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Preface

This monograph describes a theory of coalition formation. I would
like it to serve as an open invitation for young theorists to enter
this fascinating and important line of inquiry. My own account of
this theory is naturally selective and largely based on research that
I have conducted, so I cannot hope to have been comprehensive in
any way. I am uneasily aware, for instance, of the vast stylistic and
expositional differences between this work and my earlier book,
Development Economics. Individuals seeking the same degree of
coverage will certainly not find it here. Yet I hope that in some
way this short book will have enough in it to attract, provoke, and
even be occasionally useful.

The basic objective of this book is easy enough to describe. I
outline a theory of coalition formation, a process by which individual
agents come together to achieve collaborative though occasionally
compromised goals. The underlying premise of the theory is simple
yet compelling. Left to their own devices, individuals will generally
engage in actions that fail to adequately internalize the negative
externalities imposed on one another. The explicit agreement to
form a coalition may be viewed as an agreement to be jointly
sensitive to those externalities, and to take actions to try and lower
them.

A theory of coalition formation that starts from this premise can
proceed along one of two broad lines. First, the grouping of
individuals into coalitions may simply represent a certain degree
of consensus, with no binding agreements involved. In such
a line of inquiry, the principal focus of attention would be the
actual strategies that sustain such agreements, as well as the “best”
agreements sustainable in nonbinding play. A leading framework



viii Preface

for such a study is the theory of dynamic games (especially repeated
games).

A second view, central to the tradition of cooperative game theory, is
that an agreement, once made, is binding. Just how it is binding is not
really up for discussion. It may be that there are enough strategic
checks and balances (in repeated play, for instance) to keep the
agreement together. Or perhaps social conventions and the threat
of social sanctions uphold an agreement. Or perhaps an agreement
can be legally enforced in ways that — while possibly fascinating to
a lawyer — are not of great interest to the game theorist. The focus
is on the agreements themselves, and especially on the process by
which those agreements are reached, as opposed to the way in which
those agreements are implemented.

Obviously, the two views are complementary. They study two
distinct aspects of the theory of coalition formation.

This book is a contribution to the second view. In this sense,
then, my questions belong to the old-fashioned, classical lineage of
cooperative game theory. But the approach is very different. While
agreements once written are presumed to be binding, the process
of achieving those negotiations is assuredly not. Proposal and
counterproposal, acceptance and rejection, objection and agreement,
sidepayments and subcoalitions, all play a role in the strategic
negotiations that precede the writing of agreements. Thus much
of the material in this book represents a marriage of noncooperative
game theory and its more traditional, cooperative counterpart, and
I hope — as the title suggests — that it will provide a useful game-
theoretic perspective on coalition formation.

As we shall see, the process of arriving at an agreement is far from
trouble-free, even in a world of perfect and complete information.
While there are clear incentives for all parties to come together
in the interests of minimizing externalities and thereby achieving
efficiency, there is also room for subterfuge and sabotage, for
the formation of intermediate coalitions that may profit from an
inefficient situation. These possibilities influence a small set of
questions that run through the book: What agreements will be
written? Which coalitions will form? Are binding agreements
invariably efficient?

This book is a substantial outgrowth of the inaugural Richard Lipsey
lectures given at the University of Essex in December 2004. I have
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tried to provide a self-contained and rigorous account, emphasizing
the conceptual issues involved but without skimping on the neces-
sary formalism. With interest in economic theory at an all-time low
(for good reason, some would say), I don’t expect the battle-scarred
veteran economist to give the more difficult arguments more than
a cursory once-over. But I do hope that the younger, more open,
non-bottom-line oriented generation of economic theorists will read
some of this material with interest, with an eye to taking the story
much further, and in many more imaginative directions than I could
ever expect to address.

I am immensely grateful to Abhinay Muthoo, who — as Department
Chair at the University of Essex — first invited me to give these
lectures, and then (before I could react swiftly enough) talked me
into writing this book. Thank you Abhinay, I would have never
done it otherwise. I am also very grateful to Venkataraman Bhaskar
and Sanjeev Goyal, now ex-Essex but certainly leading figures in the
Economics Department when they were there, who offered constant
encouragement and support when I dithered with the choice of
subject matter for the Lectures. Yes, you can pull off a public lecture
on game theory, they said. I hope they were right.

My greatest intellectual debt is to Rajiv Vohra. He and I have been
thinking together about the issues in this book since 1988. Half the
book is based on my joint work with him and while he graciously
encouraged me to write this monograph on my own, it is only right
that I acknowledge, here in unambiguous print, that I view him
as possessing the moral equivalent of full coauthorship rights (and
obligations in case of any errors).

I want to especially mention three other influences on this book:
Kalyan Chatterjee, Bhaskar Dutta and Kunal Sengupta. Together
we wrote a four-author paper that I am proud of and that served as
foundation — implicit or explicit — for many of the ideas presented
here. It was a great intellectual experience (and better yet, fun) to
work on these ideas together at the Indian Statistical Institute in the
1980s, where Bhaskar, Kunal and I were at the time, with Kalyan a
regular visitor.

Two other coauthors figure prominently in this book: Hideo Konishi
and Kyle Hyndman. I met Hideo when he visited Boston University
in 1997. It didn’t take long to see that we had several interests
in common, and we worked together on a paper that makes an
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appearance in this book. Kyle Hyndman (as a graduate student at
NYU) and I worked on another paper that plays a role in this book.
I’m very grateful to both Kyle and Hideo for allowing me to use
their research.

I want to record my gratitude to some of the other individuals whose
research has (indirectly or directly) shaped my own interests. My
somewhat narcissistic focus notwithstanding, several of them are
mentioned in this book. It couldn’t be otherwise. I especially have
in mind Francis Bloch, Doug Bernheim, Joan Esteban, Armando
Gomes, Peter Hammond, Matt Jackson, William Lucas, Roger My-
erson, Ariel Rubinstein, David Schmeidler, Lloyd Shapley, Robert
Wilson and John von Neumann. (I haven’t met all these individuals,
at least one of them for demographic reasons, but that doesn’t
matter.)

I thank Anja Sautmann for her careful reading of the manuscript
and suggestions for better exposition. I am grateful to the London
School of Economics, STICERD in particular, for hosting me during
a wonderful sabbatical year in which the writing of this book began.
I thank Luis Cabral and the Stern School at New York University for
providing me with a hideaway: an office to retreat to once in a while
to think about this book. And I warmly thank Sarah Caro and Carol
Bestley at Oxford University Press: Sarah for her encouragement
and good cheer through the inevitable delays in writing, Carol for
her help with typesetting. While on this last subject, salaams are
due to the great Donald Knuth. How would one write this book (or
any book) without TEX?

No words suffice to thank my wife Nilita and my two children,
Riyaaz and Zayira. All I can say is I’ve never believed you can write
a good book when you’re happy. I hope I’m wrong.
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CHAPTER 1

Introduction

A group of agents get together to write one or more agreements.
Each agent controls some set of actions. If a subset of the agents
(possibly the entire set of agents) forms a coalition, this means that
they agree to behave “cooperatively”, to choose and implement
a joint course of action. If more than one coalition forms, then
players across such coalitions do not proceed jointly; their actions
are chosen independently and noncooperatively. We are interested
in the equilibrium of coalition formation. Which coalitions will
come about? Is there a presumption that such coalition formation
will be efficient? If so, under what circumstances? If not, can one
place bounds on the extent of inefficiency that may occur?

A variety of situations fits this description well. Take, for instance,
the formation of customs unions. A union will cooperate on the
relevant actions: tariff setting, the imposition or removal of intra-
union boundaries on input flows, or the taking of retaliatory (or
indeed provocative) action. Across unions, in contrast, there is
noncooperative play.

Or consider cartel formation among some firms in an industry. The
cartel members will cooperate in output or price-setting, or in the
setting of other relevant parameters, such as quality. Across firms
in different cartels all such bets are off.

Or consider the signing of environmental agreements across regions
or countries. Again, within an environmental coalition members
presumably agree to abide by emission protocols, while across
coalitions there is no such explicit promise.
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I could go on. Protectionism, conflict, strategic voting, R&D
agreements, reciprocity, the formation of political parties: these
situations and many more have the joint cooperate/compete feature
that I emphasize here. In some of these situations a single coalition
— the grand coalition — may well form, and there is full cooperation.
In others no coalitions may form, so that agents stay on their own.
But these outcomes must be viewed in their ambient context: that
there is inevitably potential for various mixes of cooperation and
competition. The analysis of this mixture — and the outcomes it
generates — is the subject of this monograph.

I don’t have an infinite amount of space — or even a great deal of
it — so I am going to explicitly lay down two central restrictions
at the very outset. I am going to study situations in which there is
no incompleteness of information, and in which the agreement to
cooperate can be made binding at no cost. These restrictions take me
squarely into the arena of classical cooperative game theory, but for
reasons that I shall presently explain, I will need to go significantly
beyond that paradigm.

Do I believe in these restrictions? I certainly do not, in that I
recognize the existence of an entire gamut of questions based either
on the presumption that binding agreements cannot be written, or on
a chronic failure of complete information. An enormous literature
in game theory is based on one or the other (or both) of these two
failures, and I have nothing to add to that literature here. At the
same time, it seems to me that there is a full range of issues —
including the ones I’ve mentioned above — for which the question
of incomplete information is secondary, and for which it isn’t a
bad thing to presume that an agreement will be honored. This
monograph is based on the premise that there is much to be explored
in such a situation, and that existing theory falls short in achieving
such an exploration. (I shall soon explain why.)

The questions I ask are certainly not invented by me. The issues of
coalition formation and negotiation (in a context where agreements
can be made binding), are central to the theory of strategic behavior,
and were first explored under the umbrella of “cooperative game
theory”. That theory presumes that binding agreements can indeed
be costlessly written, and seeks to understand the agreements that
will, indeed, come about. The Nash bargaining solution, the core,
the Shapley value or the stable set of von Neumann and Morgenstern
are only a few of the many different solution concepts that have been
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advanced to answer the question of equilibrium agreements. Some
of the greatest minds in the subject — John von Neumann and
Oskar Morgenstern, John Nash, Ariel Rubinstein, Lloyd Shapley,
Robert Aumann and Roger Myerson, to name some of them in
no particular order — have been concerned with the question of
describing cooperative agreements. It is certainly possible that the
process of arriving at such agreements may be noncooperative, but
nonetheless it was no problem for any of these authors to visualize
situations in which an agreement, once made, could be costlessly
implemented. Yet the subsequent literature has decidedly moved
away from cooperative game theory. It is interesting to speculate
on the decline of that theory. There are several possible reasons for
this, but I will highlight three.

