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1. Introduction

Consider a preference % over a product set X × Y where X is An for some interval
A in in R, Y is Bn for some topological space B, and n ≥ 3. When % admits the
utility representation

V (x,y) = f
( n∑
i=1

hi(xi,y),y
)

for all (x,y) ∈ X × Y,

where x = (x1, . . . , xn), we say that it is weakly partially separable. When each yi
is thought of as a “characteristic” associated with the dimension i, and xi is the
observed outcome along that dimension, we can ask for additional separability in the
form:

V (x,y) = f
( n∑
i=1

h∗i (xi, yi),y
)

for all (x,y) ∈ X × Y,

where y = (y1, . . . , yn). That is, the characteristics yk for k 6= i, j do not influence
the pairwise ranking of situations which only differ in the ith and jth dimensions.
We refer to this representation as partially separable. A further natural subclass has
the form:

V (x,y) = f
( n∑
i=1

h∗∗(xi, yi),y
)

for all (x,y) ∈ X × Y ;

that is, controlling for the “characteristics” y, the partially separable representation
is anonymous. We characterize preferences which admit such partially additive (util-
ity) representations.

If Y is a singleton, then the above three forms reduce to additive utilities as in
Debreu [1960], Gorman [1968] and Wakker [1988].

The rest of the article is organized as follows. Section 2 discusses some appli-
cations. Section 3 presents the axioms and the representations. Section 4 presents
the main results and Section 5 outlines the proof strategy. Section 6 comments on
“continuity” aspects of the representations.

1The symbol r○ indicates that the authors’ names are in random order.
2Indian Statistical Institute, Delhi Center. Email: 123sidch@gmail.com
3New York University. Email: debraj.ray@nyu.edu
4Indian Statistical Institute, Delhi Center. Email: asen@isid.ac.in
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2. Applications

Let there be n states of the world, with xi the scalar prize in state i, and suppose
that yi is the probability of state i. The ordering % is a preference ordering of lot-
teries of the form (x,y). Then a weakly partially separable representation is one in
which there is separability across states, but not one that is necessarily linear or even
separable in probability. That corresponds to a literature on non–expected utility
theory starting from Allais [1953], Kahneman & Tversky [1979], and Machina
[1982]; for a survey, see Starmer [2000].

Let 1, . . . , n refer to individuals, xi to their income or educational attainment (or
any outcome describable by a scalar) and yi to some individual–specific characteristics
that might need to be invoked to evaluate the social implications of x, such as age,
gender, race or disability. The ordering % might now refer to a social planner’s wel-
fare ordering over different outcome distributions. While those distributions may be
separable across individual achievements, the compositional balance of society might
matter in non-separable ways.

Let 1, . . . , n refer to commodities, xi to their production levels, and yi to some
good-specific characteristic such as market value at international prices and social
value with respect to pollution or need or cultural importance. The ordering % might
now refer to a social planner’s welfare ordering over different production composition,
taking into account both market and social values. This is a common feature of so-
cial GDP accounting, expanded to take note of pollution or non-market household
production; see, e.g., Dasgupta & Mäler [2000].

Let 1, . . . , n refer to individuals, yi to their baseline incomes, and yi to the subse-
quent growth rate of that income. Then % may be viewed as a ranking of economic
mobility over pairs of situations described by baseline income and income-specific
growth rates. Genicot & Ray [2021] use our results to axiomatize a mobility mea-
sure of the form

V (x,y) =
n∑
i=1

yαi∑n
j=1 y

α
j

xi for some α > 0,

which is partially separable and anonymous, but is not separable in y.

3. Setting

Notation. Let N be the set of indices {1, . . . , n}. For any pair of n–dimensional
vectors z and z′, and I ⊆ N , (zI , z

′
N\I) is the vector whose jth component is zj if

j ∈ I, and z′j if j 6∈ I. For distinct i, j ∈ N , we write ij to denote {i, j} . For i and
j in N , we use −i and −ij to denote N \ {i} and N \ {i, j} respectively, so vectors
such as z−i or (zij, z

′
−ij) have the obvious interpretation.

For any n–dimensional vector z and permutation σ of N ,5 zσ is the vector whose
ith component is zσ(i) for each i ∈ N . For any x,x′ ∈ Rn, write x ≥ x′ iff xi ≥ x′i for
every i ∈ N , and x > x′ if x ≥ x′ and x 6= x′.

