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ABSTRACT. We study a model in which lifetime individual utility is derived from both
present and past consumption streams. Each of these streams is discounted, the former
forward in the usual way, the latter backward. We presume that an individual at date t
evaluates consumption programs according to some weighted average of her own felic-
ity (as perceived at date t) and that of “future selves” at dates greater than t. This simple
formulation allows agents to partially anticipate future regret in current decisions, and
generates a set of novel testable implications in line with empirical evidence. The model
is used to capture the notion of parental influence and investigate its impact on equilib-
rium savings. The paper also examines other applications of “backward discounting.”

1. INTRODUCTION

We study a model of time preferences based on two behavioral postulates. First, agents
discount backwards as well as forwards. Second, agents consider directly the lifetime
utility of their future selves. The notion that agents might consider past outcomes in
current utility dates to the seminal work of Strotz (1956),1 and fits a variety of settings.
The promise of happy memories might provide added incentive for planning a holiday.
An addict may feel regret for his miscreant past choices. Parents might urge their chil-
dren to work harder, knowing that once grown, children will value their adult outcomes
more than they do now, and their juvenile outcomes less. A government might engage
in populist expenditure in the run-up to an election, anticipating that at the election
date, individuals will weight their recent experiences most heavily.
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In the standard formulation, the past is sunk, and as such cannot affect current deci-
sion making. Indeed, the type of backward discounting described above could leave
an agent with feelings of regret or happiness, but without the need to affect change.
And yet an agent at date t knows that his future date T self might view events quite
differently; he knows, for instance, that a payoff at date T will be given more weight
than the same payoff at date t. Enter our second behavioral postulate. By considering
the effect of current decisions on his future selves — via their consideration of the past
— our agent can internalize such anticipated feelings when making current decisions.2

This is true of several of the examples above.

Now, the foregoing discussion may just appear to be semantic jugglery. Suppose that an
individual has some “intrinsic” discount factor for future consumption, and additional
concern for a “retirement self” or “shadow parent.” Why not simply combine the two
to arrive at some “effective” discount factor that evaluates future consumption? This
is a perfectly sensible argument. The point is, however, that such discounting is never
geometric, assuming that the “intrinsic” discount factors are geometric and that there
is both forward and backward discounting. Indeed, both postulates work in tandem;
either one alone yields behavior entirely equivalent to standard geometric discounting.
It i s precisely the interaction of these two natural assumptions that guides our analy-
sis. While our model departs in a minimal way from the standard theory — it remains
predicated on geometric discounting — it generates several testable predictions regard-
ing rates of time preferences. Some of these predictions are shared with hyperbolic
models, and thus we argue that our model gives rise naturally to some of the experi-
mental observations that motivated the study of such models (see, e.g., Ainslie (1991),
Loewenstein and Prelec (1992), Loewenstein and Thaler (1989), Laibson (1997, 1998),
and O’Donoghue and Rabin (1999)), and is also in line with recent models of collec-
tive decision-making that give rise to time-inconsistency, such as Gollier and Weitzman
(2010), Zuber (2011), and Jackson and Yariv (2015). But our model also generates novel
predictions that are not made by the hyperbolic discounting class. For instance, it gen-
erates a profile of local discount rates that are smaller in middle age, and greater both
early on and in one’s final years, a finding that finds empirical support; see, e.g., Harri-
son et al (2002) and Read and Read (2004). In Section 2, we detail these findings as well
as various empirical and experimental studies that provide evidence to support these
claims.

2Allowing agents to place weight on the lifetime utility of their future selves is in the spirit of models
of non-paternalistic altruism. See Ray (1987), Hori and Kanaya (1989), Pearce (2008) and Galperti and
Strulovici (2017).
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Our model studies a situation in which individuals derive utility not just from their
own discounted payoffs, but also from the payoffs of future selves. More than that, we
assume throughout that for each “self” (i.e., for each person located at a particular date),
a privileged future self exists, one that receives more weight than other future selves.
One idea behind the assumed existence of such focal future selves is that “locations”
such as retirement can have added salience. An alternative explanation could be that
the 70 year old future self for a current 40 year old is the imprint of “parental influence,”
the result of many years of using a parent as a role model.

When intergenerational links are strong (for instance in societies in which aged parents
live with their grown children), there may be stronger awareness of the aged self. Sec-
tion 3.4 draws out this interpretation in more detail. The theory we develop suggests
that societies with stronger parental influence or closer family ties will have higher sav-
ings rates and assign higher value to investment in human capital. To develop these
ideas further, we study the time-inconsistency embedded in the backward discounting
model in the context of a standard life-cycle consumption problem. We show that so-
phisticated agents who correctly and strategically anticipate the consumption decisions
of their future selves will engage in a higher rate of saving, one that exceeds the cor-
responding rate for the standard forward-discounting model. Indeed, greater weight
placed on future selves results in higher savings rates, in line with the discussion above.
We develop these arguments in Propositions 2-5 (all proofs are contained in the Appen-
dix).

Our model is not restricted to single-agent problems. Backward discounting sheds light
on situations in which one agent has a say in decision-making for another and con-
flict arises even though both agents fundamentally have the same preferences. Think
again of parenting: typically, a parent wants the child to be more forward-looking than
the parent perceives the child as being. One possibility is that such disagreements em-
anate from distinct preferences, but this explanation begs the question of why those
preferences are distinct to begin with.3 Our model hints at an alternative parsimonious
explanation: a parent may want her son to be more forward-looking because she, in
effect, is maximizing the utility of her child’s adult self. Situated as she is later in life,
she therefore places less weight on the child’s early years and more on her later out-
comes. Backward discounting then provides a natural mechanism for such consider-
ations, without requiring differences in preferences from the outset. Section 4 briefly
discusses a number of diverse applications in which backward discounting might play

3See, e.g., Doepke and Zilibotti (2017) on models of parenting where parents and children are assumed
to have different preferences.
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a crucial role, such as addictive behavior, political elections, and evolutionary selection
and raises some welfare considerations.

In summary, what makes our model compelling is that two simple postulates simulta-
neously generate a number of different findings and predictions in different economic
and cultural contexts. We hope that the reader will view the current work as a first step
to a deeper exploration of these matters.

2. BACKWARD DISCOUNTING AND DIFFERENT SELVES

2.1. Preliminaries. We set our model in continuous time. A person lives from period 0
to period N, and C = {cs}N

s=0 is a consumption path over the person’s lifetime. Let u be
an instantaneous utility function defined on consumption at every date.

Our main postulate is that a person at date t discounts both the past and the future.
Consider a person currently alive at date t. She discounts future utilities at the local rate
ρ f , and past utilities at rate ρb. This forward and backward discounting system gives us
the present value of the lifetime utility of her “current self” at date t as follows:

Ut(C) =
∫ t

0
e−ρb(t−s)u(cs)ds +

∫ N

t
e−ρ f (s−t)u(cs)ds

2.2. Different Selves. The discounting system in the above formula is only “piece-wise
geometric” in s, and so generates time-inconsistency in the person’s preferences. For
example, a “current self” at date t + a puts a weight of e−ρba on u(ct) and 1 on u(ct+a).
In contrast, a “current self” at date t puts a weight of 1 on u(ct) and e−ρ f a on u(ct+a).
Thus, the “current self” at date t + a may regret the consumption choices made by the
“current self” at date t.

Such regret may be partly anticipated by the person when she makes decisions. To
capture this anticipation, the person places weight on the preferences of her “future
selves.” We describe this in more detail below, but briefly: we assume that an individual
at date t places weight on two particularly salient selves: her “current self,” as well as
her “self” at some salient future date T. (She may place weight on other “intermediate
selves” as well, but the added weight on a special future self is essential to our results.)
The essential idea is that T represents a “rest-point” for the person — a special age
at which she might feel most inclined to evaluate her life. It might be her retirement
age, and we will call it that here, but it could be located elsewhere. For instance, it
might be the imagined age of a “shadow parent,” a parental role model who provides
a natural position for the stock-taking of one’s own life. It could well be N itself. It is



BACKWARD DISCOUNTING 5

also possible that T can change with current age t, and while we do not consider this
case for expository convenience, it is entirely straightforward as long as we assume that
T − t is decreasing in t.

