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SURVIVAL, GROWTH AND TECHNICAL PROGRESS IN 
A SMALL RESOURCE-IMPORTING ECONOMY* 

BY DEBRAJ RAY** 

1. INTRODUCTION 

The problems of planning or of optimal growth in many economies are exacer- 
bated by the fact that production depends, in an essential way, on some resource 
(input, intermediate good) of which there is little or no domestic supply.' Oil is 
a prime example of such a resource. The difficulties arise for two reasons: (a) 
the scarce nature of this resource results in its international price (relative to that 
of domestic output) rising over time, and (b) the resource-importing economy 
must pay for its imports by exporting an equivalent quantity. 

It is intuitive that if the economy is 'productive' enough, it will possess the ability 
to compensate for the resource price-rise by a sufficient accumulation of capital. 
This leads rather naturally to a number of interesting questions. These are two 
examples. First, do there exist price paths of the resource which constrain the 
economy to maintaining, at best, an ever-diminishing level of consumption? If 
the answer is in the affirmative, one must study empirical data and consult the 
relevant economic theory, to ascertain whether such paths are the rule rather than 
the exception. Secondly, given some (increasing) resource price path, what rates 
of technical progress will permit the economy to achieve a growing consumption 
level? These issues are clearly important. 

The possible lack of richness in the set of feasible alternatives (hinted at above) 
has been made explicit in the literature on autarkic intertemporal accumulation in 
the presence of essential exhaustible resources. A seminal paper by Solow [1974] 
captured the essence of scarcity, or exhaustibility of the resource, by the twin 
devices of finiteness of the initial resource stock and an infinite horizon to plan 

* Manuscript received October, 1982; revised August, 1983. 
** This paper is a condensed version of Chapter 1 of my Ph. D. dissertation submitted to 

Cornell University. I am grateful to my advisor, Professor Mukul Majumdar, and to Professor 
Tapan Mitra for helpful discussions. I also wish to thank an anonymous referee for useful 
comments on a previous version of this paper. 

I To make matters worse, such resources may enter directly into consumption. However, 
the essential features of the problem may be analysed without introducing this complication. 
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276 D. RAY 

for.2 The structure of such a model necessitated an analysis of the question: 
when is 'survival' possible? The definition of this concept took the broad view 
that survival obtains whenever there exists a feasible program with consumptions 
bounded away from zero. Thus, in an aggregative framework, the economy 
must be capable of maintaining some positive level of consumption forever. 

A somewhat more ambitious question is that of growth. If the survival issue 
has been settled in the affirmative, it is natural to enquire whether 'growth' is pos- 
sible. In other words, does there exist a feasible program with consumption 
growing to infinity over time? 

In a trading model, the notation of resource scarcity is captured in the phenom- 
enon of ever-increasing prices of resource imports. In Mitra, Majumdar and 
Ray [1982], a two-sector trading economy was considered, and necessary condi- 
tions for survival were presented in terms of the production technology and the 
path of international resource prices. Sufficient conditions were also provided, 
though a 'complete characterization' of the conditions under which survival occurs 
was not obtained. The growth issue was also not considered in their paper. 

In this exercise, I use an aggregative model of intertemporal accumulation, with 
domestic output and an imported resource the only two commodities. There is 
no domestic stock of the resource; imports of it are nonstorable3 and the balance 
of trade must be in equilibrium at every period.4 The economy takes resource 
prices as given at every date. 

I seek answers to the following questions. 

(1) When is an economy capable of survival? In other words, what conditions 
on the terms of trade and the technology guarantee the existence of a feasible 
program with consumption bounded away from zero?' 

(2) When survival does obtain, is it possible to compute the maximum stationary 
level of consumption maintainable forever: i.e., the survival level generated 
by the economy? This would permit a comparison with exogenous 'mini- 
mum-needs' data, to determine whether an economy meets some exogenously 
specified 'standard of living' at every date. 

(3) When is an economy capable of growth; i.e., what conditions guarantee the 
existence of a feasible program with consumption growing to infinity over 
time? 

(4) What is the relationship between technical progress and growth? In par- 
ticular, given some rate of growth of consumption to be maintained, what is 
the minimum rate of technical progress (given the trend in resource prices) 
that will guarantee this? 

2 This work has subsequently been generalized. See, for example, Mitra [1978] and Cass 
and Mitra [1979]. 

3It has been shown that the impact of deteriorating terms of trade persists in a very definite 
way even when the resource import is storable, provided that either the capital or the resource 
stock depreciates. For details, see Mitra, Majumdar and Ray [1982]. 

4 At the cost of some computational complexity, it is possible to introduce various forms 
of foreign aid. This is, however, not done in the present model. 
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SURVIVAL, GROWTH AND TECHNICAL PROGRESS 277 

In an important sense, an analysis of this kind is logically prior to, and perhaps 
more relevant than a full-fledged 'optimization' exercise. The logical priority of 
this exercise arises from a need to recognize (or characterize) feasible programs 
before a choice among them is actually made.5 Its somewhat greater relevance 
stems from the fact that most planning exercises employ precisely such 'targets' 
(for example, the achievement of some fixed rate of growth) instead of a social 
welfare function of the kind commonly used in the literature.6 It is certainly true 
that all statements of planning objectives are, in a broad sense, equivalent to some 
'social welfare function.' However what are explicitly stated as 'primitive 
objectives' in many pianning exercises are simply the achievement of some growth 
rate in output, or employment. It is precisely objectives of this type7 which I 
take as basic to the present analysis. 

In Section 3, I consider an aggregative model of the kind previously described, 
with changing technology and resource prices. At each date, the technology is 
assumed to be linear homogeneous in capital and resource inputs (concavity of 
the technology is not assumed). Outputs are divided into consumption, invest- 
ment and exports. Exports pay for resource imports, investment augments the 
stock of capital. This process repeats itself indefinitely. 

