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Abstract. A sender sells an object of unknown quality to a receiver who pays his ex-
pected value for it. Sender and receiver might hold different priors over quality. The sender
commits to a monotone categorization of quality. We characterize the sender’s optimal
monotone categorization, the optimality of full pooling or full separation, and make pre-
cise a sense in which pooling is dominant relative to separation. As an application, we
study the design of a grading scheme by an educational institution which seeks to signal
student qualities and simultaneously incentivize students to learn. We show how these in-
centive constraints are embedded as a distortion of the school’s prior over student qualities,
generating a monotone categorization problem with distinct sender and receiver priors.

1. INTRODUCTION

A sender is about to come into possession of an object of unknown quality. Prior to knowing
that quality, she commits to a categorization. That is, she partitions the set of qualities into
subsets or categories — some possibly singletons — and verifiably commits to reveal the
category in which the quality belongs. The categories must be monotone. For instance,
she can place qualities between a1 and a2 into one category. She cannot, however, lump
qualities below a1 with those above a2, where a2 > a1. Monotonicity is a natural restriction
in many settings; see Section 2.5.

A receiver buys the object, and pays the sender his expected value conditional on the
sender’s category announcement. The sender seeks to maximize expected payment.

The sender and receiver use distinct distributions to evaluate the expectation of quality. That
could mean that they hold different priors, and so disagree about the underlying distribution
of qualities. But there are other situations with common priors that map to a reduced form
with different priors. For instance, the sender might be an intermediary for individuals
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who differ in their optimism or pessimism about the value of the object they own, and she
might be more responsive to, say, optimistic owners who are also more generous with their
fees. Further, distinct priors may be a stand-in for state-dependent sender payoffs over and
above receiver payments, or incentive constraints that effectively distort the measure that
the sender employs to maximize expected value. Temporarily postponing this discussion
(see Sections 2.4 and 4), note that a difference in priors, either primitive or induced, is what
makes our categorization problem nontrivial.

A categorization will typically have pooling intervals in which all qualities are in the same
category and separating intervals in which all qualities are revealed. We build an auxiliary
function x 7→ H(x), where H(x) is the probability, from the sender’s perspective, that the
quality is below the x-quantile in the receiver’s prior. Theorem 1 shows that an optimal
categorization can be built by pooling quality intervals where H differs from its lower con-
vex envelope, and separating in all intervals where these two objects coincide. Section 2.3
compares our approach with the ironing procedure of Myerson (1981) and the procedure
in Rayo (2013).

Theorem 1 can be applied to study full pooling, as well as local pooling on intervals. The
former is optimal when the receiver’s prior dominates the sender’s prior under first stochas-
tic dominance either throughout (Proposition 1) or on intervals (Proposition 2).1 However,
these findings are not paralleled for separation. Full separation is optimal if and only if
the sender’s prior dominates the receiver’s in the likelihood ratio order (Proposition 3).
Moreover, this dominance relationship over an interval continues to be necessary for sepa-
ration on that interval, but is not sufficient (Proposition 4). This asymmetry across pooling
and separation has implications for the relative prevalence of pooling. In Section 3.3, we
describe a precise sense in which pooling is more widespread than separation.

Specifically, suppose that pairs of priors are drawn from some universe of allowable priors,
which could be equally attached to sender and receiver. Say that a quality is potentially
pooled if it is pooled (with other qualities) in at least one of the two problems; and com-
prehensively pooled if it is pooled in both problems. Proposition 5 shows that every quality
is potentially pooled, and that the set of problems for which a nondegenerate interval of
qualities is comprehensively pooled is open and dense in the space of all prior pairs (under
the uniform topology). Pooling is the rule rather than the exception.

1We say a distribution dominates another “on an interval” if the former distribution, conditional on the inter-
val, dominates the latter distribution, conditional on that same interval.
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That said, it is possible to examine how the extent of pooling and separation varies with
the sender and receiver’s prior beliefs. In Section 3.4, we vary the implied optimism in the
sender’s prior. Proposition 6 shows that a higher prior for the sender (in the likelihood-
ratio order) expands optimal separating regions. In Section 3.5, we show that a special
case of “nonlinear sender payoff” problems can be rewritten as a version of our benchmark
problem, with an implied distortion in the sender’s prior. In that special class of problems,
an increased convexity of the sender’s payoff function is analogous to heightened optimism
of the sender’s prior in the benchmark problem.

Categorization has several applications. Financial rating agencies classify assets according
to riskiness, certifying companies underwrite eco-friendly labels, bond issues are rated by
agencies, the Department of Health provides restaurants with sanitary inspection grades,
and schools grade students according to their academic achievements. In Section 4, we
study an application where a school chooses a grading system both to signal student’s un-
derlying abilities and to incentivize students to exert effort to learn. Beyond its intrinsic
interest, this application illustrates how the school’s problem of incentivizing learning can
be nested by our framework. Proposition 7 shows that incentive constraints can be incor-
porated into our benchmark model, with an appropriately induced sender prior, which is
different from the receiver prior even though the primitive priors could be the same.

1.1. Related Literature. We contribute to the literature on “information design,” stem-
ming from Rayo and Segal (2010) and Kamenica and Gentzkow (2011). Within that lit-
erature, our work relates mainly to papers studying monotone information design, such as
Mensch (2021) and Ivanov (2021), and information design with heterogeneous priors, such
as Alonso and Camara (2016). Our paper combines these two starting points, and provides
a sharp characterization of optimal categorization in this combined environment. In Section
3.4, we compare optimal monotone categorization to non-monotone benchmarks.

Like us, Dworczak and Martini (2019) study optimal signaling structures in environments
where the receiver’s action depends on their posterior mean. Much of the analysis in
Kolotilin (2018) also focuses on the “posterior mean case.”2 Both papers study problems
where the sender’s payoff is affine in the state, and potentially nonlinear in the receiver’s
chosen action. Contrastingly, the sender’s payoff in our environment is assumed to be affine

2Some of Kolotilin’s (2018) results apply to a broader class of persuasion problems. However, Kolotilin
(2018) remarks that his Assumption 2 (in page 614) implies that the “sender’s payoff depends only on the
expected state,” and therefore the results that rely on such assumption refer to the “posterior mean case.”
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in the receiver’s action (which equals the receiver’s posterior mean), but potentially non-
linear in the state. See, for example, the discussion in section 2.3, which clarifies how the
heterogeneous priors between the sender and receiver can be expressed as the sender hav-
ing a payoff function which is nonlinear in the state. Moreover, in our exercise the sender
must employ a monotone categorization, which is not a requirement in Kolotilin (2018)
and Dworczak and Martini (2019). Dworczak and Martini (2019) provide conditions for
the optimality of monotone signals in their environment. Kolotilin (2018) also provides
conditions for a special type of monotone structure, which he calls interval revelation, to
be optimal. Kolotilin and Li (2021) provide some characterization results for monotone
persuasion, again in a setup where the sender’s payoff is state independent.

The solution method described in Theorem 1 is related to the ironing technique originally
used in Myerson (1981), recently extended by Kleiner, Moldovanu and Strack (2021) to
apply to optimization problems subject to majorization constraints. This connection is
discussed at length in Section 2.3.

Rayo (2013) studies optimal monotonic signals in a problem where a monopolistic seller
designs a menu of good qualities to be offered to buyers who care about the “status” im-
plied by their chosen good. In part, our analysis can be viewed as bridging Rayo’s specific
problem to a more abstract setting where sender and receiver have distinct priors. This al-
lows us to interpret the sender’s incentives to pool or separate states within certain intervals
as due to “greater local pessimism” or “greater local optimism” than the receiver, respec-
tively. Some of Rayo’s (2013) results parallel ours; for example, his characterization of the
optimality of full separation is equivalent to ours in Proposition 3. Kartik, Lee and Suen
(2021) find related characterization of full separation, in an environment with a different
restriction on the set of experiments available to the sender.

2. MONOTONE CATEGORIZATION

A sender is about to come into possession of an object, the quality a of which is currently
unknown to her. She has the opportunity to choose a categorization — a partition of the
space of potential qualities. She commits to naming the element of the partition to which
a belongs. A receiver buys the object and obtains value equal to its quality. He believes
that quality is distributed according to a continuous cdf R, strictly increasing on [a, ā] with
R(a) = 0 and R(ā) = 1. He stands ready to pay his expected value for the object, where
expectations are computed using R and the category revealed by the sender.
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It is assumed that the chosen categorization must be monotone, with each element a (pos-
sibly degenerate) interval. For instance, the sender can create two categories for qualities
between a and a1, or between a1 and ā. She cannot, however, lump together qualities below
a1 or above a2 > a1 into one category without including all qualities in between.

The sender’s objective is to maximize her “expected” revenue from the sale of the object,
by committing to a categorization before quality is revealed to her. That “expectation” is
calculated using a signed measure S (which is potentially not a cdf). The maximization
problem is non-trivial only if S ̸= R; that is, when sender and receiver have distinct priors.
If S = R, then the expected sale revenue is independent of the sender’s chosen characteri-
zation. (In that case, Bayesian plausibility implies that the expected revenue is equal to the
object’s expected value according to the common prior S = R.)

An interpretation of our model is that the sender and receiver hold distinct priors about the
object’s value, and we therefore informally think of S as a cdf. However, our analysis does
not rely on such a presumption, and some of our applications and interpretations make use
of the fact that S is a signed measure. We assume that S has bounded variation on the same
support [a, ā] as R, with S(a) and S(ā) both finite, and that it only has upward jumps.3 S

would indeed be a cdf if it were nondecreasing with the usual end-point conditions.

2.1. Sender’s Categorization Problem. For any countable — possibly empty — collec-
tion P of disjoint intervals, each of the form [p, p′) ⊂ [a, ā], define:

(1) A(x) =

ER [y|y ∈ [p, p′)] , if x ∈ [p, p′) ∈ P

x, otherwise.

Let AR be the collection of all such functions. This set is nonempty; e,g., A(x) = x for
all x lies in it. The sender picks A ∈ AR to maximize her “expected return” under the
integrating function S, or more precisely, under the signed measure that S represents.