Observe that regret is quite endemic in this setting. The explicit consideration of future
selves is crucial in allowing the agent to respond to such (anticipated) regret by modi-
fying her current choices. Without placing weight on future selves, the regret caused by
backward discounting would be a simple inevitability, not a matter to be accounted for
in current decision-making.

2.3. The Profile of Patience. We now proceed to a sharper formulation. Assume that
at any date a person puts a weight of α on the preference of her current self, β on the
preference of her retirement self T, and uniform weight ω on all other future selves. We
make three observations on this specific formulation of the problem.

First, while our individual places weight on all selves, clearly the current self and the
retirement self have special roles, each receiving point mass. Indeed, we shall maintain
the following assumption throughout the main text:

[A] ρ f α and ρbβ both exceed ω.

Condition A endows the current and shadow-parent selves with privileged importance.
The “flow equivalents” of their weights exceed the density on any of the other selves.
In the special case with ω(t) = 0, the model fits the shadow-parenting description
explicitly. We use this simple form in the consumption-savings model of Section 3.

Second, we’ve assumed that the individual places weight on all future selves. Variations
on this assumption are explored in the Online Appendix. For instance, the agent might
place weight only on selves between t and T, or additionally on past selves as well as
future selves. The outcomes are all qualitatively similar, as the variations in the Online
Appendix reveal. At the same time, the presumption that there is a distinguished future
self for whom (or around whom) the individual’s weight spikes upward, is important.
Without this presumption our main results are generally invalid; for more detail, see
the Online Appendix.

Third, we’ve presumed that the weights are unchanged as the individual ages. One
reason why this assumption could be dropped is that our individual might continue to
place weights on selves who were “originally” in the future but “now” in the past, as
she becomes older. The Online Appendix discusses this case as well,
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With the above formulation in place, an individual located at date t will generate a
payoff of d(t, s)u(cs) for consumption at date s, where d(t, s) is an “effective discount
factor” obtained by placing weight on discounts applied by all selves to date s. Lifetime
utility for a person located at date t is therefore given by:

(1)
∫ N

0
d(t, s)u(cs)ds.

We are particularly interested in these discount factors at pre-retirement ages t < T, for
dates s ≥ t. A little integration shows that these are given by:

d(t, s) = α(t)e−ρ f (s−t) + β(t)e−ρb(T−s) +
ω

ρb

[
1− e−ρb(N−s)

]
+

ω

ρ f

[
1− e−ρ f (s−t)

]
when t ≤ s ≤ T, and by

d(t, s) = α(t)e−ρ f (s−t) + β(t)e−ρ f (s−T) +
ω

ρb

[
1− e−ρb(N−s)

]
+

ω

ρ f

[
1− e−ρ f (s−t)

]
when T ≤ s ≤ N. These discount factors can be translated to generate local rates of
impatience — essentially, local discount rates — at any instant of time from the vantage
point of any other instant. Specifically,

i(t, s) = lim
ε→0

[1
ε

ln
d(t, s)

d(t, s + ε)

]
= −ds(t, s)

d(t, s)

measures the degree of “local impatience at s” that person t feels regarding choices at
date s. In the standard model, i(t, s) = ρ f .

2.4. Time Preference and Time Consistency. This simple model generates certain ob-
served features in a natural way. First, unless the individual puts all weight only on the
shadow parent at T, it creates time-inconsistency in individual decisions. This is almost
immediate from examining the collection of effective discount factors d(t, s). They are
not geometric.

As an example, suppose that ρb = ρ f , t = 30, T = 70, α(t) = α and β(t) = 1− α, with no
weight on any other selves. Notice that preferences over the very near future (say from
age 30 to 30 + ε) are governed largely by the (exponential) discount factor of the current
self — the comparison 1 : e−ρ f ε matters far more than the comparison e−40ρb : e−(40−ε)ρb ,
the latter being the weights applied by the 65 year old shadow parent. However, as
the delay is pushed into the future — say to a consumption comparison across ages 50
and 50 + ε — the bias towards the present exerted by the current self is increasingly
compensated for by the bias towards the future exerted by the future self, and the two
effects cancel, from the vantage point of the thirty-year old.
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Notice that the time-inconsistency is of a particular kind. The example suggests that
there is a bias towards current consumption. This well-documented phenomenon is of-
ten captured by postulating non-geometric preferences (Strotz, 1956). The best-known
of these is the hyperbolic class of discount factors (see Laibson (1997, 1998) and Harris
and Laibson (2001)). The hyperbolic class, indeed, accounts for the following empir-
ical regularity: discounting seems to be more active for time delays that are situated
in the immediate future, whereas delays situated at a more distant date are viewed
more neutrally (see Thaler (1981), Ainslie (1991), Loewenstein and Prelec (1992), Laib-
son (1997) and O’Donoghue and Rabin (1999)). Our model exhibits this phenomenon by
combining forward and backward discounting, generating a sequence of nongeometric
“effective” discount factors.

But the model makes more predictions that go beyond hyperbolic discounting, as sum-
marized in the following result.

PROPOSITION 1. [1] At each unretired age t < T, local impatience i(t, s) declines in future
dates s over all s ∈ [t, T);

[2] Indeed, if a person is “young enough” (t is small), local impatience i(t, s) at future dates s
close to but smaller than T fall below 0 — that is, discounting could turn negative.

[3] On the other hand, for each unretired age t, local impatience i(t, s) jumps up as s crosses the
threshold T;

[4] An unretired individual displays more instantaneous patience as she grows older; i.e., i(t, t)
is decreasing in t — though always positive — for t smaller than T. But her instantaneous
impatience jumps up as she crosses retirement: i(t, t) discontinuously increases at t = T.

[5] Post retirement, an individual’s impatience continues to grow with age. It approaches ρ f as
the individual approaches the end of her life, and in indeed roughly equal to ρ f throughhout, if
ω is small enough.

The first part of the proposition states that from the vantage point of an unretired person
at date t, the relative impatience across adjacent dates in the future declines as the future
is made more distant, being highest for choices between “today” and “tomorrow”. This
is where our model looks like hyperbolic discounting, with time-inconsistent present
bias. Part 1 translates precisely into what Loewenstein and Prelec (1992) call the common
difference principle: “if a person is indifferent between receiving x > 0 and y > x at some
later time, ... then she or she will strictly prefer the better outcome if both outcomes are
postponed by a common amount [of time]”.
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FIGURE 1. Local and Instantaneous Rates of Impatience for t = 30, ρ f = ρb =

0.02, β = 0.3, ω = 0.001 and Various Values of α.

But Parts 2–5 of the Proposition go beyond hyperbolic discounting. While a person at
date t is generally impatient (in a perfectly standard way) over adjacent periods in the
vicinity of the present, she might actually exhibit negative discounting for periods well
into the future. This is the assertion in Part 2 of the Proposition. From the vantage point
of the present, a young person plans to make real sacrifices in her middle age to provide
for her post-retirement self, but is unprepared to make those sacrifices just yet.

However, Part 3 of the Proposition states that as this future contemplated date s crosses
the age of the shadow parent T, then discounting again reverts to its old ways. After all,
both t and T will discount adjacent dates at s (which exceeds both T and t) in exactly the
same way, which induces a discontinuity as s crosses T. A young person not only plans
great sacrifices in middle age, she plans to enjoy them just after crossing retirement.