The basic result of this section is Theorem 3.1, which provides a complete 
characterization of feasible and efficient programs in a given economy, for arbitrary 
resource price paths and technical change. This is used in Theorem 3.2 to provide 
a complete characterization of those economies capable of survival. The survival 
level is computed (Theorem 3.3) and examples with Cobb-Douglas technologies 
discussed. Theorem 3.4 goes on to show that any exponential growth of resource 
prices is inconsistent with survival, in a situation of no technical change. This 
result is of interest, since the theoretical literature on exhaustible resources follow- 
ing Hotelling [1931] does suggest that resource prices grow exponentially, at least 
asymptotically. Theorem 3.5 deals with growth, and provides a somewhat 
surprising result. 'Survival' and 'growth' are equivalent problems, in this model, 
in the sense that an economy is capable of survival if and only if it is capable of 
growth. Theorem 3.6 completely characterizes those economies capable of 
exponential growth of consumption at some rate g >0. Theorem 3.7 provides a 
sufficient condition, which, if satisfied, permits an economy to sustain any ex- 
ponential growth of consumption (by choosing initial consumption levels suitably). 
This is applied in Theorem 3.8 to yield an interesting result for a special case when 
resource prices are growing exponentially. It is demonstrated that if the rate of 

I By this, I mean the recognition of some feature of a feasible program, important to most 
actual planning exercises, such as the ability to sustain exponentially growing consumption 
forever. 

6 A classic example of economic analysis using planning 'targets' is the work of Tinbergen. 
See for example, Tinbergen ([1952], [1955]). Also of relevance here is the approach of Manne 
[1970] using 'gradualist' consumption paths. 

7 A real-world example is the case of India. One need only glance at the mode of target- 
setting in her Five-Year Plans. 

This content downloaded from 128.122.149.154 on Thu, 26 Jun 2014 06:27:42 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


278 D. RAY 

resource augmenting technical progress exceeds that of the price-rise, any expo- 
nential growth of consumption can be maintained. If the rate falls short of that of 
the price-rise, no exponential growth is maintainable. (The case of equal rates is 
also analyzed). This result illuminates an interesting 'knife-edge' property of 
technical progress in the present model. In addition, an example is given to show 
that when capital is 'important enough' in production (in a sense explained below), 
capital-augmenting technical progress may be 'better' than resource-augmenting 
technical progress even though resource prices are increasing. 

If labor is introduced as a factor of production, the linear homogeneity as- 
sumption on capital and resource inputs alone is clearly unsatisfactory. Section 
4 indicates briefly how an extension of this kind may be carried out. Some results 
on survival and growth are provided for a full-employment model, where the 
available labor force is fully used at every date. Finally, I indicate how these 
results may be extended to a surplus-labor economy. 

2. SOME NOTATION 

In the following text, the subscript t refers to time period. The following 
symbols are also used: 

K: capital 
R: resource 
C: consumption 
I: investment 
E: exports 
L: employment 
p: resource price 
R+ (resp. R++) denotes the set of all nonnegative n-vectors (resp. strictly positive 

n-vectors). For a differentiable function f of one variable, denote its derivative 
by f. 

3. MODEL WITH NO LABOR 

3.1. The Technology and Environment. The technology is given by a se- 
quence of net-output production functions <G,> where, for each t > 0, G,: R+ 
R+. These functions combine capital (K) and the resource (R) to produce 
output (G,(K, R)). The following assumptions are made on the technology. 

(G.1) For all t>0, G,(O, R) = G,(K, 0) = 0. 
(G.2) For all t > 0, lim Gt(K, R) = oo if R > 0, and lim Gt(K, R) = oo if K > 0. 

K-la0 R-00o 
(G.3) For all t> 0, Gt(,*) is homogeneous of degree one, continuous, and 

increasing in its arguments. 

Capital will be assumed to be nondepreciating. 
The environment is given by 
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(E.1) A sequence <p,>go of strictly positive resource prices8 
(E.2) An initial stock of capital, K>0. 

Remarks. Note that (G.1)-(G.3) place no restriction on the rate of technical 
change, also that no differentiability or concavity assumptions have been placed 
on the technology.9 The feature (E.1) reflects the 'small-country' assumption of 
international trade theory. It rules out any analysis of the bargaining issue in- 
volved in the process of resource price-setting. 

However, note that no assumption has been made on the form of the time path 
of resource prices. The general characterization of feasible alternatives that I 
seek will require no such restrictions. Of course, particular price paths will be 
used below in examples, or to make additional points. 

3.2. The Structure of the Economy. In this section, I describe feasible alloca- 
tions within the economy. An initial capital stock is given, along with an inter- 
national price of the resource. A quantity of the resource is imported, and 
output is produced. Part of this output is exported to pay for resource imports, 
part is invested, to add to the capital stock, and the remainder consumed. 
Equipped with the new capital stock, the entire process is repeated (with resource 
prices possibly at a different level), and so the economy moves over time. 

These features are captured in the following system. 

(1) K) Ko 
(2) Gt(KI, Rt) >, Ct + It + Et, t > O 

(3) Et = ptRt, t > O 

(4) Kt + It = Kt+,, t > O 
(5) (Kt, Yt, Ct, Et, Rt) > 0, t > 010. 

Remarks. Equation (3) is restrictive, in that it requires the balance of trade 
condition to hold in every period. A more general formulation would include 
the possibility of external financing at some rate of interest. Realistically, one 
would stipulate that both fresh loans obtainable at any date, and past accumulated 
debt, must be bounded. The accomodation of these additional features compli- 

8 These are prices with domestic output as numeraire. 
9 The treatment of technical progress, in particular, its apparent exogeneity in this model, 

may be a bit misleading. The kind of questions to be asked are: if the rate of consumption 
growth is to be g>O, given the rate of price rise, what must the rate of technical progress be? 
Viewed from this 'feasibility' viewpoint, it should be clear that technical progress, while formally 
exogenous, is not regarded as such in the spirit of the exericse. 

10 Note that investment is not constrained to be nonnegative; i.e., that the capital stock may 
be run down to provide for current consumption needs. Call this a reversibility model. If, 
in addition, the condition I, >0, t >0 is met, the system may be said to describe an irreversibility 
model. All the results here may be worked out for such a model; these are omitted for lack of 
space. The reader is referred to Ray [1981] for details. 
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280 D. RAY 

cates the workings of the model, but does not alter the qualitative nature of the 
arguments. 