Observe that any A ∈ AR has (at most) countably many disjoint intervals on which it is
constant; these are the pooling intervals. Adjacent pooling intervals have distinct constant
images. Qualities that are not in pooling intervals are in separating regions. By convention,
all pooling intervals are closed on the left and open on the right, so A is right continuous.

3The assumed absence of downward jumps avoids notational complexity, but is dispensable.
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Ψ

t0 = 0 t1 ā

Figure 1. R (not shown) is uniform on [0, ā] and S is as pictured. Jagged lines indicate
separating regions. In the first panel, there is full separation and Ψ = S. In the second panel,
the sender pools on [t0, t1) and separates elsewhere, and Ψ is shown in red.

Accordingly, we always separate ā (so A(ā) = ā). These choices are without loss of gen-
erality because (a) R has no mass points, and (b) S has only upward jumps by assumption,
so the sender would prefer to close any discontinuity in A on the right rather than the left.

For this last reason, and to write “expected value” formally as an integral, we adopt the
convention that S is left continuous. The sender solves4

(2) maximize
∫ ā

a

A(x)dS(x),

noting that this Stieltjes integral is just the expected value under S when S is a cdf. It
is well-defined because the integrand A is right continuous, and because S has bounded
variation and is taken to be left continuous. We could have adopted a right-continuous rep-
resentation for S, except that the integral in (2) would have to be rewritten to accommodate
the left-hand limits of S, which is notationally cumbersome.

2.2. Optimal Categorization. Define a weighting function Ψ associated with A ∈ AR by:

(3) Ψ(x,A) =


S(p) + [R(x)−R(p)]

[
S(p′)− S(p)

R(p′)−R(p)

]
if x is in a pooling interval [p, p′);

S(x) otherwise.

4If S has all the properties of a cdf except that S(ā) < 1, this can be interpreted as S having a mass point
at ā. Under that interpretation, the objective in (1) represents the sender’s “expected value” over the interval
[a, ā). But note that, for reasons (a) and (b) described above, it is without loss to let A(ā) = ā, and to write
the sender’s objective as the expected value over [a, ā).
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With R strictly increasing, Ψ is well-defined. If S is a cdf, so is Ψ. If S has bounded
variation, so does Ψ. Next, for any left-continuous function H : [0, 1] → R+, define its
lower convex envelope by

H̆(x) ≡ min{y|(x, y) ∈ Co(Graph(H))},

This chalks out uniquely the largest convex function we can place below H . In what fol-
lows, we study the particular function H = S ◦R−1.

Lemma 1. (i) The value to the sender,
∫ ā

a

A(x)dS(x), equals
∫ ā

a

xdΨ(x,A).

(ii) Furthermore, for any A ∈ AR and z ∈ [0, 1], Ψ(R−1(z), A) ⩾ H̆(z).

Part (i) states that the sender’s value under any categorization A is found by integrating
x over [a, ā] under the weighting function Ψ(·, A), which in separating regions “follows”
the sender’s prior S and in pooling regions “follows” the receiver’s prior R. See Figure 1.
Moreover, integration by parts reveals that∫ ā

a

xdΨ(x,A) = [1−Ψ(ā, A)]ā− [1−Ψ(a,A)]a+

∫ ā

a

(1−Ψ(x,A))dx

= [1− S(ā)]ā− [1− S(a)]a+

∫ ā

a

(1−Ψ(x,A))dx,(4)

where we use Ψ(a,A) = S(a) and Ψ(ā, A) = S(ā). Therefore we will have found our
optimal categorization if we can find a suitable pointwise lower bound to every Ψ. That
motivates part (ii), which connects the weighting function Ψ to the lower convex envelope
H̆ of H = S ◦ R−1. It is easy to see that H̆ has zones where it coincides with locally
convex segments of H (not necessarily all of them), and other intervals where it is a straight
line connecting two points of the form (z,H(z)) and (z′, H(z′)). We can thus fashion a
categorization A∗ by pooling the intervals where H̆ is a straight line and by separating
everywhere else. The Ψ induced by A∗ will coincide with H̆ .

Lemma 2. There exists A∗ ∈ AR such that Ψ(R−1(z), A∗) = H̆(z) for all z ∈ [0, 1].

Together, Lemmas 1(ii) and 2 imply that there is a categorization A∗ such that for every
categorization A ∈ AR and z ∈ [0, 1], Ψ(R−1(z), A) ⩾ Ψ(R−1(z), A∗). In other words,

(5) Ψ(x,A) ⩾ Ψ(x,A∗) for every x ∈ [a, ā] and A ∈ AR.
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(a) Concave Receiver Prior (b) Convex Receiver Prior

Figure 2. The construction of H = S ◦ R−1 and its lower convex envelope. In panel A, R is
concave. In panel B, R is convex. In both cases, S has a reverse-logistic shape. H is shown in
blue and its lower convex envelope in red.

Consequently, (4) and (5) implies that sender value is weakly higher under A∗ than under
any A ∈ AR, which yields

Theorem 1. A solution to the sender’s problem exists. A categorization A∗ is a solution if
and only if Ψ(R−1(z), A∗) = H̆(z) for all z ∈ [0, 1], where H = S ◦R−1.

Figure 2 displays the optimal categorization. S is taken to be a cdf. It is shown horizontally
flipped and has a “reverse-logistic” shape. In the illustration in panel A, R is concave
(shown vertically flipped) and in panel B, R is convex (again vertically flipped). In each
panel, the function H = S ◦ R−1 is derived, and displayed in the north-east quadrant. Its
lower convex envelope is also displayed. To see informally how this categorization behaves,
note that if R is concave (panel A), this concavity compresses the concave segment of the
derived H , and elongates the convex segment. The resulting pool is therefore “small.”
This is reasonable: the concavity of R implies receiver pessimism about quality, so it is
better that the sender separate qualities to a greater degree (relative to uniform R). In fact,
Panel A shows two distinct zones of separation. In panel B, R is convex — the receiver
is relatively optimistic. That accentuates the concave segment of H and induces greater
pooling; another intuitive observation.
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2.3. Relation between Theorem 1, the Ironing Procedure, and Rayo (2013). An iron-
ing procedure, as introduced in Myerson (1981), can often solve problems of the form

max
A∈A

∫ ā

a

π(x)A(x)dR(x),(6)

where R is some distribution with support [a, ā], π is some potentially nonmonotonic func-
tion (it is the virtual surplus function in Myerson), and A is a given subset of all non-
decreasing functions from [a, ā] into some given interval [b, b̄]. For expositional ease we
assume R is uniform on [0, 1], but this is not necessary.

Suppose first that A is the space of all non-decreasing functions. The procedure defines a
new version of π, which “irons out” its nonmonotonicities. Let Π(x) ≡

∫ x

0
π(z)dz, and

π̆(x) ≡ dΠ̆(x)/dx, where Π̆ is the lower convex envelope of Π. Because Π̆ is convex,
the ironed version π̆ of π is non-decreasing. Moreover, π̆ coincides with π on intervals
where both are strictly increasing, and (generically) differs from π on intervals where π̆ is
constant. Replacing π by π̆ in (6), we obtain the auxiliary expression∫ ā

a

π̆(x)A(x)dR(x).(7)

Next, choose A ∈ A so as to maximize the objective in (7). One solution is the step
function A∗ with A∗(x) = b when π̆(x) ⩽ 0 and A∗(x) = b̄ when π̆(x) > 0. Importantly,
this solution is such that A is constant wherever π̆ differs from π; and we can consequently
show that such A∗ must also be a solution to the original maximization problem.5

Previous literature has shown that the ironing method introduced above can be applied
to a broader set of problems, in which A is further restricted. For example, additional
constraints arise in Myerson’s allocation problems with multiple potential buyers; or from
the production costs as in Mussa and Rosen (1978), or to account for a variety of capacity
constraints. In all such cases, the ironing solution is such that A is strictly increasing on
intervals where π̆ is strictly increasing and constant on intervals where π̆ is constant.

In our categorization problem, assuming further that S is absolutely continuous with respect
to R, (2) can be converted to (6), with π(x) ≡ dS

dR
(x). However, our sender must choose A

5Formally, we have∫ ā

a

π(x)A(x)dR(x) ⩽
∫ ā

a

π̆(x)A(x)dR(x) ⩽
∫ ā

a

π̆(x)A∗(x)dR(x) =

∫ ā

a

π(x)A∗(x)dR(x),

where the last equality follows from the fact that A∗ is constant on each interval I where π differs from π̆
and

∫
I
π(x)dR(x) =

∫
I
π̆(x)dR(x) by the construction of π̆.
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from AR, the space of all non-decreasing functions which additionally satisfy the Bayesian
constraint in (1).6 Rayo (2013) studies the maximization problem in (6), subject to Bayesian
constraints analogous to (1), with the additional assumption that π is a smooth function.
The solution methods proposed both by Rayo (2013) and by us yield pooling and separating
regions that coincide with the ironing solution just described. Therefore, one interpretation
of our Theorem 1 and the methods used in Rayo (2013) is that the ironing procedure applies
to design problems subject to Bayesian constraints as in (1).7

Now we remark on some differences. As already noted, our objective function can be
rewritten in the form (6) if S is absolutely continuous with respect to R. However, the proof
of Theorem 1 applies more broadly even when the sender’s objective cannot be written in
that form — so that the ironing procedure, or Rayo’s (2013) method, cannot be applied
directly. Specifically, our approach circumvents the step of rewriting the objective in (6) —
to obtain (7) — by relying on the special structure of the Bayesian constraints in (1).

Instead, part (i) of Lemma 1 achieves a different rewriting of the sender’s objective. It
shows that

∫ ā

a
A(x)dS(x) can be equivalently written as

∫ ā

a
xdΨ(x,A), which is the ex-

pected value of the object under the weighting function Ψ (so named because S, and there-
fore Ψ, may not be a proper cdf). This weighting function is a composite of S and R: in
the separating intervals of A, it equals the sender’s prior S; and in the pooling intervals of
A, it is an affine function of R. See the precise definition of Ψ in equation (3). The sender’s
problem is then to pick an A that yields the “best” such weighting function.

Part (ii) of Lemma 1 shows that for every A, the implied weighing function Ψ is weakly
dominated by the lower convex envelope of H ≡ S ◦ R−1 in the sense of first order sto-
chastic dominance. And Lemma 2 shows that there exists some A ∈ AR whose induced
weighing function is equal to the lower convex envelope of H . That A must, therefore, be
a solution to the sender’s problem.