Parts 4 and 5 of the proposition states that these youthful anticipations are — to some
degree, but not fully — realized. These parts concern current levels of impatience i(t, t)
for both unretired and retired individuals. The proclivity of a person to be impatient
over current and immediately adjacent future choices is indeed attenuated for ages ap-
proaching the retirement age T, though it is always positive and never negative as the
person’s younger incarnation might optimistically anticipate.
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Yet T is truly a watershed age: as the individual slips over into retirement, her instan-
taneous rate of impatience jumps upwards. The last part of the proposition states that
thereafter, her instantaneous rate of impatience continues to climb, as she “runs out” of
future selves to care about. Indeed, if ω is close to zero, there are no future selves to care
about at all, and her impatience will be roughly geometric and equal to the forward rate
of discount ρ f . Figure 1 summarizes these findings graphically, as well as highlighting
the obvious role that the current weight α plays - a greater relative weight on the current
self leads to greater impatience throughout life, as the attenuating force of future selves
becomes less powerful.

We briefly return to the hyperbolic discounting model, this time to highlight the dif-
ferences. In a discrete-time setting, a generalized hyperbolic discount function is given
by

d(t, s) = [1 + µ(s− t)]−γ/µ.

for positive constants γ and µ (see Loewenstein and Prelec (1992) for an axiomatic
derivation.) This discount function gives us

i(t, s) =
d(t, s)

d(t, s + 1)
=

(
1 +

µ

1 + µ(s− t)

)−γ/µ

.

In line with Proposition 1, one-period impatience in a generalized hyperbolic discount-
ing model, i(t, s), is decreasing in s.4 In contrast, however, i(t, s) does not jump up later,
as it does in the case of backward discounting (when s crosses T). That is, a person is
more patient when a trade-off occurs in a more distant future, as long as the trade-off
does not occur after the date of her future self. Also in contrast with Proposition 1, i(t, t)
is constant under generalized hyperbolic discounting, while it is typically decreasing in
the backward discounting model. An individual becomes more and more patient in
a backward discounting model, while her current impatience remains the same in a
hyperbolic discounting model.

This is a rich set of predictions from a simple model. We already know that present bias
finds some confirmation in the literature. But the other predictions find support as well.

Harrison et al. (2002) investigate instantaneous discount factors i(t, t) in a sample of
Danish individuals across a rich set of demographic indicators. They observe that re-
tirement “is associated with a discount rate over 12 percentage points higher than oth-
erwise,” but at the same time, there is a general tendency for discount rates to come

4Qualitative remarks regarding one-period and local impatience are directly comparable.
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Demographic Estimate Standard Error

Young, < 29 28.7 0.96
Middle, 30− 40 28.4 0.87
Middle, 41− 50 25.1 1.07
Old, > 50 30.0 1.26
Retired 38.7 1.03
All 28.2 0.54

TABLE 1. Selected findings from Table 3, Harrison et al. (2002).

down with age. These results speak directly to Part 4 of our proposition, and are consis-
tent with the predictions there.5 Table 1 shows selected results from this study.6 There
is a decline of discount rates into middle age, rising again in old age, and with retired
individuals discounting at a higher rate than the overall average.

Read and Read (2004) derive similar results in a UK sample. Their results (see their Ta-
bles 3 and 4) show that discount rates broadly follow a U-shaped profile — the young
and the old discount more heavily than the middle-aged. They also document an ad-
ditional result of direct relevance here. They find that the young appear to fit a hyper-
bolic discounting model, at least over the short-to-medium run, whereas the old fit a
standard geometric discounting function. Were our agent to place no weight on future
selves beyond T, or little weight on selves other than the current and retirement selves,
our model would predict precisely this behavior: beyond retirement age, the conflict of
interests between the different selves disappears, reducing the model to the standard
geometric setting, as described in Part 5 of our proposition.

3. EQUILIBRIUM PLANS

We now turn to the examination of actual consumption and savings decisions. We have
already taken note of the inherent time-inconsistency present in our model of backward
discounting. A person at date t, far removed from date T, will (by Proposition 1), plan

5Sozou and Seymour (2003) present a model of discounting under uncertain external hazard rates (mor-
tality rates) and biological ageing (decreasing fertility) that generates such a profile. Our model, while
consistent with the profile and the predictions of Sozou-Seymour, also generate the other predictions in
Proposition 1, which Sozou and Seymour do not obtain — and in fairness, did not intend to.

6The numbers are taken from their fully stratified results, which control for possibly correlated
covariates.
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on saving higher and higher fractions of her income as she gets into middle age and
approaches retirement. The problem, of course, is that such plans will not in general be
fully implemented by her future selves.

The purpose of this section is to examine both the “intended” behavior of ”naive” agents
who solve the usual intertemporal optimization problem paying no heed to issues of
consistency, and the “equilibrium” behavior of “sophisticated” agents who take the
choices of future selves into account. The idea in this second case is to treat each self
as a separate player in a dynamic game, and solve for the subgame perfect equilibria of
this game. Beginning with the work of Strotz (1956) and Phelps and Pollak (1968), these
issues been studied in models with “changing tastes,” especially models of hyperbolic
discounting; see, e.g., Laibson (1994), Harris and Laibson (2001) and Bernheim, Ray and
Yeltekin (2015).

For this section, we work with a simpler formulation in which a person places weight
on just two selves: α on her current self at date t, and β = 1− α on a “shadow parent”
located at some fixed T ≤ N. We presume that the local utility indicator is logarithmic,
and that there is a common discount rate of ρ for both forward and backward discount-
ing. All these simplifications are made for expositional ease: the analysis that follows
can be conducted for all constant-elasticity utility functions, for weights placed on other
selves, and for rates that vary across forward and backward discounting.

We also keep the background model of asset accumulation as simple as possible. There
is a constant interest rate of r on both borrowing and lending. In addition, the agent
receives an an exogenous income stream {ys} over the dates [0, N]. Let Ft denote fi-
nancial assets and Mt the present discounted value of current and future income earn-
ings at date t, i.e. Mt =

∫ N
t e−r(s−t)ysds. Then, if ct is consumed at date t, we have

Ḟt = rFt + yt − ct and Ṁt = rMt − yt. It is immediate that total asset wealth at date t,
i.e. At ≡ Ft + Mt, must evolve according to

(2) Ȧt = Ḟt + Ṁt = r(Ft + Mt)− ct = rAt − ct.

An agent located at date t seeks to choose {cs} over dates in the interval [t, N] to max-
imize the expression in (1). Noting that the decisions up to date t have already been
made, this is tantamount to maximizing

(3) α
∫ N

t
e−ρ(τ−t) ln cτdτ + (1− α)

∫ N

t
e−ρ|τ−T| ln cτdτ
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3.1. Planned Consumption and Savings. First, we ignore the time inconsistency prob-
lem and simply map out the profile of optimal consumption and savings from the van-
tage point of any date; say, date 0. That is, we maximize (3) evaluated at t = 0 by
choosing a fully committed consumption plan over the interval [0, N]. The solution is
summarized in the following result; see the Appendix for a detailed proof:

PROPOSITION 2. The optimal consumption profile viewed from date 0 is given by

(4) ct(A) =

[
αe−ρt + (1− α)e−ρ|T−t|

αe−ρtat + (1− α)pt

]
A ≡ λt A

for A ≥ 0, where at and pt in this expression are given by:

(5) at = ρ−1
[
(ρ− 1)e−ρ(N−t) + 1

]
and

(6) pt =

{
ρ−1e−ρ(t−T)[(ρ− 1)e−ρ(N−t) + 1] for t > T

ρ−1
{
[(ρ− 1)e−ρ(N−T) + 1] + [1− e−ρ(T−t)]

}
for t < T,

With the help of these closed forms (5) and (6), we can explore the planned consumption
ratio λt. Notice first that there is an intrinsic tendency for the ratio to drift upwards
simply by virtue of the finite horizon nature of the problem. For instance, in the last
instant, all of permanent income will be consumed. We can “benchmark” this drift by
setting α = 1 in the problem above, whereupon the situation reduces to a perfectly
standard life cycle problem. The consumption ratio sequence for this problem, which
we denote by λ̄t, can be computed by putting α = 1 in (4) above to see that

(7) λ̄t =
1
at

,

and then invoking (5) to obtain a more explicit formula. This benchmark helps us get a
handle on the extent to which our model departs from the standard formulation. Using
(4) and (7), form the ratio

(8) θt ≡
λt

λ̄t
=

α + (1− α)e−ρ(|t−T|−t)

α + (1− α)(pt/ate−ρt)
,

and observe that a value of θt = 1 implies that at date t there is no difference between
the consumption ratios predicted by the two models. On the other hand, if θt < 1 then
the model of backward discounting predicts a higher savings rate, and this effect is
directly related to the amount by which θt falls below unity.