Setting. For n ≥ 3, let X be An where A is any interval in R and Y be a topological
space B, with typical elements x ≡ (x1, . . . , xn) and y ≡ (y1, . . . , yn). A preference is
a complete and transitive binary relation % on X×Y , with � and ∼ as its strict and

5A permutation of N is a bijection σ : N → N .
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indifference components. Some axioms on % follow. All free variables that appear
below are universally quantified over their respective ranges.

A1. Any strict upper (lower) contour set of (x,y) is open in X × Y .

A2. x > x′ =⇒ (x,y) � (x′,y).

A3. (xI ,xN\I ; y) % (x′I ,xN\I ; y) iff (xI ,x
′
N\I ; y) % (x′I ,x

′
N\I ; y).

A4. (xij,x−ij ; yij,y−ij) % (x′ij,x−ij ; yij,y−ij) if and only if :

(xij,x−ij ; yij,y
′
−ij) % (x′ij,x−ij ; yij,y

′
−ij)

A5. (x,y) ∼ (xσ,yσ)

V : X × Y → R is a representation of % if or every (x,y) and (x′,y′) in X × Y :

(x,y) % (x′,y′) ⇐⇒ V (x,y) ≥ u(x′,y′)

Definition 1: A weakly partially additive representation for % is a tuple (V, f, {hi}i∈N)
such that (1) θ 7→ hi(θ,y) is strictly increasing for θ ∈ A, for any y ∈ Y , (2)
θ 7→ f(θ,y) is strictly increasing over all θ in the range of

∑
i∈N hi(xi,y), for each

y ∈ Y , and (3) the map V : X × Y → R defined by:

V (x,y) := f
(∑
i∈N

hi(xi,y) , y
)

for all (x,y) ∈ X × Y , is a continuous utility representation of %.

Definition 2: A partially additive representation for % is a weakly partially additive
representation for %, (V, f, {h∗i }i∈N), in which each function h∗i can be written as
h∗i (xi, yi) (i.e., it does not depend on y−i).

Definition 3: A partially additive representation for %, (V, f, {h∗i }i∈N), is anony-
mous there is a function h∗∗ with h∗i = h∗∗ for every i ∈ N .

4. Main Results

With the formalism in place, three representation theorems follow.

Theorem 1: A preference % satisfies axioms A1 to A3 if and only if % admits a
weakly partially additive representation.

Theorem 2: A preference % satisfies axioms A1 to A4 if and only if % admits a
partially additive representation.

Theorem 3: A preference % satisfies axioms A1 to A5 if and only if % admits a
partially additive representation that is anonymous.
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5. Proof Strategy

This section has two objectives. First, an overview of the proofs of existence of
representations. The body of lemmas critical to this are stated and it is argued that
they prove the existence claims. Second is the necessity of the axioms. The following
lemma, established using Debreu’s results on existence of additive representations, is
the heart of theorems 1 to 3.

Lemma 1: If % satisfies axioms A1 to A3, then there exists maps h1, . . . , hn :
R× Y → R such that :

(a) For each i ∈ N and any y ∈ Y , the map θ ∈ R 7→ hi(θ,y) ∈ R has full range
and is strictly increasing, and

(b) For each y ∈ Y , x ∈ X 7→
∑

i∈N hi(xi,y) represents % |X×{y}.

From 1a and 1b it is immediate that A2 is necessary for % to have type 0 represen-
tation because the map f in a type 0 representation is strictly increasing in its first
argument. Further, 1b implies that A3 holds for % if it has a type 0 representation.
As type 0 representations are continuous, the necessity of A1 follows.

Thus, axioms A1 to A3 are necessary conditions on % to admit type 0 representa-
tions. These axioms are also necessary for % to admit type 1 or type 2 representations.
This is so because both type 1 and type 2 representations are type 0 representations
by definition.

The ith map, in the n–tuple of maps whose existence is asserted by lemma 1,
has y as its second argument. These maps possess more structure under additional
axioms on the preference.

Lemma 2: Suppose % satisfies A4 and h1, . . . , hn : R× Y → R satisfy :

(1) For each i ∈ N and any y ∈ Y , the map θ ∈ R 7→ hi(θ,y) ∈ R has full range
and is strictly increasing, and

(2) For each y ∈ Y , x ∈ X 7→
∑

i∈N hi(xi,y) represents % |X×{y}.