Thus both our procedure and the ironing method invoke convex envelopes, but in different
ways. In the latter, the convex envelope is used to define the auxiliary problem in (7), the
solution to which is then the solution to the original problem. In contrast, in our method
the convex envelope of H = S ◦ R−1 is itself the solution to the problem — it equals

6Such Bayesian constraints are similar in spirit to capacity constraints, as they can be thought of as the sender
allocating a limited amount of “beliefs” about the object’s quality across categories.
7In a recent paper, written concurrently to ours, Kleiner, Moldovanu and Strack (2021) demonstrate that
ironing can be derived as a special case of a general solution method that applies to optimization problems
subject to majorization constraints, such as Bayes-plausibility restrictions.
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the weighting function induced by the sender’s optimal categorization. Moreover, the first
order stochastic dominance argument described above, and the optimality of the overall
procedure, do not rely on S being a cdf that is absolutely continuous with respect to R.

2.4. Remarks on Non-Common Priors. The literal interpretation of our model is that
sender and receiver hold distinct priors – they agree to disagree. But there are other, “com-
mon prior,” models that might lead to the sender acting as if they hold a prior distinct from
the receiver’s.8 As a first example, the sender might be interested in a robust solution —
one that generates the highest return to her under the most pessimistic receiver prior in
some exogenously given class. Additionally, in Section 3.6, we describe how the profit
maximization problem of a retailing intermediary, studied in Rayo and Segal (2010), can
be interpreted as that of a sender with state-dependent preferences (or, equivalently, a dis-
torted “prior”). Finally, in Section 4, we provide a model with incentive constraints arising
from moral hazard, and show that it maps into our setting with non-common priors.

2.5. Remarks on Monotonicity. Our sender is restricted to choosing monotonic cate-
gorizations. In many situations, monotonicity is warranted, either coming from external
constraints, or internal constraints within a larger problem. As an example of the former:
a non-monotone categorization by a credit rating agency of the riskiness of debt issuers
could invite a lawsuit from a relatively safe issuer. (See Goldstein and Leitner (2018) for
a discussion.) As an instance of the latter, monotonicity could emerge as the outcome of
a broader design problem in which incentive constraints need to be respected, and natural
single-crossing conditions hold over the type space of agents. Our application in Section 4
is a case in point (though our goal in that section is broader), and so is the design problem
in Rayo (2013).

Compared to unrestricted persuasion problems, this additional imposition of monotonicity
calls for a new solution method, because some concavifications of sender values in receiver
posteriors, achieved through belief-splitting, are no longer available when categories are
required to be monotone. In Section 3.6, we compare our results on monotonic categoriza-
tion to categorization benchmarks without the monotonicity assumption, such as Alonso
and Camara (2016) and Rayo and Segal’s (2010).

8This literal interpretation is also taken by Alonso and Camara (2016), who extend the concavification argu-
ment of Kamenica and Gentzkow (2010) to a context with heterogeneous priors. Further, see Van den Steen
(2004, 2009, 2010, 2011), Che and Kartik (2009), Galperti (2019), de Clippel and Zhang (2020), Kartik,
Lee and Suen (2017) and Kartik, Lee and Suen (2021), who also consider environments with heterogeneous
priors.
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There are problems that can also be mapped into the framework of monotone persuasion
with state-dependent sender preferences. For instance, Kolotilin and Zapechelnyuk (2019)
establish an equivalence between balanced delegation problems and monotone persuasion
problems. Our method finds the optimal signal in their linear persuasion environment when
the sender’s value is linear in the receiver’s action. Board (2009) studies the optimal de-
sign of groups accounting for peer effects. His case of average quality peer effects is also
closely connected to a monotone persuasion problem. In Rayo (2013), buyers value both
the underlying quality of a status good and the average type of agents who purchase it. In
that setting, the monopolist seller’s problem is also a monotone categorization problem.

3. POOLING AND SEPARATION UNDER OPTIMAL CATEGORIZATION

Theorem 1 has implications for pooling and separation, both globally and on sub-intervals.
Propositions 1 through 4 relate separating regions of the optimal categorizations to the
sender’s local optimism relative to the receiver, and its pooling regions to the sender’s rela-
tive local pessimism. The relevant notions of local optimism and pessimism are discussed
below. It is of interest that they are not “symmetric.”

3.1. Full Pooling and Pooling Intervals. Proposition 1 states that if the receiver is more
optimistic than the sender in the sense of first order stochastic dominance (or “≿1”), then
the sender should not reveal any information that might make the receiver more pessimistic
— and so full pooling on [a, ā) is optimal.

Proposition 1. Full pooling on [a, ā) is optimal if and only if S(x)−S(a) ≥ [1−S(a)]R(x)

for all x ∈ [a, ā]. If S is a cdf with S(a) = 0, then this condition is equivalent to R ≿1 S.

This intuitive idea extends to local regions over which the receiver is more optimistic than
the sender. Say that R ≿1 S on an interval I if R(·|I) ≿1 S(·|I).

Proposition 2. Let S be a cdf. If R ≿1 S on [a, b), then there exists an optimal categoriza-
tion where [a, b) belongs to a pooling interval.

Conversely, R ≿1 S on any pooling interval under an optimal categorization.

If x < ā is a discontinuity point of S, then there exists some x′ > x such that R ≻1 S on
[x, x′). Therefore, a consequence of Proposition 2 is that, for all mass points in S, there
exists an optimal categorization such that the mass point belongs to a pooling category.
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3.2. Full Separation and Separating Intervals. The same ideas do not carry over in sym-
metric fashion to zones of separation. Unlike the case of full pooling, first-order stochastic
dominance is not the relevant criterion. When S is a cdf, full separation is optimal if and
only if S dominates R in the likelihood ratio order, or ≿ℓ.9 Put another way, the converse
of full pooling is not separation. It is true that if S ≿1 R, she would gain from splitting
[a, ā] into two or more pools. But for full separation to be optimal, she must want to split
every pool.

Proposition 3. Full separation is optimal if and only if H = S ◦R−1 is convex on [0, 1]. If
S is a cdf, then this condition is equivalent to S ≿ℓ R.

Unlike Proposition 2, this assertion admits only a partial extension to sub-intervals: S ≿ℓ R

over [a, b) is necessary but not sufficient for [a, b) to be nested in a separating interval.

Proposition 4. Let S be a cdf. If [a, b) is a subset of some separating interval of qualities
in any optimal categorization, then S ≿ℓ R on [a, b).

3.3. Pooling Versus Separation. From our characterization, it should be obvious that
zones of pooling and separation will typically alternate, and in fact must alternate when
S and R are smooth.10 That lends an air of symmetry to pooling versus separation. At the
same time, the distinct conditions for pooling and separation in the earlier propositions hint
at an asymmetry between the two outcomes. We will now argue that there is a well-defined
sense in which pooling, or the deliberate concealment of information, is more prevalent
than its transparent disclosure (or separation).

Fix a pair of priors P = (P1, P2) that admits continuous, strictly positive densities (p1, p2)
on [a, ā]; and let h(x) ≡ p1(x)/p2(x). We say that h is regular if it is either weakly
monotone or has an isolated turn. Specifically, a (possibly degenerate) interval [c, d], with
a < c ⩽ d < ā, is an isolated turn of h if there is ϵ > 0 such that (a) h is constant on
[c, d], (b) h is strictly monotone on [c− ϵ, c] and [d, d+ ϵ], and (c) h is strictly increasing on
one of these intervals and strictly decreasing on the other. Regularity is an extremely mild
property that rules out some pathological functions.11

9S ≿ℓ R if PS [x ∈ X]PR [x ∈ Y ] ⩽ PS [x ∈ Y ]PR [x ∈ X] for all measurable sets X and Y with X ⩽ Y ,
where X ⩽ Y means that x ∈ X and y ∈ Y imply x ⩽ y. Shaked and Shanthikumar (2007) show that this
is equivalent to S ◦ R−1 being convex (see Equation (1.C.4)). In Theorem 1.C.5, Shaked and Shanthikumar
(2007) also show that S ≿ℓ R is equivalent to S ≿1 R over every subinterval of [a, ā].
10Rayo (2013) also finds that alternating pooling and separating intervals is optimal.
11A turn would fail to be isolated if it is the limit of a sequence of turns accumulating arbitrarily close to
it. This would still not eliminate regularity as long as at least one of the other turns is isolated. However,
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Figure 3. H is shown in blue; its envelopes in red. In panel A, full pooling occurs under (S,R)
and partial pooling under (R,S). In panel B, partial pooling occurs under both (S,R) and
(R,S). In both panels, pooling is more widespread on average than separation.

Consider P , the space of all pairs of strictly positive and continuous densities p = (p1, p2)

on [a, ā], with h(x) ≡ p1(x)/p2(x) regular. Endow P with the product topology of uniform
convergence on densities.12 Each such p admits two sender-receiver problems, one with
(s, r) = (p1, p2), and one with (s, r) = (p2, p1) — where s and r are the densities of the
sender’s and receiver’s priors, respectively. A quality x ∈ [a, ā] is potentially pooled under
p if it is pooled (with some subset of other qualities) in some optimal categorization in at
least one of these two problems, and it is comprehensively pooled under p if it is pooled in
any optimal categorization in both the problems.

Proposition 5. Every x ∈ (a, ā) is potentially pooled under every p ∈ P .

The set of prior pairs p for which some non-degenerate interval of qualities is comprehen-
sively pooled under p is open and dense in P .

The first part of Proposition 5 states that for every quality x and every prior pair, there is
at least one assignment of that pair to sender and receiver for which an optimal solution
pools x. The second part of the proposition makes it clear that the same cannot be said of
separation, at least outside a sparse closed set with empty interior. Topologically, the set of

there are pathological examples that are neither monotone nor have an isolated turn anywhere, such as the
Weierstrass fractal function, and these are eliminated via regularity.
12We thank an anonymous referee for suggesting this line of exposition.
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prior pairs which comprehensively pools some intervals of qualities is open and dense in
the space of all prior pairs.