3.3. Some Definitions. A program <K, C, I, E, R> <KK, Ct, It, Et, R,>?' is 
feasible if it satifies (1)-(5). Denote by <C,>' the corresponding feasible con- 
sumption program. A feasible consumption program <C,>O' is efficient if there 
does not exist another feasible consumption program <C'>'O with C'> Ct, t>O, 
and C > C8 for some s > O. 

A survival program is a feasible program <K, C, I, E, R> with inf Ct> 0. An 
t>O 

economy is capable of survival if there exists a survival program. The survival 
level, y, of an economy, is given by y _{inf Ct: <Ct> is a feasible consumption 

t>O 
program}. 

A growth program is a feasible program <K, C, I, E, R> with C, 1> Ct, t > O, 
and lim Ct = oo. An economy is capable of growth if there exists a growth 

t-400 
program. 

An exponential growth program with rate g > 0 is a feasible program <K, C, I, 
E, R> with Co >0 and Ct = Co(1 + g)t, t >O. An Economy is capable of growth 
at rate g > 0 if there exists an exponential growth program with rate g. 

Remarks. The definition of a growth program may appear to be unduly 
restrictive. A less ambitious requirement would be the existence of a consump- 
tion path, increasing to some pre-specified, possibly finite, consumption value. 
It turns out that in the present model (with no labor), this makes no difference to 
the analysis, in the light of the equivalence theorem below (Theorem 3.5). How- 
ever, the restriction, if any, is a real one in the model of Section IV below. 

3.4. Characterizations of Survival and Growth. In this section, I restate 
briefly and then provide some answers to the questions raised earlier. 

(1) When is an economy capable of survival? When survival is possible, can 
one explicitly compute y, the survival level of the economy? (See Theorems 
3.2 and 3.3). 

(2) When is an economy capable of growth, or of exponential growth at some 
rate g > O? (See Theorems 3.5 and 3.6). 

(3) What is the relationship between the pace of technical progress, the price 
path of the resource, and maintainable growth rates? (See Theorems 3.7 
and 3 8) 

All proofs are relegated to the Appendix 
First, I state 

LEMMA 3.1. Under (G. 1)-(G.3), for each t >0, the function Ht: R + x R + + 
R+ defined by Ht(K, p)_max [Gt(K, R)-pR], for K>0, p>0, exists and is 

R>O 
positive on R++. 
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SURVIVAL, GROWTH AND TECHNICAL PROGRESS 281 

Denote by R,(K, p) a maximizer of G,(K, R) - pR. 
Lemma 3.2 outlines a useful property of the functions <Ht>o . 

LEMMA 3.2. Under (G.1)-(G.3),for each t>O, and p>O 

(6) Ht(K, p) - ft(p)K 

where ft: R + + - R + + is decreasing. 

REMARKS. Lemma 3.2 tells us that the 'reduced' production function, obtained 
by maximizing output net of exports, has a convenient linearity property (in capital 
stocks). This linearity is obtained through the linear homogeneity assumption 
on the production function, and, as a result, no concavity assumptions are required 
to drive any of the results in this section (see, however, Section 4). 

If, in addition, one has for each t> 0, Gt twice differentiable and satisfying the 
well-known Inada conditions, ft may be exhibited explicitly. Define gt(z)- 
Gt(1, z), for z > O, and rt(z)_ g'-1(z) > O. Then 

(7) ft(p) = gt(rt(p)) - prt(p) 
(which is easily checked to be positive). This may be interpreted as the marginal 
product of a given stock of capital when the resource is imported to maximize 
output net of imports. 

For a Cobb-Douglas technology of the form Gt(K, R) = (AtK) (fltR)1-, a E (0, 1), 
(At, ft)>> , t>0, it is easy to check that 

(8) ft(P) = ______ 

where A-ac(1-ac) e (0, 1), and 6 1= - 

I first provide a complete characterization of feasible and efficient programs in 
this model. For an economy <G, p, K>, define Mt [H (1 +fs(P8))]s ̀ t>0. 

,s=O 

THEOREM 3.1. (i) A consumption program <Ct>o is feasible for an economy 
<G, p, 1K> if and only if 

00 

(9) E MtCt < K t=o 
(ii) It is efficient if and only if equality holds in (9). 

REMARKS. If the resource is imported at every date to maximize the value of 
output net of imports, Lemmas 3.1 and 3.2 demonstrate that the resulting model 
has a useful linearity property. The characterization of efficient programs in 
linear models is well-known: see for example, Majumdar [1974]. In the present 
context, Theorem 3.1, while of independent interest, is mainly a device to be 
applied to characterizations of survival and growth. 
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A useful interpretation of (9) may be obtained using the concept of 'profit- 
maximizing' or 'efficiency' prices. At any date t>O, the total output, net of 
imports, is Gt(Kt, Rt)+Kt-ptRt. The input is capital, Kt (the resource having 
been accounted for in the definition of net output). Efficient programs in this 
model have the following property. There exists a sequence of nonnull, non- 
negative efficiency prices <Qt>"O such that (valuing output of period t at the price 
of date t+ 1, and input at the price of period t) the profit at date t 

(10) Qt + 1 [Gt(Kt, Rt) + Kt-ptRt] -QtKt 

is maximized with respect to that obtainable using any nonnegative pair (K, R). 
It is easy to check that if Qo >0, and Qt+1 Q = [1 +ft(pt)] for all t>0, the 
sequence <Qt>o is a system of efficiency prices for all efficient programs. In 
particular, the sequence Qo =1, Qt = Mt1 for all t> 1 is a system of efficiency 
prices. Restating (9) yields 

00 

(11) E ~~~~~Qt+lZt < AC t=O 
for all feasible consumption programs <Ct>00, with equality holding for all 
efficient programs. 