First, there has been great success with the development of solution
concepts for nonbinding agreements, at the heart of which lies the
Nash equilibrium. The beauty and utility of the Nash equilibrium
concept has lured — and quite understandably so — a great many
social scientists into studying its applications. At a more theoretical
level, Nash equilibrium has been stretched in both directions, with
notions such as rationalizability broadening the concept, and others,
such as subgame perfection or sequential equilibrium serving to
refine it. It may still be fashionable to pay lip service to von
Neumann and Morgenstern’s monumental Theory of Games and
Economic Behavior, but much (indeed, most) of that book is currently
in disuse as far as modern, “mainstream” game theory is concerned.

Second, it appears that Ronald Coase’s work has, at least to some
extent, pushed the profession away from the study of binding agree-
ments, or at least the study of such agreements under conditions of
complete information. Provided that all available information is at
hand to all parties and that binding agreements can be written, Coase
(1960) asserted that equilibrium bargains must be efficient. In fact, if
payoffs can be freely transferred across agents, then such efficiency
must typically imply a determinate course of action independent of
bargaining protocol or the distribution of bargaining power, these
characteristics only determining how the resulting surplus from the
efficient arrangement is divided among the agents. To be sure,
if no sidepayments are possible, then the particular outcome will
generally vary with bargaining power, but nevertheless it will still
be Pareto-efficient. This is the well-known “Coase theorem”.
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The Coase theorem implies that if you must look for strategic
failures of efficiency, whether in markets or in other institutional
settings, you must study situations in which information is less
than complete, or binding agreements cannot be written. Of course,
such settings are important and widespread in the social sciences,
and the literature studying inefficient outcomes in such contexts is
enormous.

Yet there appear to be numerous situations in which agreements
could be written, and the relevant information is at hand to all
parties, yet the division of society into opposed coalitions, and the
consequent inefficiencies that such divisions entail, are endemic. Of
course, it is logically possible to maintain the somewhat stubborn po-
sition that in all such situations there must be some incompleteness
of information or some dimension along which a binding agreement
cannot be written. But there is another view, and this is what
I wish to explore: that while an agreement, once reached, can be
costlessly implemented, the negotiation process leading up to it must
be fundamentally modeled as a noncooperative game. Moreover,
there is good reason to believe that in many situations, the outcome
of that noncooperative game may be inefficient, and so, therefore,
are the agreements that are finally implemented.

Even though I do not claim widespread applicability and ultimate
definitiveness for the particular analysis in this book, this point of
view is important.

Finally, as Chapter 2 and the rest of this book will clarify at various
points, the way in which cooperative game theory has traditionally
developed makes it difficult (and occasionally impossible) to apply
that theory to many situations of serious strategic interest. For
instance, the characteristic function is a fundamental device in the
theory of cooperative games. The characteristic function essentially
assigns a value, or worth, to every coalition of agents in a game, and
this is the starting point for various solution concepts. As I argue
in Chapter 2, this is a perfectly reasonable shorthand for a variety
of economic and political situations, but it may be an awkward
shorthand for those situations in which cross-player externalities
are of fundamental significance in the very determination of what
coalitional “worth” means. Unfortunately, many — perhaps most
— situations of interest to the game theorist falls into this category.
Therefore cooperative game theory as it has been traditionally
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developed fails to answer its questions across a broad enough
canvas, important though those questions may be.

A good part of my task in this monograph will be to reformulate
and redevelop the cooperative approach in a more general and
applicable context. To do so, I will borrow ideas from both
cooperative and noncooperative game theory. Far from suggesting
that the ideas here represent a radical break from these theories, I
extend (and often merge) the two theories in developing the analysis
described here.
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The Setting
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CHAPTER 2

Ingredients for a Theory of Agreements

2.1 Introduction

A central question in cooperative game theory is to describe the set of
allocations which agents in the game might jointly agree to, and the
set of agreeing groups or coalitions that arise as a result. Hence the
appellation “cooperative”. At least in a one-shot static context, the
ground rules are simple: any agreed-upon allocation among a subset
of players (including, perhaps, the grand coalition of all players)
can be made binding at little or no cost. The mechanics of writing
such a binding agreement take a back seat in these proceedings.
Indeed, this presumed ability to write binding agreements at will,
without worrying about how such agreements are to be enforced, is
what distinguishes cooperative game theory from its better-known
counterpart, the theory of noncooperative games.

The project sounds innocuous enough, but of course there is the
small matter of “agreeing upon” the allocation. One might leave
such matters to the players themselves, as Ronald Coase effectively
did, arguing that somehow or the other the players in question must
alight upon an efficient allocation. Or — following the pioneering
efforts of John von Neumann and Oscar Morgenstern — one might
be interested in analyzing the negotiation process itself. That is the
subject of this monograph.

In this chapter, we introduce the different ingredients that go into
the theory to be developed. First, we introduce and then signifi-
cantly broaden a central concept in cooperative game theory: the
characteristic function. We then describe two ways of thinking about
negotiations and agreements, one based on noncooperative theories



10 Ingredients for a Theory of Agreements

of bargaining, the other on the notion of blocking coalitions. Next,
we discuss the need for theories based on farsightedness. Section 2.5
illustrates these points through the use of two examples. We end the
chapter by discussing various assumptions regarding commitment
ability, and distinguish in particular between models based on
irreversible commitments and theories of binding agreements based
on ongoing renegotiation.

2.2 Characteristic Functions and Cooperative Games

The central object over which negotiations occur is easy enough to
write down. It is our usual notion of a game in normal or strategic
form, with the difference that players are able to implement binding
agreements. Formally, let N be a set of players, Ai the set of actions
for player i with product set A, and ui : A → � player i’s payoff
function. We seek a profile of actions a = (a1, . . . , an) that players
would “willingly” be signatories to.

Oddly enough, a visitor to the land of cooperative game theory is
unlikely to see this starting point. Instead, she would most likely be
introduced — in the words of Shubik (1983) — to the “cornerstone of
the theory of cooperative n-person games,” the characteristic function.
Continuing to quote Shubik, “[t]he idea is to capture in a single
numerical index the potential worth of each coalition of players.
The characteristic function is, in a sense, the final distillation of the
descriptive phase of the theory” (1983, p. 128).

The idea behind the characteristic function is extremely simple.
Attach to each nonempty subset of players, or coalition, a set of
possible payoff vectors for the players in that coalition. Formally,
for each nonempty S ⊆ N, a characteristic function U attaches a set of
|S|-dimensional vectors U(S). The Shubik description above actually
refers to the special case of a transferable utility (TU) characteristic
function. Such a function attaches to each coalition S a number v(S),
describing the overall worth of that coalition. U(S) is then the set of
all divisions of that worth among the players in S. Our more general
formulation handles nontransferability or limited transfers, broadly
referred to as the NTU case.

How is a game in strategic form “converted” to a characteristic func-
tion? The “standard approach” pioneered by von Neumann and
Morgenstern (see also Aumann (1961) and Scarf (1971)) attempts to
define payoffs available to each coalition by means of a simplifying
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heuristic. For instance, theα-characteristic function is generated from
the original game by allowing a payoff vector v to lie in U(S) if and
only if S has a joint strategy that guarantees its players at least v, no
matter what players elsewhere do.1

The great virtue of this conversion is its simplicity. It makes
the worth of a coalition independent of the ambient environment.
Moreover, in many cases it represents a perfectly sensible first cut.
The characteristic function works well when externalities across
coalitions can be safely ignored.

When externalities are salient, however, the characteristic function is
an odd device to say the least. The function is essentially constructed
on the presumption that a coalition does not expect to receive more
than what it does when outsiders act to sabotage this coalition as
best as they can. Of course, there is no reason why the outsiders
should behave in this bloodthirsty fashion, and there is no reason for
the deviating coalition to necessarily expect or fear such behavior.2

Consider, for instance, a static Cournot duopoly. There are three
coalitions: the grand coalition and the two singletons. What
payoff can a single firm obtain under the derived α-characteristic
function? Well, if its rival can produce enough output to drive
price down to cost (typically assumed in all textbook examples),
then the answer is simple: zero or less. But this is clearly absurd:
by breaking off negotiations, a firm should surely be able to look
forward to Cournot–Nash payoffs in the resulting noncooperative
environment.

Matters are, of course, far more complicated when there are more
than two players and nonsingleton subcoalitions might form. A
principal objective of the theories we develop is to handle such
cases, but the main point in the present discussion is simply to
show that simplistic conversions to characteristic functions are
misleading or sometimes plain wrong. It is even possible that the
use of the characteristic function among cooperative game theorists

1Another way of making the conversion is to define a β-characteristic function; see,
e.g., Shubik (1983, p. 136–138) for a discussion. The criticism we develop in the
main text applies with equal force to this conversion as well.
2Neither can one justify this on the grounds of finding a conservative solution.
Making things more conservative for a coalition will make things easier for
another coalition to which this coalition might object, and this zigzag of alternating
conservatism and expansiveness will typically echo its way through chains of
objections and counterobjections.
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is the single most important cause of its neglect elsewhere in the
profession.

While I can’t speculate on just why von Neumann and Morgenstern
adopted this device, a perusal of their monumental Theory of Games
and Economic Behavior (1944) yields interesting insights. After their
justly celebrated foray into decision theory under risk, and some
general remarks on games, they embark on the topic of zero-sum (or
equivalently, constant-sum games) on p. 85. This journey continues
till p. 504. Thus more than 400 pages of their 740-page book is devoted to
zero-sum games.

