suggest that this

phenomenon may be heightened (even at pre-retirement ages) in the presence of parental

influence.

Finally, observe that further weight placed on the shadow parent lead to even more

dramatic effects on the savings rate. These numbers are provided, not necessarily for the

sake of realism, but to suggest that socio-cultural phenomena such as upbringing and

influence may have effects on savings rates that simply swamp any changes that might

be brought about by the usual economic policies.

5 On Backward Discounting

A basic premise of our model is that economic agents discount time both forward and

backwards. The former phenomenon is familiar, and is often interpreted as the degree

of impatience. The latter is less familiar, or at least little-used in economics. It may be

interpreted as the weakness of memory.
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It is obvious why backward discounting does not (and should not) occupy the same

central location in economics that forward discounting does. The latter applies to deci-

sions that are to be made; the former (often) applies to the evaluation of choices which

have been made in the past. The past cannot be changed, so that backward-discounting

is accordingly less central in the theory of decision-making.

This argument is problematic from two points of view. First, even if the past cannot

be changed, it still affects perceptions of happiness. Backward discounting suggests that

the past will always be viewed through the opposite end of the telescope. This suggests

that feelings of regret may be more endemic than we think. Indeed, if this subsequent

view from the “opposite end” is not fully internalized at the time of decision-making,

the model consistently predicts regret — an observation that may be of some use in

psychology.

Second, future valuations of experience may influence the way in which we make

current decisions. When we explore the implications of this hypothesis, the issue of

backward discounting acquires new importance.

There are several situations in which “backward valuations” might influence “forward

decisions”. This paper is about one such situation, in which a future self’s utility from

a sequence of decisions is taken into accounting, knowing that this future self will be

looking back on these decisions, and hence discounting backward. But there are other

situations, and the purpose of this section is to summarize some of them.

5.1 Social Decision-Making

As Caplin and Leahy [1999] have observed, the phenomenon of backward discounting

can give rise quite naturally to an argument for greater patience on the part of a social

planner, compared to the discount factor of the agents in the economy. Suppose that

generation τ derives lifetime utility Vτ from a consumption stream {ct}. A social planner
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might want to choose {ct} to maximize some weighted sum of these generational utilities,

λτVτ ,

where the λ’s are positive weights that sum to unity. Assume that each generation

exhibits a mixture of backward and forward discounting, so that:

Vτ ({ct} =
∞∑
s=τ

βs−τ1 u(cs) +
τ−1∑
s=0

βτ−s2 u(cs),

where β1 is the foward rate and β2 is the backward rate. The it is easy to see that the

planner will exhibit a degree of patience that exceeds the patience implied in β1. [To be

sure, there are time-consistency problems as well, but that isn’t the main point here.]

5.2 Case-Based Decision Theory

Gilboa and Schmeidler [1995] have introduced case-based decision theory, in which new

situations of decision-making must be studied by studying parallels within the realm of

one’s own experience. They propose a framework in which such parallel cases are taken

as primitives, and seek to derive (axiomatically) decision rules which prescribe a best

course of action depending on past performance in parallel cases. They note that both

the degree of “similarity” to the case at hand, as well as the utility derived from the

similar case, play a role in this axiomatization.

This is a setting in which — for decision problems that involve time — backward

discounting arises in a natural measure of “utility from parallel cases”. Because past

experience is used as a guide to decision-making for the future, case-based decision theory

is a natural setting for backward discounting to play a prominent role.

One implication of this kind of reasoning is that we may actually behave more pa-

tiently in real life than our “natural inclinations” would have us behave, an observation

that goes well with the rest of the theme of this paper.
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5.3 Evolutionary Models

The last observation also applies to evolutionary situations in which “success” or “fit-

ness” is measured by some discounted sum of intertemporal rewards, where measurement

takes place at the “end of the day”. This might be particularly apt in the context of

evolutionary biology, in which fitness (over some intertemporal setting) is determined

by the end-state value of some variable. Concentration on such end-state outcomes is

equivalent to a very strong form of backward discounting in which the discount factor is

set equal to zero.

Alternatively, in social or cultural contexts, “success” may be defined by the perceived

lifetime rewards to an individual (or a role model, or a way of life) at the end of the

process. If these perceptions form the basis for cultural selection, then agents (or behavior

patterns) that assign heavier weight to future consumptions would be the winners; in

other words, agents (or cultural modes) that promote harder work and more savings

when young are more likely to survive.

To be sure, there is no guarantee of such an outcome. It would all depend on which age

groups (or which life stages) are considered natural points of success evaluation. These

“natural” points are themselves subject to evolutionary or cultural pressures, leading to

a deeper level of recursive analysis that is beyond the scope of this paper.

5.4 Elections

We end with a provocative example, not one we necessarily believe in fully, but one that

is interesting and far from being obviously false. Consider elections and reelections.