Then, there exists h∗1, . . . , h
∗
n : R× R++ → R such that :

(a) For each i ∈ N and any yi ∈ R++, the map θ ∈ R 7→ h∗i (θ, yi) ∈ R has full range
and is strictly increasing, and

(b) For each y ∈ Y , x ∈ X 7→
∑

i∈N h
∗
i (xi, yi) represents % |X×{y}.

The above lemma asserts that the ith map, in the n–tuple of maps in lemma 1,
can be taken to be such that its dependence on y is only through the ith component
yi. This is ensured by assuming that % additionally satisfies axiom A4. However,
the ith map may perhaps depend on the index i. The next lemma asserts that this
dependency may be assumed to be absent if % also satisfies axioms A5.

Lemma 3: If % satisfies A5 and h∗1, . . . , h
∗
n : R× R++ → R satisfy :

(1) For each i ∈ N and any yi ∈ R++, the map θ ∈ R 7→ h∗i (θ, yi) ∈ R has full range
and is strictly increasing, and
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(2) For each y ∈ Y , x ∈ X 7→
∑

i∈N h
∗
i (xi, yi) represents % |X×{y}.

Then, there exists h∗∗ : R× R++ → R such that :

(a) θ ∈ R 7→ h∗∗(θ, ρ) ∈ R has full range and is strictly increasing, and

(b) For each y ∈ Y , x ∈ X 7→
∑

i∈N h
∗∗(xi, yi) represents % |X×{y}.

The necessity of A4 for type 1 and type 2 representations is clear as h∗i depends
on y only through yi allowing “cancellations”. Further, A5 is obviously necessary for
type 2 representations.

Lemmas 1 to 3 assert the existence of additive representations for % |X×{y}. How-
ever, to arrive at type m representations, it is required to assert the existence of an
“aggregator” f such that the composition, say V : X × Y → R, yields an utility
representation of % over all of X × Y . Further, this should be accomplished in such
a way that V is continuous. The following lemma addresses these concerns.

Lemma 4: Suppose the maps h̄1, . . . , h̄n : R× Y → R are such that :

(1) For each i ∈ N and any y ∈ Y , the map θ ∈ R 7→ h̄i(θ,y) ∈ R has full range
and is strictly increasing, and

(2) For each y ∈ Y , x ∈ X 7→
∑

i∈N h̄i(xi,y) represents % |X×{y}.

Then, there exists a map f : R× Y → R such that :

(a) For each y ∈ Y , θ ∈ R 7→ f(θ,y) ∈ R is strictly increasing, and

(b) The map V : X × Y → R defined by :

V (x,y) := f
(∑
i∈N

h̄i(xi,y) , y
)

for all (x,y) ∈ X × Y,

is a continuous utility representation of %.

Theorem 1 follows by invoking lemmas 1 and 4. Further, theorem 2 follows by
invoking lemmas 1, 2 and 4. Lastly, theorem 3 follows by invoking lemmas 1 to 4.
Thus, the theorems stand proven if the lemmas are established. This is done in the
Appendix.

6. Further Comments

In definitions 1 to 3, only the composite map V is demanded to be continuous.
However, if the constituent maps h1, . . . , hn and f are also required to be continuous
by the definitions of the representations, then theorems 1 to 3 continue to hold. The
key idea is as follows.

Consider y1 and y2 in Y which are close. Then, each “indifference surface” of %
|X×{y2} on the section X×{y2} is arbitrarily close to each corresponding “indifference
surface”, from a system of such surfaces, of % |X×{y1} on the section X × {y1}. This
is because the preference % is continuous over the whole of X × Y . This uniform
convergence of the “indifference surfaces” must be utilized while extending Debreu’s
construction. Then, lemma 4 achieves an obvious upgrade.
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Appendix

Proof of Lemma 1: Fix an arbitrary y ∈ Y . Define ≥y over X as:

x ≥y x′ ⇐⇒ (x,y) % (x′,y)

