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Note. After the main theorem in this paper was proved, we came across Hellwig (1980), which is
motivated by exactly the same considerations and proves the same result as our Theorem 2, except
that our model allows for general signal structures with arbitrary covariances and asymmetries.
Despite the significant additional generality, we fully appreciate Hellwig’s contribution and do not
intend to publish these notes. We simply put up the results and proofs here in the hope that the
approach here (which is quite distinct) will be useful to others working in the field. We intend to
take these methods in other directions as well.

1. INTRODUCTION

We consider a setting in which a single security with unknown fundamental is traded by a con-
tinuum of agents. Each agent belongs to one of a finite number of “informational groups.” Each
individual in each group obtains an idiosyncratically noisy signal which is built from a group-level
aggregate signal plus iid individual noise. There is an aggregate signal for every informational
group. In additional to this signal for each individual, each person also observes the price and can
make inferences about the fundamental using that price.

Groups differ in size. They also differ in their attitudes to risk. There is risk heterogeneity both
within and across groups. There is a common prior on the fundamental.

The setting is multivariate normal, with arbitrary correlations across fundamental and signals.

If a super-agent (with the same common prior) were to observe each of the aggregate signals, she
would have a best prediction of the fundamental, which is a linear function of the signal vector.
Any price function which is the same linear function (up to an intercept term) would aggregate
information perfectly. Agents observing such a price function would entirely ignore their own
signal. Their demand for the asset would also be insensitive to the price. The intercept term can be
adjusted so that aggregate demand equals supply. This forms the basis for Grossman’s remarkable
observation (1976): that there is an “equilibrium” that is fully revealing.

Because no trader uses any of his information once the price aggregates all information efficiently,
this notion of equilibrium is deeply problematic. Indeed, the “equilibrium” cannot be justified even
by resorting to indifference on the part of the trader to use (or not use) his private information, not
even when the cost of information acquisition is zero. A trader would strictly prefer to not use any
of his information, whether or not it is freely available. In other words, even the redundancy that
tolerates some degree of mixing and allows information to seep in via indifference, is not to be

Date: February 2017.
Parsa: Department of Economics, Tufts University, sahar.parsa@tufts.edu; Ray: Department of Economics, NYU, and
University of Warwick, debraj.ray@nyu.edu. We thank Larry Blume, Michael Ostrovsky, Marzena Rostek and Sevgi
Yuksel for helpful comments.

1



2 SAHAR PARSA AND DEBRAJ RAY

had. Obviously Grossman himself is aware of this point: “If all traders ignore their information
how does the information get into the price?” (p. 582).

We discuss Grossman’s philosophy in more detail below. Our approach here is different. We de-
mand that the equilibrium price function be built from information that is collectively and actively
used by all the traders. This can be achieved by permitting some noise trade, which we do. The
problem is that once there is noise trade, the equilibrium price function. cannot be fully revealing.
Indeed, it fails to be fully revealing in two distinct ways. One is, of course, the trivial way: noise
creates additional variation in the price that a full observation of all signals would have avoided.
The second, deeper problem arises because different signals now acquire different weights: if a
group is large or close to risk neutral, it will react more sensitively to a change in signal. Other
smaller groups will carry less weight. In other words, group-level characteristics will affect price
formation, and the coefficients on each signal will vary accordingly.

Nevertheless, our main result (Theorem 2) is a vindication of Grossman: as the variance on the
noise goes to zero, any corresponding sequence of (linear) equilibrium price functions must con-
verge (modulo an intercept term) to the fully revealing predictor used by a super-agent who ob-
serves all signals.

2. SOME REMARKS

Grossman is. of course, fully aware of the conceptual problem we raise here. His response is
to view full aggregation as the limit of some hypothetical iterative process. Grossman motivates
his solution concept thus: the equilibrium price function “can be interpreted as a stationary point
of the following process. Suppose traders initially begin in a naive way, thinking of [price] as
a number and conditioning only on [their own signals]. Let an auctioneer call out prices un-
til the market clears . . . After many repetitions traders can tabulate the empirical distribution of
[price-fundamental] pairs . . . After this joint distribution is learned, traders will have an incentive
to change their bids just as the market is about to clear . . . This changes their demands and thus the
market will not clear at [the old price].” In contrast, continues Grossman, the full-information price
function “is a self fulfilling expectations equilibrium: when all traders think prices are generated
by [that function], they will act in such a way that the market clears . . . ”

But viewing full information aggregation as a stationary point of this iteration is not enough, pre-
cisely because at this stationary point, traders strictly do not want to condition on their information.
Matters would be more convincing if, for instance, information aggregation could be viewed not
just as a stationary point but as an attractor of the above iteration. In that case, the incentives
to use individual information would be gradually eroded, but not fast enough so that the required
information fails to seep into the price function “in the limit.” But to the best of our knowledge, no
such result is provided in Grossman (1976) or elsewhere in the competitive framework.1

We interpret Grossman as acknowledging this lacuna when he concludes: “[S]uch economies need
not be stable because prices are revealing so much information that incentives for the collection of
information are removed. The price system can be maintained only when it is noisy enough so that
traders who collect information can hide that information from other traders.” At the same time, he

1We note that it is not enough to prove that no other price function can be a stationary point of the iterative system. It
is entirely possible, in principle, for any iterative sequence to cycle without converging anywhere at all.
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correctly notes that the full information result “will not hold if there is noise in the price system.”
In fact, in the presence of noisy trades, not only will that noise carry over to the price function, it
will also distort that price function when there are heterogeneous traders, in the sense of placing
different relative weights on each signal relative to the relative weights under full information
aggregation.

The main result of this paper can be viewed as a contribution to the “stability” of full informa-
tion aggregation. As the variance of noise vanishes, any corresponding sequence of equilibrium
price functions must generate a limit situation in which each trader behaves as if he is perfectly
informed. That is, not only does the noise vanish, but the distortion of relative weights generated
by heterogenous trading groups (in their sizes or attitudes to risk) must vanish as well.

