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1. INTRODUCTION

The Gini coefficient is a leading measure of inequality, and is widely employed in the social sciences
as a summary statistic for income or wealth distributions. This article combines three essays by
the authors—a conversation, really—about the foundations of the Gini coefficient. Our differences,
expressed within the boundaries of the congenial esteem that we have for one another, center around
an appropriate formula for the Gini.

To the immediate query as to why we simply don’t use Gini’s own formula and call it a day, there
are two responses. First Gini himself proposed no less than thirteen versions of his measure, so
that avenue isn’t of much help. Less flippantly, our discussion is not so much about the choice of a
specific formula. Rather, it is about what we are trying to capture when we measure inequality, and the
appropriate role of a particular philosophical axiom that is often involved in inequality measurement—
the population principle.

We should note that our conversation is already anticipated, in part, by scholars who have thought
about these and related issues far more deeply than we have; among them, John Creedy, Anthony
Shorrocks and S. Subramanian (see, for instance, Subramanian [2010]).

2. NOTES ON THE GINI COEFFICIENT, BY RAJIV

The Gini coefficient has been introduced to generations of students using some variant of the formula:

G =
1

2µn2

n∑
i=1

n∑
j=1

|yi − yj| ,

where y1, ..., yn are non-negative income levels in a population of size n, and µ > 0 is mean income
in this population [Sen, 1973, Ray, 1998]. This index has an appealing interpretation as the average
absolute difference between all pairs of individuals, relative to the mean income in the population.
†Sethi: Barnard College, Columbia University and the Santa Fe Institute, rs328@columbia.edu; Ray: New York University
and the University of Warwick, debraj.ray@nyu.edu; Bowles: Santa Fe Institute, samuel.bowles@gmail.com; Carlin: Uni-
versity College London, w.carlin@ucl.ac.uk. Thanks to Julia Schwenkenberg and S. Subramanian for useful comments.
The original conversation is archived at https://debrajray.com/2021/10/01/a-discussion-of-the-gini-coefficient/.
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But the pairs in this case include individuals paired with themselves, with the corresponding income
differences being identically zero. The numerator is unaffected by their inclusion, but the denominator
is inflated relative to the case when such pairs are excluded.

This reasoning has led some to favor an alternative version of the index that simply excludes self-
matched pairs, and hence involves just n(n − 1) rather than n2 comparisons [Jasso, 1979, Deaton,
1997, Bowles and Carlin, 2020]. The resulting measure of inequality is

G′ =
1

2µn(n− 1)

n∑
i=1

n∑
j=1

|yi − yj| .

Clearly

G =
n− 1

n
G′

so the two measures are close for large n and converge in the limit. But for small populations the
difference between the two can be substantial.

Both G and G′ have been axiomatized by Thon [1982]. Four principles together yield G, namely the
transfer principle (all order-preserving and equalizing transfers reduce inequality), population sym-
metry (pooling identical populations results in the same level of inequality as in the component pop-
ulations), constant population comparability (at any given population, the range spanned by the index
should not depend on total income), and equidistance (all order-preserving and equalizing transfers
between people at adjacent income levels have the same effect on the index).

To obtain an axiomatization for G′, one can dispense with population symmetry and strengthen the
comparability axiom to strong comparability, which requires that the range spanned by the index
depends neither on total income nor on population. As Thon [1982, p. 140] puts it: ”One might
indeed want to postulate that the range of an inequality index is to be the same over the redistribution
of any total income not only between a given number of people but between any number of people.”

So one way to decide on whether G or G′ is preferred is to consider which of the two axioms—
population symmetry or strong comparability—one is more willing to discard. Allison [1979] makes
a case for G on the grounds that reasonable measures ought to satisfy population symmetry. That is,
pooling two (or more) identical populations should result in the same level of inequality in the pooled
population as existed in the component groups. If one person in a group of two has all the income,
measured inequality should be the same as if all income was shared equally by a thousand people in
a group of two thousand. This is the case with G (which equals one-half in each case) but not with G′

(which equals one in the former case and is close to one-half in the latter).

One could argue, however, that the pooling of two or more identical populations could well result in
a composite that is qualitatively different, and can reasonably be held to have a very different level
of inequality. In the example above, there is a group of people in the pooled population who share
equality, who must accommodate each other in social and political life, and who may establish rights
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and responsibilities that apply only to themselves but nevertheless operate as a constraint on behavior
and may eventually spread to society more broadly. Some will consider these arguments extraneous
and irrelevant, but they may be persuasive to others.