Note that at any date t ≥ T, and given the assumption that an individual places weight
on just two selves, there is no difference between the discounting exhibited by the cur-
rent self and the future self. Indeed, if we substitute the value of at (from (5) and the
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value of pt (from (6) for t ≥ T) in (8), we see that θt = 1 for all t ≥ T. For such time
periods, then, there is no discrepancy (in consumption ratios) between our model and
the usual formulation. Post-retirement, we are essentially back to the standard model.

The more interesting comparison is for dates that are less than T. The following obser-
vation is critical: for all 0 ≤ t < T,

(9) e−ρ(T−t) <
pt

at
.

This is easy enough to establish by direct computation, using (5) and (6). Combining (9)
with (8), we must conclude that consumption ratios — including the ratio at the current
date — are lowered for all periods up to the age of the retirement self. This in itself is
not surprising, as the agent places some weight on the retirement self at all dates, so
that her effective rate of impatience is always lower than ρ.7 What is of greater interest
is how the extent of that divergence changes with time. At what point over the agent’s
lifetime do we observe maximal (planned) divergence from the standard model?

It turns out, not surprisingly, that the answer to this question depends on the weight that
the agent attaches to the future self. If this weight is high enough, the agent does most
of her savings in the here and now, with consumption ratios rising over time relative to
the standard model. Otherwise, the agent postpones the bulk of her savings to middle
age, consuming more now and at retirement.

PROPOSITION 3. There exists α̂ ∈ (0, 1] such that if α ≤ α̂, θt always increases in t; while if
α > α̂, θt first decreases and then increases in t.

Figure 2 illustrates the proposition with a numerical example. The solid line plots the
discrepancy in the planned savings ratio relative to the standard model (θt) for ρ =

0.5, r = 0.03 and α = 0.5. The agent’s life starts at age 30, with a lifespan of 80 years
and retirement planned for age 65. In this case, α̂ ≈ 0.19, so that any weight below
81% on the shadow parent leads to the U-shaped pattern in the discrepancy of savings
ratios. That means that most savings — relative to the standard model — is planned for
middle age.

3.2. Equilibrium Consumption and Savings. Now we take into account the possibility
that planned paths will not be honored by future selves. As discussed previously, the
idea is to treat each self as a separate player in a noncooperative game, and analyze the
subgame perfect equilibria of such a game. The continuous time formulation, with a

7It should also be clear that if the agent increases the weight on his future self, then the savings rate
increases at each date.
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FIGURE 2. Planned and Equilibrium Savings Ratios Relative to the Stan-
dard Model, ρ = 0.05, t = 30, N = 80, T = 65, r = 0.03 and α = 0.5.

different player at every instant of time, is only a convenient limit formulation of the
following natural discretization. Break the time horizon into discrete sub-intervals of
length ∆. Allow each of these intervals to be controlled by only one agent. For that
short interval, each agent is in effect solving a problem similar in nature to the planning
problem described in Proposition 2. Consider an equilibrium profile thus generated
and pass to the limit along a sequence of such equilibria as ∆→ 0. We view the limiting
profile as an equilibrium of the continuous time formulation. It turns out that there is a
unique limiting profile:

PROPOSITION 4. The equilibrium consumption profile, i.e., the unique limit of equilibria in the
discretization described above, is given by

(10) c∗t (A) =

[
α + (1− α)e−ρ|T−t|

αat + (1− α)pt

]
A ≡ λ∗t A

for A ≥ 0, where at, pt satisfy (5) and (6).

Notice that the solution to the at’s and the pt’s are precisely what they were in the
planned model. Any difference between the planned and equilibrium problems can
be traced solely to a simple comparison of the formula in (10) with its predecessor (4).
Recalling that consumption ratios in the standard model are given by λ̄t = 1/at, we can
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form our measure of “normalized” consumption ratios, just as we did before, by

(11) θ∗t ≡
λ∗t
λ̄t

=
α + (1− α)e−ρ|t−T|

α + (1− α)(pt/at)
,

For dates that are less than T, (9) applies as before. Combining this inequality with (11),
it is easy to see that consumption ratios —relative to the standard model — are again
lowered for all dates up to the age of the retirement self. But we can say a bit more now
than we could for the planning exercise: as long as t < T, θt increases monotonically over
time. That is, the greatest impetus to the rate of savings — relative to the planning or
full commitment model — comes at the earliest dates, no matter what the weight on
the retirement self. To check this, it is sufficient to see that e−ρ(T−t) increases over time,
while pt/at declines, and to then apply these findings to (11).8

It is worth reiterating that this equilibrium push towards early savings is not necessarily
what an agent might want, if she could commit to a future plan. Indeed, Proposition 3
tells us that in general, this is not something that the agent wants. Rather, she would like
future incarnations of herself to do the bulk of the savings. But given time-inconsistency,
our individual knows that these large planned divergences are not going to be honored.
That realization is built in into the equilibrium problem, generating the monotone trend
that we’ve just described.

We summarize the foregoing discussion:

PROPOSITION 5. Suppose that an agent faces an accumulation problem, and places weights α

on herself and 1− α on a future self of fixed age T. Then

[1] In both the planning and equilibrium versions of the problem, consumption ratios (out of
permanent income) are lower relative to those obtained for the standard problem, at every date
t < T.

[2] For dates t ≥ T, there is no discrepancy between the consumption ratios.

[3] A larger weight on the future self depresses consumption ratios even further (at each date),
in both the planning and equilibrium versions.

8It is immediate that e−ρ(T−t) increases with t. To check the claim for pt/at, note that this expression
equals 1 + 1−x(t)

(ρ−1)Dx(t)+1 , where x(t) = e−ρ(T−t) and D = e−ρ(N−T). It is easy to check that this last expres-

sion is a monotonically decreasing function of x, while x is itself an increasing function of t.
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Age Benchmark Weight on Shadow Parent

Model 0.1 0.2 0.3 0.4 0.5

30 34 37 39 42 44 47
40 27 29 31 33 35 37
50 16 17 19 20 21 23

TABLE 2. Savings rates (%) out of current income in the benchmark and
equilibrium models.

[4] The planned consumption ratios are smaller (at each date t such that 0 < t < T) than the
equilibrium consumption ratios. Furthermore, the equilibrium consumption ratios monotoni-
cally increase over time, while no such presumption can be entertained for the planned diver-
gence ratios (as described fully in Proposition 3).