Is it merely a coincidence, then, that the device of reducing a strategic
game to a characteristic function makes far better sense in a zero-
sum game? (My coalition’s loss is your complementary coalition’s
gain, so it is reasonable for your coalition to minimax mine, and for
mine to behave on that presumption.) The question is rhetorical.
Of course it isn’t a coincidence. Indeed, it is amply clear that by
the time von Neumann and Morgenstern take up general games on
p. 504, they are too enamoured of the characteristic function to let
go.

Of course, this isn’t to say that they ignore the problem. They take
it up explicitly on p. 540:

The desire of the [complementary] coalition −S to harm
its opponent, the coalition S, is by no means obvious.
Indeed, the natural wish of the coalition −S should not
be so much to decrease the expectation value . . . of the
coalition S as to increase its own expectation value.
These two principles would be identical . . . when Γ is a
zero-sum game, but it need not be at all so for a general
game . . .

I.e. in a general game . . . the advantage of one group
of players need not be synonymous with the disadvan-
tage of the others . . . In other words, there may exist
an opportunity for genuine increase of productivity,
simultaneously in all sectors of society.

. . . Indeed, this is more than a mere possibility — the
situations to which it refers constitute one of the major
subjects with which economic and social theory must
deal. Hence the question arises: Does our approach
not disregard this aspect altogether? Did we not lose
this cooperative side of social relationships because of
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the great emphasis which we placed on their opposite,
antagonistic side?

Having demonstrated that they are very aware of the limitations,
they go ahead anyway. Two defences are mounted, neither very
satisfactory. First, they argue that “inflicting losses on the adversary
may not be directly profitable in a general game, but it is the way
to put pressure on him. He may be induced by such threats to
pay a compensation, to adjust his strategy in a desired way, etc.”
(p. 541). This is obviously not convincing at all, or at the very least
would require folk-theorem-like arguments in a dynamic setting,
which then puts us into a different strategic form game altogether.
The authors aren’t convinced either: “It must be admitted, however,
that this is not a justification of our procedure — it merely prepares
the ground for the real justification which consists of success in
examples” (p. 541).

Their second defence is that all games may be viewed as constant-
sum anyway, provided that sidepayments can be made in a trans-
ferable manner. This Coaseian line of reasoning has its flaws,
however. Once a coalition moves off to be on its own, one cannot
continue to assume that efficient sidepayments will be made across
coalitions. Once again staying within the one-shot context, all
unilateral payments are part of a system of binding agreements:
if these are indeed being made to or from coalition S, then S isn’t a
coalition on its own! We haven’t yet defined what it means for
a coalition to be on its own, but whatever that might mean, it
must imply nonbinding play between that coalition and the “outside
world”.

Von Neumann and Morgenstern conclude their discussion thus: “In
spite of all this, the reader may feel that we have overemphasized
the role of threats, compensations, etc., and that this may be a one-
sidedness of our approach which is likely to vitiate the results in
applications. The best answer to this is . . . the examination of those
applications”.

Indeed, we will examine some applications in this monograph.
Nevertheless, it is best to state our final view as quickly as possible.
There are situations in which characteristic functions may be useful:
those in which there are genuinely no externalities across players,
or when the sum of payoffs is constant. Indeed, many such
situations come to mind: the provision of local public goods, voting
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games, bargaining, or endowment-trading games with no external
effects. We shall also see that a consideration of characteristic
functions provides useful methodological steps towards a more
general analysis. But having stated these points, it must also be
asserted clearly that characteristic functions must be dispensed with
in a genuine externality-ridden world, especially if the theory of
cooperative games is to have any lasting effect on the profession at
large.3

2.3 Two Approaches to Coalition Formation

The next ingredient concerns methodology. This book studies two
approaches to coalition formation. The first approach is close to the
“standard” methodology of game theory in that the entire process
of coalition formation and writing binding agreements is itself
modeled as a traditional noncooperative game. Protocols exist for
individual proposals and individual responses, and every proposal
is made by, or accepted or rejected, by an individual.

Part 2 of the book epitomizes this approach. While agreements
may be fully cooperative and binding provided all parties agree, the
process of agreement may itself be modeled as a noncooperative
game. Such a game is described by a process that selects proposers
and responders according to a protocol. A proposer attempts to form
a coalition — perhaps the grand coalition of “full cooperation” —
by making a proposal for that coalition to form. Attention then
shifts to the members of that coalition, who must either accept or
reject the proposal. Acceptance means that the coalition in question
has formed, and the negotiation game continues with the remaining
set of agents. Rejection means that the very same set of players
continues into the next round, and the protocol selects a fresh
proposer.

In Part 3 of the book we take up a second approach, one more in line
with the traditional theory of cooperative games. Under this view,
coalitions are treated as fundamental units. While proposals may or
may not be made by individuals or groups, attention is deliberately
not placed on how the proposals come about. Responses to such pro-
posals are firmly grounded at the coalitional level, but not through

3Early attempts to extend the idea of characteristic functions to incorporate
externalities include Lucas (1963), Thrall and Lucas (1963), and Rosenthal (1972).



2.4 Farsightedness 15

an explicit game form based on individual moves. Objections will,
instead be studied as coalitional blocks.

The two approaches are based on distinct philosophical foundations.
The ”blocking approach” that we borrow and adapt from classical
cooperative game theory treats coalitions as fundamental behavioral
units. That isn’t to say that individuals don’t matter — they certainly
do — but there isn’t an explicit decision-theoretic foundation to
these models, based firmly on methodological individualism. In
contrast, what we shall call the ”bargaining approach” to coalition
formation has strong decision-theoretic foundations, grounded at
the individual level.

2.4 Farsightedness

Central in all we do is the notion of farsightedness. Whether based
on blocking or bargaining, a theory of group formation must come
to grips with the possibility that agents look beyond the immediate
consequence of their own actions. In their paper on the strategic
formation of bilateral links, Aumann and Myerson (1988) observe:

When a player considers forming a link with another
one, he does not simply ask himself whether he may
expect to be better off with this link than without it,
given the previously existing structure. Rather, he looks
ahead and asks himself, ‘Suppose we form this new
link, will other players be motivated to form further
new links that were not worthwhile for them before?
Where will it all lead? Is the end result good or bad for
me?’

Similarly, in any theory of group formation, a player or group
of players breaking off negotiations must do more than simply
presume that they will be engaged in a noncooperative game with
the resulting complementary coalition. They must be prepared for
two kinds of possible repercussions:

[1] The “deviant group” must be aware that (until they have signed
some agreement of their own) they are potentially vulnerable to
further deviations by members of their own group.

[2] In addition, the group must attempt to predict the coalition
structure that arises elsewhere and not just presume that the larger
group they have broken from will simply band together.
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It is worth noting that the considerations raised in [1] are similar to
issues that arise in coalitional refinements of nonbinding equilibrium
play. Indeed, the notion of a coalition-proof Nash equilibrium
(introduced in Bernheim, Peleg and Whinston (1987)) is based
squarely on a formalization of [1], so that potential coalitional
deviations are tempered by the realization that such deviations may
be “susceptible” to “further” deviations.4 Parallel considerations
apply to the notion of blocking in cooperative games: might a block
not be subjected to further blocks?5

But item [2] is distinctive, in that it generally applies to models of
binding agreements, even in a one-shot setting. If some agents break
off negotiations, surely the remaining agents are aware of this fact,
so that repercussions of some sort are to expected? In contrast,
this issue cannot arise in a one-shot model of nonbinding play: in
effect, the actions of the complementary set of players are taken as
“given”.6 With binding agreements, the very fact that a subgroup
has moved off from the negotiating table allows the complementary
group to change their behavior, and so it must be accounted for by
the “deviating” subgroup, even in a “one-shot” theory.

Observe that the distinction between characteristic functions and the
extended versions that incorporate externalities (discussed earlier)
is important for item [2]. With characteristic functions, the comple-
mentary coalition may react to a coalitional deviation, but whether
or not it does so is entirely irrelevant to the members of the deviating
party : their worth does not depend on it. With externalities across
players, however, the behavior of the complementary coalition
becomes important.

2.5 Two Examples

I use two examples to illustrate some of the main points made so
far. I will invoke these examples again at later stages in the book.

4Some of these words are placed in quotes because such refinements are not
(necessarily) based on any sort of real-time dynamics; they are restrictions on
the credibility of deviations.
5See, e.g., Aumann and Maschler (1964), Ray (1989), Dutta and Ray (1989, 1991),
Dutta, Ray, Sengupta and Vohra (1989), Mas-Colell (1989) and Greenberg(1990).
6To be sure, similar considerations would crop up in noncooperative games when
they are played over time.
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2.5.1 Oligopoly. Several Cournot oligopolists produce output at a
fixed unit cost, c, in a homogeneous market with a linear demand
curve: p = A−bx. They are free to form coalitions among themselves,
and this includes the option of forming the grand coalition of all
players. Recall that by standard calculations, that the Nash profit
accruing to a single firm in an m-player Cournot oligopoly is

(A − c)2

b(m + 1)2 =
D

(m + 1)2 ,

where D ≡ (A − c)2/b.

Indeed, this value is precisely the worth of a particular coalition
if it is immersed in an environment with m coalitions altogether.
Notice how different it is from a characteristic function. In such a
function, the worth of a coalition would typically depend on the
characteristics of that coalition. This example lies at the opposite
extreme in that the worth of a coalition does not depend on the
coalition itself, but on the number of all coalitions in society. This sort
of “extended characteristic function” will be referred to as a partition
function; worths will depend on the entire coalition structure.

Let us work briefly with this example without imposing any
particular behavioral model just yet. Suppose that there are just
three firms in all, deciding whether or not to form a cartel. If they
do, they will earn monopoly profits, which from the expression
above equals D/4. Obviously, in any proposed agreement between
the three at least one of the firms must earn no more than D/12.
What should this firm do?

Von Neumann and Morgenstern’s characteristic function tells us
that if this firm breaks off, it should anticipate whatever it is that the
other firms can hold it down to. But this last number is zero, for it is
certainly the case that the other two firms can flood the market and
drive prices down to zero. So the characteristic function predicts
that our firm should not object to any nonnegative return, however
small. This is clearly absurd.