By the same token, one can construct examples that seem to suggest that G′ is a poor measure of
inequality. It assigns the same value to a group in which one of two people has all income as it does to
a group in which one of a two thousand does (G′ = 1 in each case, while G is one-half in the former
and close to one in the latter). Worse, it assigns greater inequality to the former society (in which
only one of two people has positive income) than it does to a society in which just two people out of a
million have positive incomes. It could be argued that income is far more concentrated when the elite
is small relative to the total population, and that this ought to be reflected in the inequality measure.

There is another important argument to be considered, which is the consistency of the measures with
the partial order on arbitrary income distributions induced by the Lorenz criterion.

Any income distribution associated with a finite population can be represented by a set of points in
two dimensions, with the cumulative share of the population on the horizontal (in order of increasing
income) and the cumulative share of income on the vertical. A Lorenz curve is obtained by interpo-
lating these points to get a non-decreasing and convex function on the unit interval.1 If all incomes
are equal, there is only one interpolation that satisfies these criteria—the line of perfect equality or
identity function. All other distributions yield curves that lie below this line, meeting it at the end
points.

The process of interpolation associates with each finite population distribution an infinite population
counterpart. This allows us to compare distributions regardless of total income or population, by
simply comparing their Lorenz curves—if a curve lies closer to the line of equality at all points it
corresponds to a distribution with lower inequality.2 The result is a partial order on the set of all
income distributions.

However, the particular partial order thus obtained clearly depends on the method of interpolation.
Given two distributions, one method of interpolation may provide a clear ranking, while a second
may involve intersecting curves. So when one speaks of a Lorenz order, or consistency with the
Lorenz criterion, there has to be a method of interpolation either explicitly or implicitly assumed.

The assumed interpolation is usually piecewise linear [Ray, 1998]. This always generates a curve that
has the properties necessary for interpretation as an income distribution in an infinite population. In
addition, it is the only method of interpolation that respects the population symmetry axiom. That is,
with piecewise linear interpolation, the merging of two identical populations results in a distribution
which lies on the (interpolated) Lorenz curve corresponding to the component populations.

1Lorenz [1905] placed population shares on the vertical axis and income shares on the horizontal, resulting in concave
curves.
2When comparing two distributions with the same population size, clearly no interpolation is required.



4

The standard Gini coefficient G is a completion of the partial order generated by piecewise linear
interpolation. Specifically, G is the ratio of the area between the line of perfect equality and the
Lorenz curve thus constructed, and the total area below the line of perfect equality. It is in this sense
that G is Lorenz consistent.

However, there exist several methods for nonlinear interpolation that can generate Lorenz curves
with all the required properties [Gastwirth and Glauberman, 1976, Cowell and Mehta, 1982]. These
methods have been developed to deal with empirical applications involving binned data, but can also
be applied to the case when we have data at the individual level for a finite population. A key step
involves the fitting of an underlying density function to the available data points. The piecewise linear
interpolation corresponds to a piecewise uniform density. Other densities map on to other Lorenz
curves, including curves that are constructed to be continuously differentiable.

In his response to this note, Debraj Ray makes the important point that G′ is inconsistent with the
standard Lorenz ranking (based on piecewise linear interpolation). One can go further—there is no
method of interpolation consistent with convexity and the other required properties that generates a
partial order with which G′ is consistent. To see this, consider any method of interpolation with the
necessary properties. Corresponding to this, there will be some continuous Lorenz curve associated
with the two person distribution in which one person has all income. By choosing a population n to be
sufficiently large, and considering a distribution in which just two people in this population share all
income equally, one can get a Lorenz curve that lies strictly below the first one for the same method
of interpolation. This will be treated as more unequal under the Lorenz criterion (based on the chosen
interpolation). But under G′ the former has maximal inequality while the latter does not.

Although G′ is inconsistent with the Lorenz criterion (for any interpolation), it does have an inter-
esting geometric interpretation. Suppose that one uses a step function for interpolation rather than a
continuous convex function. In this case the ”line of perfect equality” is replaced by a step function
that lies strictly below the conventional perfect equality line for finite populations, and is sensitive to
the size of the population, approaching the conventional line in the limit. In addition, there is a line of
perfect inequality that lies on the horizontal axis, and is independent of population size.