Figure 3(a) illustrates these points. Panel A shows how there can be full pooling in one
problem and partial pooling in the other (with priors flipped). Panel B shows that even if
some pooling and some separation occurs in both problems, there is still more pooling than
separation, in the sense that some interval of qualities must be pooled in both problems,
whereas the same is not true of separation. To read these figures, note that optimal catego-
rization under the (S,R) problem is given by the lower convex envelope of H = S ◦ R−1

and therefore, by exactly the same logic, by the upper concave envelope of H under the
(R, S) problem.

3.4. Comparative Statics on Priors. In this section, we apply the characterization in The-
orem 1 to examine the implications of changing “optimism” in sender and receiver priors.
Continue to assume that S is a cdf. In what follows, Sep (A) denotes the union of all
separating intervals under a categorization A.

Proposition 6. Fix a receiver prior R and consider two sender priors S and Ŝ, with Ŝ ≿ℓ

S. There exists an optimal categorization Â for the sender with prior Ŝ such that, for any
optimal categorization A for the sender with prior S,

int (Sep(A)) ⊆ int(Sep(Â)).

That is, increasing the sender’s prior in the likelihood-ratio order leads to an expansion of
the separating regions, and therefore an increase in the Blackwell informativeness of the
optimal categorization (from the receiver’s perspective).13 To understand this, recall that
Ŝ ≿ℓ S implies that Ŝ = φ ◦S for some increasing and convex function φ. A consequence
is that the “separating regions” where φ◦S ◦R−1 coincides with its lower convex envelope
is larger than the “separating regions” where S ◦R−1 coincides with its convex envelope.

Curello and Sinander (2022) perform a related exercise. They study a persuasion envi-
ronment in which sender and receiver have the same prior, but the sender’s payoff is a
potentially nonlinear function of the receiver’s posterior mean. Their main results provide

13Proposition 6 shows that the interior of optimal separating regions under S is contained in the interior
of optimal separating regions under Ŝ. This is enough to rank these optimal categorizations in terms of
Blackwell informativeness from the receiver’s perspective, because R has no mass points.
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conditions under which increasing the convexity of the sender’s payoff function increases
the informativeness of the optimal signal (in the Blackwell sense). Our Proposition 6 anal-
ogously shows that when sender payoff is linear but priors are asymmetric, an increase in
the convexity of the sender’s prior increases the informativeness of the optimal signal.

Suppose instead that we fix the sender’s prior S and vary the “optimism” of the receiver
from R to R̂, with R ≿ℓ R̂. Interestingly, the converse of Proposition 6 does not hold:
there exist S, R and R̂, such that separating regions do not “expand” from problem (S,R)

to problem (S, R̂). Formally, there is some optimal categorization A under (S,R) such
that for any optimal categorization Â under (S, R̂), int (Sep(A)) ̸⊆ int(Sep(Â)). And
so Theorem 1 does not imply any clear ranking between the informativeness of optimal
categorizations under R versus R̂.14

3.5. Remarks on Nonlinear Sender Payoffs. Throughout the paper, we maintain that the
sender’s payoff is linear in the posterior mean induced on the receiver by the observed cat-
egory. However, we note that there is a special class of “nonlinear sender payoff” problems
that can be rewritten as in the linear benchmark problem. Suppose that sender and receiver
share a common prior (S = R). Denoting the state by x and the receiver’s posterior mean
by a, let the sender’s payoff function be U(x, a) = λ1(x)a+ λ2a

2, for λ1 : [a, ā] → R and
λ2 ∈ R. In this case, the sender picks A ∈ AR to maximize∫ ā

a

[
λ1(x)A(x) + λ2A(x)

2
]
dS(x).

Using S = R and the definition of A(x), it is easy to see that∫ ā

a

[
λ1(x)A(x) + λ2A(x)

2
]
dS(x) =

∫ ā

a

[λ1(x) + λ2A(x)]A(x)dS(x)

=

∫ ā

a

[λ1(x) + λ2A(x)]A(x)dR(x) =

∫ ā

a

[λ1(x) + λ2x]A(x)dR(x) =

∫ ā

a

A(x)dŜ(x),

where dŜ(x) = [λ1(x) + λ2x] dR(x).Note that, in this special case, the nonlinearity of U
can also be viewed as a change of the sender’s prior. We can use this rewriting to perform
analogous exercise to Curello and Sinander’s (2022, Theorems 1 and 2): an increase in λ2,
which increases the convexity of U , maps into increased convexity of Ŝ. With an argument

14R ≿ℓ R̂ is equivalent to there being an increasing and convex function φ such that R̂−1 = R−1 ◦ φ.
Despite the convexity added by φ, it is not always true that the set where H = S ◦ R−1 equals its lower
convex envelope is a subset of the set where Ĥ = S ◦R−1 ◦ φ equals its lower convex envelope.
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parallel to that in Proposition 6, we can show that this heightened convexity thus implies
an increase in the informativeness of optimal categorizations.15

3.6. Non-Monotonic Categorization. Alonso and Camara (2016) study a persuasion prob-
lem with heterogeneous priors, without restricting the sender to monotone signals. Rayo
and Segal’s (2010) seminal paper can also be regarded as a problem of persuasion with
heterogeneous priors, but no monotonicity constraint.16

Specifically, Rayo and Segal (2010) consider an information intermediary who is paid a
fee whenever the sale of a prospect takes place. The intermediary receives different unit
fees for different prospects. Let x be the value of a prospect to a potential buyer and π(x)

the unit fee paid to the intermediary if a sale takes place. For most of the paper, Rayo
and Segal (2010) assume that the probability that a sale takes place is equal to the buyer’s
expectation of the object’s value (given any information they observe). Further, suppose no
two prospects have the same value, so each x is associated with a single fee π(x). Let R be
the prior about the prospect’s value, commonly held by the intermediary and the potential
buyer.17 Then the intermediary’s profit when she picks a categorization A ∈ AR is∫ ā

a

π(x)A(x)dR(x) =

∫ ā

a

A(x)dS(x)

where we set dS(x) = π(x)dR(x). In that case, d[S ◦ R−1](x) = dS(x)/dR(x) = π(x),
so that regions where π is increasing are equivalent to regions where S ◦ R−1 is convex,
and regions where π is decreasing are equivalent to regions where S ◦R−1 is concave.

Rayo and Segal (2010) show that two prospects (x, π) and (x′, π′) can only be optimally
pooled if they are not ordered: (x−x′)(π−π′) < 0. Our results show that this is not true of
optimal monotonic categorizations. Indeed, an optimal pooling interval may contain a re-
gion where π is increasing (S◦R−1 is convex), and therefore contain “ordered prospects.”18

15Proposition 6 cannot be applied directly because it uses a different notion of increased convexity than the
one implied by an increase in λ2: increasing λ2 is equivalent to “adding a convex function” to the original
prior of the sender. Despite Proposition 6 not applying directly, we can show that an analogous result holds
under this alternative notion of increased convexity.
16Our Propositions 1-4 are more immediately comparable to results in Rayo and Segal’s (2010). However, if
the sender’s payoff is assumed to be linear in the receiver’s action, then Alonso and Camara’s (2016) model is
equivalent to Rayo and Segal (2010). In that case, our discussion in this section is also a relevant comparison
to Alonso and Camara’s (2016) benchmark.
17Rayo and Segal (2010) assume that there are only finitely many prospects, so that R has finite support. This
is also assumed in Alonso and Camara (2016). In our exposition, we take R to be a continuous distribution.
18Revisit Figure 3(a), and further suppose that R is uniform over [a, ā] = [0, 1]. The optimal monotonic
categorization is full pooling, even though S ◦ R−1 is convex over some interval — or equivalently, π(·) is
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Further, they show that all prospects that are optimally pooled together must have payoffs
(x, π) that lie on a straight line with nonpositive slope. Consequently, if π(x) does not have
an interval where it is linear and downward sloping, then every optimal signal realization
pools together at most two qualities.19 Optimal monotone categories, on the other hand,
may pool together intervals containing more than two qualities.

Finally, without the restriction to monotonic signals, full separation is optimal when all
prospects are ordered: (x − x′)(π(x) − π(x′)) > 0 for every x and x′. This condition,
equivalent to S ◦R−1 being globally convex, is also the condition for full separation when
monotonicity is imposed (Proposition 3). Conversely, Rayo and Segal’s (2010) condition
for full pooling is that all prospects lie on a straight line with negative slope. That is,
π(x) must be linear and decreasing. In contrast, the condition for full pooling under the
monotonicity restriction is much weaker — see Proposition 1.

The discussion above contrasts properties of optimal categorizations with and without the
restriction to monotonicity. More recently, Jewitt and Quigley (2022) study a class of
persuasion games in which the sender has rank-dependent preferences (Yaari 1987). Their
problem can also be interpreted as a persuasion problem with heterogeneous priors across
sender and receiver (without the restriction to monotonic signals). They show that in the
class of rank-dependent sender preferences, the optimal signal can always be taken to be
monotone (so that the monotonicity restriction “does not bind”).

4. MORAL HAZARD AND EDUCATIONAL GRADES

In this section, we study an application where a school chooses a grading system both to
signal student’s underlying abilities and to incentivize students to exert effort to learn. Be-
yond its intrinsic interest, this application illustrates how incentive constraints arising from

increasing over that same interval. In their Lemma 3, Rayo and Segal (2010) show that a non-monotonic
signal structure can improve over full pooling in that case. In our example, there exists some small interval
[a, b) ⊂ [0, 1/2), depicted by the two vertical dotted lines, such that the average slope of H over that interval
is less than 1, which is the average slope over the full interval [0, 1]. Equivalently, this means that the
“average fee” π over [a, b) is smaller than the average fee over [0, 1]. Additionally, because the common prior
is uniform, and a < b ⩽ 1/2, every value in the interval is below the ex-ante average value. Therefore a
signal σ1 that pools [0, a) ∪ [b, 1) has larger average value and larger average fee than a signal σ2 that pools
[a, b). Consequently, if the sender is not constrained by monotonicity, the signal structure that consists of
the two pools σ1 and σ2 is an improvement over full pooling. (For more details, see Rayo and Segal (2010),
Lemmas 1 and 3.)
19Kolotilin, Corrao, and Wolitzky (2022) make the similar point that optimal signals are “pairwise”, in the
sense that each induced posterior distribution has at most binary support.
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moral hazard can generate all the key features of our benchmark model, namely a distortion
in the sender’s state-dependent preferences and the restriction to monotone signals.20

The Setting. A school – the sender – designs a grading system to maximize tuition rev-
enues. This is part of a larger problem in which it might choose an admissions cutoff.
The choice of that cutoff can be incorporated with no change to the discussion that fol-
lows. We emphasize the “second stage” where that cutoff — and the student body — has
already been chosen. Normalize admitted students to a unit measure, with abilities a dis-
tributed according to R on [a, ā]. Upon entering, a student fully learns a, but before that
they have only some prior, represented as a distribution over [a, ā]. For instance, they may
be close to a degenerate distribution (full self-knowledge), or have the population belief R,
or some third belief. Among these, we assume that there is some continuous prior R0, with
R0(a) = 0, which is the lowest according to first-order stochastic dominance among all
possible post-entry priors.