On the other hand, suppose that our firm anticipates that in the
event of its defection, the other two firms will play a best response
to the defector’s subsequent actions. This implies that following the
deviation, we are in a duopoly, where the deviant’s return, using
the general expression above is D/9. This exceeds D/12.
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Does this mean a deviation from the three-player coalition is then
justifiable? Not really: there are other considerations. Study the
situation facing the two remaining firms once our deviant leaves.
Their total return is D/9 as well, which means, of course, that one of
them can be earning no more than D/18. If this firm were to leave
and induce the standard three-person oligopoly, its return would be
D/16. So faced with the irrevocable departure of one firm from the
original agreement, the remaining firms will split up as well. But in
this case, the original deviant gets D/16 too! So each member of the
three-firm coalition should anticipate receiving D/16 as a result of
such a deviation. It follows that the grand coalition in this example is
a stable coalition structure (proposing the joint monopoly outcome
with each firm getting at least D/16).

So this three-player example suggests that the grand coalition will
indeed form, a result we would have obtained with characteristic
functions as well. But the connection is entirely coincidental. Here is
another three-agent example with markedly different implications.

2.5.2 Public Goods. Consider the provision of a public good by
three symmetric agents. Suppose that each unit of a resource r (time,
effort, money) contributed yields one unit of the public good, but
generates a convex utility cost (1/3)r3. As in the Cournot example
above, let us construct a partition function for this game. A coalition
of s players will contribute a per-capita amount r(s) to maximize

sr(s) − 1
3

r(s)3.

(In doing this — in writing down a single per-capita worth — I am
implicitly assuming that utilities are freely transferable across the
agents, say by linearly valued sidepayments of money.)

It is easy to see that r(s) =
√

s.

Now, the above expression does not represent the per-capita worth
of the coalition. To evaluate the payoff of subcoalitions, however,
we need to know production “elsewhere” and therefore the coalition
structure “elsewhere”. If production elsewhere is z, then the overall
payoff to a coalition of size s is

s
[
z + sr(s) − 1

3
r(s)3

]
= s

[
z +

2
3

s3/2
]
,

which can be solved more fully as soon as we know what the
coalition structure elsewhere — and therefore z — is. Writing v(π) to
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be the (ordered) vector of coalitional worths in the coalition structure
π, it is easy to see that

v({123}) = {6
√

3}

v({1}, {2}, {3}) =
{
2

2
3
, 2

2
3
, 2

2
3

}
v({i}, { jk}) =

{
2
√

2 +
2
3
, 2

[
1 +

2
3

√
8
]}
.

The exact numbers in this array are unimportant. Just as in the
case of the Cournot example, we shall be providing a more general
analysis later in the book. There are only two features to be noted
here. First, the per-capita worth of the grand coalition is 2

√
3, which

is smaller than the payoff to i in the coalition structure {{i}, { jk}},
which is 2

√
2 + 2

3 . This is in keeping with the Cournot example.
But the second feature is different: the per-capita payoff to j and k
in the coalition structure {i}, { jk}, which is [1 + 2

3

√
8], exceeds their

corresponding payoff in the coalition structure of singletons, which
is 2 2

3 . In contrast to the Cournot example, if one agent commits
to (irreversibly) exit the negotiations, it is in the interest of the
remaining two players to stay together.

So in this case, and in contrast to the first example, it is difficult
to avoid an inefficient outcome. The grand coalition is not capable
of arranging a payoff allocation that will cater to every conceiv-
able single-person threat to “boycott” the negotiations. And that
single-person threat has credibility: faced with the imminent and
irrevocable departure of one agent, the remaining agents will find it
in their best interests to cling together.

The examples illustrate well the use of partition functions that
capture externalities across players. The payoff to a single “deviant”
from the grand coalition is not defined in isolation: it is fully
contextual and depends on what the other players do. A theory that
encompasses such externalities will automatically be able to handle
a variety of real-world applications, something that the traditional
characteristic function cannot do.

Closely related to this point is the role played by farsightedness.
A player’s payoff is linked to the ambient coalition structure, so
some degree of understanding of the consequences of an action is
necessary for a satisfactory theory (at least in a model with rational
players). Recall Aumann and Myerson: “Where will it all lead?
Is the end result good or bad for me?” As we’ve seen, farsighted
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players arrive at very different conclusions in the two examples,
while myopic players wouldn’t.

2.6 Negotiations: One-Time or Continuing?

The two examples suggest another fundamental consideration.
Take, for instance, the public goods example. When one agent moves
away, he expects that the other two agents will stick together because
what they get together exceeds the payoffs to them of remaining
apart. Indeed, this is what encourages the initial agent to free-ride
in the first place.

But matters are not that simple if the first agent’s commitment to
leave is not entirely irreversible. Now agents 2 and 3 can get him
back, and this gives rise to all sorts of additional considerations. For
instance, agents 2 and 3 may now make a joint proposal to agent 1
asking him to “return” to the grand coalition in return for an even
larger payoff: if utilities are transferable this is a clear possibility. Or
in an even more farsighted stroke, agents 2 and 3 may also commit
to break up, in the hope that in future periods this will force agent 1
back into the fold on a more symmetric basis.

Our model of negotiations permits coalitions to form freely, and
divide their payoffs freely (if utility is transferable). But it is far more
circumspect on the question of further negotiations. One possible
view is that a commitment once made is irreversible. Another view
is that no commitment is so strong that it cannot be reversed.

What is the “right model”, then? The answer is that there is no right
model. It depends on something that we typically blackbox in our
abstract game-theoretic exercises, but now needs to be brought out
into the open: the technology of commitment.

There are three different kinds of working models we can write
down about commitments. First, one might assume irreversible
commitments. This will be true of situations in which commitment
must be made by the use of concrete actions (not legal devices) that
are prohibitively costly to reverse. An obvious example is one in
which groups form to engage in violent conflict: the call to hostilities
may be pretty much irreversible, at least in the short run.

Or consider the public goods example of the previous section. Say
that the good in question is pollution control. Such control might
require the setting up of environmentally friendly factories that must
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be built from scratch. A firm (or region, or country) that does not
take this route is committing to a increased level of pollution (or
equivalently, a lower production of the public good) that may be too
costly to reverse. For instance, it may be setting up factories that
are not built environment-friendly, and moving to a greater level of
control will require the tearing-down of these fixed investments.

Second, a commitment may be costly but reversible (at some
additional cost). Continuing in the vein of the previous example, this
might occur if pollution-control devices are, by and large, modular,
so that they can be tagged on to existing installations at moderate
cost. In this situation renegotiation is more likely to occur, but
nevertheless the inefficient situation described in the example must
first obtain, otherwise the beneficiaries of renegotiation will have no power
to extract the surplus.

Finally, it may be that a commitment, once made, is costless to
reverse. This may sound a bit paradoxical (and perhaps it is),
but let us pursue this line of thought a bit further. In the context
of our public goods example, it may be that the first player has
access to a legal commitment device in which it makes the following
declaration: that it commits to form no binding relationship with
the other players, unless the other players are signatories to an
agreement that gives it more than its stand-alone payoff. The
qualification may then be used to “reverse the commitment”, which
was really a conditional commitment all along.

Alas, I need to irreversibly commit what goes into this book, so I will
hedge a bit and study the two extreme cases. In the chapters that
follow, we will first study the case in which commitments once made
cannot be altered. Then we switch gears and introduce a dynamic
model of binding agreements, in which earlier commitments can be
reversed. I will do this twice, once for the bargaining approach in
Part 2 and once for the blocking approach in Part 3.
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CHAPTER 3

Coalitions, Cooperation and
Noncooperation

3.1 Definitions and Notation

The background for all we do is a game Γ in strategic form. N is a
set of players. Player i has action set Ai. A denotes the product of
all action sets. Player i has a payoff function ui defined on A.

Our approach is fundamentally different from that of noncooper-
ative game theory. We presume that binding agreements can be
written and implemented. The problem is: which agreements will
be written, and what is the resulting structure of coalitions that will
emerge?

A coalition is just a nonempty subset of N. We interpret a coalition
to mean a set of players who are willing signatories to a binding
agreement. We will have occasion later to discuss the implications
of this interpretation, some (but not all) of them semantic, but let’s
not muddy the waters just yet.

The restriction of the product set A to coalition S will be denoted by
AS. Similarly, for a ∈ A and coalition S, denote {ui(a)}i∈S by uS(a).
The complement of a coalition S will be denoted by −S.

A partition of N into coalitions, denoted byπ, will be called a coalition
structure.
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3.2 Coalitional Equilibrium

3.2.1 Definition. To figure out what agreements will be written,
we need to study the flip side: what happens if an agreement is
not forthcoming? The implicit idea, then, is one of “two stages”:
each player must forecast the interactive consequences of every
conceivable coalition structure. Coalition formation occurs “at an
earlier stage” with this “second-stage consequence” firmly in mind.

Indeed, it is to summarize this “second stage” that characteristic
functions typically make an appearance, by invoking criteria to
describe what coalitions (including individuals) can guarantee
themselves.

In contrast, we describe noncooperative interaction across coalitions
entirely in the spirit of Nash. Suppose that π is a coalition structure.
An action vector a is a coalitional equilibrium (relative to π) if for no
coalition S ∈ π is there an action vector a′S ∈ AS with uS(a′S, a−S) �
uS(a).

A coalitional equilibrium is a natural extension of Nash equi-
librium: simply treat different coalitions as agents with vector-
valued payoffs. The idea is simple: once a coalition structure is
in place, each coalition in that structure has agreed to write binding
agreements among its members, while across coalitions there is no
such arrangement.

For singleton coalition structures a coalitional equilibrium is just a
Nash equilibrium, and for the grand coalition it is simply the Pareto
frontier of the game.

A coalitional equilibrium has little to do with noncooperative coali-
tional refinements of Nash equilibrium, such as coalition-proofness,
or with hybrid concepts such as strong equilibrium. It is simply
presumed that coalitions within a given structure can write any
binding agreement they please (just which one they do write will be
the main focus of our study later), and that across coalitions there is
noncooperative play. In particular, a coalitional equilibrium is not
a refinement of Nash equilibrium for the underlying strategic form
game Γ.
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3.2.2 Existence. The existence properties of coalitional equilibria
are entirely unremarkable. Ray and Vohra (1997) establish the
following result.