Unlike the conventional Lorenz curve, this step function interpolation (being non-convex) cannot be
interpreted as an income distribution in an infinite population. Nevertheless, one may ask whether the
area between the step function corresponding to perfect equality and the step function corresponding
to the observed income distribution can be used as a measure of inequality that ranks all distributions
regardless of total income or population size. Indeed it can, and the ratio of this area to the total area
below the perfect equality step function is precisely equal to G′. To see this, one need only verify that
this area measure satisfies strong comparability, since it clearly satisfies equidistance and the transfer
principle. And this is also clearly true—the ratio must be zero when income is equally distributed,
and must be one when a single individual has all income.
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Figure 1. Geometric interpretation of G′ in Gini [1914].

In fact, the equivalence of G′ and this particular ratio of areas was recognized by Gini himself, and
is self-evident from Figure 1, which appears in Gini [1914].3 This figure depicts G′ exactly, based on
Gini’s own definition, for a population with n = 14 and a particular distribution of income. Notice
that Gini uses a smooth, nonlinear interpolation (the dashed line) to construct a ”Lorenz curve” for this
finite population. This curve fails to satisfy the population symmetry axiom—merging two identical
fourteen-person populations of this kind would result in points that do not lie on the curve as drawn.4

Finally, consider which of the two measures has a stronger claim to be known as the Gini coefficient.
As it happens, both measures may be found in Gini [1912], although he appears to favor G′ as a mea-
sure of income inequality [Ceriani and Verme, 2012]. And in Gini [1914], translated and published
as Gini [2005], he is explicit about the requirement of strong comparability, stating that for any popu-
lation size, his index of concentration ”ranges from 1, in the case of perfect concentration, to 0, in the
case of equidistribution.”

Neverthless, as Allison [1979] has observed, ”both versions of the Gini index have found their way
into the statistical literature, and neither one can be said to be incorrect.” It is probably best if stu-
dents are at least made aware of the existence and historical origins of both, and presented with the
arguments in favor of each. There is no uniquely correct Gini coefficient.

3The figure shown here is taken from the translation [Gini, 2005]; I thank Sam Bowles for bringing it to my attention.
4in order for it to satisfy population symmetry it would have to be piecewise linear, as noted above.
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3. NOTES ON “NOTES ON THE GINI COEFFICIENT,” BY DEBRAJ

A point of historical interest—undoubtedly arcane to some—is that the worthy Corrado Gini (Gini
1914) produced no fewer than 13 Gini coefficients for our perusal. I’m not entirely sure what all
thirteen are but two of them seem to have survived the test of time and are widely used. The first is
the formula

G =
1

2µn2

n∑
i=1

n∑
j=1

|yi − yj|,

where the n stands for population, the y’s are incomes, and µ is their mean. The second is given by
the formula

G′ =
1

2µn(n− 1)

n∑
i=1

n∑
j=1

|yi − yj|,

a seemingly minor difference, dividing as it does by n(n− 1) instead of n2. So G and G′ agree ordi-
nally on all comparisons within any given population, while they could disagree across comparisons
with varying populations.

Is this worth a sleepless night or two? Not really, especially if you’re not devoted to teaching the stuff
with the care and precision which my erstwhile student (and now friend) Julia Schwenkenberg brings
to it. Julia was teaching her Rutgers students the fundamentals of inequality measurement and came
across the following example in the CORE Open Access textbook:5

“There are two people in the society and one has all the income . . . [This is] perfect
inequality, as you would expect,”

going on to observe that the Gini (or perhaps I should say, the Gini in their view) was therefore equal
to its maximum value of 1: a foregone conclusion, seemingly.6

But was it? Julia was well aware of the “population neutrality” principle underlying inequality mea-
surement, which stated as an axiom that population cloning of all individuals — while keeping their
incomes unchanged — “should not” change any Lorenz-consistent measure of economic inequality.
So the configuration in the text should exhibit no change in inequality if, instead, two people had one
unit each of income and the other two had none. But the latter configuration is surely less unequal
than one in which one person had two units of income and the other three had none. Ergo, the very
first situation should be less unequal than one in which one person out of four (as opposed to one of
out of two) had all the income.