A market (our receiver) with shared prior R infers student abilities from a learning level
or grade ℓ that the school chooses to make observable. Let λ > 0 be the value of learning,
relative to inherent ability, so that the market pays

(8) E(a|ℓ) + λℓ

to a student with learning ℓ, where the conditional expectation is determined by the prior R
as well as equilibrium strategies. Notice that ℓ has both intrinsic and signaling value.

Incentive-Compatible Learning. The school chooses a compact set of certified learning
levels L. Learning nothing is always an option, so 0 ∈ L. A student of ability a chooses
ℓ ∈ L by exerting effort at cost c(a)ℓ, where c′(a) < 0. We assume the following condition:

[C] c(ā) > λ, so that rewards to learning alone do not motivate any student.

Every nonzero ℓ ∈ L will presumably be occupied by some ability type. A student could
choose ℓ ̸∈ L, but the market observes only ℓ′ = max{ℓ′′ ∈ L|ℓ′′ ⩽ ℓ}, so there is no point
in doing so. In the spirit of direct mechanisms, suppose that the school “assigns” learning
ℓ(a) ∈ L to each ability type a.21 The value to an obeying student of ability a is

ER(a
′|ℓ(a)) + λℓ(a)− c(a)ℓ(a),

20In this application, the link between ability, effort, and output is deterministic. It would be of interest to
extend these arguments to stochastic output, after conditioning on ability and effort.
21The school maps each ability to a deterministic certified learning level. It can be shown that restricting to
deterministic grading is without loss in our environment. We thank Ian Jewitt for pointing that out.
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where ER(a
′|ℓ(a)) is the expectation of ability a′ given that ℓ(a) is observed, and given that

all students follow ℓ. A standard single-crossing argument yields:

Lemma 3. If ℓ(a) and ℓ(a′) are optimal for a and a′, with a > a′, then ℓ(a) ≥ ℓ(a′).

So incentive-compatibility restricts the school to a monotone categorization of abilities.
ℓ could have separating intervals on which it is strictly increasing, and pooling intervals
on which it is constant. These obviously correspond to a particular categorization Aℓ.
Incentive compatibility additionally implies that for every a, a′ ∈ [a, ā],

(9) Aℓ(a) + λℓ(a)− c(a)ℓ(a) ≥ max {Aℓ(a
′) + λℓ(a′)− c(a)ℓ(a′), a} .

The second constraint on the right hand side of (9) is needed in case ℓ(a) > 0. Then the
zero-learning choice is off-path, and suitable beliefs will be needed to guarantee incentive-
compatibility. We presume that in such cases, the observation of 0 is associated with the
belief that the student has the lowest ability a. This implements the best equilibrium from
the perspective of a tuition-maximizing school. The following lemma tightly links incentive
compatible learning functions ℓ to their corresponding categorizations Aℓ.

Lemma 4. Part i. Statements (a) and (b) are equivalent:

(a) A learning function ℓ(a) is incentive-compatible.

(b) ℓ is nondecreasing with ℓ(a) ∈
[
0,

Aℓ(a)−a

c(a)−λ

]
(where Aℓ is the corresponding categoriza-

tion), differentiable on any separating interval with

(10) ℓ′(a) =
1

c(a)− λ
,

and at any threshold t dividing two adjacent intervals, using ↑ for left-hand limit,

(11) ℓ(t) = ℓ↑(t) +
Aℓ(t)− A↑

ℓ(t)

c(t)− λ
.

Part ii. For every A ∈ AR and ℓ ∈
[
0,

A(a)−a

c(a)−λ

]
, there is a unique function ℓ with ℓ(a) = ℓ,

and satisfying (10) and (11). That describes all incentive-compatible ℓ such that Aℓ = A.

Tuition and School Payoffs. The school sets a single tuition level. Type R0 students have
the lowest willingness to pay, so the school must maximize their expected payoff before
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fees.22 That is, the school chooses incentive compatible ℓ to maximize

(12)
∫ ā

a

[Aℓ(a) + {λ− σc(a)}ℓ(a)]dR0(a),

where σ ∈ [0, 1] is the extent to which parents internalize effort costs at the ex-ante stage.
The extent of this internalization will determine not just the level of the tuition (which is
a relatively minor consideration, at least for the analysis), but also the school’s “attitude”
towards the intrinsic value of learning; more on this immediately below. We now link the
school problem to our more abstract setting, thereby permitting a full solution of it.

Solution to the School Problem. Consider two cases. If λ > σ
∫ ā

a
c(a)dR0(a), then “R0-

parents” value, on average, intrinsic learning relative to cost. It is obvious that no matter
what categorization A the school seeks to implement, its associated learning function must
have the highest possible starting point. That is, recalling Lemma 4, initial learning ℓ =

ℓ(a) must be set equal to the upper bound A(a)−a

c(a)−λ
for any choice of A ∈ AR.

Otherwise, λ ⩽ σ
∫ ā

a
c(a)dR0(a). Now learning isn’t intrinsically valued by R0-parents, so

the school optimally sets ℓ(a) = 0. That motivates the definition: for any A ∈ AR:

ℓ∗(A) =


A(a)− a

c(a)− λ
if λ > σ

∫ ā

a

c(a)dR0(a)

0 if λ ⩽ σ

∫ ā

a

c(a)dR0(a)
(13)

Proposition 7. For every A ∈ AR and ℓ = ℓ∗(A) as defined in (13), pick unique ℓ as
described in Lemma 4. Then school payoff is given by

(14)
∫ ā

a

[A(a) + {λ− σc(a)}ℓ(a)] dR0(a) =

∫ ā

a

A(a)dS(a)+K

where K is a constant and

S(a) = R0(a) +

∫ ā

a

σc(x)− λ

c(a)− λ
dR0(x) for all a ∈ (a, ā], with(15)

S(a) = min

{
0,

∫ ā

a

σc(x)− λ

c(a)− λ
dR0(x)

}
.

22Because the student body is fixed, the school maximizes its profit by ‘serving’ the lowest-belief students
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The function S is left-continuous and has bounded variation with at most one discontinu-
ity. Also, S(a) and S(ā) are finite. These conditions, along with the fact that A is right-
continuous with at most countably many discontinuities, guarantee that all the assumptions
of the baseline model are satisfied.

The school problem is solved by finding a solution A∗ to the optimal categorization problem
with R as the receiver’s distribution and S, defined in (15), as the sender’s distribution. The
optimal learning function is the unique ℓ associated with A∗ with ℓ(a) = ℓ∗(A∗).

Proposition 7 fully removes ℓ from the analysis, as well as its attendant moral-hazard im-
plications, and converts this model into our simpler categorization model. In so doing, it
reveals three reasons for the “induced prior” S to be different from R. First, the sender
may, in effect, be delegated to work on behalf of someone with a distinct prior. Here, this
is the student or parent with lowest belief R0.23 The school is pushed to it in the interests
of maximizing tuition revenue. The second stems from ancillary constraints that might
be involved in revealing quality; here, these have to do with learning. Third, the actions
taken to signal quality (school performance) may have direct payoff effects. All three enter
equation (15). These considerations can additionally cause S to depart from a cdf.

At a somewhat more technical level, even though R0 is continuous, the induced S may be
discontinuous. Remember that parental priors are continuous, with R0(a) = 0. In the first
of the two cases where learning is intrinsically valued, S(a) as defined in (15) is negative —
it isn’t a cdf any more — but the entire induced function S is easily seen to be continuous.
If, on the other hand, learning is not intrinsically valued, S(a) > 0, thereby effectively
generating a mass point under S at a. Our methods apply in either event, but the latter case
must generate an initial pool of zero learning.

Pooling. An intriguing question which deserves a more detailed exploration is whether
grade pooling is a pervasive property of an educational system. Proposition 8 below,
a straightforward implication of Theorem 1 and Proposition 1, formalizes the following
claims: a school will want to pool all ability types when (i) the market places a low rel-
ative value on learning, as in Lizzeri (1999) where learning has no value; (ii) if students
fully internalize their cost of learning ex-ante, and (iii) if the lowest belief student is certain
ex-ante that they are the lowest ability type.

23In an affirmative action setting R0 can also represent the sub-distribution of “diversity students” in whose
outcomes the school may be particularly interested. In that case, the school may inherently care about R0,
rather than through the tuition channel we consider.
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Figure 4. Schooling with lower censorship. In both panels, R is uniform and in black. On the
left, S is shown in blue for three values of γ: S increases in ≿1 as γ increases. On the right, S
is shown in red for three values of λ: again, S increases in ≿1 as λ increases.

Proposition 8. A sufficient condition for full pooling to be optimal is:

(16)
∫ ā

a

[σc(x)− λ]dR0(x) ⩾ 0 for every a ∈ [a, ā].

Furthermore, the following statements are true:

(i) (16) is satisfied when λ = 0. Moreover, if there is λ > 0 such that it is satisfied, then it
is also satisfied for any λ′ < λ.

(ii) (16) is satisfied when σ = 1. Moreover, if there is σ > 0 such that it is satisfied, then it
is also satisfied for any σ′ > σ.

(iii) (16) is satisfied when R0 is degenerate at a = a. Moreover, if there is R0 such that it is
satisfied, then it is also satisfied for any R′

0 such that R0 first order stochastically improves
over R′

0.