With Sy := X × {y}, note that {(x′,y) ∈ Sy : (x′,y) � (x,y)} is equal to Sy ∩
{(x′,y′) ∈ X × Y : (x′,y′) � (x,y)} for any x ∈ X. Since A1 holds for %, it follows
that {(x′,y) ∈ Sy : (x′,y) � (x,y)} is open in Sy for each x ∈ X. Since the projection
map (x′,y) ∈ Sy 7→ x′ ∈ X is an open map, it follows that {x′ ∈ X : (x′,y) � (x,y)}
is an open set in X. That is, the set {x′ ∈ X : x′ >y x} is open in X by the definition
of ≥y. Similarly, the set {x′ ∈ X : x >y x′} is open in X. Thus, ≥y is continuous.
Further, A3 holds %. Thus, we have:

(xI ,xN\I) ≥y (x′I ,xN\I) ⇐⇒ (xI ,x
′
N\I) ≥y (x′I ,x

′
N\I)

Hence, by Debreu’s theorem on existence of additively separable utility represen-
tations (theorem 5.5 of page 71 in Fishburn [1970]), there exists maps hy1 , . . . , h

y
n :

R → R such that x ∈ X 7→
∑

i∈N h
y
i (xi) represents ≥y. Further, the construction

in the proof shows that hyi has full range (see step 6 of theorem 5.4 in Fishburn
[1970]). Since % satisfies A2, it follows that hyi is strictly increasing. Now, for each
i ∈ N , define hi : R× Y → R by:

hi(xi,y) := hy(xi) for every (xi,y) ∈ R× Y.

Thus, by the definition of ≥y and the properties of (hy1 , . . . , h
y
n), the proof of the

lemma is complete. �

Proof of Lemma 2: Fix y∗ ∈ Y and let y ∈ Y be arbitrary. Let i be 1 and let
j, k ∈ N \ {1} be distinct. Let y1 := y and y2 := (y1j,y

∗
−1j). Fix x∗−1j ∈ Rn−2. Since

x ∈ X 7→
∑

i∈N hi(xi,y) represents % |X×{y} and % satisfies A4, both the following
maps:

(x1, xj) ∈ R2 7→ h1(x1,y
1) + hj(xj,y

1) +
∑

l∈N\{1,j}

hl(x
∗
l ,y

1), and

(x1, xj) ∈ R2 7→ h1(x1,y
2) + hj(xj,y

2) +
∑

l∈N\{1,j}

hl(x
∗
l ,y

2)

represent the same (weak) order over R2. That is, there exists a (weak) order over
R2 such that it admits the following two maps as its additive utility representations:

(x1, xj) ∈ R2 7→ h1(x1,y
1) + hj(xj,y

1), and

(x1, xj) ∈ R2 7→ h1(x1,y
2) + hj(xj,y

2)

By theorem 5.4 on page 65 of Fishburn [1970], there exists α > 0 and β, β′ ∈ R
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such that the following hold:

h1(x1,y
1) = αh1(x1,y

2) + β for all x1 ∈ R, and

hj(xj,y
1) = αhj(xj,y

2) + β′ for all xj ∈ R.

Fix x∗, x∗∗ ∈ R such that x∗∗ > x∗. Now, define αj : Y → R++ and βj1, β
j
j : Y → R

as follows:

αj(y) :=
h1(x

∗∗,y1)− h1(x∗,y1)

h1(x∗∗,y2)− h1(x∗,y2)
, and

βj1(y) := h1(x
∗,y1)− αj(y)h1(x

∗,y2),

βjj (y) := hj(x
∗,y1)− αj(y)hj(x

∗,y2).

for all y ∈ Y . It follows that α = αj(y), β = βj1(y) and β′ = βjj (y). Thus, for any
y ∈ Y , we have the following:

h1(x1,y) = αj(y)h1(x1;y1j,y
∗
−1j) + βj1(y) for all x1 ∈ R (1)

hj(xj,y) = αj(y)hj(xj;y1j,y
∗
−1j) + βjj (y) for all xj ∈ R (2)