And yet: if we agree with that, should there not be room for the Gini coefficient to rise some more
from its two-person value of 1? What is it doing at 1 already?

5For more detail on the CoreEcon project, see https://www.core-econ.org/.
6See https://bit.ly/3kB8KNN.

https://www.core-econ.org/
https://bit.ly/3kB8KNN
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This was intriguing enough (and confusing enough for all concerned) that Julia wrote to me about
it, especially since my textbook (Ray 1998) and landmark monographs such as Sen [1973] use the
formula for G, whereas the CORE text seemed to be using another formula altogether. After discus-
sions with Rajiv Sethi, and later Sam Bowles and Wendy Carlin, it soon emerged that “the” Gini in
the CORE text was G′, that it was a version favored by two of the CORE authors (Bowles and Carlin
2020), and indeed, that it hits its maximum value in the example above. The other one, G, does not:
it equals 1/2, well below its maximum value of 1.

Rajiv Sethi’s excellent notes on the subject (Section 2), to which this is a response, lay bare the differ-
ence. As already noted, both measures (and eleven others to boot) had been proposed by the prolific
Gini, so no claim to true inheritance could be advanced on that somewhat legalistic but otherwise use-
less basis, ”what did Gini really say?” — fortunately so, for many truths have been trampled underfoot
by such convenient excuses. Rather, we need to truly evaluate the measures from first principles to
advance the discussion, which is what Rajiv does in large part.

The measure G satisfies all the axioms that underly the Lorenz partial order; namely, population
and income invariance, as well as the transfers principle. The Lorenz order, in turn, is at the very
heart of inequality measurement and forms a welfare basis for it — see, among others, the work of
Atkinson [1983] and Dasgupta et al. [1973].7 G completes this partial order — see Thon [1982] for
an axiomatization. It is, to be sure, not the only complete order that completes the Lorenz: other
examples include the coefficient of variation or the Theil index — see Ray [1998] for more on these
matters. But G is one of them; it is Lorenz-consistent in the sense of satisfying the axioms that I’ve
just mentioned.

On the other hand, as Rajiv explains, G′ would like to highlight the fact that in the two-person example
given above, inequality has been stretched to its limit: how can things be any more unequal in that
two-person society? This brings us to what Rajiv, following Thon [1982], calls strong comparability:
“the range spanned by the index depends neither on total income nor on population.” In particular,
within any society with a fixed population, the index should be able to move from its minimum value
(0) to its maximum (1), so that the index recognizes clearly the upper limits to inequality for that fixed
population size. Clearly, G does not do this — it varies only from 0 to 1/2 in a two-person society.
Indeed, by the argument given five paragraphs ago, we can already see that no measure satisfying
the population principle and the transfers principle can be strongly comparable. In a gesture of
inclusiveness, Rajiv concludes:

“It is probably best if students are at least made aware of the existence and histori-
cal origins of both, and presented with the arguments in favor of each. There is no
uniquely correct Gini coefficient.”

7The characterization by Rothschild and Stiglitz [1970] of “increasing risk” is also relevant here, despite its focus on risk
and uncertainty; the two have parallel features.
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Given a choice between two incompatible desiderata, I can sympathize with Rajiv’s assertion that
there is no “uniquely correct” Gini. Indeed, given the enormous number of Lorenz completions at our
disposal, there is no uniquely correct measure of inequality even under the Lorenz axioms, let alone a
uniquely correct Gini. Every measure must be evaluated by the core ethical axioms they satisfy, and
we then need to reach into our own ethical system to see which set of axioms fit the best. So in this
sense, I agree with Rajiv.

That said, there are axioms and there are axioms. I have already mentioned the long and venerable
history of the Lorenz curve, which goes back to Lorenz [1905]. Its foundation is laid by a fundamental
set of axioms: population neutrality, income neutrality, as well as the transfers principle of Pigou and
Dalton. These axioms can and have been questioned; for instance, my work with Joan Esteban on the
measurement of polarization (Esteban and Ray 1994a) comes from dropping the transfers principle.
But as contributions to a welfare economics foundation for inequality measurement, these are the key
axioms, and all further explorations begin from them — or should.