This result also highlights more broadly the school’s incentives to create grading pools. By
pooling, the school boosts the grade of lower-type students, who are then not distinguish-
able from higher-type students in the same pool. Contrastingly, separation is necessary to
induce learning, because the value of separating oneself from lower types (or pooling one-
self with higher types) is a student’s only incentive to incur in learning costs. These con-
siderations are distinct from those in previous literature, such as Ostrovsky and Schwarz
(2010), where a school’s incentives to create grading pools depend on the distribution of
job types that students to which students will be matched.24

24Boleslavsky and Kim (2020) also study an environment in which signaling motivates costly effort. In
our setting, agents exert effort after drawing their ability and the incentive constraint implies that signaling
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Schooling with Lower Censorship. We now make functional form assumptions that enable
a complete characterization of the optimal grading policy. Let R be uniform on [0, 1], and
R0 = aγ for γ ∈ [0, 1]. If γ = 1, then R0 = R: students have no ex-ante information about
their own abilities. For lower γ, R0 is first-order stochastically dominated by R, so that the
lowest types are pessimistic relative to the population average. The lower is γ, the further
the belief of the most pessimistic type from that of the average agent. Set c(a) = 1/a and
λ < 1. Finally, set σ = 0, which means that the cost of effort is not internalized at all by
the parents when choosing to join the school.

With these functional forms, use equation (15) to map the school’s “distorted prior” S:

S(a) =
aγ − λa

1− λa
(17)

In this special case, S is a cdf (see Figure 4). Since S has a concave-convex shape, Theorem
1 immediately implies that lower censorship, whereby all abilities below a threshold are
pooled together and all abilities thereafter are fully revealed, is the optimal categorization.

Corollary 1 (to Theorem 1 and Proposition 7). There is ã ∈ (0, 1] such that the solution
to the school problem is to pool students with a ∈ [0, ã), and fully reveal the ability of all
students with a ≥ ã.

We can easily compute ã, and perform comparative statics with respect to λ and γ. When
the lowest-belief type is more optimistic, i.e. γ is higher, ã is lower and there is more
separation. The connection with the market value for learning is not monotonic. Initially,
higher value for learning induces more separation, but for high values of λ, increasing λ

leads to more pooling.

If, otherwise, the distorted prior were convex-concave, upper censorship would be optimal.
Other papers in the literature find that upper or lower censorship are optimal signals for the
sender. Kolotilin, Mylovanov and Zapechelnyuk (2019) show conditions for optimality of
lower and upper censorship — respectively, that the sender’s payoff as a function of the
receiver’s posterior mean be concave-convex and convex-concave. In both those papers,
they consider environments where the sender’s payoff does not directly depend on the state
and the sender’s payoff is nonlinear in the receiver’s posterior mean. In our model, the

structures must be monotone; whereas in Boleslavsky and Kim (2020) costly effort improves an agent’s dis-
tribution of types. Other close parallels are Rodina and Farragout (2016) and Saeedi and Shourideh (2020),
who consider a principal who wants to improve an agent’s investment in productivity when the only instru-
ment at hand is an information disclosure policy. Their environment is different from ours both in how the
agent’s effort decision is set up and in the grading schemes that are permitted.
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sender’s payoff is state dependent, but linear in the receiver’s posterior mean. Perhaps
surprisingly, these environments are distinct and cannot be mapped to each other.

5. CONCLUSION

In this paper, we study a monotone categorization problem. A sender offers an object of
unknown quality to a receiver, who pays his expected value for it. That expected value is
taken conditional on the receiver’s information, which is affected in turn by the sender’s
choice of a monotone quality categorization. That is, the sender commits to revealing
the object’s quality up to an information partition, where each element of the partition is
a (possibly degenerate) interval. This exercise is nontrivial when sender and receiver hold
different priors over quality. We characterize the sender’s optimal monotone categorization,
obtain several corollaries, such as the characterization of optimality of complete pooling or
separation, and we make precise a sense in which pooling is dominant relative to separation.

The assumption that sender and receiver hold distinct priors may be literally interpreted, but
we also emphasize situations in which distinct priors emerge as reduced forms of a more
primitive setting with additional incentive constraints. As an example, we study the design
of a grading scheme by an educational institution which seeks to signal student qualities and
simultaneously incentivize students to learn. We show how these incentive constraints are
embedded as a distortion of the school’s prior over student qualities, generating a monotone
categorization problem with distinct sender and receiver priors — even if the two agents
have the same priors in the original problem.

The categorization problem has several applications. Financial rating agencies classify
assets according to riskiness, certifying companies underwrite eco-friendly labels, bond
issues are rated by agencies, the Department of Health provides restaurants with sanitary
inspection grades, and schools grade students according to their academic achievements.
In all of these settings, it is natural to presume that sender and receiver could have differing
opinions on the underlying distribution of the relevant state. Or, as in our example, one or
more agents could face incentive constraints, resulting in effectively distinct priors. Our
framework is broad enough to incorporate such situations.

A limitation of the analysis is that our methods apply without qualification only when the
sender’s payoff can be written as an affine function of the receiver’s posterior expectation.
While some limited progress can be made in special nonlinear settings, a general analysis
of the nonlinear case is currently beyond the scope of the methods developed in this paper.
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We put on record here our opinion that progress on this front would represent a significant
step forward in our understanding of monotone categorization problems.

6. PROOFS

Proof of Lemma 1. Part (i). Let Pool denote the collection of pooling intervals with generic
element [p, p′). Because A ∈ AR and R is strictly increasing, we have:∫ ā

a

A(a)dS(a) =

∫
[a,ā]\Pool

adS(a) +
∑
Pool

ER (a|a ∈ [p, p′)) [S(p′)− S(p)]

=

∫
[a,ā]\Pool

adS(a) +
∑
Pool

∫ p′

p

adR(a)

[
S(p′)− S(p)

R(p′)−R(p)

]

=

∫
[a,ā]\Pool

adΨ(a,A) +
∑
Pool

∫ p′

p

adΨ(a,A) =

∫ ā

a

adΨ(a,A),

where in the penultimate step dΨ is well defined as Ψ has bounded variation, and the last
equality follows from the continuity of the integrand.

For any categorization A and z ∈ [0, 1], consider the “quantile weighting function”:

Φ(z, A) ≡ Ψ(R−1(z), A).

Define a quantile pooling interval of A as any interval [w,w′) such that [R−1(w), R−1(w′))

is a pooling interval of A. Then

(18) Φ(z, A) =

H(w) + (z − w)

[
H(w′)−H(w)

w′ − w

]
if z is in some quantile pooling [w,w′);

H(z) otherwise.
,

where we recall that H(x) = S(R−1(x)). In particular, the quantile weighting function
associated with A ∈ AR equals H in quantile separating regions and is a straight line
connecting (w,H(w)) and (w′, H(w′)) in quantile pooling regions of the form [w,w′).
This means that Graph(Φ(·, A)) ⊂ Co(Graph(H)), which immediately implies Φ(z, A) ⩾
H̆(z).

Proof of Proposition 1. When A is the categorization that pools every quality, then Φ(z, A) =

H(0) + z (H(1)−H(0)). By Theorem 1, full pooling is then a solution to the sender’s
problem if and only if H̆(z) = H(0)+ z (H(1)−H(0)) for all z ∈ (0, 1]. Now notice that
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this condition is equivalent to

H(z)−H(0)

z
⩾ H(1)−H(0)

for all z ∈ (0, 1]. Using the definition of H , this condition can be rewritten as S(x)−S(a) ≥
(1− S(a))R(x) for all x ∈ [a, ā].

Proof of Proposition 2. If R ≿1 S on the interval [a, b], then for all x ∈ [a, b],

S(x)− S(a)

R(x)−R(a)
⩾

S(b)− S(a)

R(b)−R(a)

Or, equivalently, for every z ∈ [w,w′], where w = R(a) and w′ = R(b),

H(z) ⩾ H(w) + (z − w) [H(w′)−H(w)] .

Because the straight line connecting (w,H(w)) and (w′, H(w′)) lies in Co(Graph(H)), it
must be that for z ∈ [w,w′), H̆(z) ⩽ H(w) + (z − w) [H(w′)−H(w)] ⩽ H(z). But
then there are quantiles z′ and z′′ with z ⩽ w < w′ ⩽ z′ such that for z ∈ [w,w′),
H(z) belongs to the straight line connecting (z′, H(z′)) and (z′′, H(z′′)). So there exists
an optimal categorization that pools the interval of quantiles [z′, z′′), which contains the
interval of quantiles [w,w′). Equivalently, such categorization pools the interval of qualities
[R−1(z′), R−1(z′′)), which contains the interval [a, b).

Now let’s prove the second statement. Suppose [a, b) belong to a pooling interval [a′, b′)
with a′ ⩽ a and b′ ⩾ b. Also suppose R does not ≿1 S on [a′, b′]. Then there exists
z ∈ (R(a′), R(b′)) such that

H(z) < H(w) + (z − w) [H(w′)−H(w)]

where w = R(a′) and w′ = R(b′). But that means that H(w)+(z−w) [H(w′)−H(w)] ̸=
H̆(z), and so [a′, b′) cannot be a pooling interval in the optimal categorization.

Proof of Proposition 3. The first statement is immediate given Theorem 1. As for the
second, H is convex in [0, 1] if and only if for every w, x, z ∈ [0, 1] with w < x ⩽ z:

H(x)−H(w)

x− w
⩽

H(z)−H(w)

z − w

Letting a = R−1(w) and b = R−1(z) and y = R−1(x), this condition is equivalent to: for
all a, b, y ∈ [a, ā] with a < y ⩽ b,

S(y)− S(a)

R(y)−R(a)
⩽

S(b)− S(a)

R(b)−R(a)
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If S is a strictly increasing cdf, then this condition is equivalent to S (·|(a, b)) first-order
stochastically dominating R (·|(a, b)) for every a, b ∈ [a, ā], which is in turn equivalent to
S dominating R in the likelihood ratio order.

Proof of Proposition 4. Let w = R(a) and w′ = R(b). If [a, b) is a subset of some
separating interval of qualities of categorization A, then for all x ∈ [w,w′), Φ(x,A) =

H(x). And if H(x) ̸= H̆(x) for some x ∈ [w,w′), then by Theorem 1, A is not an optimal
categorization.

Now notice that, if H = H̆ on this interval, then H is convex on it, and so S dominates R
in the likelihood ratio order over this interval.