P 3.1. Suppose for all i, Ai is nonempty, compact and convex
and ui is continuous and quasi-concave. Then for every coalition structure,
a coalitional equilibrium exists.

Proof. Fix some coalition structure π. For each S ∈ π, define the
“better-than set” relative to a ∈ A as follows:

PS(a) ≡ {a′S ∈ AS | uS(a′S, a−S)� uS(a)}.
The quasi-concavity of payoffs assures us that PS(a) is convex for all
S and x. While the underlying ordering is not complete, it is easy
to see that the graph of PS is open. Invoking the existence result
of Shafer and Sonnenschein (1975), there exists a ∈ A satisfying the
required properties of a coalitional equilibrium. �

The notion of a coalitional equilibrium has precursors in the work of
Ichiishi (1981), Myerson (1991, p .424) and Zhao (1992).1 Haeringer
(2004) addresses questions of existence when the quasi-concavity of
payoffs is not assumed.

3.2.3 Interpretation. Our implicit insistence that coalition forma-
tion will be followed by the play of some coalitional equilibrium is
restrictive, especially in dynamic settings. It is entirely possible that
conditional on the formation of a particular coalition structure, the
coalitions in it might follow history-dependent actions, just as in the
theory of repeated games. Because we presume that all agreements
that need to be supported can in fact be supported by binding
agreements, we neglect this aspect. Accordingly, in all that we
do, the formation of a particular coalition structure will be followed
by the play of some equilibrium relative to that structure. To be
sure, the structure itself can change over time, and then so will the
associated action profile.

3.2.4 Essential Uniqueness. Coalitional equilibria need not be
unique. After all, Nash equilibria, which are just coalitional
equilibria for singleton coalition structures, are generally not unique.

1Myerson (1991, Section 9.2) contains a succinct description and comparison of
different approaches to deriving characteristic functions, including the “rational
threats” approach due to Harsanyi (1963).
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Coalitional equilibria must therefore be prey to exactly the same sort
of multiplicity.

That said, there is a plethora of applied situations in which a unique
Nash equilibrium does exist. Because the theories we develop
need to be subject to careful scrutiny on several grounds, we will
refrain from compounding the difficulties by entertaining this sort
of multiplicity, and the attendant conceptual complexities involved
in equilibrium prediction in this case.

However, there is a second source of nonuniqueness which is
particular to coalitions. If payoffs are transferable to some degree
across players, there can be many payoff vectors attached to a
particular coalition structure, simply because each coalition can
divide up its aggregate payoff in different ways. It would be
extremely restrictive to rule out this source of multiplicity. In doing
so, we would be closing off all avenues for transfers across players,
which is problematic to say the least.

Fortunately, the first sort of multiplicity is easily distinguishable
from the second. Let U(π) ⊆ �N denote the set of coalitional
equilibrium payoffs associated with any coalition structure. Say
that coalitional equilibrium is essentially unique if there exist sets
U(S, π) ⊆ �S for every coalition S ∈ π such that

(3.1) U(π) =
�

S∈π
U(S, π).

The product structure of “essential uniqueness” allows us to distin-
guish between the two kinds of multiplicity. Nash-equilibrium-like
multiplicity will typically not display a product structure. On the
other hand, the multiplicity that simply arises from alternative intra-
coalitional “divisions” of payoffwill satisfy the essential uniqueness
property.

For instance, all characteristic functions trivially display essential
uniqueness. But as we shall see, so do a host of other economic
models with genuine externalities.

In the rest of this monograph, we place emphasis on games of
coalition formation whose coalitional equilibria satisfy the essential
uniqueness property for every coalition structure.
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3.3 Partition Functions

3.3.1 Definition. Coalitional equilibria that satisfy the property of
essential uniqueness give rise to what we will call partition functions,
descriptions of the payoff possibilities accruing to each coalition
within the context of a particular coalition structure. A partition function
is generated by precisely the sets described in (3.1). For every
coalition structure π and every coalition S ∈ π, it assigns a set
of payoff vectors U(S, π), describing the equilibrium opportunities
available to that coalition when embedded in the structure π.

A partition function becomes a characteristic function in those cases
in which the dependence of U on π can be removed. Now there
are genuinely no interactions across coalitions, so that we can define
coalitional worth “in isolation,” without needing to be aware of the
surrounding context.

If the underlying strategic game has interpersonally comparable
utilities, and if side payments can be made across subsets of players,
the set of all payoffs to a coalition could then be identified with
a single number, its worth. Formally, for every structure π and
coalition S ∈ π, we would have a function v(S, π) such that

U(S, π) =

u ∈ �|
∑
i∈S

ui ≤ v(S, π)

 .
Such a TU partition function is precisely analogous to a TU character-
istic function, except that the richer dependence on the underlying
structure π continues to be maintained.

In this book, we often begin with the partition function as a
primitive. It is not really necessary for us to suppose that there is, in
fact, some underlying strategic form game which can be “reduced”
to a partition function in the way described above. Indeed, to the
extent that such underlying games impose structure on partition
functions, we may be tying our hands too tightly.

As an example: a partition function as derived from the strategic
form must satisfy “grand coalition superadditivity”. Consider a
payoff vector u “pieced together” from a particular partition π, so
that uS ∈ U(S, π) for every S ∈ π. Then it must be the case that there
exists u′ ∈ U(N, {N}) such that u′ ≥ u. In short, the grand coalition
can do everything a partition can.
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Is that a good assumption? Very often it is, but very often it isn’t.
See Section 3.4 and Chapter 10 for more.

3.3.2 Examples. In this section, I list several examples of char-
acteristic and partition functions. The examples are often impres-
sionistic and not presented in a rigorous format. However, in the
chapters that follow, I return to some of these examples and study
them in more detail.

1. Local Public Goods. There are n people and a large number of
locations in which they can choose to live. Person i gets utility
f (c) + h(g), where c is money and g is a local public good, produced
from individual contributions in person i’s locality. That is, g = g(T),
where T =

∑
k∈S(wk − ck), and wk is the money endowment of player

k.

The action set Ai is constructed as follows. Each person chooses three
things: one of a large finite set of locations, a nonnegative vector of
money contributions to each location, and a nonnegative vector of
money transfers to every other player. Generate consumption ci
by subtracting all these transfers and contributions, but add any
transfers that i may receive from others. Generate g by adding all
contributions to the local public good in the locality chosen by i. Let
ui = f (ci) + h(g).

In a coalitional equilibrium, it is obvious that there is no interaction
across coalitions. Each member in a coalition selects the same
location, and no transfers are made to any other person or locality.
We therefore have a characteristic function U(S). Solve for it — or
rather its Pareto frontier — by addressing the following problem:
For any i and for arbitrary numbers yj, j ∈ S, j � i,

max f (ci) + h(g)

subject to f (cj) + h(g) ≥ yj for all j � i, and the feasibility constraint
g = g(T), where T =

∑
k∈S(wk − ck).

If f (c)) = c, we are in the quasi-linear case and this yields a TU
characteristic function. The worth of each coalition is obtained
simply by maximizing ∑

i∈S

ci + sh(g)

(where s is the size of S), subject to the feasibility constraints
described above.
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2. Global Public Goods. Consider the same example as before, except
now there is no choice of localities. This seemingly simpler problem
is actually more complicated, for now there are externalities across
coalitions.

Once again, in a coalitional equilibrium, no transfers are made across
coalitions. For ease in exposition, let us restrict ourselves to the TU
case. To calculate the best response of coalition S, simply maximize,
for given aggregate contributions T from the complement −S,

∑
i∈S

ci + sh(g)

subject to g = g(T) and T =
∑

k∈S(wk − ck) + T.

It is not hard to verify that these best responses yield coalitional
equilibrium payoffs that are essentially unique. We therefore have
a well-defined TU partition function. A similar analysis is easily
conducted for the NTU case.

For more on coalition formation in public goods economies, see Ray
and Vohra (2001) and Section 6.2.

3. Winning Coalitions. A special subcollection of coalitions can win
an election, whereupon they get one unit of surplus. So v(S) = 1 for
every coalition, and v(S) = 0 otherwise.

The subgroup may be defined by a supermajority: for instance,
v(S) = 1 if and only if s ≥ m, where m > n/2 is the supermajority
threshold.

Winning coalitions also make an appearance in n-person bargaining
games that are settled by majority rule (see, e.g., Baron and Ferejohn
(1989)). In Chapter 7, we use this idea to embed majority-rule bar-
gaining games into coalitional bargaining situations with unanimity
(see also the discussion in Section 14.1 of Chapter 14).

4. Conflict. There are several individuals. Each coalition in a
coalition structure of individuals expends resources to obtain a
reward (perhaps the pleasures of political office as in the previous
example). Resources may be spent to lobby, finance campaigns,
or engage in cross-coalitional conflict, depending on the particular
application. Suppose that the probability pS that coalition S wins
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depends on the relative share of resources r expended by it:

(3.2) pS =
rS

rS + r−S
.

The per-capita value of the win will generally depend on the
characteristics of the coalition (for instance, coalitional size); write
this value as wS. In the TU case, the coalition then chooses resource
contributions from its members to maximize

spSwS −
∑
i∈S

c(ri),

where c is the individual cost function of contributions, rS =
∑

i∈S ri,
and r−S is taken as given.

It is easy to check that essential uniqueness is satisfied, so that we
have a well-defined TU partition function. The NTU case is easy to
handle using a similar construction.

Esteban and Ray (1999) study a more general version of this conflict
model. For models of coalition formation based on this framework,
see Esteban and Sákovics (2004) and Bloch, Soubeyran and Sánchez-
Pagés (2006).

5. Production Teams. Each agent has “ability” αi. When a group S of
agents gets together, they can produce an output = fS(αS) (where fs
is a family of functions indexed by s).

If the output is sold at a fixed price that’s independent of the set of
agents under consideration (or just plain consumed), this generates
a characteristic function. It will be TU if the proceeds can be split
in any way and agent utilities are linear in those proceeds. If, in
contrast, there is a fixed sharing rule (such as equal division), the
resulting characteristic function will be NTU.