Similarly, for any y ∈ Y , the following holds:

h1(x1,y) = αk(y)h1(x1;y1k,y
∗
−1k) + βk1 (y) for all x1 ∈ R (3)

hk(xk,y) = αk(y)hk(xk;y1k,y
∗
−1k) + βk2 (y) for all xk ∈ R (4)

for some maps αk : Y → R++ and βk1 , β
k
2 : Y → R. Now, (3) implies:

h1(x1;y1j,y
∗
1j) = αk(y1j,y

∗
1j)h1(x1; y1,y

∗
−1) + βk1 (y1j,y

∗
1j)

for all x1 ∈ R. Substituting this in (1), we have:

h1(x1,y) = αh1(x1; y1,y
∗
−1) + β for all x1 ∈ R, (5)

for some α > 0 and β ∈ R. Recall, x∗, x∗∗ ∈ R are such that x∗∗ > x∗. Now, define
the maps α1 : Y → R++ and β1 : Y → R as follows:

α1(y) :=
h1(x

∗∗,y)− h1(x∗,y)

h1(x∗∗; y1,y∗−1)− h1(x∗; y1,y∗−1)
, and

β1(y) := h1(x
∗,y)− α1(y)h1(x

∗; y1,y
∗
−1)

for all y ∈ Y . Thus, α = α1(y) and β = β1(y). Then, (5) implies:

h1(x1,y) = α1(y)h1(x1; y1,y
∗
−1) + β1(y) for all x1 ∈ R (6)

for all y ∈ Y . Similarly, for any j ≥ 2, there are maps αj : Y → R++ and βj : Y → R
such that, for any y ∈ Y , the following holds:

hj(xj,y) = αj(y)hj(xj; yj,y
∗
−j) + βj(y) for all xj ∈ R. (7)
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Fix an arbitrary j ∈ N \ {1}. From (1) and (6), we have:

α1(y)h1(x1; y1,y
∗
−1) + β1(y)

= αj(y)[α1(y1j;y
∗
−1j)h1(x1; y1,y

∗
−1) + β1(y1j,y

∗
−1j)] + βj1(y),

which simplifies to the following:

[α1(y)− αj(y)α1(y1j;y
∗
−1j)]h1(x1; y1,y

∗
−1) (8)

= βj1(y)− [β1(y)− αj(y)β1(y1j,y
∗
−1j)] (9)

for all x1 ∈ R. Since (9) is independent of x1 but (8) is not, we have:

α1(y) = αj(y)α1(y1j;y
∗
−1j) (10)

Similarly, (2) and (7) imply the following identities:

αj(y) = αj(y)αj(y1j;y
∗
−1j) (11)

From (10) and (11), for every j ≥ 2: αj(y) = µj(y1j)α1(y) where µj(y1j) :=
αj(y1j,y

∗
−1j)/α1(y1j,y

∗
−1j). Thus, (6) and (7) imply:

∑
i∈N

hi(xi,y) = α1(y)[h1(x1; y1,y
∗
−1) +

n∑
i=2

µi(y1i)hi(xi; yi,y
∗
−i)] + β(y)

where β(y) :=
∑

i∈N βi(y). Since x ∈ X 7→
∑

i∈N hi(xi,y) is a utility representation
of % |X×{y}, the following map:

x ∈ X 7→ h1(x1; y1,y
∗
−1) +

n∑
i=2

µi(y1i)hi(xi; yi,y
∗
−i) (12)

is a representation of % |X×{y}. Now, fix an arbitrary j ≥ 3. By A4, each of the
following maps:

(x2, xj) ∈ R2 7→ µ2(y12)h2(x2; y2,y
∗
−2) + µj(y1j)hj(xj; yj,y

∗
−j), and

(x2, xj) ∈ R2 7→ µ2(y∗1, y
2)h2(x2; y2,y

∗
−2) + µj(y∗1, yj)hj(xj; yj,y

∗
−j)

represents the same (weak) order over R2. Further, each is additive. Thus, there
exists maps ρ2j : Y → R++ and ξ2j2 , ξ

2j
j : Y → R such that:

µ2(y12)h2(x2; y2,y
∗
−2) = ρ2j(y)µ2(y∗1, y2)h2(x2; y2,y

∗
−2) + ξ2j2 (y) (13)

µj(y1j)hj(xj; yj,y
∗
−j) = ρ2j(y)µ2(y∗1, yj)hj(xj; yj,y

∗
−j) + ξ2jj (y) (14)

for all x2, xj ∈ R. Since x2 7→ h2(x2; y2,y
∗
−2) is strictly increasing, by (13) we obtain

the following:
µ2(y12) = ρ2j(y)µ2(y∗1, y2) and ξ2j2 (y) = 0. (15)
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Similarly, (14) leads to the following identity:

µj(y1j) = ρ2j(y)µj(y∗1, yj) and ξ2jj (y) = 0. (16)

Now, (15) and (16) imply: µj(y1j) = [µj(y∗1, yj)/µ
2(y∗1, y2)]µ

2(y12) for every j ≥ 3.
Thus, we have:

h1(x1; y1,y
∗
−1) +

n∑
i=2

µi(y1i)hi(xi; yi,y
∗
−i)

= h1(x1; y1,y
∗
−1) +

µ2(y12)

µ2(y∗1, y2)

n∑
i=2

µi(y∗1, yi)hi(xi; yi,y
∗
−i)

=
µ2(y12)

µ2(y∗1, y2)

[µ2(y∗1, y2)

µ2(y12)
h1(x1; y1,y

∗
−1) +

n∑
i=2

µi(y∗1, yi)hi(xi; yi,y
∗
−i)
]

=
µ2(y12)

µ2(y∗1, y2)

[µ2(y∗1, y2)

µ2(y12)
h1(x1; y1,y

∗
−1) +

n∑
i=2

h∗i (xi, yi)
]
,

where, for each i ≥ 2, the map h∗i : R× R++ → R is defined by:

h∗i (xi, yi) := µi(y∗1, yi)hi(xi; yi,y
∗
−i) for all (xi, yi) ∈ R× R++.

Since (12) is a representation of % |X×{y}, so is the following map:

x ∈ X 7→ µ2(y∗1, y2)

µ2(y12)
h1(x1; y1,y

∗
−1) +

n∑
i=2

h∗i (xi, yi). (17)

Then, as % satisfies A4, each of the following maps:

(x1, x3) ∈ R2 7→ µ2(y∗1, y2)

µ2(y12)
h1(x1; y1,y

∗
−1) + h∗3(x3, y3), and

(x1, x3) ∈ R2 7→ µ2(y∗12)

µ2(y1, y∗2)
h1(x1; y1,y

∗
−1) + h∗3(x3, y3)

represents the same (weak) order over R2 and are additive. Thus, there exists maps
ψ : Y → R++ and η1, η3 : Y → R such that:

µ2(y∗1, y2)

µ2(y12)
h1(x1; y1,y

∗
−1) = ψ(y)

µ2(y∗12)

µ2(y1, y∗2)
h1(x1; y1,y

∗
−1) + η1(y), (18)

h∗3(x3, y3) = ψ(y)h∗3(x3, y3) + η3(y) (19)

for all x1, x3 ∈ R. Since x3 7→ h∗3(x3, y3) is strictly increasing, (19) implies: ψ(y) = 1
and η3(y) = 0. Thus, (18) reduces to:[µ2(y∗1, y2)

µ2(y12)
− µ2(y∗12)

µ2(y1, y∗2)

]
h1(x1; y1,y

∗
−1) = η1(y) for all x1 ∈ R.
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As x1 7→ h1(x1; y1,y
∗
−1) is strictly increasing, we have: η1(y) = 0, and

µ2(y∗1, y2)/µ
2(y12) = µ2(y∗12)/µ

2(y1, y
∗
2) (20)

Define the map h∗1 : R× R→ R as follows:

h∗1(x1, y1) := [µ2(y∗12)/µ
2(y1, y

∗
2)]h1(x1; y1,y

∗
−1)

for all (x1, y1) ∈ R × R++. By (17) and (20), x ∈ X 7→
∑

i∈N h
∗
i (xi, yi) represents

% |X×{y}. Note, for all i ∈ N , the map θ ∈ R 7→ h∗i (θ,y) ∈ R is full range and
strictly increasing. This follows from the definition of (h∗1, . . . , h

∗
n) and the properties

of (h1, . . . , hn). �

Proof of Lemma 3: Fix an arbitrary y ∈ Y . By A5, the maps:

(x1, x2) ∈ R2 7→ h∗1(x1, y1) + h∗2(x2, y2), and

(x1, x2) ∈ R2 7→ h∗2(x1, y1) + h∗1(x2, y2)

represent the same (weak) order over R2 and are additive. Thus, there exists α > 0
and β, β′ ∈ R such that:

h∗2(ρ, θ) = αh∗1(ρ, θ) + β1 for all ρ ∈ R, (21)

h∗1(ρ, θ) = αh∗2(ρ, θ) + β2 for all ρ ∈ R (22)

for all θ ∈ R++. Fix ρ∗, ρ∗∗ ∈ R such that ρ∗∗ > ρ∗. Now, define the maps α : R++ →
R++ and β1, β2 : R++ → R as follows:

α(θ) :=
h∗2(ρ∗∗, θ)− h∗2(ρ∗, θ)
h∗1(ρ∗∗, θ)− h∗1(ρ∗, θ)

for all θ ∈ R++,

β1(θ) := h∗2(ρ∗, θ)− α(θ)h∗1(ρ∗, θ) for all θ ∈ R++,

β2(θ) := h∗1(ρ∗, θ)− α(θ)h∗2(ρ∗, θ) for all θ ∈ R++, .

From (21), we have: α = α(θ). Thus, (21) and (22) imply: β1 = β1(θ) and β2 = β2(θ).
Hence, we obtain the following:

h∗2(ρ, θ) = α(θ)h∗1(ρ, θ) + β1(θ) for all ρ ∈ R, (23)

h∗1(ρ, θ) = α(θ)h∗2(ρ, θ) + β2(θ) for all ρ ∈ R (24)

Thus, (23) and (24) imply the following:(
1− [α(θ)]2

)
h∗2(ρ, θ) = α(θ)β2(θ) + β1(θ) for all ρ ∈ R. (25)

Since ρ 7→ h∗2(ρ, θ) is strictly increasing, (25) implies: [α(θ)]2 = 1 Also, α(θ) > 0.
Thus, we have: α(θ) = 1. Substiuting in (25), we obtain: β1(θ) + β2(θ) = 0. The
argument thus far has been for indices 1 and 2. Clearly, this could have been done
for any arbitrary pair of distinct indices i and j in N . Thus, there exist maps h∗∗ :
R× R++ → R and β1, . . . , βn : Y → R such that:

h∗i (xi, yi) = h∗(xi, yi) + βi(y) for all (xi,y) ∈ R× Y.
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Hence,
∑

i∈N h
∗
i (xi, yi) =

∑
i∈N h

∗∗(xi, yi) +
∑

i∈N βi(y). That is, the map x ∈ X 7→∑
i∈N h

∗∗(xi, yi) represents % |X×{y} for all y ∈ Y . �

Proof of Lemma 4: Since % satisfies A1, there exists a coninuous map V : X×Y →
R such that V represents %. In particular, the map x ∈ X 7→ V (x,y) represents
% |X×{y}. Further, the function x ∈ X 7→

∑
i∈N h̄i(xi,y) represents % |X×{y}. Hence,

there exists a strictly increasing map φy : R→ R such that:

V (x,y) = φy
(∑
i∈N

h̄i(xi,y)
)

for all x ∈ X. (26)

Fix an arbitrary y ∈ Y . Choose a map θ ∈ R 7→ xθ ∈ X such that: θ =∑
i∈N h̄i(x

θ
i ,y) for all θ ∈ R. Also, define f(θ,y) := φy(θ). Clearly, θ 7→ f(θ,y) is

strictly increasing. Thus, (26) implies:

V (xθ,y) = f
(∑
i∈N

h̄i(x
θ
i ,y),y

)
for all θ ∈ R. (27)

Since y ∈ Y is arbitrary, (27) holds for all y ∈ Y .
Fix an arbitrary x ∈ X. Define θ :=

∑
i∈N h̄i(xi,y). Also, we know: θ =∑

i∈N h̄i(x
θ
i ,y). Thus,

∑
i∈N h̄i(xi,y) =

∑
i∈N h̄i(x

θ
i ,y) which gives,

f
(∑
i∈N

h̄i(x
θ
i ,y),y

)
= f

(∑
i∈N

h̄i(xi,y),y
)
. (28)

Further, since x′ ∈ X 7→
∑

i∈N h̄i(x
′
i,y) represents % |X×{y}, we have: (xθ,y) ∼

(x,y). That is, V (xθ,y) = V (x,y). Therefore, (27) and (28) complete the proof of
the claim. �

References

Allais, M. (1953): “Le Comportement de l’Homme Rationnel Devant le Risque:
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