The fact that G satisfies all the three axioms, while G′ as already noted fails population neutrality, is
a priori (though not yet definitive) cause for suspecting the credentials of G′. A noteworthy example
comes from Foster [1983], who writes down all the axioms (or “properties”) that underpin Lorenz
except for population neutrality, and then observes of the rest:

“In fact, since each property is a restriction . . . in isolation without reference to crosspop-
ulation comparisons, [they] admit even more measures than Fields and Fei [1978]
indicate. Consider the measure that takes the Gini coefficient index at even sized
populations, and the coefficient of variation index at odd. This absurd measure quite
clearly satisfies all [the] properties.

The above example serves to point out the desirability of a property which would co-
ordinate the indices into one cohesive measure. Another property [the population prin-
ciple] suggested by Dalton does this in a particularly natural way” (emphases mine).

As Foster correctly notes, the population principle is imposed to make the reader aware that we cannot
have potentially unrelated and therefore “absurd” measures on different population layers: they need
to be connected in a “cohesive” way. Foster goes on to introduce the very population neutrality
principle — due to Dalton and embedded in the Lorenz curve — that G satisfies and G′ does not, the
latter because it refuses to entertain the requirement that its comparisons within a population must be
contextualized in the space of all populations.

To see directly the failure in the cohesion of G′, consider again the CORE example, in which one
person gets all the income in a two-person society. According to G′ (and CORE), this situation is
just as unequal as one in which one person gets all in the income in a million-person society. To me,
this is indeed an example of the absurdity that Foster refers to when different population layers are
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not connected in any coherent way. Taking the example a step further, we must conclude that under
G′, a situation in which two persons share all the income in a million-person society is strictly more
equal than the two-person example in the text. This even more absurd consequence comes from the
additional application of the transfers principle, which G′ does satisfy.

Of course, G exhibits none of these strange behaviors. It would rank the one-in-two example as more
equal than the one-in-a-million example, and ditto with the two-in-a-million example.

Rajiv would respond that G fails strong comparability: it does not hit 1 when the two-person society
is stretched to its unequal limit. Well, I don’t see why strong comparability makes sense. Why must
a measure declare perfect inequality just because feasibility constrains a particular situation from
exhibiting still greater inequality? The latter is a property of the feasible set and should not influence
evaluation, just as a utility function is not affected by the budget set on which it operates. To explain
why G′ fails this desideratum, consider a two-person society in which either person can asexually
clone itself into two, with further income transfers possible among or across clones. Such cloning
is prohibited, and so all we can do in this society is transfer income across two individuals without
cloning either of them. Strong comparability then requires an inequality measure to hit its maximum
possible value when one person has all the income. But now suppose that a divine decree permits
cloning. Then the range of inequality values in the earlier two-person range would need to artificially
contract so as to accommodate the newly unequal possibilities that arise. In short, this is a case of our
measurement indicator responding to the feasible set.

In all of this, I am aware that my arguments do not constitute a logical attack on G′ in favor of G, in
the sense of claiming that there is some failure of Aristotelian logic in the very fabric of G′. There is
no such attack. But it is an appeal to the reader’s intuitive sensibilities via the discussion of axioms.
In fact, without an axiomatic system, anything goes: it’s a veritable free-for-all. We would be taking
all too literally Sen’s beautiful dedication to his daughters, at the start of On Economic Inequality:

“In the hope that they will find less of it, no matter how they choose to measure it.”

In a free-for-all, that utopian dream cannot happen, but once constrained by the spirit of a reasonable
axiomatic system, it can. That is the spirit in which I reject G′ in favor of G.

4. THE GINI COEFFICIENT AS A MEASURE OF EXPERIENCED INEQUALITY, BY SAM AND

WENDY

Thanks to Rajiv Sethi and Debraj Ray for their stimulating and clarifying memos. Our paper [Bowles
and Carlin, 2020] and the notes below present an alternative way of looking at the Gini coefficient(s).
Before turning to the substantive issues we begin with three pieces of background about how we came
to work on this, about Gini and his coefficient, and about ethics and the measurement of inequality.
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4.1. Background. Our colleague in the CORE project, Antonio Cabrales, gave his students in the
introduction to economics course at University College London the conventional definition of the Gini
coefficient, namely (here and throughout using the notation of our 2020 paper for consistency),

(1) GL =

∑i=n
i=1

∑j=n
j=1 |yi − yj|
2n2y

along with the usual summary (following Gini) that its value is 1 if one person has all the wealth and
zero if wealth is equally distributed. The students could not solve the toy example problems with
small n that Antonio had assigned them. After a certain amount of ‘check your calculations’ and a
lot of head scratching we realized that of course they could not make the problems work because GL

is not 1 when one person (in a finite population) has all the wealth; for example, in the case where
n = 2, GL = 0.5.