6. Oligopolies: Production Teams With Interaction. A given number
(n) of Cournot oligopolists produce output at a fixed unit cost, c.
The product market is homogeneous with a linear demand curve:
p = A−bx. Recall that by standard calculations, the payoff to a single
firm in an m-firm Cournot oligopoly is

(A − c)2

b(m + 1)2 .

If each “firm” is actually a cartel of firms, the formula is no different
as long as each cartel attempts to maximize its total profits (and
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then freely allocated these profits among its members). once again,
essential uniqueness is satisfied, and

v(S, π) =
(A − c)2

b [m(π) + 1]2 ,

where m(π) is the number of cartels in the coalition structure π.
This partition function is particularly interesting, in that it does not
depend on S at all, but only on the ambient coalition. In this sense
the Cournot oligopoly exhibits properties that are as far removed
from traditional characteristic functions as possible.

For more on oligopolies, see Bloch (1996), Ray and Vohra (1997,
1999) and Section 6.1.

7. Political Coalitions. There are n politicians, each representing an
equal measure of (a continuum of) voters. The set of feasible policies
is some set Q. Voters in group i share the same preferences as their
political representative: u(q, i) on Q.

For every coalition structure — a partition of all politicians into
“parties” — the parties contest a general election. Each party can
announce a platform q ∈ Q, or some “null platform” ∅ which may
be interpreted as not running. Voters vote sincerely across all
platforms, and the platform with the highest vote wins (ties are
broken randomly).

The Nash equilibrium of this game generates a partition function.
For more on this game, see Levy (2004) and Section 12.4 of Chapter
12.

8. Customs Unions. There are n countries, each specialized in the
production of a single good. There is a continuum of consumers
equally dispersed through these countries. They all have identical
preferences. Impose the restriction that no country or coalition can
interfere with the workings of the price system except via the use
of import tariffs. Then for each coalition structure — a partition of
the world into customs unions — there is a coalitional equilibrium,
in which each customs union chooses an optimal tariff on goods
imported into it.

In particular, the grand coalition of all countries will stand for the
free-trade equilibrium: a tariff of zero will be imposed if lump-sum
transfers are permitted within unions.
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A specification of trade equilibrium for every coalition structure
generates a partition function for the customs union problem.

For different models of customs union (from an explicit coalition-
formation context), see Krugman (1993), Krishna (1998), Ray (1998,
Chapter 18), and Aghion, Antras and Helpman (2004).

3.4 Extensions

There are two restrictions (surely others, but two I particularly care
about) that are implicit in the development of this chapter. I want
to briefly address them right away. I will be returning to both these
restrictions at later points in this book.

First, I’ve defined a coalition structure to be a partition. This means
that each individual writes agreements with at most one group of
players: the coalition to which she belongs. If she does not write
any agreements, she forms a “singleton coalition”, which is certainly
allowed for by the partitional restriction. What is not allowed for is
the possibility that coalitions may overlap, so that some individuals
write two (or more) different agreements with different groups.

A good example of this scenario is the writing of regional trade
agreements. A country can be party to more than one trade
agreement with different subsets of partners. (This would not be
the case for a customs union.) One would then need to define the
notion of a cover: a possibly overlapping collection of coalitions that
exhaust the player set.

My monograph will not deal with these issues, though I return to
them in Chapter 14 (see Section 14.4). I conjecture, however, that the
techniques developed here will be extremely useful in addressing
such problems at some point down the road.

In fortunate contrast, the second restriction will not hinder what
follows. First the restriction: it lies in the implicit assumption
that everybody, in principle, can enter into an full agreement with
everybody else. There are many interesting and important problems
in which this is not the case. A group of domestic firms might
consider the formation of a cartel, but such agreements may be
ruled out between domestic and foreign firms exporting to the same
market. Two or more ethnic groups may form an alliance with one
another, but never with a common enemy with whom they share a
long history of animosity. Company shareholders may always wish
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to spin off some divisions because healthy competition among those
divisions cannot be maintained under the umbrella of one company
name. Factors as varied as antitrust laws, ideology, ancient hatreds,
geography or the competitive spirit may conspire to rule out certain
coalitions (and not others).

In contrast, we derive partition functions from strategic games under
the presumption that once a coalition has formed, “cooperation”
within that coalition is unrestricted. This has the important implica-
tion that a partition function must be grand coalition superadditive
(see Section 3.3 for the definition). In none of the examples of
the previous paragraph is this necessarily the case. If cooperation
between coalitions is restricted or simply unavailable, one must
must derive partition functions from strategic forms under these
additional restrictions.

While it isn’t hard to extend the argument to accommodate such
cases, we won’t need to do that in this book because most of
it treats the partition function as a primitive. What is more, in
some of the important examples (see Chapter 10 in particular) we
deliberately invoke the possibility that the partition function may
fail to be superadditive. Section 10.3 in Chapter 10 will continue this
discussion.

3.5 Summary

In this chapter, we’ve introduced the concept of coalitional equilib-
rium and used that concept to derive partition functions. In what
follows, partition functions will present our basic building blocks,
but it is important to remember that they are, in turn, reduced-form
objects.

Partition functions embody several important restrictions. First,
the use of partition functions implicitly presumes that conditional
on the formation of a particular coalition structure, a coalitional
equilibrium will indeed be played. This means that we employ
a neat separation between the process of coalition formation and
the ability to also commit to a course of action in that process. If
there is a Stackelberg structure (or more generally, some form of
sequentiality) to the game, that is presumed to be already embedded
in the description of the underlying strategic form. In short, whether
or not you get to form a coalition before someone else, you are
presumed to choose a binding agreement for your coalition that is
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a “best response” to the actions of other coalitions in the ambient
coalition structure. No further sequential commitment is permitted
on that front.

Second, partition functions presume that the essential uniqueness
condition is met. The exact reasons for this restriction, while not as
important as the one discussed earlier, will become clearer later.

Partition functions also assume that a coalition structure invariably
takes the form of groups that do not overlap, so that no player
enters into binding agreements with a variety of groups. This is a
restriction of our analysis but I expect the methods in the book to
extend to this more general case (Section 14.4 of Chapter 14 sketches
a possible extension).

Finally, the very process of deriving partition functions from strate-
gic form games may on occasion be restrictive (see the discussion in
Section 3.4). While we do carry out such a derivation in this chapter,
we neither insist on nor require this interpretation in the sequel.
Partition functions are derived objects all right, but they can also
serve as good primitives.
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CHAPTER 4

Irreversible Agreements

4.1 Introduction

In this chapter, we introduce a model of binding agreements
and coalition formation with two important features. First, all
negotiations are expressed formally as a bargaining game, which we
base on Ståhl (1977), Rubinstein (1982) and Chatterjee, Dutta, Ray
and Sengupta (1993).1 We’ve already discussed the pros and cons
of entertaining such a well-defined extensive form; the objective
now is not further soul-searching but an examination of where this
assumption might take us. Second, we assume that all agreements
to form a coalition are “fully” binding, in the sense that they are
irreversible. A coalition once formed cannot disintegrate or be
subsequently absorbed into a larger group.

Both these assumptions will be dropped in due course (the second
first, the first later) but it is important to appreciate that the assump-
tions are not necessarily to be viewed as restrictions. Sometimes,
a well-defined negotiation process may be a better approximation
to reality than the more eclectic blocking models, and sometimes
an irreversible commitment may be a far better description of the
situation at hand than a model which allows all prior commitments
to be reversed.

Throughout, we regard the partition function as a primitive, with the
idea that underlying this function is a game in strategic form (recall
Chapter 3). We define on the partition function a noncooperative

1For related literature on bargaining, see Binmore (1985), Moldovanu (1992), Okada
(1996), Perry and Reny (1993), Selten (1981) and Winter (1993).
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bargaining game. Proposers offer to form coalitions, and to divide
coalitional worth in particular ways. Responders agree or disagree.
Coalitions form through the course of this bargaining process.

The analysis in this chapter and the two chapters to follow draws
heavily on Chatterjee, Dutta, Ray and Sengupta (1993) and Ray
and Vohra (1999), though we extend these papers along several
dimensions.

4.2 A Model

4.2.1 Preliminaries. N = {1 . . . n} is the set of players. A coalition
structure of N is a partition π of N. A partition function U assigns
to each coalition S in a coalition structure π a compact set of
nonnegative payoff vectors U(S, π).2

We impose the mild restriction that U is comprehensive. Essentially,
this asks for some transferability of payoffs along the efficient frontier
of worths, though to arbitrarily small degree. Formally, we suppose
that for every π and S ∈ π, whenever u ∈ U(S, π) has ui > 0 for some
i, then there is u′ ∈ U(S, π) with u′j > uj for all j � i. It is easy to see
that the frontier of U(S, π) is now “downward sloping” everywhere.

4.2.2 Proposals and Responses. Agents make proposals to coali-
tions and respond to proposals made to coalitions to which they
belong. Imagine that some coalitions have already formed. To each
“remaining” set of “active” players is assigned some probability
distribution over initial proposers. Likewise, to each coalition of
active agents to which a proposal has been made, there is a given
order of respondents (excluding the proposer of course).

Loosely speaking, a proposal is the division of the worth of a
coalition among its members. But given a partition function, a
worth is not well-defined until a coalition structure has formed in
its entirety. Therefore a proposal must consist of a set of conditional
statements that describe a proposed division of coalitional worth for
every contingency; i.e., for every conceivable coalition structure that
finally forms. More precisely, a proposal is a pair (S,u), where u is a
collection of allocations {u(π)}, one for each partition π that contains

2The nonnegativity is just a normalization, though the payoff from eternal
disagreement will have to be suitably restricted; see below.
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S, feasible in the sense that for every coalition S in π,

uS(π) ∈ U(S, π).

We assume that a proposer must include herself in the proposed
coalition. Under some mild conditions, this requirement is unim-
portant, and we will discuss it later.

Once a proposal is made to a coalition, attention shifts to the
respondents in that coalition. A response is simply acceptance or
rejection of the going proposal. If all respondents unanimously
accept, the newly-formed coalition exits, and the process shifts to
the set of still-active players remaining in the game.