3. MODEL

3.1. Information. There is a single risky asset and a single trading period. The asset has a fixed
supply X ∈ R, and a fundamental value θ. The fundamental isn’t directly observed, but it gener-
ates signals given by s ∈ Rn, where n ≥ 1. Specifically, assume that (θ, s) is multivariate normal
with mean 0 and covariance matrix Σ.

We will use the following notation throughout: Var(x) will stand for the variance of a random
variable x, and Cov(xi, xj) — or where there is no risk of confusion, Cov(i, j) — will stand for
the covariance of two random variables xi and xj . For a linear combination λ over the signals, we
will use Var(λ) and Cov(λ, xi) (or Cov(λ, i)), with the understanding that in this case λ is being
identified with the random variable

∑
i λisi. Finally, Cov(θ, s) (resp. Cov(s, θ)) will denote the

row (resp. column) vector of covariances (Cov(θ, s1), . . . ,Cov(θ, sn)) between the fundamental θ
and each signal si. So

Σ =

(
Var(θ) Cov(θ, s)

Cov(s, θ) Σss

)
,

where a typical covariance term in Σss is just Cov(i, j).

We refer to s = (s1, . . . , sn) as the aggregate signal structure. We impose minimal restrictions on
this structure. We take it that each aggregate signal si is positively correlated with the state; that
is, Cov(θ, i) > 0. Apart from presuming the existence of some correlation, this is without loss of
generality (it is a matter of arranging the signals so that they “point” the right way).

We also presume that no component of s can be expressed as a linear combination of the others.
In particular, this means that the aggregate structure is “imperfect”: no one can pin down the
fundamental even if she observes all the aggregate signals.2 Formally, we assume that Σθ,θ −
Σθ,sΣ

−1
s,sΣ

′

θ,s is positive definite.

Apart from these restrictions, we allow the aggregate signals to exhibit any degree of asymmetry
or heterogeneous correlation structure.

3.2. Traders and Trader Types. There is a unit measure of market participants or traders. Each
trader has a quadratic utility function. That is, if they hold k units of the risky asset with a perceived

2For instance, if e(1) = −e(2), the aggregate signal structure permits us to completely pin down the value of θ.
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mean value µ and variance v, then their payoff is given by

(1) k[µ− p]− k2vγ

2
,

where p is the going market price of the asset and γ is a parameter that measures the degree of
that participant’s risk aversion. Notice that the risk is borne on fluctuating value whether or not the
position k is positive or negative.

A trader is described by her type t, which lies in some finite set T . Let τ(t) be the measure of
individuals of type t. An individual type t has two components: {i(t), γ(t)}, where i(t) denotes
her informational group membership, and γ(t) denotes her risk-aversion. Now for a more detailed
description.

First, a trader belongs to one of n information groups, each of positive mass. Each group i reads
a distinct set of newspapers that effectively allows one of the aggregate signals si to be “directed”
towards them. If an individual trader α belongs to informational group i, she sees a (conditionally)
independent idiosyncratic signal

(2) zi(α) = si + εi

where εi is normal with mean 0 and variance Var(εi). Of course, Var(zi(α)) = Var(si) + Var(εi).

Second, we wish to allow for an general distribution of risk attitudes, but to avoid arbitrarily large
short or long term positions we assume that everyone is risk-averse (γ > 0). We make no assump-
tion about the interaction between information and risk (nor the size of any of these groups), but
only ask that each information group have strictly positive size.

3.3. Demand. A typical agent α of type t maximizes the payoff function in (1) with µ and v set
equal to her conditional expectation and variance of her fundamental value, given the information
available to her. That is, if her private information is zi(t)(α), then µ = E(θ|zi(t)(α), p) and v =
Var(θ|zi(t)(α), p). The consequent demand for the asset by α is given by

(3) k(zi(t)(α), p, γ(t)) =
E(θ|zi(t)(α), p)− p

Var(θ|zi(t)(α), p)γ(t)
.

3.4. Noise Trade. There is additionally some noise trade u, distributed independently of every-
thing else, with mean 0 and variance Var(u). In the sequel we will take Var(u) to zero.

3.5. Price Functions. It is customary in Gaussian models to focus on linear equilibria, and we
follow that lead here. Accordingly, we concentrate on the class of price functions given by

(4) p = λs + ωu+ c,

where λ ≡ (λ1, . . . , λn) represents weights on signals for each information group, and ω is the
weight on the noise u.

We make three remarks on this conjectured price function. First, because there is a continuum
of independent idiosyncratic signals of each type, all drawn from the same group, linearity will
guarantee that only the aggregate signals will matter; hence just the appearance of s’s in the price
function and the disappearance of all idiosyncratic signals. Second, the prior mean of θ is taken
to be zero and so does not explicitly enter the price function, but of course the prior will cast its
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influence so that
∑

i λi won’t generally equal 1. Finally, the λi’s will depend in an intimate way
on the overall stochastic structure of signals, asset supply, group sizes, and the distribution of risk
attitudes and payoff functions.3

3.6. Expectations and Demand. Given any price function as in (4), we can describe the con-
ditional expectation E(θ|zi(t)(α), p) for a trader of type t. The relevant predictor is the variable
q ≡ p − c, where the intercept term has been netted out. It is described by a system of weights
{a(t), b(t)} such that for any such individual α and any signals (zi(t)(α), p) received by her,

(5) E(θ|zi(t)(α), p) = a(t)zi(t)(α) + b(t)q.

We will provide explicit formulae for these weights below.