Our head scratching included a return to Gini’s original paper [Gini, 1914]. There he defined what
he called his “concentration ratio” as the sum of the absolute differences among the (unique non-
identical) pairs, which we call ∆, divided by the total number of such pairs, relative to mean wealth,
y, multiplied by one half. Hence,

(2) ∆ ≡
i=n∑

i=j+1

j=n−1∑
j=1

|yi − yj| so

(3) G =
∆

n(n− 1)/2

1

y

1

2
=

∆

n(n− 1)

1

y

from which we can see that G is the mean difference among all pairs in the population (the first term
in the expression in the middle of equation 1.2) divided by the mean value of y, giving us the “rela-
tive mean difference,” times one half. A feature of this measure is, Gini pointed out, that it satisfies
the condition that it varied from one (that he termed “maximum concentration” ) to zero (“minimum
concentration”) as also shown by [Deaton, 1997]. This representation of the Gini coefficient is con-
sistent with the clever expression for the share of the cake going to the least well off person in the
cake-cutting game of Subramanian [2002], of which we were unaware when we wrote our 2020 paper.

Gini showed that this quantity is equal to the area between the (then newly invented) Lorenz curve and
the perfect equality line divided by one-half in an infinite population. He provided the appropriate
step functions for both the perfect equality “line” and the Lorenz curve for an example of a finite
n = 14 population. Consistent with our paper, we designate the Lorenz curve-based spatial version
of the Gini coefficient as GL and Gini’s version of the concentration ratio in his equation 11 (from his
1914 paper, which is also our equation 1.3 above) as G. As Debraj pointed out, Gini also provided
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alternative measures (and many more have been proposed since). In their notes, Debraj and Rajiv use
G′ to refer to our G, and G (without superscript), to refer to our GL .

Maybe the differences that we have aired in these memos stem from our differing perspectives on
the relationship between one’s ethics and the choice of an appropriate measure of inequality. Debraj
writes “Every measure must be evaluated by the core ethical axioms they satisfy, and we then need to
reach into our own ethical system to see which set of axioms fit the best.”

Referring to the Lorenz curve Debraj writes: “Its foundation is laid by a fundamental set of axioms:
population neutrality, income neutrality, as well as the transfers principle of Pigou and Dalton... as
contributions to a welfare economics foundation for inequality measurement, these are the key ax-
ioms, and all further explorations begin from them—or should.”

This is one way to choose among competing measures. But we have been motivated, instead, primarily
by the desire to measure inequality as it is experienced by the members of a society, hence our term
for G: experienced inequality. This could be the basis of a normative evaluation; surely one’s ethical
stance on some distribution of wealth cannot be indifferent to how it is experienced by members of
the society. But it might also be an entirely descriptive measure for understanding such things as
subjective wellbeing, stress, political attitudes, and the like.

Debraj writes “there are axioms and there are axioms.” Our view of experienced equality suggests one
to add to the list. Axiom: Economic inequality is social, that is, it is a relationship between or
among people.

5. EXPERIENCED INEQUALITY

We all agree that there is no single right way to measure inequality. Which measure one uses depends
of course on the question for which the inequality measure is to provide an answer. This often turns
on what it is about inequality that one wishes to capture. In our paper we cite the polarization index
due to Joan Esteban and Debraj as an example of a different measure of inequality developed for
a specific purpose, to illuminate social conflict [Esteban and Ray, 1994b]. We also cited one of
Sam’s coauthored works on the polygyny threshold (from anthropology), which shows that the Gini
coefficient (either variant) fails to capture the expected relationship between wealth inequality and
polygyny, suggesting the need for an alternative measure.

In our paper, we illustrated the Gini coefficient, that is, G, as a statistic describing inequality on a
complete network, the edges of which are the differences in wealth between all pairs of the network
nodes. We found it helpful both in teaching and in testing our own intuitions to let inequality be
about the edges of the network rather than the nodes, that is, about pairwise differences in wealth,
not how much wealth each individual has. An example of the two approaches is in Figure 1, with the
inequalities counted in equation 1.3 on the left and equation 1.1 on the right.
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Figure 2. Experienced differences (left panel) as the basis for G and the edges used in the conventional
Lorenz curve-based measure GL (right panel).