Proof of Proposition 5. The Proof of Proposition 5 repeatedly uses the lemma below, which
is an immediate consequence of Theorem 1, and thus stated without proof.

Lemma 5. Take x ∈ (a, ā), and let z = R(x). Suppose there exist quantiles z1 < z < z2

and λ ∈ (0, 1), with z = λz1+(1−λ)z2, such that λH(z1)+ (1−λ)H(z2) ⩽ H(z). Then
there exists an optimal categorization such that x belongs to a pooling category. Moreover,
if the inequality is strict, then x belongs to a pooling category in any optimal categorization.

Proof of part i. Take p ∈ P , and let P = (P1, P2) be the associated pair of prior cdfs.
Let quality x ∈ (a, ā) belong to some separating interval in some optimal categorization of
problem (S,R) = (P1, P2). And let z = R(x) = P2(x). By Lemma 5, it must be that for
all (z1, z2) with 0 ⩽ z1 < z < z2 ⩽ 1,

(19) λH(z1) + (1− λ)H(z2) ⩾ H(z), with z = λz1 + (1− λ)z2,

where H ≡ P1 ◦ P−1
2 . Fix any such pair (z1, z2), and let y1 = H(z1), y2 = H(z2), and

y = H(z). Then 0 ⩽ y1 < y < y2 ⩽ 1, and we can rewrite (19) as

(20) λy1 + (1− λ)y2 ⩾ y and λH−1(y1) + (1− λ)H−1(y2) = H−1(y),

where H−1 = P2 ◦ P−1
1 , and so corresponds to the H-function in the “mirrored” problem

(S,R) = (P2, P1). Reduce λ to λ′ if needed, so that the inequality in (20) holds with
equality. Then, because H−1 is increasing, we must have

(21) λ′H−1(y1) + (1− λ′)H−1(y2) ⩽ H−1(y), where y = λ′y1 + (1− λ)y2.

Using (21) and Lemma 5 again, we have that quantiles [y1, y2) of distribution P1 are pooled
in some optimal categorization of the problem (S,R) = (P2, P1). Noting that quantiles
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z

H (z)

zʹ zʺz* zw z2wʹz**

Figure 5. Illustration 1 for Proof of Proposition 5. H is strictly concave on [z′, z∗], linear
on [z∗, z∗∗], and strictly convex on [z∗, z′′]. Optimal pooling must extend beyond z∗∗ into the
strictly convex region; at least to z2. A quality with quantile z ∈ (z∗∗, z2) satisfies the sufficient
condition for pooling to be strictly optimal, as the chord joining H(w) and H(w′) shows.

[y1, y2) of P1 correspond to quantiles [z1, z2) of P2 – and thus contain x – we conclude that x
belongs to a pooling interval in some optimal categorization of problem (S,R) = (P2, P1).

Proof of part ii.

Step 1. Fix p = (p1, p2) ∈ P , with h(x) = p1(x)/p2(x), and let P = (P1, P2) be its
associated pair of cdfs, and H = P1 ◦ P−1

2 . In this step, we prove the following claim: If h
is not monotone, there exists a non-degenerate interval of qualities that is comprehensively
pooled under p.

Proof of claim. Because h is regular and non-monotone, it has an isolated turn, say at
some interval of qualities [x∗, x∗∗]. By the definition of an isolated turn, there is x′ < x∗

and x′′ > x∗∗ such that h is constant on [x∗, x∗∗], and (without loss) strictly decreas-
ing on [x′, x∗] and strictly increasing on [x∗∗, x′′]. Equivalently, letting {z′, z∗, z∗∗, z′′} =

{P2(x
′), P2(x

∗), P2(x
∗∗), P2(x

′′)}, H is strictly concave on [z′, z∗], linear on [z∗, z∗∗], and
strictly convex on [z∗, z′′]. (We use notation z to indicate quantiles of distribution P2.)

Because H is strictly concave on [z′, z∗], Lemma 5 implies that qualities in quantiles [z′, z∗)
of P2 are pooled in any optimal categorization of problem (S,R) = (P1, P2). Further, in
any such optimal categorization, quantiles [z′, z∗) must be contained in a strictly larger
pooling interval, which strictly extends not just beyond z∗, but up to some quantile z2 ∈



30

(z∗∗, z′′]. The reason is that for any quantile z between z∗ and such z2, the strict inequality
in Lemma 5 holds, making pooling z strictly optimal. This is illustrated in Figure 5.

Now consider the “mirrored” problem (S,R) = (P2, P1). Define P1-quantiles correspond-
ing to the P2 quantiles above, replacing the notation z by y. H is strictly convex on [z∗∗, z′′],
or equivalently H−1 is strictly concave on (y∗∗, y′′), where y∗∗ = H(z∗∗) and y′′ = H(z′′).
By Lemma 5, quantiles [y∗∗, y′′) of P1 belong to a pooling interval in any optimal cate-
gorization of problem (S,R) = (P2, P1). But by the same argument as in the previous
paragraph, in any optimal categorization, the pooling interval containing [y∗∗, y′′) must ex-
tend back to some y1 strictly smaller than y∗. Letting z1 = H−1(y1), we thus know that
quantiles [z1, z2) must belong to a pooling interval in any optimal categorization in both
problems; so the claim is proved.

Step 2. In light of Step 1, it only remains to show that the set of all p with non-monotone
regular h is open and dense in P . Call this set P0.

Pick p ∈ P0. There are intervals [a, b] and [c, d] on which h is strictly increasing and strictly
decreasing, respectively. Define δ ≡ min{h(b) − h(a), h(c) − h(d)}/3 > 0. Because
P contains only strictly positive, continuous density pairs, there is ϵ > 0 such that if
∥p− p′∥ < ϵ for some p′ in P , then ∥h− h′∥ < δ, where h′ = p′1/p

′
2. By the definition of δ

and uniform convergence, we see that h′ cannot be monotone. Therefore P0 is open in P .

Next, we argue that P0 is dense in P . Pick p ∈ P \ P0. We “deform” p locally so as to
keep its associated h regular but make it non-monotone. In what follows we suppose that h
is nondecreasing (the other case is proved similarly). Pick some quality level x∗ ∈ (a, ā).
Fix some small ϵ > 0, and let k ≡ p1(x

∗)/p2(x
∗) and k′ ≡ p1(x

∗ + ϵ)/p2(x
∗ + ϵ).25 Define

a function pϵ1 by

pϵ1(x) =


p1(x), for x ⩽ x∗ or x > x∗ + 3ϵ

(k − x+ x∗)p2(x), for x ∈ (x∗, x∗ + ϵ]

k−ϵ
k′

p1(x) + (x− x∗ − ϵ)µp2(x) for x ∈ (x∗ + ϵ, x∗ + 2ϵ]

x−x∗−2ϵ
ϵ

[p1(x
∗ + 3ϵ)− pϵ1(x

∗ + 2ϵ)] + pϵ1(x
∗ + 2ϵ) for x ∈ (x∗ + 2ϵ, x∗ + 3ϵ],

where µ > 0 is chosen so that

(22)
∫ x∗+3ϵ

x∗
pϵ1(x)dx =

∫ x∗+3ϵ

x∗
p1(x)dx.

25Specifically, ϵ > 0 is smaller than k and also small enough so that x∗ + 3ϵ < x̄.
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Because h(x) = p1(x)/p2(x) is nondecreasing, pϵ1(x) < p1(x) for x ∈ (x∗, x∗ + ϵ];26

then pϵ1 rises faster than p1, and intersects it from below, on (x∗ + ϵ, x∗ + 2ϵ], achieving
pϵ1(x

∗ + 2ϵ) > p1(x
∗ + 2ϵ);27 and pϵ1 then adjusts to meet p1 again at point x∗ + 3ϵ. At

the middle interval, pϵ1 is determined by µ > 0, picked so as to ensure that pϵ1 is a bonafide
density and integrates to 1. Note that there is a unique value of µ such that (22)) holds: the
left hand side of (22) is strictly increasing in µ, smaller than the right hand side as µ → 0

and larger than it as µ → ∞.

Now consider the prior pair pϵ = (pϵ1, p
ϵ
2), with pϵ2 = p2, and let hϵ(x) = pϵ1(x)/p

ϵ
2(x). We

claim that hϵ is regular and non-monotone for every ϵ > 0. Obviously, hϵ(x) = h(x) for
all x ≤ x∗ and x ≥ x∗ + 3ϵ. For any x ∈ (x∗, x∗ + ϵ),

hϵ(x) =
pϵ1(x)

pϵ2(x)
=

(k − x+ x∗)p2(x)

p2(x)
= k − x+ x∗,

and so hϵ strictly declines in x over this range. For x ∈ (x∗ + ϵ, x∗ + 2ϵ),

hϵ(x) =
pϵ1(x)

pϵ2(x)
=

k − ϵ

k′
p1(x)

p2(x)
+ (x− x∗ − ϵ)µ =

k − ϵ

k′ h(x) + (x− x∗ − ϵ)µ,

which is strictly increasing in x, given that h is nondecreasing.

It follows that hϵ has an isolated turn at x∗ + ϵ and is therefore regular. All that remains
to do is take ϵ → 0 and notice that pϵ1 converges in the topology of uniform convergence to
p1. This shows that P0 is dense in P , and our proof is complete.

Proof of Proposition 6. For each pair of sender-receiver priors (S,R), let A(S,R) be the
set of optimal categorizations. Now observe that for any (S,R), there exists a maximally
separating optimal categorization. To see this, take A∗ ∈ A(S,R) with int(Sep(Â)) =

int{H = H̆}, where H = S ◦R−1. Theorem 1 implies that for such A∗,

A ∈ A(S,R) ⇒ int(Sep(A)) ⊂ int(Sep(A∗)).

Let A and Â be maximally separating in A(S,R) and A(Ŝ, R) respectively. Suppose
(a, a′) ⊂ int(Sep(A)). By the definition of A, (a, a′) is an open interval over which
H = S ◦R−1 coincides with its lower convex envelope. Equivalently, for every x ∈ (a, a′),
and y, z ∈ [a, ā], with y < x < z, defining α ∈ (0, 1) such that x = αy + (1− α)z,

(23) H(x) = H(αy + (1− α)z) ⩽ αH(y) + (1− α)H(z).