The unanimity requirement appears restrictive in some situations
in which a majority or (nonunanimous) supermajority is enough to
implement a proposal. To see why this restriction is illusory, see
Section 4.5, though Section 14.1 of Chapter 14 adds some caveats.

The rejection of a proposal creates a bargaining friction: payoffs
are delayed by the passage of some time, which is discounted by
everybody using a discount factor δ. What happens next typically
varies from model to model. We adopt a fairly general specification
for now, but it will be tightened later and different variants discussed
in more detail. We presume that the rejector can choose to leave
the bargaining table, effectively forming a one-person coalition.
If she does not exit, she gets to be the next proposer with some
probability ρ(s) that may depend on the number of active agents s.
With probability 1 − ρ(s), some other active agent is equiprobably
chosen to be the new proposer. Later, I will need to place more
restrictions on the protocol, but for now this will do.3

If and when all agreements are concluded, a coalition structure
forms. Each coalition in this structure is now required to allocate
its worth among its members as dictated by the proposals to
which they were signatories. If bargaining continues forever, it is
assumed that all the “stalled” players receive some strictly negative

3I could have actually written down an even more general proposer protocol for
which all the results presented here would be valid. For instance, I could allow
the proposer probabilities to depend quite generally on the history of the game so
far. But nothing much would be gained thereby except an increase in notation, so
I avoid this.



40 Irreversible Agreements

payoff.4 (Nothing of substance is affected by allowing already-
formed coalitions in such cases to receive any payoffs we please.)

4.2.3 Strategies and Equilibrium. A strategy for a player requires
her to make a proposal whenever it is her turn to do so, where
the choice of proposal could depend on events that have already
unfolded. It also requires her to accept or reject proposals at every
stage in which she is required to respond. A perfect equilibrium is a
profile of strategies such that there is no history at which a player
benefits by deviating from her prescribed strategy.

It is well known from the theory of repeated games that perfect
equilibria can generate a huge multiplicity of outcomes. Bargaining
games — while potentially infinite — are not repeated games. Yet,
as Section 4.4.3 makes clear, the use of history-dependent strategies
also generates a multiplicity of outcomes. Later, when we study
coalition formation in real time, we shall have more to say about
multiplicity and history-dependence. But provisionally, and for the
purpose of this chapter, we accept such multiplicity and retreat to
the use of stationary Markovian strategies.

Stationary Markovian strategies depend on a small set of state
variables, and do so in a way that’s insensitive to the passage of
calendar time. The current proposal or response (while permitted
to be probabilistic in nature) is not permitted to depend on “past
history”. Of course, it must be allowed to depend on the current set
of active players, on the coalition structure that has already formed,
and — in the case of a response — on the going proposal. We
will also permit proposers to condition their new proposals on the
identity of the last rejector (in the current round of negotiations),
and for respondents to condition their responses on the identity of
the proposer.

A stationary Markovian equilibrium is then a collection of stationary
Markovian strategies which forms a perfect equilibrium. This
completes the description of the model.

4The word “negative” is relative to the normalization that all coalitional payoffs
are nonnegative; see above, footnote 2.
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4.3 Equilibrium

Our notion of equilibrium allows for mixed (behavior) strategies.
In fact, it does so in three ways: (a) the proposer may randomly
choose a coalition, (b) given the choice of a coalition, the proposer
may randomly choose offers, and (c) respondents may mix over
accepting and rejecting a proposal.

But it turns out that a stationary equilibrium exists with a minimal
need to randomize, as described in the proposition below.

P 4.1. If U is compact and comprehensive, there exists a
stationary Markovian equilibrium in which bargaining ends in finite time.

The proof of this proposition is technical and therefore relegated to
an appendix to this chapter.5

4.4 Rubinstein–Ståhl Bargaining

For later reference, I briefly describe a well-known noncooperative
bargaining model based on Rubinstein (1982) and Ståhl (1977). In
this model several persons divide a cake of size 1; there are no
subcoalitions of any value, and there are no externalities.

This model can be embedded very easily into our framework. Con-
sider the following simple TU characteristic function: N = {1 . . . n},
v(N) = 1, while v(S) = 0 for subcoalitions S. The protocols we
consider are in line with the class discussed above: an initial
proposer is chosen with some probability, the latest rejector gets to
propose with probability µ > 0, and everyone else with probability
(1−µ)/(n−1) each. ( Rubinstein studies alternating-offers bargaining
when n = 2, so that µ = 1 in that case.)

4.4.1 Two Persons. Suppose that n = 2, so that two persons
are bargaining. A remarkable property of this two-person model
is that subgame perfection fully pins down equilibrium payoffs.

5The proof, which relies on an inductive fixed point argument, may be of interest.
At every subgame, a suitable fixed point (in payoff space) is constructed, and this
fixed point replaces the relevant portion of the game, as we inductively move to
an earlier subgame. To complete the fixed point argument for the earlier subgame,
we need an additional continuity argument for the recursively constructed fixed
points, which is where the possibility of mixing makes an appearance.
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The proposition that follows is well-known from Rubinstein (1982),
though I’ve generalized it to a broader class of protocols.6

P 4.2. There is a unique subgame perfect equilibrium payoff
vector in the two-person bargaining model.

Proof. Existence will be shown below; assume it for now and
prove uniqueness. Let M and m be the supremum and infimum
equilibrium payoff to a responder, conditional on her rejecting the
current offer but before the proposer has been decided.7 Then it is
obvious that a proposer can always assure herself an infimum of at
least 1 −M, so that

m ≥ δ[µ(1 −M) + (1 − µ)m],

or

(4.1) m ≥
δµ(1 −M)

1 − δ(1 − µ)
.

At the same time, no proposer can obtain more than 1 − m, so it is
also true that

M ≤ δ[µ(1 −m) + (1 − µ)M].

or

(4.2) M ≤
δµ(1 −m)

1 − δ(1 − µ)
.

Combining (4.1) and (4.2), it is easy to see that

m ≥
δµ

(
1 − δµ(1−m)

1−δ(1−µ)

)
1 − δ(1 − µ)

,

and simplifying this yields the inequality

(4.3) m ≥
δµ

1 − δ(1 − 2µ)
.

Following an analogous line of reasoning,

(4.4) M ≤
δµ

1 − δ(1 − 2µ)
.

6On the other hand, I assume a common discount factor. Dropping this restriction
makes no difference to the argument.
7When discount factors are not the same, these values vary across the players but
the proof follows exactly the same lines.
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and together (4.3) and (4.4) show that

(4.5) M = m =
δµ

1 − δ(1 − 2µ)
≡ m∗,

which establishes uniqueness.

Existence can now be shown by construction. Have each player
accept an offer if it yields her at least m∗ (defined in (4.5), and always
make the proposal (1−m∗,m∗) when it is her turn to propose. It is easy
to verify that this strategy profile constitutes a perfect equilibrium.

�

This proposition and its accompanying proof reveal that the equi-
librium involves immediate agreement, with the proposer and the
responder receiving

1 − δ(1 − µ)
1 − δ(1 − 2µ)

and
δµ

1 − δ(1 − 2µ)

respectively. It is worth noting that no matter how small µ is, as
long as it is strictly positive, the division of the cake must converge
to an equal split as “bargaining frictions” vanish; i.e., as δ converges
to 1. It is true that the first individual to propose may acquire a lot
of power, especially if µ is small, but the value of that added power
becomes negligible provided both players are extremely patient.8

4.4.2 More Than Two Persons. First consider stationary, sym-
metric strategy profiles. In such profiles, each person uses a common
response threshold m, to be interpreted as the minimum amount for

8The fact that a unique and — for the two-person symmetric case at least —
entirely sensible limit is selected (as bargaining frictions vanish) is comforting,
and pushes us to ask what the corresponding limit would look like in general,
something that we shall explore in more detail. In writing these lines, I am fully
aware that with a slightly different specification of frictions — different discount
factors, for instance — one might pick out a variety of other limit points. One
might even interpret this feature as a failure of the theory, but that would be too
literal an interpretation of the model. In my view, the homogeneous discount factor
specification picks out a perfectly reasonable limit for the symmetric Rubinstein–
Ståhl model — equal division — as bargaining frictions vanish. That makes it
a natural theoretical benchmark. It yields the commonsensical prediction for a
situation that we intuitively understand and allows us to explore more complex
and unintuitive cases, such as general characteristic functions.
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which she will accept a proposal, provided that all responders after
her in the response order are planning to accept that proposal.9

In equilibrium, m must be built from an expectation about payoffs
conditional on rejection; these would be a probabilistic combination
of proposer payoffs (1 − (n − 1)m) and responder payoffs (m).
Therefore, m must solve the following equation:

m = δ{µ[1 − (n − 1)m] + (1 − µ)m},
which tells us that

(4.6) m =
δµ

(1 − δ) + δµn
.

This solution extends the two-person case and once again, conver-
gence occurs to equal division as bargaining frictions disappear,
provided that µ > 0.

I’ve been a bit cavalier about deriving this stationary equilibrium.
In particular, I took the shortcut of assuming symmetry as well, so
that all the response thresholds are the same. It is true, however, that
no such assumption need be made: a stationary equilibrium must
be symmetric and yield the common response threshold described
by (4.6). I omit the (simple) proof of this assertion.

4.4.3 Other Equilibria. Unfortunately, the uniqueness result for
two-person Rubinstein bargaining no longer survives with three or
more players. The argument, due to Herrero (1985) and Shaked (see
Sutton (1986)) can be generalized to the full class of protocols we
consider here. To write it down, consider any feasible allocation with
nonnegative payoffs to each player. Define a stage to be any part of
the game in which a proposal is about to be made (a proposal stage)
or responded to (a response stage). In addition, define n special
“rounds” as follows:

P i: the proposer must give the entire cake to player i, and
subsequently, all responders must accept this proposal.

9It is unnecessary to describe what happens if a later responder is planning to
reject, as such a proposal will be rejected anyway and that is all that matters for our
argument. Later, in the more general models we consider, this sort of consideration
complicates the description of equilibrium strategy profiles (see, for instance, the
proof of Proposition 5.1 in Chapter 5). But fortunately, such complications do not
affect the main results in any way.
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Now we connect the dots by describing when phase i must be started
up. One way to do this is by developing the concept of “valid” and
“invalid” stages (see [A] below), and by specifying how players
must react to such stages (see [B] and [C] below).