If the nodes A, B, and C in Figure 1 have wealth 10, 4, and 3, the Gini coefficient given by equation
1.3 using the network representation in the left panel is 0.412. Using the network representation on
the right (that is, equation 1.1), however, the Gini is estimated as 0.274, which needs to be multiplied
by n/(n − 1) or 1.5 to get the Gini coefficient restricted to the differences among actual pairs in
the population (excluding the three “self-on-self” zero differences), as pointed out by Yitzhaki and
Schechtman [2013].

We made the case that represented in this way, G captures important aspects of how inequality is
experienced by the members of a society in which people are aware of the wealth levels of everyone
else. We also find the approach insightful as it allows us to measure experienced inequality in a
society in which the relevant comparison set of individuals is not all others, but instead all others to
whom one is connected in the network. For example, in a star network with a wealthy individual at
the center, there is much more experienced inequality than in a complete network for the same set of
nodes and levels of wealth at each node.

To sharpen our intuitions about inequality seen as pairwise differences among members of a popu-
lation, suppose that every day, individuals are randomly paired to interact—economically, socially,
in religious observance, and so on—with another member of the society. In the complete network
representation, one of each individual’s edges is selected at random. We are interested in the fre-
quency over a great many such random pairings with which a member of the population interacts with
a person of similar or different wealth, as we believe that the nature of these interactions will differ in
important ways if the wealth differences are significant.

To explore looking at inequality this way, let’s consider an economy with just two wealth levels
which, without loss of generality, we will set to zero and some positive number which is total wealth
y divided equally among r rich members of the total population of n. Total wealth is some given level
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of mean wealth multiplied by the size of the economy or y ≡ yn. Then the only unequal pairs in the
population are the r wealth holders interacting with the n − r individuals without wealth, with both
members of the pair experiencing a wealth difference of y/r. So, we have ∆ = r(n − r)yn/r and
equation 1.3 becomes

(4) G =
∆

n(n− 1)

1

y
=

r(n− r)yn/r

n(n− 1)

1

y
=

n− 1

n− r

from which we confirm that irrespective of population size, G = 1 when one person has all the wealth
and that inequality declines as wealth is redistributed so as to be shared among a larger number of
rich, that is, increasing r.

We can also see that holding constant the number of the wealthy, r,

(5)
dG

dn
=

1−G

n− 1
> 0 for G < 1

So G increases as the propertyless class increases (holding constant the size of the wealthy class). In
the limiting case where a single person owns all of the wealth, increasing the number of propertyless
does not affect the G. It is this limiting case where r = 1 so G = 1 that Debraj labels the “absurd
consequence” of measuring inequality by G. Finally, to focus on the edges of the network rather than
the nodes, we calculate the fraction δ of all pairs in which the two have a different wealth level,

(6) δ =
r(n− r)

n(n− 1)/2
=

2r

n
G

from which we see that if the population is divided into classes of equal size, then G itself is the
fraction of interactions in which the members of the pair have different wealth (because 2r/n = 1).

Note also that if there is just one wealth owner and one wealthless person, all of the interactions are
unequal δ = 2/n = 1 (there is just a single interaction). But as the propertyless class increases in size
the fraction of all interactions that are unequal falls. How does it come about, then, that G increases
with n (for a fixed number of rich households)? The answer is that as n rises (with r fixed) mean
wealth remains unchanged (by assumption), but the mean wealth of the rich increases, and so the
wealth difference between members of an unequal pair (that is yn/r) also increases.
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6. IS INVARIANCE TO POPULATION REPLICATION A DESIDERATUM FOR A MEASURE OF

INEQUALITY?

An attractive feature of the now-common variant of the Gini coefficient (equation 1.1, GL) is that
(for populations of any size) it is equal to the area between the perfect equality line and the Lorenz
curve divided by one-half . But as equation 1.1 makes clear, GL includes in the measure of soci-
etal inequality the “equality” of one’s own wealth with one’s own wealth (what we term the “fictive
zeros”), violating our “economic inequality is social” axiom (see Fig. 2). Because as the term is
conventionally used, societal inequality concerns relationships between people and is meaningless in
a “perfectly equal” one-person society (where GL = 0), we find this aspect of GL to be a reason not
to use it where it differs appreciably from G.