By Bayes’ Rule, the values of a(t) and b(t) will be independent of an agent’s risk type, though
of course, the actions she takes in response will depend on her risk-aversion. Similarly, by a
familiar property of normal updating, the conditional variance Var(θ|zi(t)(α), p) only depends on
informational group identity i = i(t) but not on the particular signals received nor on the risk type.
Call it Var(θ|i). To be sure, this conditional variance depends on the price function π as well, but
we do not record that dependence explicitly here, for ease of notation. Using this definition along
with (5) in equation (3), we see that the aggregate demand for the asset by all individuals of type t
depends on p and the aggregate signal si(t), and is given by

τ(t)
a(t)si(t) + b(t))q − p

Var(θ|i(t))γ(t)
= δ(t)

a(t)si(t) − (1− b(t))p− b(t)c
Var(θ|i(t))

.

where δ(t) ≡ τ(t)/γ(t) is the ratio of population to risk-aversion coefficient for each type t.

We now aggregate over risk groups. Define, for each i,

∆i ≡
∑
i(t)=i

δ(t) =
∑
i(t)=i

τ(t)

γ(t)
> 0.

Also remember that a(t) and b(t) are independent of risk types, and therefore can be written as ai
and bi respectively. Then the aggregate demand by each (informational) group i is

∆i
aisi − (1− bi)p− bic

Var(θ|i)
.

3.7. Equilibrium. Summing noise trade and demand over all i and noise trade, equilibrium price
is given by

(6)
n∑
i=1

∆i
aisi − (1− bi)p− bic

Var(θ|i)
+ u = X.

Notice that in any equilibrium, we must have
∑n

i=1 ∆i(1− bi)/Var(θ|i) 6= 0, otherwise (6) cannot
hold for all u. We therefore have

(7) p =
n∑
i=1

λisi + ωu+ c,

3In particular, λi cannot be guaranteed to be nonnegative for all i.
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where

(8) ω =
1∑n

j=1 ∆j(1− bj)/Var(θ|j)
.

(9) c =
X∑n

j=1 ∆j(1− 2bj)/Var(θ|j)
.

and for each i,

(10) λi =
∆iai/Var(θ|i)∑n

j=1 ∆j(1− bj)/Var(θ|j)
,

Equations (7)–(10) are crucially different from the solution concept described in Grossman (1976).
In particular, (10) explicitly demands that the price vary with signals only to the extent that indi-
viduals actually use those signals. To complete our description, it will be useful to record closed
forms for the vectors of weights a and b, as well as for the posterior variances Var(θ|i). Standard
arguments from normal updating show that

(11) ai =
[Var(λ) + ω2Var(u)]Cov(θ, i)− Cov (λ, i) Cov(θ,λ)

[Var(λ) + ω2Var(u)]Var(zi)− Cov (λ, i)2

and

(12) bi =
Var(zi)Cov(θ,λ)− Cov(θ, i)Cov (λ, i)

[Var(λ) + ω2Var(u)]Var(zi)− Cov (λ, i)2 .

Lemma 2 makes the elementary observation that the common denominator of these expressions is
strictly positive, so that ai and bi are well-defined for every i.

For information to seep into prices, it is intuitively clear that a cannot be zero. Formally, suppose
that a = 0 in some equilibrium, then by (10), λ = 0 as well. But using this information in (11),
we must conclude that ai = Cov(θ, i)/Var(zi) 6= 0 for every i, which is a contradiction. So a 6= 0,
and the same is true of λ.

The posterior variance Var(θ|i), i.e. the variance of θ conditional on the idiosyncratic signal and
the price function π, is given by

(13) Var(θ|i) = Var(θ)− [aiCov(θ, i) + biCov(θ,λ)].

Equations (7)–(13), along with the parameters already defined, fully describe an equilibrium price
function. We are interested in the behavior of this function as the noise trade vanishes; i.e., as
Var(u)→ 0. We observe:

THEOREM 1. There exists an equilibrium.

Existence is a technical matter, though in the light of the peculiar problems associated with in-
formational aggregation, it is perhaps of separate interest in this context. We use a fixed point
argument with some modifications suggested by the work of Halpern (1968) and Halpern and
Bergman (1968); see Lemma 6 which generates a suitable “inward mapping.” We do not know if
more standard methods would suffice for existence. In a different model of oligopolistic trading
with risk-neutral agents, Lambert, Ostrovsky and Panov (2016) obtain an elementary and impres-
sive proof of existence; to the best of our understanding, their methods do not apply here.
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4. THE FULL-INFORMATION PREDICTOR

Suppose that an observer were to see the entire set of aggregate signals s = (s1, . . . , sn), and
asked to infer θ. By a standard property of normal updating, the weights λ∗ = (λ∗1, . . . , λ

∗
n) of the

full-information predictor on the aggregate signals are given by

(14) λ∗ = Cov(θ, s)Σ−1
ss

so that E(θ|s) = λ∗s = Cov(θ, s)Σ−1
ss s, and the variance of the composite signal thus constructed

is given by

(15) v(λ∗) = λ∗Σssλ
∗′
w = Cov(θ, s)Σ−1

ss Cov(s, θ),

where the second equality uses (14).

For each i = 1, . . . , n, define

(16) Γi(λ) ≡ Var(λ)Cov(θ, i)− Cov (λ, i) Cov(θ,λ).

The zeros of this function and an additional covariance restriction characterize the full-information
predictor:

OBSERVATION 1. For each i = 1, . . . , n,

(17) Γi(λ
∗) = 0,

and

(18) Cov(θ,λ∗) = Var(λ∗).

and the converse is also true: any non-null vector λ solving (17) and (18) must be the full-
information predictor that solves (14).

The proof follows immediately from rewriting (14), and is omitted.