Suppose that a person can stay in office for at most two terms, and each term lasts

for N periods. To simplify matters, assume that an elected officer’s task is to provide

a plan of allocating consumptions over these N periods and commit to it. Consider the

first term. Let the total assets be A, the interest rate be r, ci, i = 1, ..., N , be period
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i’s consumption, and u(·) be a concave utility function. Let V =
∑N
n=1 δ

n−1u(cn) be the

conventionally discounted total utility. A candidate’s probability of being elected is then

a function of V .

It is reasonable to assume that the probability of being re-elected for a second term

depends on the incumbent’s history. At the re-election date, voters may recall their past

consumptions using backward discounting. Let Vb =
∑N
n=1 δ

N−nu(cn) be the backward

discounted total utility of the first term. A candidate then maximizes the probability of

elected and re-elected given by the hypothetical function P (V, Vb), which is increasing in

both of its arguments. For simplicity, assume that δ = 1
1+r .

It is straight-forward to verify that c1 = · · · = cN = A/(1+δ+ · · ·+δN−1) maximizes

V , subject to budget constraint
∑N
n=1 δ

n−1cn = A. That is, if a candidate does not

aim for re-election, or, if the voters discount utilities in the conventional way, a plan of

constant consumption over time would be proposed.

Maximizing P (V, Vb) subject to the same budget constraint implies the following

equation: P1δ
n−1u′(cn) + P2δ

N−nu′(cn) = λδn−1, where P1 = ∂P (V,Vb)
∂V > 0, P2 =

∂P (V,Vb)
∂Vb

> 0, and λ is the Lagrange multiplier. Therefore,

u′(cn) =
λ

P1 + P2δN−2n+1
.

As the right hand side of the above equation is decreasing in n, and u(·) is a concave utility

function, we have the following relationship: c1 < c2 < · · · < cN . That is, consumptions

are increasing over time, since later consumptions matter more to the voters at time of

re-election.

If an elected candidate does not need to keep his promise, he would propose a plan

of constant consumption to maximize V , and thus the probability of being elected. But

once elected, he would maximize Vb by reducing the consumptions of early periods and

increasing the consumptions of later periods, so that his probability of being re-elected

is maximized. The exact numbers can be calculated by setting P1 = 0 in the above
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derivations. We can easily see that it makes the consumption profile even steeper, and

thus reinforces the effects of re-election. This cannot happen in a model with conventional

discounting.

6 Summary

In this paper, we introduce a framework in which lifetime individual felicities are derived

from both present and past consumption streams. Each of these streams is discounted,

the former forward in the usual way, the latter backward. Parental influence refers to a

state of affairs in which an individual at date t evaluates consumption programs according

to some weighted average of his own felicity (as perceived at date t) and that of a “shadow

parent” at some date T > t). This simple model can be used, among other things, to

show that parental influence may have a positive impact on savings, that individuals

may exhibit impatience across alternatives that are positioned in periods adjacent to the

present, but patience across similar choices positioned in the more distant future, that

such impatience is attenuated as an individual grows older, and that lifetime choice plans

are generally time-inconsistent. The postulate of “backwards discounting” used in the

model may also be of intrinsic interest, and we discuss this by means of several additional

examples.

7 Appendix

Here is the proof of Observation 1. Let D = δN−T+1, x(t) = δT−t, f(x) = x2/δT , and

g(x) =
[δ(1− x) + 1−D]x

(1−Dx)δT
=

x

DδT−1
+

(1−D + δ − δ
D )x

(1−Dx)δT
.

Then

θt =
α+ (1− α)f(x(t))

α+ (1− α)g(x(t))
≡ h(x(t)).
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It is straight-forward to verify that 1−D+δ− δ
D = (1−δN−T )(δ−δT−N ) < 0. Therefore,

g′′(x) < 0. Furthermore, h′(x) = 0 implies that f ′(x)/g′(x) = h(x), which in turn implies

that g′(x) > 0 at h′(x) = 0. Making use of all of the above, and evaluating h′′(x) at

h′(x) = 0, we obtain h′′(x) > 0. This indicates that h(x) has at most one stationary

point, and if that exists, h(x) is decreasing on the left-hand side of that point and

increasing on the right-hannd side.

Tedious calculations show that at x = δT (i.e., at t = 0), f(x) < g(x); at x =

1 (i.e., at t = T ), f(x) = g(x). Therefore, h(x(0)) < h(x(T )) = 1. Furthermore,

f ′(x)g(x)− f(x)g′(x) > 0 at x = δT . Hence,

h′(x) =
1− α

[α+ (1− α)g(x)]2
{f ′(x)g(x)−f(x)g′(x)+α[f ′(x)−g′(x)−f ′(x)g(x)+f(x)g′(x)]}

is positive at α = 0, and possibly turns negative for larger α’s if f ′(x)−g′(x)−f ′(x)g(x)+

f(x)g′(x) < 0. The initial slope of h(x) establishes whether h(x) is U-shaped or always

increasing. If the initial slope is negative, then it is isn U-shaped. Otherwise, it is always

increasing.

Since x = x(t) is an increasing function of t, the same property holds for θt.
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