26For all x ∈ (x∗, x∗+ ϵ], the fact that h is nondecreasing tells us that p1(x) ≥ kp2(x) > (k−x+x∗)p2(x).
27The integrability requirement (22) guarantees that pϵ1(x

∗ + 2ϵ) must strictly exceed p1(x
∗ + 2ϵ).
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Now recall that Ŝ ≿ℓ S implies that there is some increasing and convex function φ such
that Ŝ = φ ◦ S. This implies that, for the same x, y, z ∈ [a, ā] and α ∈ (0, 1),

(24) φ◦H(αy+(1−α)z) ⩽ φ [αH(y) + (1− α)H(z)] ⩽ αφ◦H(y)+(1−α)φ◦H(z).

And consequently, (a, a′) is an open interval over which Ĥ = φ ◦ S ◦ R−1 coincides with
its lower convex envelope. Therefore, by the definition of Â, (a, a′) ⊂ int(Sep(Â)). This is
true for every such (a, a′), and so int (Sep(A)) ⊂ int(Sep(Â)).

Proof of Lemma 4, Part i. Let ℓ(a) be an incentive-compatible learning function. First, note
that for an initial choice of ℓ(a) ∈

[
0,

Aℓ(a)−a

c(a)−λ

]
, (9) is satisfied for the lowest ability student.

By Lemma 3, ℓ is nondecreasing. Next, take a and a′ in the same separating interval. From
(1) and (9), we have:

1

c(a′)− λ
≥ ℓ(a)− ℓ(a′)

a− a′
≥ 1

c(a)− λ
.

Take a′ → a to obtain (10) on any separating interval. Now take a ∈ [ak−1, ak) for some
k > 1. Use (9) to see that

ℓ(a) +
Aℓ(ak)− Aℓ(a)

c(a)− λ
≤ ℓ(ak) ≤ ℓ(a) +

Aℓ(ak)− Aℓ(a)

c(ak)− λ
,

and send a → ak to get (11). Conversely, with ℓ(a) ∈
[
0,

Aℓ(a)−a

c(a)−λ

]
, ℓ(a) constant on pooling

intervals, and given (10) and (11), we must conclude that ℓ is an incentive-compatible
learning function.

Part ii. Let A ∈ AR. Given ℓ ∈
[
0,

A(a)−a

c(a)−λ

]
, define a function ℓ with ℓ(a) = ℓ, with (10)

holding on separating intervals of A, with ℓ constant on pooling intervals of A, and satis-
fying (11) — with Aℓ = A — at every left edge ak of every interval. Standard arguments
for differential equations ensure that ℓ is well-defined and unique. By Part i, ℓ is incentive
compatible.

Proof of Proposition 7. The proof will rely on the following lemmas:

Lemma 6. For A ∈ A and ℓ ∈
[
0,

A(a)−a

c(a)−λ

]
, let ℓ be the unique associated learning function

as given by Lemma 4. Let dA and dℓ be the Stieltjes measures associated with A and ℓ

respectively. Then dℓ is absolutely continuous with respect to dA and

dℓ

dA
(a) =

1

c(a)− λ

is the Radon-Nikodym derivative of dℓ with respect to dA.
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Proof. For any set B ⊂ [a, ā], dA(B) = 0 trivially implies dℓ(B) = 0 since A and ℓ

are constant or strictly increasing in exactly the same intervals. Hence dℓ is absolutely
continuous with respect to dA, and so there exists a Radon-Nikodym derivative between
the two measures. Now let [b, b′) ⊂ [a, ā]. Then [b, b′) is made up of countably many
intervals [c, c′) ∈ C on which both A and ℓ are continuous and differentiable, along with at
most countably many points of discontinuity d ∈ D. It follows that

dℓ[b, b′) = ℓ(c)− ℓ(b) =
∑

(c,c′)∈C

∫ c′

c

ℓ′(x)dx+
∑
d∈D

[
ℓ(d)− ℓ↑(d)

]
=
∑

(c,c′)∈C

∫ c′

c

1

c(x)− λ
A′(x)dx+

∑
d∈D

1

c(d)− λ

(
A(d)− A↑(d)

)
=

∫ b′

b

1

c(x)− λ
dA(x)

where the third equality uses Lemma 4.

Because the intervals [b, b′) ∈ [a, ā] generate the Borel σ-algebra in [a, ā], we conclude that
dℓ
dA
(x) = 1

c(x)−λ
is the Radon-Nikodym derivative of dℓ with respect to dA.

Lemma 7. Integration by Parts. If P is an Q-integrable function on [a, ā], then Q is
P -integrable on [a, ā] and∫ ā

a

P (x)dQ(x) = P (a)

∫ ā

a

dQ(x) +

∫ ā

a

∫ x

a

dQ(y)dP (x)

Proof. If P is Q-integrable, then the standard integral by parts formula yields∫ ā

a

P (x)dQ(x) = P (ā)Q(ā)− P (a)Q(a)−
∫ ā

a

Q(x)dP (x)(25)

Rearrange (25) to get:∫ ā

a

P (x)dQ(x) =

[
P (a) +

∫ ā

a

dP (x)

]
Q(ā)− P (a)Q(a)−

∫ ā

a

Q(x)dP (x)

= P (a)

∫ ā

a

dQ(x) +

∫ ā

a

(∫ ā

a

dQ(y(−
∫ x

a

dQ(y)

)
dP (x)

= P (ā)Q(ā)− P (a)Q(a)−
∫ ā

a

Q(x)dP (x)

Case 1. First assume λ > σ
∫ ā

a
c(a)dR0(a), so that ℓ∗(a) = A(a)−a

c(a)−λ
.
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Set P = A and Q = R0 in Lemma 7. Because R0 is continuous and of bounded variation,
the relevant integral is defined, and

(26)
∫ ā

a

A(a)dR0(a) = A(a)

∫ ā

a

dR0(a) +

∫ ā

a

∫ ā

a

dR0(x)dA(a).

Next, setting P = ℓ, and dQ(x) = [λ − σc(x)]dR0(x) in Lemma 7, and noting again that
Q is continuous and of bounded variation, we see that

(27)
∫ ā

a

[λ− σc(a)]ℓ(a)dR0(a) = ℓ(a)

∫ ā

a

[λ− σc(a)]dR0(a) +

∫ ā

a

∫ ā

a

[λ− σc(x)]dR0(x)dℓ(a).

Recall that ℓ(a) = A(a)/[c(a)− λ]. Use this in (27), and invoke Lemma 6 to get:∫ ā

a

[λ− σc(a)]ℓ(a)dR0(a)= (A(a)−a)
∫ ā

a
λ−σc(a)
c(a)−λ

dR0(a) +
∫ ā

a

∫ ā

a
λ−σc(x)
c(a)−λ

dR0(x)dA(a)

= K+A(a)
∫ ā

a
λ−σc(a)
c(a)−λ

dR0(a) +
∫ ā

a

∫ ā

a
λ−σc(x)
c(a)−λ

dR0(x)dA(a)(28)

where K = −a
∫ ā

a
λ−σc(a)
c(a)−λ

dR0(a). Combining (26) and (28),∫ ā

a

[A(a) + (λ− σc(a))ℓ(a)] dR0(a)= K+A(a)

∫ ā

a

c(a)− σc(a)

c(a)− λ
dR0(a) +

∫ ā

a

∫ ā

a

c(a)− σc(x)

c(a)− λ
dR0(x)dA(a)

= K+A(a)[1− S(a)] +

∫ ā

a

[1− S(a)]dA(a),(29)

where S is defined by (15)

S(a) = R0(a) +

∫ ā

a

σc(x)− λ

c(a)− λ
dR0(x).

Note that S is continuous, S(a) is finite and S(ā) = 1. Also remark that R0(a) = 0, so that
S(a) is strictly negative.

We claim that S has bounded variation. Define ∆+(x) ≡ max{λ−σc(x), 0} and ∆†(x) ≡
−min{λ− σc(x), 0}. Then, by (15):

S(a)= R0(a) +

∫ ā

a

∆+(x)

c(a)− λ
dR0(x)−

∫ ā

a

∆†(x)

c(a)− λ
dR0(x)

= R0(a) +

∫ ā

a

∆+(x)

c(a)− λ
dR0(x)−

∫ a

a

∆+(x)

c(a)− λ
dR0(x)−

∫ ā

a

∆†(x)

c(a)− λ
dR0(x) +

∫ a

a

∆†(x)

c(a)− λ
dR0(x).

The first term on the right hand side of this equation is a cdf, nondecreasing in a. Con-
sider each of the four integrals (without the sign that precedes them). Each integrand is a
nonnegative-valued function (because c(a) > λ, and ∆+ and ∆† are each nonnegative), and
each is nondecreasing in a (because c(a) declines in a). Therefore, each integral is nonde-
creasing in a. It follows that S can be written as the sum/difference of five nondecreasing
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functions and consequently is of bounded variation. Therefore integration with respect to
S is well-defined. Define P = A and Q(a) = 1 − S(a), and apply Lemma 7 yet again to
(29) to obtain (14).

The remainder now follows by applying Theorem 1 to the induced problem (S,R), solving
for an optimal A∗, setting ℓ = ℓ(∗), and then backing out the optimal learning function via
Lemma 4.

Case 2. Now assume λ ⩽ σ
∫ ā

a
c(a)dR0(a), so that ℓ∗(a) = 0.

Equations (26) and (27) still hold as in Case 1. But now note that ℓ(a) = 0, and so, by
setting S(a) = 0, we can rewrite (27) as∫ ā

a

[λ− σc(a)]ℓ(a)dR0(a) = −A(a)S(a) +

∫ ā

a

∫ ā

a

λ− σc(x)

c(a)− λ
dR0(x)dA(a)(30)

Finally, combine (26) and (30) to again get∫ ā

a

[A(a) + (λ− σc(a))ℓ(a)] dR0(a) = A(a)[1− S(a)] +

∫ ā

a

[1− S(a)]dA(a)(31)

We prove that S has bounded variation just as before. Since S is left-continuous and only
discontinuous at a, integration with respect to S is still well-defined. Define P = A and
Q(a) = 1− S(a), apply Lemma 7 yet again to (31), and set K = 0, to obtain (14).
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