The full information predictor is such that all the information in s is combined optimally in λ∗

to predict θ. Adding any signal to it with any weight will be redundant. In particular, for each
i, E(θ|λ∗, si) = E(θ|λ∗). To see this more formally in a market context, imagine that the price
function π = (λ, ω) has λ = λ∗, and suppose that there is no noise at all. Then, using (11) with
Var(u) = 0,

ai =
Γi(λ

∗)

v(λ∗)Var(zi)− Cov (λ∗, i)2 ,

and because the denominator of this expression is strictly positive (Lemma 2 below), the weight ai
on the signal si will be zero, by Observation 1. In our setting, the full information predictor can
never be an equilibrium in a world with no noise, because the resulting zero individual weights on
signal cannot be built back into a non-trivial price function. This is at the heart of our departure
from Grossman (1976), as already discussed in the Introduction.

As a final remark on the full-information predictor: there is no guarantee that λ∗ will place positive
(or even nonnegative) weight on all the signals, even if each signal is separately informative and
positively pairwise correlated. The generality of our signal setting precludes this. As an example,
suppose there are two iid mean zero normal random variables given by e1 and e2. Suppose that the
aggregate signal structure is given by s1 = θ+e1, and s2 = θ+ζe1 +(1−ζ)e2, where ζ ∈ (1/2, 1).
Then it can be checked that λ∗(1) < 0.
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4.1. Information Aggregation. In what follows, we will take the variance of the noise trade to
zero and examine the characteristics of limit equilibria. Therefore, when we speak of equilib-
rium sequences (indexed by s), we will refer to any sequence of equilibria as Vars(u) → 0. The
following is our main result:

THEOREM 2. Along any sequence Vars(u) such that Vars(u)→ 0, any corresponding sequence of
equilibrium price functions (λs, ωs, cs) must:

(i) involve λs converging to λ∗, the full-information predictor, while

(ii) ω2
sVars(u)→ 0 and cs → −X[Var(θ)−Cov(θ,λ∗)]∑n

j=1 ∆j
.

The theorem has two parts. The central assertion is Part (i). In general, an equilibrium price
function will not aggregate information efficiently. After all, different signals are observed by
groups that may vary both in their overall numbers and in their within-group distribution of risk
attitudes. Because the volume of group-specific trade also goes into determining the equilibrium
price function, and because numbers and risk attitudes affect those volumes, the equilibrium price
function will incorporate not just pure information but also group sizes and the full distribution of
attitudes to risk. From this perspective, it is of interest that as the impact of noise trade vanishes,
all these additional effects on the price function endogenously vanish, leaving only the efficient
aggregation of information.

Part (ii) states two ancillary observations. First, as the variance of the noise goes to zero, its overall
impact on prices goes to zero as well. This is intuitive.4 Second, when the supply of the asset
X is non-zero, the intercept term c of the price function does retain the influence of group sizes
and attitudes to risk, as captured by the ∆i’s. But it does so in a trivial way, in the intercept term,
which does not impede efficient information aggregation. The main point is that all group-level
heterogeneity must complete vanish from the coefficients on s, as already described in Part (i).

We illustrate this result with an example. Suppose that the aggregate structure is made up of just
two signals s1 and s2. Suppose, moreover, that for i = 1, 2, si = θ + ei, where e1 and e2 are
iid. For additional simplicity, suppose that the prior on the fundamental is improper, or close to
it, if you want to exactly embed this example in our model.5 Then the full information predictor
is obviously given by equal weighting: (λ∗1, λ

∗
2) = (1/2, 1/2). That said, if the groups observing

these signals are heterogeneous, the equilibrium price function (λ, ω) will not place equal weight
on the two signals; that is, in general, λ1 6= λ2.

But this discrepancy must vanish as the variance of noise trades goes to zero. To see this, take a
sequence of noise variances going to zero, and let the corresponding sequence of regular equilib-
rium weights be given by (λs, ωs). Suppose for this discussion that λs lie on the unit simplex (it
is easy to verify that this will indeed be the case for a diffuse prior.) We want to show that λs →
(1/2, 1/2). Suppose that along some subsequence, (λs, ωs) → (λ, ω), where λ 6= (1/2, 1/2).
Without loss of generality, let λ1 > 1/2. In this exposition, we shall also suppose that λ1 < 1.

Consider an agent from group 1 who sees her own private signal z1 along with p, conjecturing the
weights for p to be given by λ. What weight a1 should she place on z1 so as to predict θ? The
answer is that if noise trade is negligible, the weight must be strictly negative. Intuitively, a lower
4However, it is also the case that ω2

s will blow up to infinity.
5However, an exact analogue of Theorem 2 can be established for improper priors.
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value of the private signal z1, controlling for price, means two things. It certainly means a lower
value of s1, and therefore of θ. But it also means a higher conjectured value for s2 (holding p
constant), and indeed, because we are controlling for the price and because λ1 ∈ (1/2, 1), it must
mean that s2 goes up by more than s1 comes down. Consequently, the individual’s prediction of
the fundamental, which is given by E((s1 + s2)/2|z1, p), must go up as z1 comes down.

But now we have a contradiction: we started off with λ1 > 0 (indeed, λ1 > 1/2), but in such a
situation every individual in group 1 reacts by placing a negative weight on their own signal. When
these reactions are aggregated to form the equilibrium price function, the overall weight placed on
s1 will also be negative. But that weight, in equilibrium, is just λ1, which we’ve taken to be positive
to begin with!

A similar argument can be applied to λ1 > 1 as well, though now the contradiction is not as
stark as a comparison of positives and negatives. In fact, the formal analysis is far more general.
As long as prices fail to converge to the full-information predictor (with noise trades vanishing),
their equilibrium status can be shown to be compromised. Trade volumes along the equilibrium
price sequence must delicately adjust to asymptotically negate all the “interferences” of group
heterogeneity regarding size and risk attitudes.

4.2. Proofs. An environment is any set of parameters with a non-zero variance for noise trades.
For any price function (λ, ω, c), observe that c plays only a role in determining demand but not
in the inference of the fundamental — it is just the intercept term in the price function. For this
reason, we will be referring to just (λ, ω) in most of the arguments below.