The payoff to including the fictive self-on-self equality comparisons in the measure of societal in-
equality is said to be that, defined in this way, it conforms to another axiom (“population symmetry”
in Rajiv’s memo), namely, that the measure of inequality should be invariant to replication of its
members, so that inequality would be the same (maximal concentration) in a two-person society in
which one held all of the wealth, in a four-person society in which two people equally shared all of the
wealth, or if one thousand equally shared the wealth with another thousand who were without wealth,
and so on.

Thus, the counterintuitive fictive zeros are the price of invariance to population replication, an axiom
that is thought to be sufficiently intuitively appealing to justify setting aside the problem of including
the self-on-self comparisons in the inequality measure.

However, from the perspective of experienced inequality, invariance to population replication is a bug
not a feature of equation 1.1. Let’s think about three economies with 2, 4, and 6 people, in each
of which, half of the population owns all of the wealth in equal shares, and as before, total wealth
is proportional to population size. Is it sufficiently obvious that the three economies are “equally
unequal” with the level of equality unaffected by population replication that violation of this axiom
disqualifies an inequality measure?

In all three societies G is also equal to the fraction of all interactions that are between people of
differing wealth levels (because 2r = n, from equation 2.3, δ = G). This falls from 100 percent when
n = 2 to two thirds for n = 4 and to 3/5 for n = 6. The wealth difference between the members of the
unequal pairs is unchanged as the population replicates (because n/r by design is unchanging). The
only thing that has changed is that in the larger population people experience interactions with others
of the same wealth level more commonly. Our intuition is that G correctly shows that experienced
inequality in the larger societies is less, and that as a result, the invariance to population replication
axiom is unappealing or at least not so intuitive that its violation would disqualify G.
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To understand what the invariance to population replication means, think about how the population
might replicate and the conditions under which inequality would be invariant. In the above example,
let the number of rich and poor increase from 2 in each to 4 in each but now, let the 2 poor and the
2 rich form single households and so on. Then because there are just two households, one rich and
the other poor, relative between household inequality would remain unchanged. The reason is that the
additional within class pairings of equals – which leads G to fall as n and r both rise proportionally
– would all be within these two fictive households and hence would be ignored in the population-
invariant GL measure of inequality. In the absence of the fictive formation of households or some
equivalent device, inequality falls as the population is replicated due to the more than proportional
increase in the number of pairings (edges in Fig. 1) with zero inequality.

Let’s now reconsider what Debraj finds “even more absurd” about G, namely that a thousand-person
society with just two wealth holders is more equal than a 2-person society with one person holding
all the wealth. We agree that these extreme cases challenge the intuitions. In the large population,
the vast majority of interactions are among people with the same wealth while in the latter none are.
This does not settle which is “really” more unequal – where they exist, the wealth differences in
the thousand-person society (500 times mean wealth rather than twice) are much greater than in the
two-person society. But the example does suggest that it is far from absurd that the former would be
perceived in some sense as more equal than the latter.

For more than one wealth holder, both G and GL increase as the number of propertyless increases.
For example, for a given r = 2, G is 0.5 for n = 3 and 0.95 for n = 20, while GL is respectively 0.333
and 0.90. It would be helpful to clarify the intuition for inequality increasing with increasing numbers
of the propertyless. Once clearly articulated, we could then assess whether the best way to capture
that intuition is to count self-on-self comparisons as if they were real social relationships in which
wealth inequality is entirely absent, or instead use a measure that captures the very same intuition, but
does not count the fictive zeros.

The above discussion also recommends a network representation of inequality, if capturing the experi-
ence of inequality is an objective. We have motivated our examples by a random pairing environment
equivalent to a complete network. But societies differ greatly in who interacts with (or even is aware
of) whom. For example, if the social structure in question is a star with the wealth holder at the center,
then the fraction of one’s interactions that are with someone of a different wealth level (all of them,
δ = 1) is a constant as the size of the network grows, and as a result δ will be greater (for n > 2) than
in the complete network that we have used above as our illustration.

Debraj’s intuition is not incorrect (how could it be?) But it is far from obvious to us. And competing
and quite different intuitions may also be appealing.
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