3.3. A Numerical Example. Just how large are the equilibrium effects in Proposition 5?
Table 2 provides some numerical magnitudes for a particular parametric configuration.
It describes equilibrium savings rates for individuals of age 30, 40 and 50, when lifetime
is set to 80 and the age of the shadow parent set to a retirement age of 65. The interest
rate on wealth is 3%, and the discount rate (in either direction) equals 0.01. Our model
individual receives a flow income of 1 unit until retirement, and begins life at age 30
with an asset level of 2 units.9

To facilitate the use of everyday empirical observations, the savings rates we report
are not out of permanent income, but out of current income (which is wage income
plus any interest income on assets). The first column of the table reports savings rates
at various ages in a standard life-cycle “benchmark model” (which is just our model
with α set equal to 1). The remaining columns add additional weight to the shadow
parent. As expected, greater weight on the shadow parent results in a higher savings
rate. Early on in life, this margin is particularly wide, with savings rates almost 50
percent higher under equal weights. The difference diminishes into old age, reflecting
the convergence of consumption ratios as agents approach the retirement age. These
numbers are provided, not necessarily for the sake of realism, but to suggest that socio-
cultural phenomena such as upbringing and influence may have substantial effects on
the proclivity to accumulate wealth.

9Alternative specifications are available on request from the authors.
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3.4. Some Remarks on the Shadow-Parent Interpretation of T. It is well known that
a parent’s influence on their children is highly significant (see, e.g., Hess and Torney
(1967), Bandera (1977) and Moschis (1987), among many others). Among other things,
parents have a significant impact on such outcomes as their children’s choice of ca-
reer (Dryler (1998)), their focus on academic excellence (Salili (1994)), their perception
of leadership (Harris and Hartman (1992)), their political attitudes (Hess and Torney
(1967)), and on characteristics such as home ownership (Henretta (1984)). A smaller
literature in economics exists (see, e.g., Becker and Mulligan (1997), Bisin and Verdier
(1998, 2000) and Doepke and Zilibotti (2017)). For instance, Weinberg (2001) connects
progeny behavior to the child-rearing practices of parents. Parents with higher incomes
are more able to mold their children’s behavior through pecuniary incentives, while
parents with lower incomes have to rely on (less effective) nonpecuniary mechanisms,
such as corporal punishment.

A particularly important target for parental influence is the attitude to consumption and
savings. Moschis (1987, p. 77) summarizes the literature thus: “[T]here appears to be
reasonably good supportive evidence that the family is instrumental in teaching young
people basic rational aspects of consumption. It influences the development of ratio-
nal consumption orientations related to a hierarchy of economic decisions delineated
by previous writers. . . : spending and saving, expenditure allocation, and product deci-
sions, including some evaluative criteria.”

However, in our opinion, this form of influence extends far beyond deliberate attempts
by parents to inculcate rudimentary notions of financial budgeting and other values in
their children. The appropriate channel of influence may be more akin to what Hess
and Torney (1967) have termed anticipatory socialization: the acquisition of attitudes and
values about adult roles that have only limited relevance for the child but serves as a
basis for subsequent adult behavior.10 In an interesting and provocative essay, Brim
(1966) views the socialization of an individual as a series of complex interpersonal re-
lationships embedded in that individual. At the cost of some simplification, we might
interpret this as stating that a particular personality is nothing more than the weighted
combination of other personalities in the “cognitive neighborhood” of the individual
in question. In a similar vein, the shadow parent in this model can also be replaced
by “role models.” People look up to their role models, who presumably are older in
most cases. Furthermore, such role models often serve as implicit adjudicators of one’s
life choices, and as such, their effect on the current self might be well described by a

10As Ward (1974) describes it, such influence might be embodied in “implicit often unconscious learning
for roles which will be assumed sometime in the future”.
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mode of backward discounting. The weight of 1− α on future selves then measures the
influence of these role models.

Within the specifics of our formulation, the backward discounting model is a simple
formulation in which a shadow parent situated at age 70, say, might disagree with the
current self situated at age 30. We assume that all selves have the same preference
functional, but that they discount both their future and their past. This gives rise to
a minimal but cogent form of disagreement: the two selves will surely disagree on
intertemporal decisions to be taken at intermediate ages. Parental influence refers to a
state of affairs in which the shadow parent’s preferences have been partly internalized
by the current self.

4. OTHER APPLICATIONS OF BACKWARD DISCOUNTING

There are several situations in which “backward valuations” might influence “forward
decisions”. This paper studied the implications of such an interaction on a standard
life-cycle consumption problem. But there is a range of other situations where our for-
mulation may be useful.

4.1. Bad Habits and Policy Intervention. We have seen how agents who place some
weight on future selves might engage in more prudent behavior than standard forward
discounters, foregoing current consumption to a greater degree. Turning from this pos-
itive angle to a normative one, a natural task might then be to identify contexts within
which individuals could be encouraged to place greater weight on future selves, in order
to improve lifetime outcomes. One such context is addictive behavior, for which the
classic reference is Becker and Murphy (2004).11 In their model, agents rationally trade
off current consumption gains against future addiction losses. Specifically, given a stock
S of past addictive consumption, local utility for consumption of normal goods c and
addictive goods a is given by

U(c, a, S) = v(a, S) + u(c)

where vs(a, S) < 0 captures the loss from addictive behavior.12 Standard policy in-
terventions in this setting involve taxes (Becker, Grossman, Murphy (1994), Gruber,
Köszegi (2001)). In such a context, the internalization of backward discounting via a

11In their model of memory utility, Gilboa, Postlewaite and Samuelson (2016) discuss habit formation
and addictive behavior within a rational, time-consistent framework.

12Note how, unlike the accumulation problem in Section 3, here the state variable enters utility directly.
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concern for future selves would provide powerful incentives to attenuate addictive be-
havior, as future selves not only value present consumption less, but are manifestly
harmed by the stock of addictive consumption. As such, an intervention that could
serve to complement taxes might be to launch campaigns that serve to explicitly demon-
strate the regret experienced by one’s future self, thus combining both the future weight
and backward discounting aspects of our model. One prominent example is that of 55
year-old Gerry Collins, diagnosed with terminal lung cancer, who appeared in numer-
ous advertisements for Ireland’s Health and Safety Executive, lamenting his past deci-
sions. Anecdotal evidence estimate Collins’ campaigns to have directly affected over
60,000 people to attempt to quit smoking.13

The situation is more complex when the activity in question is socially harmful but
for which vs(a, S) > 0. Examples might include miscreant behavior, such as crime
or corruption. In this case, the presence of backward discounting might exacerbate the
problem — agents now foresee the future rewards promised by such activities and thus
consume at increased current levels.

4.2. Social Decision-Making. As Caplin and Leahy (2004) have observed, the phenom-
enon of backward discounting can give rise quite naturally to an argument for greater
patience on the part of a social planner, compared to the discount factor of the agents in
the economy. Suppose that generation τ derives lifetime utility Vτ from a consumption
stream {ct}. A social planner might want to choose {ct} to maximize some weighted
sum of these generational utilities,

λτVτ,

where the λ’s are positive weights that integrate to unity. Assume that each generation
exhibits a mixture of backward and forward discounting, so that:

Vτ({ct}) =
∫ ∞

τ
e−ρ f (s−τ)u(cs)ds +

∫ τ

0
e−ρb(τ−s)u(cs)ds,

where ρ f is the forward rate and ρb is the backward rate. Then it is easy to see that the
planner will exhibit a degree of patience that exceeds the patience implied in ρ f . The
planner will also be time-inconsistent, a problem in collective decision making that has
been highlighted by Zuber (2011) and Jackson and Yariv (2015), among others.

4.3. Evolutionary Models. In many evolutionary situations, “success” or “fitness” is
measured by some discounted sum of intertemporal rewards, where measurement takes

13See the Health and Safety Executive of Ireland’s 2014 press release.



20 DEBRAJ RAY, NIKHIL VELLODI, AND RUQU WANG

place at the “end of the day”. This might be particularly apt in the context of evolution-
ary biology, where fitness (over some intertemporal setting) is determined by the end-
state value of some variable. Concentration on such end-state outcomes is equivalent to
a very strong form of backward discounting in which the discount factor is set equal to
zero.