LEMMA 1. There is v > 0 such that for any environment, any (λ, ω) and any i, if Var(θ|i) is given
by (13), then v ≤ Var(θ|i) ≤ Var(θ).

Proof. Obvious, as Var(θ|i) must be bounded above by the unconditional variance Var(θ) and
below by the variance of θ conditional on having access to all the aggregate signals s. This latter
bound is strictly positive by the assumed positive definiteness of Σ. �

LEMMA 2. For every i and every (λ, ω),

[Var(λ) + ω2Var(u)]Var(zi)− Cov (λ, i)2 ≥ [Var(λ) + ω2Var(u)]Var(εi).

Proof. By the Cauchy-Schwarz inequality, Cov (λ, i)2 ≤ v(λ)Var(si) ≤ [Var(λ)+ω2Var(u)]Var(si),
and Var(zi) = Var(si) + Var(εi), so that [Var(λ) + ω2Var(u)]Var(zi) − Cov (λ, i)2 ≥ [Var(λ) +
ω2Var(u)]Var(εi). �

For any set of weights a = (a1, . . . , an) as given by (11), define

(19) ri ≡
∆iai

Var(θ|i)
and observe from (10) and (8) that any equilibrium price function (λ, ω, c) is then fully character-
ized by (11)–(13), (19) and

(20) λ = ωr and ω =

[∑
j

∆j(1− bj)
Var(θ|j)

]−1

.
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along with (9) to determine the intercept term c.

For any vector x, denote by ||x|| its norm
∑

i |xi|.

LEMMA 3. If a is given by (11) and r by (19), then ||a|| and ||r|| are uniformly bounded over all
environments and all (λ, ω) with ω 6= 0.

Proof. Using (11) and Lemma 2, we see that for all π = (λ, ω) with ω 6= 0, ai is well-defined and

|ai| ≤
[Var(λ) + ω2Var(u)]|Cov(θ, i)|+ |Cov (λ, i) ||Cov(θ,λ)|

[Var(λ) + ω2Var(u)]Var(εi)

=
|Cov(θ, i)|+ [|Cov (λ, i) ||Cov(θ,λ)|/[Var(λ) + ω2Var(u)]]

Var(εi)

≤
|Cov(θ, i)|+

[√
Var(si)Var(θ)Var(λ)/[Var(λ) + ω2Var(u)]

]
Var(εi)

≤
|Cov(θ, i)|+

√
Var(si)Var(θ)

Var(εi)
<∞,

where the penultimate inequality applies Cauchy-Schwartz to |Cov (λ, i) | and |Cov(θ,λ)|. This
gives us a bound on |ai| which is uniform over all environments, and of course can be taken to be
independent of i. By Lemma 1 and (19), the same must be true of ||r||. �

Consider the domain of all vectors (r, ω) with ω > 0 and ||r|| ≤ R < ∞, where R is some upper
bound given by Lemma 3. We will construct a mapping Ψ on this domain. To this end, define
λ ≡ ωr. Now define ai by (11), bi by (12), Var(θ|i) by (13), and r′i by (19). Next, define an
“auxiliary vector” d the meaning of which will become clearer below: for each i, let

(21) di =
Cov(θ, r)− Cov(r, i)Var(θ|i)

∆i
ri

Var(r) + Var(u)
.

Complete the mapping by setting

(22) ω′ =

[∑
j

∆j

(
1− 1

ω
dj
)

Var(θ|j)

]−1

.

We now have (r′, ω′) = Ψ(r, ω). Notice that while ||r′|| ≤ R, ω′ may not be positive, so that this
function does not necessarily map back to the domain from where we started.

LEMMA 4. ||d|| is bounded uniformly over all r with ||r|| ≤ R < ∞. Moreover, there is ζ > −1
such that

(23)
∑
j

∆j

Var(θ|j)
dj ≥ ζ > −1

uniformly on the subdomain of r with Cov(θ, r) ≥ 0.

Proof. Because r is bounded, the absolute value of the numerator in (21) is bounded above, while
the denominator is bounded below by Var(u). The boundedness of ||d|| follows immediately. To
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establish (23), observe that for each j, using (21) and Cov(θ, r) ≥ 0 (on the subdomain),

∆j

Var(θ|j)
dj =

∆j

Var(θ|j)

Cov(θ, r)− Cov(r, j)Var(θ|i)
∆i

rj

Var(r) + Var(u)

 ≥ − Cov(r, j)rj
Var(r) + Var(u)

,

so that summing over all j, we have∑
j

∆j

Var(θ|j)
dj ≥ −

∑
j

Cov(r, j)rj
Var(r) + Var(u)

= − Var(r)
Var(r) + Var(u)

.

Because Var(u) > 0 and ||r|| is bounded, the existence of ζ > −1 is immediate. �

To proceed further, let K (resp. k) be a finite and strictly positive upper (resp. lower) bound on∑
j ∆j/Var(θ|j) and D be some finite positive upper bound on

∑
j ∆jdj/Var(θ|j), which is well-

defined by Lemma 4. Let m < M be any strictly positive and finite numbers that satisfy

(24) m ≤ (1 + ζ)/K and M ≥ (D + 1)/k.

Because ζ > −1 (Lemma 4), M and m satisfy all the properties required of them.

LEMMA 5. Ψ has the following properties:

(i) If Cov(θ, r) = 0, then Cov(θ, r′) ≥ 0.

(ii) If ω ≥M , then ω′ ≤M .

(iii) If ω = m, then ω ≥ m.