Thus, feasibility is captured by the fact that the 'value of consumption,' evalu- 
ated at efficiency prices, must not be too 'large', and efficient programs <Ct>l are 
precisely those which satisfy 

00 00 

(12) E t1t> E Qt+lCt t=O t=O 

for all feasible <Ct>00, i.e., those which maximize 'consumption value'. In this 
context, the work of Debreu [1954] is important, see also Cass and Yaari [1971]. 
A 'direct' characterization of efficient programs (i.e., one not involving comparison 
with other feasible programs) using efficiency prices may be found in Cass [1972]. 

While the interpretation using efficiency prices is important and of wide appli- 
cability, it turns out that the central feature of these survival-growth problems is 
the behavior of the pure accumulation program. For example, the characteriza- 
tion of survival in the full-employment model of Section IV has no direct inter- 
pretation using efficiency prices, whereas the behavior of pure accumulation 
stocks is crucial. I shall therefore interpret (9) in terms of the pure accumulation 
program. 

Define such a program as a feasible program with associated capital stocks 
<kt>g0 satisfying kt> Kt, t>O for all sequences <Kt> associated with some 
feasible program. It is obvious that the pure accumulation capital stocks <kt>o0 
form a unique sequence; and it is easy to see that a pure accumulation program 
may be constructed by setting ko = K, Rt+ 1 = Ht(kt, Pt) + kt, t > 0, Ct = 0, t > 0, 
It = kt+ - kt, Et = ptRt(kt, Pt), Rt = Rt(kt, Pt). 

Thus, for all t > 0, kt+ 1 = [1 +ft(pt)]kt, and so t = M-11k, t > 1, with ko = K. 
The condition (9) may now be rephrased as 
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0 ct (13) E' rZ t=O t+1 

for all feasible programs <Ct>w, with equality holding for all efficient programs. 
The set of feasible consumption programs is composed precisely of those con- 

sumption sequences which tend to zero relative to pure accumulation stocks 
'sufficiently fast,' the exact condition being provided by (13). The prescribed 
consumption stream must dwindle (over time) relative to the pure accumulation 
capital stocks. Intuitively, if this is not the case, then there is too little left over to 
sustain capital accumulation, and the consumption program becomes infeasible. 
This is the criterion made explicit in (13). 

Survival. Theorem 3.1 readily yields a complete characterization of economies 
capable of survival. 

THEOREM 3.2. An economy <G, p, KC> is capable of survival if and only if 
00 

(14) fi Mt < oo. 
t=O 

Thefollowing statements are each equivalent to (14). 
00 

(15) Qt< 
t=O 

01 
(16) 00. 

t=O t 

The next theorem computes the survival level of a given economy. 

THEOREM 3.3. The survival level of an economy <G, p, KT>, y, is given by 

K K 1 
(17) ----- 

= 
L . 

= 
- - - 

71Mt 71Qt+ I B1 
t=O t=O t=O t 

interpreting y as zero if the sums in the denominators diverge. Any feasible 
program with consumption equal to yfor all t>O is efficient. 

Observe that the feasible program which generates the survival level of con- 
sumption every year is also the program that is obtained through an application 
of a Rawlsian maximum criterion, provided that all generations have identical 
utility functions, increasing in consumption. For a further discussion of this 
relationship, see Solow [1974]. 

Taken together, Theorem 3.2 and 3.3 provide an answer to question (1), posed 
at the beginning of this section. 

Example (3.1). (Cobb-Douglas production function). For a Cobb-Douglas 
net-output function Gt(K, R) =(AtK)a(fltR)I-1, o e (0, 1), (t, fit)>>, t> 0, recall 
from (8) that ft(p) = and hence, that survival is possible if and only if 

This content downloaded from 128.122.149.154 on Thu, 26 Jun 2014 06:27:42 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


284 D. RAY 

(18) L1 ll 1l + a D < oo, 

The condition (18) may be used to test for survival. For example, suppose that 
there is no technical change, so that t = ft =1 for all t>0, and let pt = (t + 2)k, 

k> 0, t > 0. Consider two cases. 

Case 1: (k6>1) In this case, E Aa <??, and hence E (1+ >B<oo t= 6 <o, ndhec 6+~ 0Pt so\ PS 
Tt 

for all t>O. (See, for example, Knopp [1956], p. 94). Therefore, E r 
A , -1 t=O S=O 

[+ 4 oo as T-+ oo and survival is impossible. 

Case 2: (k6 < 1) In this case, one can show (see Mitra, Majumdar and Ray 
[1982, Appendix]) that (putting tj = kW), 

(19) + p > exp [H(t+2)1 -B] 

where H and B are positive constants, and this easily establishes that (18) is 
satisfied. Hence, survival is possible. 

This example illustrates two points (a) survival is possible, in the absence of 
technical progress, even with unbounded decline in the terms of trade, and (b) 
.survival is more 'likely' the more 'important' capital is in production (the lower 
the value of 6, in this example). 

Consider, now, an exponential price-path of the form pt = po(l + p)t, Po >0, 
p >0, t >0. Suppose, further, that the technology is stationary, i.e. Gt = G for all 
t > 0, and satisfies 

(G.4) G is twice differentiable, and g(z) G(a, z), z >0 is strictly concave. 
(G.5) liminf g'(z)z >O. 

z-0O g (z) 

Remark. (G.5) asserts that the resource is not only essential in production, but 
has some impact at 'small' levels of its use. This assumption is satisfied by the 
Cobb-Douglas production function, as well as other functional forms." 

THEOREM 3.4. Suppose that an economy <G, p, K> satisfies (G.4) and (G.5), 
and that pt = po(l + p)t, po > O, p > O, t > 0. Then it is not capable of survival. 

REMARK. The literature on exhaustible resources following Hotelling [1931] 
suggests that resource prices may exhibit exponential growth in various theoretical 
frameworks, at least asymptotically. Such asymptotically exponential price 
paths would obtain, for example, with constant or bounded marginal costs of 
extraction and interest rates bounded away from zero. Theorem 3.4, while stated 

11 Consider, for example, G(K, R)=A(K+R)l12K1/4R1/4, A>O. This satisfies all our 

assumptions, with zg'(z) >1 for all z>O. 
g(z) , 4 
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for exponential resources price paths, is easily seen to hold for these paths, too. 