Alternatively, in social or cultural contexts, “success” may be defined by the perceived
lifetime rewards to an individual (or a role model, or a way of life) at the end of the pro-
cess. If these perceptions form the basis for cultural selection, then agents (or behavior
patterns) that assign heavier weight to future consumption would be the winners; in
other words, agents (or cultural modes) that promote harder work and more savings
when young are more likely to survive.

To be sure, there is no guarantee of such an outcome. It would all depend on which age
groups (or which life stages) are considered natural points of success evaluation. These
“natural” points are themselves subject to evolutionary or cultural pressures, leading to
a deeper level of recursive analysis that is beyond the scope of this paper.

4.4. Elections. Suppose that a candidate can stay in office for at most two terms, and
each term lasts for a time interval of length N. To simplify matters, assume that an
elected officer’s task is to provide a plan of allocating consumption over the time inter-
val for which she is elected. Consider the first term. Let Vf ≡

∫ N
0 e−ρ f (t)u(ct)dt denote

the conventionally discounted total utility at time 0 of the median voter. A candidate’s
probability of being elected is then a function of V.

On the other hand, it is reasonable to suppose that the probability of being re-elected
for a second term depends on the incumbent’s perceived performance in the first term,
and that voters may recall their past consumption using backward discounting. Let
Vb ≡

∫ N
0 e−ρb(N−t)u(ct)dt denote the backward discounted total utility at the end of the

first term. Suppose that a candidate can affect consumption paths. If she is forced to
commit to consumption allocations in term 1 but cares about both terms, she would
then be effectively maximizing some function P(Vf , Vb), which is increasing in both of
its arguments.

If the forward discount rate equals the interest rate on citizen assets, it is straightforward
to verify that the constant consumption stream given by cn = A/(

∫ N
0 e−ρ f (t)dt) for all

n maximizes Vf , where A is the present value of assets relevant to term 1.14 That is,

14There is an asset allocation problem over the longer run that we do not consider here.
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if a candidate does not aim for reelection, or if voters do not look back on their past
experiences, a plan of constant consumption over time would be proposed.

Maximizing P(Vf , Vb) subject to the same asset constraint implies the following equa-
tion: P1e−ρ f (t)u′(ct) + P2e−ρb(N−t)u′(ct) = λe−rt, where P1 = ∂P(Vf , Vb)/∂Vf > 0,
P2 = ∂P(Vf , Vb)/∂Vb > 0, and λ is an appropriate Lagrange multiplier. It follows that:

u′(ct) =
λ

P1 + P2e−ρb(N−t)eρ f t

for all t (where we continue to assume that ρ f = r). As the right hand side of the above
equation is decreasing in t, and u is concave, we must conclude that {ct} is increasing
over time. This reflects the observation that later consumption matters more to the
voters at time of re-election.

If an elected candidate does not need to keep her promise, she would propose a plan
of constant consumption to maximize V. But once elected, she would maximize Vb

by reducing the consumption of early periods and increasing the consumption of later
periods, so that her probability of being re-elected is maximized. The exact numbers
can be calculated by setting P1 = 0 in the above derivations. We can easily see that
it makes the consumption profile even steeper, and thus reinforces the effects of re-
election. Similar predictions would be generated by any model of career concerns, in
which evaluations are carried out at the end of some initial term.

5. SUMMARY

In this paper, we introduce a framework in which lifetime individual felicities are de-
rived from both present and past consumption streams. Each of these streams is dis-
counted, the former forward in the usual fashion, the latter backward. We have argued
that these two notions of discounting can interact in novel and interesting ways. In
particular, we have shown that an individual who places weight on her current self as
well as some future “retirement self” displays present bias in consumption. That is,
she will exhibit impatience across alternatives that are positioned in periods adjacent to
the present, but patience across similar choices positioned in the more distant future,
so that lifetime choice plans are generally time-inconsistent much in the way predicted
by the hyperbolic discounting model. But there are additional implications generated
by the model: an individual gets more patient as she grows older during her working
lifetime, but impatience jumps up again following the age of retirement. These results
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survive even if the individual cares for all future selves, as long as there is some suf-
ficient weight on this particular stock-taking retirement self. We apply this model to
consumption-savings decisions in a standard life-cycle model.

Similar considerations might arise for governments that make populist expenditures at
the end of an election cycle. They know that the public might be “looking backward”
to evaluate the government, discounting distant experiences more heavily while valu-
ing recent outcomes. More generally, such considerations will arise whenever an agent
(organization, individual) is evaluated by another: the latter may place greater weight
on the agent’s more recent activities. We have argued for similar effects in situations
of cultural selection in which end states are viewed as ultimate measures of evolution-
ary success. The model also has potential implications for the study of parent-child
interactions.

Our paper lies quite far from a general and comprehensive study of backward discount-
ing. But we hope that it takes a small step in introducing the reader to the potentially
important aspects of such a study.
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6. APPENDIX

6.1. Proof of Proposition 1. Part i. Recall that the local rate of impatience at time s, from
the vantage point of date t, is given by i(t, s) = −ds(t, s)/d(t, s). Simple differentiation
of d shows that for all s ∈ [t, T),

(12) i(t, s) =

 (ρ f α−ω)e−ρ f (s−t) − ρbβe−ρb(T−s) + ωe−ρb(N−s)

(α− ω
ρ f
)e−ρ f (s−t) + βe−ρb(T−s) − ω

ρb
e−ρb(N−s) + ω

ρ f
+ ω

ρb


By [A], we know that ρbβ − ω > 0, and hence ρbβe−ρb(T) − ωe−ρb(N) > 0, and that
ρ f α−ω > 0. Hence i(t, s) is a ratio of a decreasing function of s over an increasing one,
and is therefore decreasing in s.

Part ii If the conditions of the statement hold, then e−ρ f (s−t) can be made arbitrarily
small, while e−ρb(T−s) approaches unity. Thus, the numerator of i(t, s) becomes negative,
while the denominator is always positive.

Part iii For s ≥ T, note that

i(t, s) =

 (ρ f α−ω)e−ρ f (s−t) + ρ f βe−ρ f (s−T) + ωe−ρb(N−s)

(α− ω
ρ f
)e−ρ f (s−t) + βe−ρ f (s−T) − ω

ρb
e−ρb(N−s) + ω

ρ f
+ ω

ρb


To see that i(t, s) jumps up at s = T, simply compare this expression to (12), and note
that the only difference between these expressions at s = T is the second term of the
numerator, which turns from being strictly negative to strictly positive.15

Part iv For t < T, we can write i(t, t) as

i(t, t) =

 (ρ f α−ω)− ρbβe−ρb(T−t) + ωe−ρb(N−t)

(α− ω
ρ f
) + βe−ρb(T−t) − ω

ρb
e−ρb(N−t) + ω

ρ f
+ ω

ρb

 ,(13)

and once again, Condition A guarantees that the numerator is decreasing in t and the
denominator is increasing. For t > T,

i(t, t) =

 (ρ f α−ω) + ρ f βe−ρ f (t−T) + ωe−ρb(N−t)

(α− ω
ρ f
) + βe−ρ f (t−T) − ω

ρb
e−ρb(N−t) + ω

ρ f
+ ω

ρb

(14)

and again, we can easily compare (13) and (14) to confirm the positive jump in i(t, t) as
t crosses T.