Proof. (i) In constructing the mapping Ψ, we define λ = ωr and ai by (11). Combining the two,
we see that

ai =
[Var(λ) + ω2Var(u)]Cov(θ, i)− Cov (λ, i) Cov(θ,λ)

[Var(λ) + ω2Var(u)]Var(zi)− Cov (λ, i)2

=
[Var(r) + Var(u)]Cov(θ, i)− Cov (r, i) Cov(θ, r)

[Var(r) + Var(u)]Var(zi)− Cov (r, i)2 ,

where we’ve divided through above and below by the common term ω2. Because the denominator
of this last expression is strictly positive (Lemma 2) and because Cov(θ, i) ≥ 0 by assumption, it
follows that if Cov(θ, r) = 0, then ai ≥ 0 for all i. Therefore r′i given by (19) is nonnegative for
all i. It follows that

Cov(θ, r′) =
∑
j

r′jCov(θ, j) ≥ 0.

(ii) Suppose that ω ≥M . Then, using (22), we have that

ω′ =

[∑
j

∆j

(
1− 1

ω
dj
)

Var(θ|j)

]−1

=

[∑
j

∆j

Var(θ|j)
− 1

ω

∑
j

∆j

Var(θ|j)
dj

]−1

≤
[
k − 1

ω
D

]−1

≤M,

where the last inequality uses the fact that ω = M ≥ (D + 1)/k; see (24).
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(iii) Finally, suppose that ω = m. Again using (22), we see that

ω′ =

[∑
j

∆j

(
1− 1

ω
dj
)

Var(θ|j)

]−1

=

[∑
j

∆j

Var(θ|j)
− 1

ω

∑
j

∆j

Var(θ|j)
dj

]−1

≥
[
K − 1

ω
ζ

]−1

≥ m,

where the last inequality uses ω = m ≤ (1 + ζ)/K; see (24). �

Now consider the subdomain F of all (r, ω) such that ||r|| < R < ∞ (as before), and satisfying
the additional conditions: (i) Cov(θ, r) ≥ 0 and (ii) m ≤ ω ≤M .

LEMMA 6. Ψ has a fixed point (r∗, ω∗) ∈ F .

Proof. Clearly, F is a nonempty, compact, convex subset of Euclidean space, and Ψ is continuous
on F . In general, however, Ψ will fail to map from from F to F . However, the map is inward in
the sense of Halpern (1968) and Halpern and Bergman (1968); for an exposition, see Aliprantis
and Border (2006, Definition 17.53). That is, for every r ∈ F , there exists α > 0 such that

(25) (r, ω) + α[Ψ(r, ω)− (r, ω)] ∈ F .
To verify this property, consider any point (r, ω) ∈ F . If, in addition Cov(θ, r) > 0 and ω ∈
(m,M), then (25) is trivially true for some α > 0.6 Otherwise, at least one of the following is true:
Cov(θ, r) = 0, ω = m, or ω = M . But then it follows from Lemma 5 (i)–(iii) that Cov(θ, r) ≥ 0,
and either ω ≥ m or ω ≤ M . Because Cov(θ, r) is linear in r and m < M , it follows that (25)
must hold for some α > 0.

By the Halpern-Bergman fixed point theorem (see Aliprantis and Border 2006, Theorem 17.54),
there exists (r∗, ω∗) ∈ F such that Ψ(r∗, ω∗) = (r∗, ω∗) ∈ F . �

Proof of Theorem 1. Suppose that (r∗, ω∗) is a fixed point of the mapping Ψ. Let λ∗ ≡ ω∗r∗.
Define for each i, a∗i by (11), b∗i by (12), Var∗(θ|i) by (13) and c∗ by (9). We claim that (8) and
(10) hold for all i.7 We reproduce these equations here for convenience:

(26) λ∗i =
∆ia

∗
i /Var∗(θ|i)∑n

j=1 ∆j(1− b∗j)/Var∗(θ|j)
and

(27) ω∗ =
1∑n

j=1 ∆j(1− b∗j)/Var∗(θ|j)
.

Note that at the fixed point, the auxiliary vector d∗ is given by (21). Also, (19) holds at the fixed
point. Combining these two equations, we see that for every i

(28) d∗i =
Cov(θ, r∗)− Cov(r∗, i)Var∗(θ|i)

∆i
r∗i

Var(r∗) + Var(u)
=

Cov(θ, r∗)− Cov(r∗, i)a∗i
Var(r∗) + Var(u)

.

6In this case, some convex combination of (λ, ω) and Ψ(λ, ω) must trivially lie in F as well.
7Because of the circuitous definition of ω′ in (22) via the auxiliary variable d defined in (21), the proof that a fixed
point of Ψ is an equilibrium is non-trivial. We could not find a way to directly define ω′ via the equilibrium condition
and proceed from there. The reason is that discontinuities appear in the mapping; in particular, we could not find a
way to keeping the mapping away from (r, ω) = (0, 0), where singularities occur. Our use of the auxiliary variable d
circumvents these discontinuities.
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On the other hand, invoking (11) and the fact that λ∗ ≡ ω∗r∗,

a∗i =
[Var(λ∗) + ω∗2Var(u)]Cov(θ, i)− Cov (λ∗, i) Cov(θ,λ∗)

[Var(λ∗) + ω∗2Var(u)]Var(zi)− Cov (λ∗, i)2

=
[Var(r∗) + Var(u)]Cov(θ, i)− Cov (r∗, i) Cov(θ, r∗)

[Var(r∗) + Var(u)]Var(zi)− Cov (r∗, i)2 ,(29)

where we’ve divided through above and below by the common term ω∗2. Combining (28) and (29),

d∗i =
Cov(θ, r∗)

Var(r∗) + Var(u)
− Cov(r∗, i)a∗i

Var(r∗) + Var(u)

=
Cov(θ, r∗)

Var(r∗) + Var(u)
− Cov(r∗, i)

Var(r∗) + Var(u)

{
[Var(r∗) + Var(u)]Cov(θ, i)− Cov (r∗, i) Cov(θ, r∗)

[Var(r∗) + Var(u)]Var(zi)− Cov (r∗, i)2

}
=

[Var(r∗) + Var(u)]Var(zi)Cov(θ, r∗)− [Var(r∗) + Var(u)]Cov(θ, i)Cov(r∗, i)

[Var(r∗) + Var(u)]
{

[Var(r∗) + Var(u)]Var(zi)− Cov (r∗, i)2}
=

Var(zi)Cov(θ, r∗)− Cov(θ, i)Cov(r∗, i)

[Var(r∗) + Var(u)]Var(zi)− Cov (r∗, i)2

= ω∗
Cov(θ,λ∗)Var(zi)− Cov(θ, i)Cov(λ∗, i)

[Var(λ∗) + ω∗2Var(u)]Var(zi)− Cov (λ∗, i)2 = ω∗b∗i .