Growth. The results here characterize those economies capable of growth. 
In this model, the problems of survival and growth turn out to be equivalent. This 
is expressed in 

THEOREM 3.5. An economy <G, p, K> is capable of growth if and only if it is 
capable of survival. 

REMARK. The equivalence of survival and growth is often seen in autarkic 
exhaustible resource models. See, for example, Cass and Mitra [1979]. This 
equivalence follows from linear homogeneity of the production functions, and 
does not, in general, hold in the diminishing returns case (see Section 4). The 
intuition is as follows. If survival is possible, then by starting with a small enough 
initial consumption, it is possible to build up capital stocks faster than the capital 
stocks associated with the survival level. Eventually, this magnifies the scale of 
the economy, and hence, by linear homogeneity, raises the constant maintainable 
consumption level proportionately. Consumption can then be adjusted upward. 
Repeat this process indefinitely to obtain the result. 

Example 3.2. (Cobb-Douglas production function). Consider Case 2 of 
Example 3.1. There, survival is possible, and so by Theorem 3.5, the economy is 
capable of growth. In addition, the feasibility characterization (9) may be ex- 
ploited to reveal more about the kind of growth which is possible. Here, I 
demonstrate that 'polynomial' growth paths of the form Ct,= E aiti are feasible 

i=o 
(for some choice of ai >0, i = 0,..., n), for any positive integer n. Observe that for 
any integer n, tj e (0, 1) and (M, B) >>0, there exists an integer T such that 

(20) exp [M(t+2)1 -B] > tn+2, for all t > T 

Now write the condition (9) with polynomial consumption path as 
n 

?? E aiti 
(21) o Pa ] K. 

t=0H1 + 

It is easy to check, using (19) and (20), that for any positive integer n, there 
exists (ai),=0>>0 such that (21) holds. 

Those economies capable of sustaining exponential growth at a rate g >0 are 
characterized in 

THEOREM 3.6. An economy <G, p, KC> is capable of exponential growth at 
rate g if and only if 

00 
(22) E, Mt(l +g)' < oo 

t=O 
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Taken together, Theorem 3.5 and 3.6 provide an answer to question (2) posed at 
the beginning of the section. 

Technical Progress. Here, the preceding theorems are used to, provide a 
precise relationship between the rate of technical progress and the rates of main- 
tainable exponential growth. First, I provide a sufficient condition on the price 
path and the nature of technical progress such that any exponential rate of growth 
can be satisfied. 

THEOREM 3.7. Suppose that an economy <G, p, K4> satisfies limf,(p,)= oo. 
t-*oo 

Then it is capable of exponential growth at rate g,for all g>0. 

Though Theorem 3.7 is obvious (given (22)), it has important consequences. 
As an illustration, suppose that resources prices follow an exponential path, 
pt = po(l + p)t, p >0, and suppose that the economy exhibits resource-augmenting 
technical progress at some rate /B>0, i.e., G,(K, R) = G(K, (1 + f)tR) for all t >0. 
We then have 

THEOREM 3.8. Suppose that <G, p, K> satisfies G,(K, R)=G(K, (1+f1)tR), 
,B>O,fort>O and p,=po(l+p)t, po>O,p>O,fortt>O. Then 
(i) if ,B>p, the economy is capable of exponential growth at rate g for all 

g >0. 
(ii) if ,B<p, the economy is not capable of exponential growth at any rate 

g >0. 
(iii) if fB=p, there exists g*>0 such that the economy is capable of exponential 

growth at rate g if and only if g<g *. 

REMARK. Note that the condition for sustaining a particular growth rate is 
independent of the growth rate. Thus if some exponential growth rate is feasible, 
so are all exponential growth rates (in the situation of Theorem 3.8). This feature 
is a consequence of the linear homogeneity of the technology.12 

Example 3.3. (Cobb-Douglas production function) Recall the Cobb-Douglas 
technology of Examples 3.1 and 3.2. Note that if the rates of technical progress 
are such that -ioo as t - , oo, then by Theorem 3.7, any exponential growth 

Pt 
path is sustainable. It is worth reiterating that the growth rate g itself does not 
enter into this condition. 

Suppose now, that At = (1 + A)t, A > 0, t > 0, fit = (1 + ,)t, B > 0, t > 0, and Pt= 
po(l + p)t, p > 0, t > 0. Then a sufficient condition for sustaining any growth rate 
g is (I + A) (I + B)6 > (I + p)6. When B = 0, this condition reduces to A > (1 + fl)- 
1. When A = 0, the condition is , > p. This discussion illustrates a point of some 
significance, regarding the relative efficiencies of resource-augmenting and capital- 
augmenting technical progress. Suppose that equal rates of technical progress 

12 See Kemp and Long [1982] for an analysis of the diminishing-returns-to-scale case 
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in capital and resource (A = 1) are associated with equal costs of such progress. 
Suppose, further, that the 'share' of capital exceeds that of the resource in pro- 
duction, i.e., 3 < 1. It follows that the minimum value of A guaranteeing sustain- 
ability of exponential growth is less than the corresponding value of ,B. This 
seems to indicate that a policy of capital-augmenting technical progress may 
dominate a policy of resource-augmenting technical progress when capital is 
important in production (even though it is the price of the resource which is rising), 
since the indirect saving on resource use is higher. 

4. A MODEL WITH LABOR 

In this section, I extend the framework developed in Section 3 to explicitly 
include labor as a factor of production. For the sake of brevity, I shall concen- 
trate on the full-employment case (Section 4a), where the available labor force is 
given at each date, and fully used in productive activity. However, I shall also 
briefly comment on a surplus-labor version13 (Section 4b); the reader is referred 
to Ray [1983a, b] for details. 

4.1. The Full Employment Model.'4 The technology is given by a sequence 
of net-output production functions <G,>0, where, for each t >0, &,: R3- R +, 
providing for each triple of capital (K), resource (R) and labor (L), an output 
0,(K, R, L). Consider the following assumptions on the technology. 