15The two denominators are generally different as well, but at s = T they are both the same.
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Part v Differentiating (14) with respect to t, we see that i(t, t) is increasing if ρ f (ρb +

ω) > ω(ρb + ρ f )e−ρb(N−t), which holds by virtue of [A]. Finally, setting ω = 0 yields
the expression

i(t, t) =

[
ρ f α + ρ f βe−ρ f (t−T)

α + βe−ρ f (t−T)

]
= ρ f

6.2. Proof of Proposition 2. An agent located at date 0 seeks to maximize, for any date
t and any asset At at t,

(15) e−ρtα
∫ N

t
e−ρs ln csds + (1− α)

∫ N

t
e−ρ|s−T| ln csds

by choosing {cs}, given some initial asset At and the law of motion (2) for assets. Let

V(At, t) =
∫ N

t
e−ρ(s−t) ln(cs)ds(16)

and

W(At, t) =
∫ N

t
e−ρ|T−s| ln(cs)ds(17)

be the values generated for each of the terms in the maximand by the supremum choice
of consumption plan. That is, V(At, t) records the forward discounted utility experi-
enced from time t onwards, while W(At, t) records the utility experienced at time t dis-
counted backward and forward from time T, corresponding to the supremum choice of
consumption plan.16

We guess and verify that these functions inherit the logarithmic utility structure, i.e.
there exist coefficients at, bt, pt, qt such that

(18) V(At, t) = at ln(At) + bt

and

(19) W(At, t) = pt ln(At) + qt,

where the coefficients at and pt satisfy the differential equations:

ρat = 1 + ȧt

ṗt = −e−ρ|T−t|(20)

16As the supremum value of the maximand is approached, it is easy to check that forward and backward
utility integrals converge to well-defined limits, so that these values are well-defined.
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with boundary values aN = 1, pN = e−ρ(N−T), and the coefficients bt and qt are contin-
uously differentiable with respect to t, with bN = qN = 0.

With these guesses in hand, the time t problem (viewed from time 0) can be solved for
all t. To do so, observe that the agent’s supremum value from date t onward at initial
asset At can be written as e−ρtαV(At, t) + (1− α)W(At, t). Moreover,

e−ρtαV(At, t) + (1− α)W(At, t) = sup
{cs}

e−ρtα
[ ∫ t+h

t
e−ρ(s−t) ln(cs)ds + e−ρhV(At+h, t + h)

]
+ (1− α)

[ ∫ t+h

t
e−ρ|T−s| ln(cs)ds + W(At+h, t + h)

]
,

for all h such that t + h ≤ N, where the law of motion for A is given by Ȧs = rAs − cs

for s ≥ t. It follows that

sup
{cs}

e−ρtα
[ ∫ t+h

t
e−ρ(s−t) ln(cs)ds + e−ρhV(At+h, t + h)−V(At, t)

]
+

(1− α)
[ ∫ t+h

t
e−ρ|T−s| ln(cs)ds + W(At+h, t + h)−W(At, t)

]
= 0

for all such h > 0. Dividing by h and taking the limit h → 0, the above expression
becomes

0 = sup
ct

αe−ρt[ ln ct + ȦtVA(At, t) + Vt(At, t)− ρV(At, t)
]

+ (1− α)
[
e−ρ|T−t| ln ct + ȦtWA(At, t) + Wt(At, t)

]
where Ȧt = rAt − ct and the subscripts on V denote suitable partial derivatives. (In
taking this limit, we note that V(At, t) and W(At, t) are both differentiable, given their
conjectured forms.17) Combining this expression with the formulae for V(At, t) and
W(At, t) in (18) and (19), and taking first order conditions, we see that that the supre-
mum is attained at

αe−ρt
[

1
ct
− at

At

]
+ (1− α)

[
e−ρ|T−t| 1

ct
− pt

At

]
= 0,

so that

(21) ct =

[
αe−ρt + (1− α)e−ρ|T−t|

αe−ρtat + (1− α)pt

]
At = λt At

which verifies our asserted optimal policy at the instant t. But this is true only condi-
tional on the conjectured forms of V and W, and the proof must now be completed by

17Observe that at and bt both have continuous derivatives. While pt and qt are possibly non-
differentiable at T, (20) tells us that ṗt is continuous at T, and hence that q̇t is continuous at T.
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showing that V and W as well as their coefficients indeed have the forms (18), (19) and
(20) for all dates, once we use the formula (21).

With that in mind, define, for all t and all At

V̂(At, t) ≡
∫ N

t
e−ρ(s−t) ln(cs(As))ds and Ŵ(At, t) ≡

∫ N

t
e−ρ|T−s| ln(cs(As))ds

where the family of functions {cs(As)} is given by (21). By totally differentiating with
respect to t, it is easy to check that:

(22) ρV̂(At, t) = ln(ct) + ȦtV̂A(At, t) + V̂t(At, t)

and

(23) e−ρ|T−t| ln(ct) + ȦŴA(At, t) + Ŵt(At, t) = 0.

Optimality of the plan (21) will require us to equate (V, W) with (V̂, Ŵ), and that will
verify both the conjectured functional forms in (18) and (19) as well as the differential
equations (20) for the endogenous coefficients (at, bt, pt, qt).

To derive the boundary values, set t = N in (16) and (17), from which we see that
V(AN , N) = ln cN and W(AN , N) = e−ρ(N−T) ln cN . To derive the ODEs for at and pt,
set V = V̂ in (22) so that

ρV(At, t) = ln(ct) + ȦtVA(At, t) + Vt(At, t)

= ln(At) + ln(λt) +
Ȧtat

At
+ ȧt ln(At) + ḃt

= (1 + ȧt) ln(At) + ln(λt) + ḃt +
at(Ȧt

At
.

Using the law of motion Ȧt = rAt − ct in the equality above, we see after some trivial
simplification that

ρV(At, t) = (1 + ȧt) ln(At) + ln(λt) + ḃt + at(r− λt).

A similar calculation can be performed by setting W = Ŵ in (23) to obtain:
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0 = e−ρ|T−t| ln(ct) + ȦtWA(At, t) + Wt(At, t)

= e−ρ|T−t| ln(λt[At]) +
pt Ȧt

At
+ ṗt ln(At) + q̇t

= ( ṗt + e−ρ|T−t|) ln(At) + e−ρ|T−t| ln(λt) + q̇t +
pt(Ȧt)

At

= ( ṗt + e−ρ|T−t|) ln(At) + e−ρ|T−t| ln(λt) + q̇t + pt(r− λt),

Now use the formula for V in (18) and for W in (19) and equate coefficients to obtain
the desired ODEs for {at, pt}.

In the process we also obtain differential equations for {bt, qt}:

ρbt = ln(λt) + at(r− λt) + ḃt

q̇t = pt(λt − r)− e−ρ|T−t| ln(λt)(24)

from which it is readily verified that these coefficients satisfy the properties stated in
the initial conjecture. All that remains is to provide explicit and unique solutions for at

and pt, which we can easily do given (20) and the boundary conditions.

6.3. Proof of Proposition 3. Let D = e−ρ(N−T), x(t) = e−ρ(T−t), f (x) = x2/e−ρT, and

g(x) =
(ρ− 1)e−ρ(N−t) + 1 + 1− e−ρ(T−t)

e−ρt[(ρ− 1)e−ρ(N−t) + 1]
= xe−ρT +

1− x
[(ρ− 1)D + x−1]e−ρT

Then

θt =
α + (1− α) f (x(t))
α + (1− α)g(x(t))

≡ h(x(t)).

It is straightforward to verify that g′′(x) < 0. Furthermore, h′(x) = 0 implies that
f ′(x)/g′(x) = h(x), which in turn implies that g′(x) > 0 whenever h′(x) = 0. Making
use of all of the above, we see that h′′(x) > 0 whenever h′(x) = 0. This indicates that
h(x) has at most one stationary point, and if that exists, h(x) is decreasing in x to the
left of that point and increasing to its right.