Using this equality in (22) at the fixed point, so that ω = ω′ = ω∗, we obtain precisely (27). Now
combine (19) (again at the fixed point) along with (27) and λ∗ ≡ ω∗r∗ to obtain (26). �

Recall that for any i and λ, Γi(λ) = Var(λ)Cov(θ, i)− Cov (λ, i) Cov(θ,λ).

LEMMA 7. For any vector λ,
∑

i λiΓi(λ) = 0.

Proof. Note that
∑

i λiCov(θ, i) = Cov(θ,λ) and
∑

i λiCov (λ, i) = Cov (λ,λ) = Var(λ). Ex-
panding Γi(λ), we see that

∑
i λiΓi(λ) = Var(λ)

∑
i λiCov(θ, i) − Cov(θ,λ)

∑
i λiCov (λ, i) =

Var(λ)Cov(θ,λ)− Cov(θ,λ)Var(λ) = 0. �

LEMMA 8. In any equilibrium, each λiai (when nonzero) must have the same sign, which is also
the same as the signs of ω and Cov(θ, λ).

Proof. In equilibrium, for each i, λi = ω∆iai/Var(θ|i) by (10) and (8). Multiplying through by
λi,

λ2
i = ω

∆iλiai
Var(θ|i)

,

which proves that all λiai have the same sign when non-zero, and which in turn is equal to the sign
of ω. Note from (11) and the formula for Γi that the numerator of λiai, call it Num(λiai), is just
Γi(λ) +ω2Var(u)Cov(θ, i), and that the denominator is strictly positive (Lemma 2). By Lemma 7,∑
i

Num(λiai) =
∑
i

λi
[
Γi(λ) + ω2Var(u)Cov(θ, i)

]
=
∑
i

λiΓi(λ)+ω2Cov(θ,λ) = ω2Cov(θ,λ),

so that each λiai (and ω) must also have the same sign as Cov(θ,λ). �
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We will consider sequences of equilibria (λs, ωs, cs) in environments (indexed by s) such that
Vars(u) → 0 as s → ∞. For any λ 6= 0, let ` ≡ ||λ|| > 0 and µ ≡ λ/`. Note that ||µ|| = 1. By
(11) and (12),

ais =
[Var(λs) + ω2

sVars(u)]Cov(θ, i)− Cov (λs, i) Cov(θ,λs)

[Var(λs) + ω2
sVars(u)]Var(zi)− Cov (λs, i)

2

=
[Var(µs) + γ2

sVars(u)]Cov(θ, i)− Cov (µs, i) Cov(θ,µs)

[Var(µs) + γ2
sVars(u)]Var(zi)− Cov (µs, i)

2(30)

and

bis =
Var(zi)Cov(θ,λs)− Cov(θ, i)Cov (λs, i)

[Var(λs) + ω2
sVars(u)]Var(zi)− Cov (λs, i)

2 .

=
1

`s

Var(zi)Cov(θ,µs)− Cov(θ, i)Cov (µs, i)

[Var(µs) + γ2
sVars(u)]Var(zi)− Cov (µs, i)

2 ,(31)

where γs ≡ ωs/`s. Because µs is bounded in s, all its limit points µ are finite. We also know
that as is uniformly bounded; Lemma 3. By taking an appropriate subsequence if needed, we can
presume that µs → µ and as → a.

LEMMA 9. At the limit, Cov(θ,µ) 6= 0.

Proof. Suppose on the contrary that Cov(θ,µ) = 0. Noting that µ 6= 0 so that Var(µ) > 0 by the
positive definiteness of Σ, and recalling that Cov(θ, i) for all i, we can pass to the limit in (30) to
conclude that the limit value ai is strictly positive for every i. Because

µis =
1

`s
λis = γs

∆i

Vars(θ|i)
ais

for every i, we see that in the limit, every µi must have the same sign when non-zero (and some
are indeed nonzero, because µ 6= 0). Because

Cov(θ,µ) =
∑
i

µiCov(θ, i)

and Cov(θ, i) > 0 for all i, it follows that Cov(θ,µ) 6= 0, a contradiction. �

LEMMA 10. Along any sequence of equilibria, {`s} is bounded above.

Proof. Suppose on the contrary that for some subsequence (retain original index s) `s →∞. Then
from (31) and Lemma 2 applied to the denominator of (31), it is easy to see that for each i, bis → 0.
On the other hand, from (30) and Lemma 2 it is clear that ais is bounded. It follows that for each
i, invoking (10) and Lemma 1,

λis =
∆iais/Vars(θ|i)∑n

j=1 ∆j(1− bjs)/Vars(θ|j)

is bounded in s. That contradicts the presumption that `s →∞. �

LEMMA 11. Along any sequence of equilibria, γ2
sVars(u)→ 0.
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Proof. Suppose that along some subsequence of s, γ2
sVars(u) is bounded away from zero. Extract

such a subsequence (but retain the index s), ensuring in addition that µs → µ and γ2
sVars(u)

converges to a strictly positive (possibly infinite) limit in the extended reals; call it G.