(G.1) For all t>0, Ot(K, R, 0)= t(K, 0, L)= t(0, R, L)=0 
(G.2) For all t>0, t( ) is homogenous of degree one, increasing in its 

arguments, and concave. 
(G.3) For all t >0, Gt(., *, *) is differentiable. 
(G.4) For all t>0 and each (K, L) e R+, lim G (K, R, L) =oo and lim 

R-0 R-+oo 
GR(K, R, L)=0 

(G.5) There exists t>0 such that for all t >0 and 

(K, R, L)R3+ tL(K, R, L) > > ? ++ 
tK R, L) 

Capital is assumed to be nondepreciating. 
The environment is given by (E.1) and (E.2) (Section 3), and (E.4) a stationary, 

positive, labor force L>0. 

Remarks. (G.5) states that in a world where labor is paid its marginal product, 
the share of labor in total output is bounded away from zero.15 This assumption 
is satisfied, for example, where Ot is Cobb-Douglas for all t>0. The feature 

13 See, for example, the dual-economy model of Lewis [1954]. 
14 The material of Section 4.1 is based on Mitra and Ray [1982]. 
's This assumption may be dropped, but a complete characterization is thereby sacrificed; 

see Mitra and Ray [1982]. 
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(E.4) postulates a stationary labor force. Nonstationarity presents no technical 
problems, but is unsatisfactory, because the concept of survival is defined in terms 
of aggregate consumption. Such a definition is of questionable significance in 
the face of a changing labor force. 

Note that concavity of 0, is assumed, in contrast to the previous section. While 
this may not be necessary for the results here, it is indispensable for the techniques 
of proof that are used. 

Define an economy to be < , p, L, K> -{<KG, Pt> ', L, K}, with <Gt>o 
satisfying (G.1)-(G.5), and {<pt>o, L, Ki} given as in (E.1), (E.2) and (E.4). 

Define, for a given economy and t>O, Gt: R2-*R+ by Gt(K, R)-Ct(K, R, L), 
(K, R) E R2. 

Feasible allocations may be described as in Section 3, with the additional 
requirement that the available labor force be used up at each date. Feasible 
allocations are thus captured by the following system. 

(23) t > K0 

(24) Ot(Kt, Rt, Lt) = Ot(Kt, Rt, L) = Gt(Kt, Rt) > Ct + It + Et, t > 0 

(25) Et = ptRt, t > 0 

(26) Kt + It = Kt+j, t > O 

(27) (Kt, Ct, Et, Rt) > 0, t > 0.16 

By (G. 1)-(G.5), the function Ht: R + x R + + -R + given by Ht(K, p) _ max - 
R>O 

Gt(K, R) - pR is well-defined for all t>0. Denote by Rt(K, p) a maximizer of 
Gt(K, R)-pR, for K>0, p>O, t>0. 

Define feasible programs in the obvious manner, following Section 3, and 
similarly define the concepts of survival program, growth program, and pure 
accumulation program. As in Section 3, the last exhibits capital stocks <kt>o 
given by k0 = K, and kt + Ht(Kt, Pt), t >0. 

First, I completely characterize those economies capable of survival. 

THEOREM 4.1. An economy <0, p, L, K?> is capable of survival if and 
only if 

(28) inf t > 0. t>o 1+1 
Compare this result with its counterpart in Section 3, stated for the case where 

Gt(., *) is linear homogeneous. There, an economy is capable of survival in the 
reversibility model if and only if 

16 Again, I omit a discussion of the irreversibility model. For the relevant results, see Mitra 
and Ray [1982]. 
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0 1 
(29) 1 < ?? t=O kt 

'Linear' pure accumulation in the decreasing returns to scale framework of 
Section 4 (the decreasing returns being exhibited by the 'reduced' functions 
<Gt>w') guarantees survival, but does not suffice in the constant returns to scale 
model of Section 3. This is because in the former case, there are 'proportional 
gains' to be had by a lowering of scale, and this essentially compensates for the 

Ti1 
fact that 

I 
R may diverge (as T-.oo) by creating enough 'surplus' to maintain 

survival. In the constant returns case, such 'compensation' is not possible. 
Finally, I provide sufficient conditions for the existence of a growth program. 

THEOREM 4.2. An economy <0, p, L, KT> is capable of growth if 
0 1 (30) E < ' 

Observe, now, that survival and growth are no longer equivalent problems. If 
pure accumulation stocks grow linearly (equation (28)), a constant amount of 
this growth can be set aside for consumption, permitting survival. However, if 
a growing amount is set aside, the capital stocks do not necessarily have enough 
room to expand, given diminishing returns to scale. To permit growth, therefore, 
pure accumulation stocks must be capable of growth which is somewhat greater 
than linear (equation (30)). 

4.2. Comments on a Surplus Labor Model. Here I very briefly comment on 
the method of extending these results to a surplus labor model. In such a frame- 
work, an unlimited supply of labor at an exogenously given wage rate is postulated. 
Produced output now has four components: (1) a wage bill, to feed the employed 
labor at the institutional wage; (2) 'luxury' consumption, over and above wage 
payments; (3) investment; and (4) exports. 

The second of these components may be usefully interpreted as the standard of 
living of the economy (over and above the consumption of 'wage goods' by the 
employed population).17 

A surplus-labor model of the sort described here raises two broad issues. The 
first pertains to an analysis of feasible and efficient consumption paths; i.e., 
allocations describing attainable standards of living, with employment generation 
being granted a secondary place. The second deals with an analysis of feasible 
and efficient employment paths, with consumption surpluses (standards of living 
over and above wage rates) being of secondary importance.18 

The first of these issues can be treated using the same techniques as those 

17 See also the remarks in Gangopadhyay [1982]. 
18 The issues are, of course, polar. A general analysis would place positive weights on both a 

higher standard of living and generation of employment. 
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developed for the model of Section 3. Results analogous to all the theorems and 
examples of Section 3 hold, in this case. 

Analysis of the second issues requires a different approach (see Ray [1983a]). 
While the results here are somewhat restrictive, it is possible to provide a complete 
characterization of all programs that are efficient in employment-generation. 
Such programs are defined by the property that no other feasible program exists, 
affording at least as much employment at every date, and strictly more at some 
date. 