More tedious calculations show that at x = e−ρT (i.e., at t = 0), we have f (x) < g(x),
while at x = 1 (i.e., at t = T), f (x) = g(x). Therefore h(x(0)) < h(x(T)) = 1. Further-
more, f ′(x)g(x)− f (x)g′(x) > 0 at x = e−ρT. Hence,

h′(x) =
1− α

[α + (1− α)g(x)]2
×

{ f ′(x)g(x)− f (x)g′(x) + α[ f ′(x)− g′(x)− f ′(x)g(x) + f (x)g′(x)]}
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is positive at α = 0, and possibly turns negative for larger α’s if f ′(x)− g′(x)− f ′(x)g(x)
+ f (x)g′(x) < 0. The initial slope of h(x) determines whether h(x) is U-shaped or
always increasing. If the initial slope is negative, then it is U-shaped. Otherwise, it is
always increasing.

Since x = x(t) is an increasing function of t, the same property holds for θt.

6.4. Proof of Proposition 4. The proof is completed in the following steps:

(i) Divide the full interval [0, N] into sub-intervals of length ∆.

(ii) Solve the problem facing each agent at the initialization t of an interval, who controls
consumption over [t, t + ∆), given some starting asset A, and under the restriction that
total asset holdings at the end of the period must equal some provisionally exogenous
value Â, feasible given A. The solution is an optimal plan as in Proposition 2.

(iii) Next, for each t and initial asset A, solve for the equilibrium choice of Â, under the
conjecture that current and future agents behave as in (ii). This problem is in effect a
game played by finitely many agents each taking a single action, and can be solved via
backward induction.

(iv) Compute the limiting strategy profile as ∆→ 0.

To this end, fix a t at the start of any sub-interval of length ∆, as well as “starting”
and “ending” assets as described in (ii) above, and consider the problem faced by the
agent controlling the interval [t, t + ∆]. This problem is no different from our planning
problem, except that (t, ∆) takes the place of (0, N), and there is an asset promise of
Â. But the latter only means that the effective present value of the asset at the agent’s
disposal is B ≡ A− e−r∆ Â ≥ 0.18

It follows that for each of these “mini-problems,” the solution is exactly as given by the
planning problem: for any t ∈ {0, ∆, 2∆, . . . , N − ∆}, and for s ∈ [t, t + ∆],

ct(As, s; Â) =

[
αe−ρ(s−t) + (1− α)e−ρ|T−s|

αe−ρ(s−t)at
s + (1− α)pt

s

]
[As − e−r(t+∆−s) Â](25)

where {at
s, pt

s} solve equations analogous to (5) and (6) for the planning problem:

(26) at
s = ρ−1

[
(ρ− 1)e−ρ(t+∆−s) + 1

]
18Because Â is feasible given A, B must be nonnegative.
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and

(27) pt
s =

 ρ−1
[
e−ρ(s−T) + (ρ− 1)e−ρ|(t+∆)−T|

]
for s > T

ρ−1
[
−e−ρ(T−s) + (ρ + 1)e−ρ|T−(t+∆)|

]
s < T,

These expressions provide a full characterization of the optimal consumption plan for
the agent controlling [t, t + ∆), and aiming for Â at the end of this period.

There are also forward and backward values generated by the mini-plan, and these are
exactly as in the planning problem, except that they are defined on A− e−r∆ Â:

(28) Vt(A, Â) = at
t ln(A− e−r∆ Â) + bt,

and

(29) Wt(A, Â) = pt
t ln(A− e−r∆ Â) + qt,

where the additive constants bt and qt can be solved just as in the planning problem (see
(24)), but we will not need to do so here.

Now we turn to the discrete game in which each of the players also choose the target
Â at the end of their control, anticipating a continuation payoff from that choice. We
proceed by induction. At N − ∆, define

V∗N−∆(A) =
∫ N

N−∆
e−ρ(s−[N−∆]) ln csds

and

W∗N−∆(A) =
∫ N

N−∆
e−ρ|T−s| ln csds

to be the values generated by the planning problem at the very last decision stage, start-
ing at A with a continuation asset of 0. It is easy to see that

V∗N−∆(A) = γN−∆ ln(A) + constant

and
W∗N−∆(A) = νN−∆ ln(A) + constant,

where
γN−∆ = aN−∆

N−∆ =
1
ρ
[(ρ− 1)e−∆ρ + 1]

and
νN−∆ = pN−∆

N−∆ =
1
ρ
[e−ρ|N−∆−T| + (ρ− 1)e−ρ|N−T|],

using (26) and (27). (The exact value of the constants need not concern us.)

Inductively, suppose that at decision date t + ∆,

(30) V∗t+∆(A) = γt+∆ ln(A) + constant



30 DEBRAJ RAY, NIKHIL VELLODI, AND RUQU WANG

and

(31) W∗t+∆(A) = νt+∆ ln(A) + constant,

where γt+∆ and νt+∆ satisfy the difference equations

γt+∆ = at+∆
t+∆ + e−ρ∆γt+2∆

νt+∆ = pt+∆
t+∆ + νt+2∆.(32)

The agent at date t chooses Â, for each initial asset A, to maximize

αVt(A, Â) + (1− α)Wt(A, Â) + αe−ρ∆V∗t+∆(Â) + (1− α)W∗t+∆(Â),

which, using (28), (29), (30) and (31), is equivalent to maximizing

[αat
t + (1− α)pt

t] ln[A− e−r∆ Â] + αe−ρ∆γt+∆ ln(A) + (1− α)νt+∆ ln(A)

by choosing Â. It is easy to see that the solution is given by

σt(A) = er∆[ αe−ρ∆γt+∆ + (1− α)νt+∆

α(at
t + e−ρ∆γt+∆) + (1− α)(pt

t + νt+∆)

]
A

where {at
t, pt

t} solve (26) and (27). From this expression, we can obtain solutions for
V∗t (A), W∗t (A) that solve (30)–(32) at date t. In particular, using the solutions

γt = at
t + e−ρ∆γt+∆

νt = pt
t + νt+∆(33)

we can write σt(A) = er∆µt A, where

µt =

[
α(γt − at

t) + (1− α)(νt − pt
t)

α(γt) + (1− α)νt

]
.

Now the inductive step is complete.

To finish the proof of the Proposition, we substitute the equilibrium rule σt(A) for Â in
(25), which yields an instantaneous equilibrium consumption policy at date t:

c∗t (A) = ct(A, σt(A)) = λt[A− e−r∆(er∆µt A)] = λt(1− µt)A,

where

λt ≡
α + (1− α)e−ρ|T−t|

αat
t + (1− α)pt

t
.

Now we pass to the limit as ∆ → 0. Equations (26) and (27) tell us that at
t = 1 +O(∆2)

and pt
t = e−ρ|T−t| +O(∆2), so that by (33),

γt = 1 + (1− ρ∆)γt+∆ +O(∆2)

νt = e−ρ|T−t| + νt+∆ +O(∆2).
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Thus, as ∆ → 0, γt and νt satisfy the ODEs ργ̇t = 1 + γt and ν̇t = −e−ρ|T−t|. Further-
more, it is easily verified that lim∆→0 γN−∆ = 1 and lim∆→0 νN−∆ = e−ρ|T−N|. These lim-
iting boundary conditions, combined with the ODEs for γt and νt above, are precisely
those that characterized the coefficients at and pt in equations (5) and (6) of Proposition
2 and 4. Therefore lim∆→0(γt, νt) = (at, pt), and so

λt(1− µt)A =

[
α + (1− α)e−ρ|T−t|

αat
t + (1− α)pt

t

] [
αat

t + (1− α)pt
t

α(γt) + (1− α)νt

]
A

→
[

α + (1− α)e−ρ|T−t|

α + (1− α)e−ρ|T−t|

] [
α + (1− α)e−ρ|T−t|

αat + (1− α)pt

]
A

=

[
α + (1− α)e−ρ|T−t|

αat + (1− α)pt

]
A

as ∆→ 0, as required.
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