For each i, λis = ωs∆iai/Vars(θ|i) by (10) and (8). Dividing through by `s, we see that

(32) µis = γs∆iai/Vars(θ|i).

Because Vars(u) → 0 while γ2
sVars(u) is bounded away from zero, γ2

s → ∞. Therefore, because
the sequence {µis} is bounded, ∆iais/Vars(θ|i) → 0 as m → ∞. Because Vars(θ|i) ≥ v for all i
and s (Lemma 1), and ∆i > 0,

(33) ais → 0 as m→∞.

At the same time, (30) and the definition of Γi (see (16)) together tell us that for every i and s,

(34) ais =
γ2
sVars(u)Cov(θ, i) + Γi(µs)

[Var(µs) + γ2
sVars(u)]Var(zi)− Cov (µs, i)

2 ,

Because µs → µ, all terms involving µ in (34) converge to some finite limit. Therefore, G =
lims γ

2
sVars(u) must be finite as well, for if not, (34) implies that ais → Cov(θ, i)/Var(zi) > 0,

which contradicts (33). Therefore G <∞ and so, combining (33) and (34), we see that for each i,

(35) Γi(µ) = −GCov(θ, i).

Multiplying both sides of (35) by µi, summing over all i, and invoking Lemma 7, we have

0 =
∑
i

µiΓi(µ) = −G
∑
i

µiCov(θ, i) = −GCov(θ,µ),

Because G is non-zero, this contradicts Lemma 7. �

LEMMA 12. At the limit as s→∞, ai = 0 and Γi(µ) = 0 for all i, and |γs| → ∞.

Proof. Passing to the limit as s→∞ in Equation (30) and invoking Lemma 11, we see that

(36) ai =
Var(µ)Cov(θ, i)− Cov (µ, i) Cov(θ,µ)

Var(µ)Var(zi)− Cov (µ, i)2 =
Γi(µ)

Var(µ)Var(zi)− Cov (µ, i)2 .

By Lemma 8, we know that for every s, aisλis and therefore aisµis have the same sign (when
non-zero) over all i, so this is also true of the limit vectors a and µ. But using (36),∑

i

Num(µiai) =
∑
i

µiΓi(µ) = 0,

so every individual term must be zero as well. That is, Γi(µi) = 0 — and therefore ai = 0 — when
µi 6= 0.

Now observe that along any equilibrium sequence, lims |γs| = ∞ as claimed in the Lemma. To
see this, note that µ 6= 0, so λi 6= 0 for some i. For that i, Γi(λi) = 0 as we’ve just shown, which
means that ai = lims ais = 0. Recalling (32),

µis = lim
s
γs
∑
i

∆i

Vars(θ|i)
ais → µi 6= 0,

so (keeping Lemma 1 in mind) it must be that lims |γs| =∞.
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We now complete the proof by showing that Γi(λ) must also be zero when λi = 0. For if not, then
by (36), ai 6= 0. But then, using lims |γs| =∞, lims |µis| = lims |γs||ais| =∞, which contradicts
||µs|| = 1. So Γi(λ) (and therefore, by (36), ai) is zero for all i. �

LEMMA 13. As s→∞, `s has a strictly positive limit `, with

(37) ` =
Cov(θ,µ)

Var(µ)
.

Proof. Combine (30) and (31) to obtain (after some elementary manipulation):

bis =
Cov(θ,λs)− Cov(λs, i)ais

Var(λs) + ω2
sVars(u)

=
1

`s

Cov(θ,µs)− Cov(µs, i)ais
Var(µs) + γ2

sVars(u)
,

which proves that

(38) `sbis =
Cov(θ,µs)− Cov(µs, i)ais

Var(µs) + γ2
sVars(u)

,

By Lemma 11, γ2
sVars(u) → 0, and by Lemma 12, ais → 0. Therefore, passing to the limit in

(38), we see that

(39) lim
s
`sbis =

Cov(θ,µs)

Var(µs)
,

for all i and s. By Lemma 10, all limit points of `s are finite. Let ` be any such point. We claim
that ` > 0.

Suppose not; then `s → 0. Notice that Cov(θ, µ) 6= 0 by Lemma 9). If it is positive, then
from (38) we see that bis → +∞. By (8), ωs → −∞. Also, because Cov(θ, µ) > 0, so is
Cov(θ, µs) for s large. These last two implications contradict Lemma 8. A parallel argument holds
if Cov(θ, µ) < 0. Therefore the claim is true: ` > 0.

Now, by Lemma 12, |γs| → ∞. Because ` > 0, it follows that |ωs| = |γs|/`s → ∞ as well. By
(8), it follows that

(40)
∑
j

∆j

Vars(θ|j)
[1− bis]→ 0

as s→∞. But (39) tells us that bis has a limit independent of i. Therefore bis → 1 for every i and
s. Using this information in (39), we must conclude that ` = Cov(θ,µ)/Var(µ), and the proof is
complete. �

Proof of Theorem 2. Part (i). Lemma 12 informs us that Γi(µ) = 0 for all i. Because the limit
value λ is just a scaling of µ, the same is true of λ: Γi(λ) = 0 for all i. Also,

Cov(θ,λ)

Var(λ)
=

1

`

Cov(θ,µ)

Var(µ)
= 1

by Lemma 13. By Observation 1, λ must equal the full-information predictor λ∗.

Part (ii). Lemma 11 and infs `s > 0 proves that ω2
sVars(u) → 0. Passing to the limit in (13),

we see that Vars(θ|i) → Var(θ) − Cov(θ,λ∗) for all i, Moreover, by (40) and the discussion
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following it, bis → 1 for all i. Applying these observations to (9), we must conclude that cs →
−X[Var(θ)−Cov(θ,λ∗)]∑n

j=1 ∆j
. The proof of the Theorem is now complete. �
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