5. CONCLUSION 

This paper has dealt with some theoretical issues, raised by the problems of an 
open economy importing an essential resource at progressively higher prices. The 
general approach is the following. A plan is proposed, e.g., consumption growing 
at some constant proportional rate. For any such plan, a criterion has been 
provided, involving the plan itself, the resource price path, and the technological 
conditions, which will permit the 'planner' to deduce whether this plan is feasible. 
Particular emphasis has been placed on the problems of survival (does there exist 
a plan with consumption bounded away from zero?) and of growth (does there 
exist a plan with consumption growing to infinity?). This 'feasibility' approach 
is openly nonutilitarian, but is clearly not devoid of any ethic. In particular, in 
an economy with surplus labor, plans involving consumption generation, and those 
involving employment generation may be tested for feasibility and efficiency within 
this framework. Choice among these plans requires, of course, a sharper ethical 
criterion. 

Stanford University, U. S. A. 

APPENDIX 

PROOF OF LEMMA 3.1. Consider the problem (for fixed t>0): max [G,(K, 
R>O 

R) - pR] where K>0 and p>O are given. Clearly, by setting R = 0, G,(K, R) - 
pR =0, so that the existence of a maximum is established by demonstrating some 
R > 0 such that G,(K, R) - pR <0 for all R > R (the maximum would then exist by 
an application of Weierstrass' Theorem). Suppose, on the contrary, that there 
exists <R,> ' with 0 < R- oo as n -oo, such that G,(K, Rj)-pRn > 0 for all n > 0. 

Rearagig,Gt (K, RJ) Rearranging, , Rn p for all n > 0, and using (G.3), and passing to the 
limit, as n-+oo, Gt(O, 1)> p>O which contradicts (G.1). Hence, Ht(K, p) is 
welldefined for K > 0, p > 0. 

To show that Ht is positive on R2+, it suffices to show that for all (K, p)>>O, 
there exists R>0 such that Gt(K, R)-pR>O. Suppose not; then there exists 
<Rn>o with O<Rn-+O as n-+oo, and Gt(K, R )-pRn?0 for all n>0. Rearrang- 
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ing, Gt (K R n) < p. Using (G.3) and passing to the limit as n oo, one obtains 
Rn 

lim sup G,(z, 1) < p, contradicting (G.2). Q. E. D. 
z-400 

PROOF OF LEMMA 3.2. For all A>0, Ht(AK, p) = max [Gt(AK, R) - pR]= 
R R\P. R>O 

Amax Gt(K ) - _p A 2=)max [Gt(K, R) - pR] = AHt(K, p). Together with 
R>O A A R>O 

H(O, p) = 0 (using G. 1), it follows that Ht(K, p) =ft(p)K for some ft: R + + R + + 
(that ft maps into R + + follows from Lemma 3.1). 

To show that for each t > 0, ft(p) is decreasing, it suffices to show that Ht(K, p) 
is decreasing in p for all K>0. For PI > P2>0, Ht(K, pi) = Gt(K, Rt(K, PI)) - 
p,Rt(K, pl)<Gt(K, Rt(K, Pi))-Pp2R(K, pi)<Ht(K P2) (the strict inequality 
following from G. 1 and Lemma 3.1). 

PROOF OF THEOREM 3.1. (i) (Necessity) Suppose <Ct>00 is feasible. Then, 
for some feasible program with <Ct>"O as its consumption program, using (2)-(4), 
Ct < Kt-Kt+ 1 + Gt(Kt, Rt)-ptRt < Kt-Kt+ 1 + Ht(Kt, pt) = Kt- Kt+1 +ft(pt)Kt = 
[1+ft(pt)]Kt-Kt+1, t>0. Multiplying both sides of this inequality by Mt and 
summing, one obtains, for T >0, 

(A.1) I MtCt S 4C- MTKT+I. t=o 

From (A.1), the left-hand side is monotone nondecreasing in T, and is bounded 
00 _ 

above by K, hence , MtCt exists and satisfies (9). 
t=o 

(Sufficiency) Define a program <K, C, I, E, R> by Ko = K, Kt=Mt. 1Ko- 
[ct- 1 + X C, 1 H [1 + fr(p)], t > 1, Ct = Ct, t > 0, It=Kt+ 1-Kt, t > O, Et= s= 1 T=s 
ptRt(Kt, Pt), t >0, Rt = Rt(K, Pt), t > 0. To verify its feasibility, the condition 
that Kt> Ofor all t >O, and (12) must be checked. That Kt>0 for all 1>0 follows 
by rearranging (9). To verify (2), note that for all t > 1, Gt(Kt, Rt) - ptRt = 

Ht(Kt, Pt) =ft(pt)Kt = [1 +ft(pt)]Kt - Kt = Kt + - Kt + Ct. A similar verification is 
is easy for t =O. 

(ii) (Necessity) Suppose, on the contrary, that <Ct>"O is efficient, but - 
00 t=o 

MCt < K. Let K-4 MtCt = 3 > O. For some to > O, define = Mt- 1 > O, and t 
t=O to~t 00 

a sequence <Ct> ' by C'=Ct for t#to, C' = 0to+d> CZ. Also Y MtC'= 

Mtt + 3 = K. Therefore, <C'> I is feasible, contradicting the efficiency of 
t=O 00 
<Ct>'. Hence Y MtCt=IK. 

t=O 00 
(Sufficiency) Suppose, on the contrary, that Y MtCt=K, but that <Ct>gl is 

t=O 
inefficient. Then there exists feasible <Ct>' with C'>Ct for all t>O, C'>Zs 

for some s>0. But then Y, MtC'>J?, contradicting the feasibility of <C'>'. 
t=O 

Hence <C->' is efficient. Q. E. D. 
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PROOF OF THEOREM 3.2. The equivalence of (14)-{16) is immediate from the 
definitions of <Q,>or and construction of <k,>'. 

(Necessity) Suppose that <G, p, K> is capable of survival. Then there exists 
a survival program <C,> and 0>0 with C >0>0 for all t >0. Using (9), for 
each T>0, 

T 1 T - K 
fi Mt = E Mto < F. fM,Ct < o- 
t=o 0 t=O t_ _ 

Since Mt>0 for all t>0, and , M, is bounded above, (14) is satisfied. 
t=O T 

(Sufficiency) If (14) is met, there exists ?I >0 such that , M,>K. Thus 
there exists a feasible program with consumption equal to n for all t >0, i.e., a 
survival program exists. Q. E. D. 

PROOF OF THEOREM 3.3. Obvious from Theorem 3.1. 

PROOF OF THEOREM 3.4. It suffices to prove that E f(pt)< oo. For then, 
00 00 *=o 00 

Hl [1 +f(pt)] < oo, and hence EM = oo. The convergence of E f(pt) will be 
t=o t=O t=o 

established using the ratio test. First, observe that f(pt) may be given the explicit 
form 

f(pt) = g(r(pt)) - ptr(pt) 

where r- g'-1 (recall (7)). By (G.4), f(pt) is differentiable, and it is easily seen 
that f'(p) =-r(pt). Now, using the mean value theorem, 

fC(P) -f(P+ 1) = (p -P + Of '(P) 

wherept+1 > p> pt, and so, 

f(f't) -f(Pt+ l) = - PtPf'(P) 

This yields f(t1) I-( - + P)f(Pt+) > (l + Pf(P) > + P f(p) 
- p r(p)g'(r(p)) - P 1 

+ p g(r(p))-g'(r(p))r(p) 1 +p a(r(p)) 1 
g '(r(p))r(p) 

Now observe that r(p)-.O as p-.oo (this is easily checked), and that p-.oo as 
Pto. Applying (G.5), 

lim inf f(Pt) > 1 
t tQ0 f(Pt+ 1) 

which suffices to establish that E f(p,) < oo. Q. E. D. 
t=O 

PROOF OF THEOREM 3.5. (Necessity). Trivial. 
(Sufficiency). Suppose that <G, p, KC> is capable of survival. Then, by 
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00 

Theorem 3.2, E M, < oo, and so there exists an increasing, positive sequence 
t=O co 

(O0>o with lim Ot = oo such that MtOt= B < oo (see for example, Knopp, [1956], 
t -+o t=O 

p. 127, Theorem 4). Using Theorem 3.1, it is easy to check that a growth pro- 
gram with Ct= 0tK , t > O, exists. B' 

PROOF OF THEOREM 3.6. Follows from Theorem 3.1, using the same line of 
reasoning as in the proof of Theorem 3.2. 

PROOF OF THEOREM 3.7. This is an immediate consequence of the ratio test 
applied to the left hand side of (22), recalling that Mt= [ [1 +fL(p.)]A1 for all 

s=0 
t > 0. Q.E.D. 

PROOF OF THEOREM 3.8. First I claim that for all t>0, ft(P)=f( (1 

where f: R2+- R + + is decreasing. Let H(K, p)_ max {G(K, z) - pz}, then, by 
z>O 

Lemma 3.2, H(K, p) =f(p)K for some f:R?+ R++, decreasing. Now, for each 
t >, K >, ft(p)K = Ht(K, p) = max {Gt(K, R) - pR} = max {G(K, (1+ /3)tR) - pR} 

R>O R>O 

=max {G(K, (1 + f)tR)- - (I +fl)tR} = m G(K, z)- zP 4> =H(K, 
R=O (1+ M) (1 =ma (+ fl)tj 

(1 4'1)t )=f( (1 pt ). K, establishing the claim. 
Now, f(z) -0 as z-+ oo. To show this, it suffices to verify that for each K >0 

and 0< zn- oo and any sequence of maximizers R(K, Zn), G(K, R(K, Zn)) - 

ZnR(K, zn)-+? as n-+oo. Suppose, on the contrary, that there exists K>O, 
0< Zt oo, a corresponding sequence of maximizers R(K, Zn), and E> 0 such that 

(A.2) G(K, R(K, Zn)) - ZnR(K, Zn) > E for all n. 

Hence G(K, R(K, zn)) >6 Efor all n, and so (since G is continuous, increasing, with 
G(K, 0)=0), there exists 6>0 with R(K, Zn) >6 for all n. Pick z >0 and N such 
that zn> z for all n > N. Using (A.2), G(K, R(K, z)) - zR(K, z)> G(K, R(K, 
Zn))-zR(K, Zn) > (Zn-z) R(K, Zn) + E > (Zn-z)-oo as n-?oo, and this con- 
tradicts Lemma 3.1. 

Also, f(z)-+ oo as z -0. To show this, it suffices to verify that for each K >0 
and znJ, 0, and any sequence of maximizers R(K, Zn), G(K, R(K, Zn)) - znR(K, 
zn)xo as n-+oo. Suppose, on the contrary, that there exists K>O, znl, 0, a 
corresponding sequence of maximizers R(K, Zn) and B < oo such that 

(A.7) G(K, R(K, Zn)) - ZnR(K, Zn) < B for all n. 

Using (G.2), for some > 0, pick R >0 such that G(K, R)> B + e, and n such 
that znR <6E. Then, for that n, G(K, R(K, zn)) -ZnR(K, Zn) > G(K, R)- znR > B, 
contradicting (A.3). 
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Now consider (i) of the theorem. If ,B>p, then Pt -+0 as t-+oo, and (I +/)t 
so by the preceding argument limft(pt) = oo. Hence the condition of Theorem 3.7 

t-soo 
is satisfied, so that the economy is capable of exponential growth at any rate 
g>0. 

Consider (ii). If ,B <p, then (1P+f)t oo as t-+ oo, and by the preceding argu- 
ment, lim ft(pt) = 0. It is then easily verified that E Mt(1 + g)t = oo for any g > 0, 

t- ? t=O 
and using Theorem 3.6, this proves (ii). 

In part (iii), if ,B=p, then (Pt =p*>O for all t>0. Define g*=f(p*), 
then ft(pt)=g* for all t>0. It is easily checked that Y, Mt(l+g)t<oo for all 

co t=O g <g*, while Y, Mt(1 +g)t = oo for all g >*. This establishes (iii). Q. E. D. 
t=O 

PROOF OF THEOREMS 4.1 and 4.2. See Mitra and Ray (1982). 
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