[A] A stage is valid if it is a reaction to an invalid stage as specified
by [B] or [C], or if it follows the actions specified at the very start of
the game. Otherwise, it is invalid.

[B] Suppose the previous stage was valid. If this is a proposal stage
and the last rejector was i, enter phase i. If this is a response stage,
accept the going proposal.

[C] Otherwise, the previous stage is invalid. If the stage is a proposal
stage, let i be the last rejector and start up phase “i+ 1”, where (i+ 1)
stands for the index of the player after i (modulo n). If this is a
response stage, the current responder j should reject the proposal if
and only if she gets less than δ. (By [B], phase j is entered thereafter.)

This entire construction is similar to a penal code (Abreu (1988)) and
can be employed to support various outcomes as equilibria. I claim
that this penal code is itself an equilibrium whenever

(4.7) δ >
1

n − 1
.

To see this, we only need to check the unprofitability of one-shot
deviations. First suppose the previous stage is valid. If a proposer
does not abide by [B], then by [A], he starts an invalid stage. Because
(4.7) holds, some responder must get less than δ under the deviant
proposal, and so our deviant proposer must subsequently get zero.
Similarly, if a responder does not accept the proposal from a valid
proposal stage, then by [A], she starts an invalid phase and using
[C], she will subsequently get zero. So it is a best response to follow
[B] if the previous stage is valid..

Now for previous stages that are invalid. If the current stage is a
proposer stage, a proposer will abide by the prescription in [B] for
the same reason as in the previous paragraph. In a response stage,
consider a responder who gets more than δ. If she rejects, then she
starts an invalid phase and will surely get zero thereafter. If the
responder gets less than δ, then by accepting she can get no more
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than what she is being currently offered.10 By rejecting, she gets 1
after a lag discounted by δ. So it pays to abide by the prescription.

Finally, the fact that a deviant gets zero means there will also be no
deviation from the initial play, and the argument is complete.

Note the crucial important point about this construction: it only
works when n ≥ 3, because the inequality (4.7) must hold.

The constructed penal code is extremely strong (use it to give any
deviator a payoff of zero). So it can be employed to support all sorts
of outcomes, including those that throw away part — or all! — of
the available cake.

This embarrassing multiplicity of equilibria is similar to what we
get in the folk theorem for repeated games (Aumann and Shapley
(1976), Rubinstein (1979), Fudenberg and Maskin (1986)).11 While
not exactly a justification, it does explain why we restrict ourselves
to stationary equilibria in the next few chapters.

That isn’t to say that we abandon history-dependence entirely. We
return to this theme in Chapters 8–10, where we study bargaining
with reversible commitments.

4.5 Baron–Ferejohn Bargaining

Baron and Ferejohn (1989) study another model of noncooperative
bargaining. Once again, several individuals divide a cake of unit
size. However, unanimous assent is not required.

Specifically, suppose that there is an odd number n of players.
Players are called upon according to some given proposer protocol
to make proposals. Responses are sequential as they are here, but in
contrast to the setup studied throughout this book, only a majority of
respondents need approve the proposal for it to be implemented.12

To complete the description of the protocol, a fresh proposer is

10For if she accepts, the proposal will either be implemented or someone else is
asked to reject, and she will get zero.
11Of course, our bargaining framework is not a repeated game and that theorem
doesn’t formally apply here.
12Baron and Ferejohn (1989) call this procedure the closed rule. In contrast, under
an open rule, a proposal may be amended before voting takes place. This extension
need not concern us here.
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selected at random if the previous proposal has been defeated: thus
µ = 1/n.

At first sight this looks like a very different model from unanimity
bargaining, and indeed in a conceptual sense it is. But note that the
model of bargaining with majority approval is easy to embed in an
model of coalitional bargaining with unanimity. Simply construct the
characteristic function

v(S) = 1 if and only if |S| > n
2
,

and use the unanimity protocol! What is altered is essentially a
matter of interpretation: a proposal requiring a unanimous response
is never made to a subcoalition S, but it’s as if it is: the proposal
is in fact made to the grand coalition, with the implicit strategic
presumption that the “targeted” majority subgroup S will in fact
approve it.

Nor surprisingly, this sort of model acts as a game-theoretic endorse-
ment of the view that “minimal” winning coalitions often form, an
argument first given formal expression by Riker (1962).

In short, bargaining models that require majority approval can
be easily embedded in coalitional bargaining models in which
subcoalitions have power. In this sense there is little loss of
generality in studying unanimity games, provided we are general
enough to accommodate subcoalitional worths.

4.6 Summary

In this chapter, we’ve introduced a noncooperative model of coali-
tion formation. Individuals make proposals to coalitions of their
choice, and a proposal must be unanimously accepted in order for
the coalition to form. A coalition S can write binding agreements
among its members, so that they can enjoy payoffs in U(S, π)
for every ambient coalition structure π that forms. At the same
time, interaction with other coalitions is fully nonbinding and
noncooperative.

It is assumed that a coalition once formed cannot be dismantled or
added to. Coalition formation is an irreversible commitment. (We
consider reversible commitments in Chapters 8–10.)

Rubinstein–Ståhl bargaining fits into this framework. So does the
Baron–Ferejohn model.
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In the chapters that follow, we go deeper by studying special cases
of our general framework, beginning with the case of symmetry.

Appendix

Proof of Proposition 4.1. We proceed by induction on the number of players.
Suppose an equilibrium exists with finite rounds of bargaining for every
game with less than n players. For the one-player model, this assumption
is trivially satisfied.

In what follows, suppose that a single coalition forms and exits, and there
there are still some active players left. With some abuse of terminology
(and only for the purpose of this proof), call this a subgame. On each
subgame is induced a new bargaining game in the obvious way.13 By our
induction hypothesis, an equilibrium (with finite rounds of bargaining)
exists for each such subgame: fix an equilibrium strategy profile for
the players of that subgame. We describe equilibrium strategies for all
the remaining nodes in the larger game, and graft these on to the fixed
strategies for the subgames.

By choosing a fresh proposer according to some distribution, our protocol
assigns a unique (stochastic) continuation to the subgame after a coalition
S has formed, regardless of how S came to be. In particular, by fixing our
subgame equilibrium, we have effectively set a probability distribution βS

over all coalition structuresπ conditional on S forming (obviouslyβS(π) > 0
only if S ∈ π), and we have also assigned subgame payoffs uS

i to every
remaining player i � S.

Now consider player i in the game at hand. She can make an acceptable
proposal to some coalition that contains her, or she can make an unaccept-
able proposal to some other player.14 Let i be the set of all probability
distributions over coalitions S with i ∈ S (the choice of each coalition to be
interpreted as the making of an acceptable offer to that coalition) as well
as individuals j � i (the choice of each j to be interpreted as the making of
an unacceptable offer to that individual). Define  to be the product over
the i’s.

Because U(S, π) is compact for all π and S ∈ π, the equilibrium payoff (if
there is one) to every player is obviously bounded above by some finite

13If coalition S exits and players in N′ are left (that is, N = S ∪ N′), define a new
partition function by US(T, π) = U(T,S.π) for every subcoalition T of N′, where S.π
stands for the coalition structure π with S appended to it.
14There is no loss of generality in assuming that no unacceptable proposals are
made to larger coalitions.



Appendix 49

number m. We may therefore restrict the feasible payoff profiles to lie in
M, the cube in�n

+ with vertex 0 and length m.

Fix a vector α ∈ , and a vector m ∈ M, the latter to be interpreted below
as the vector of expected discounted equilibrium payoffs that each player
receives in the game, if she were to reject an offer.15 The following options
are available to i.

First, she can choose S with i ∈ S, and make a proposal uS(π) (conditioned
on eachπwith S ∈ π). This will be interpreted in the sequel as an acceptable
proposal. Consider the problem:

(4.8) max
uS(π)

∑
π

βS(π)ui(π)

subject to the constraints

(4.9)
∑
π

βS(π)uj(π) ≥ mj, for all j ∈ S, j � i,

(4.10) uS(π) ∈ U(S, π) for each π with S ∈ π.
Denote by gi(S,m) the maximum value so attained. The assumed
comprehensiveness of U guarantees that gi a continuous function of m.
Also note that gi is assuredly nonnegative: player i can always walk away
on her own, leaving the bargaining to end in a finite number of rounds (by
the induction hypothesis).

Second, i might make an unacceptable proposal to j.

Both these cases can be considered together in the following way. Recall
that we are given some (m, α) ∈M×. For every i, construct the following
system {Vj

i (m, α),wj
i (m, α)} j∈N:

(4.11) Vj
i (m, α) = Bj

i +
∑
k� j

α j(k)wk
i (m, α),

and

(4.12) wj
i (m, α) = δ

∑
k∈N

ρ( j, k)Vk
i (m, α),

where ρ( j, k) is the protocol probability that k will be asked to make a
proposal following a rejection by player j,16 and where

(4.13) Bi
i ≡

∑
S

αi(S)gi(S,m),

15This is well-defined, as we allow subsequent play to depend on the identity of
the last rejector, but no more.
16We’ve actually made specific assumptions on the protocol but those won’t be
needed here.
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and for j � i,

(4.14) Bj
i ≡ mi

∑
S:i∈S

α j(S)

 +∑
S:i�S

α j(S)uS
i .

We may interpret Vj
i in (4.11) as the expected payoff to i when player j

proposes. The right hand side of that equation has two terms. The first,
Bj

i , can be seen from (4.13) and (4.14) to be the expected amount that i gets
when j makes an acceptable proposal. The second term captures the payoff
to i when j makes an unacceptable proposal to one of various players. This
interpretation of wk

i is indeed justified on examination of (4.12).

In particular, Vi
i(m, α) is to be interpreted as i’s expected payoff when i

herself is the proposer.

It is every easy to see that the system of linear equations (4.11) and (4.12)
has a unique solution for {Vj

i (m, α),wj
i (m, α)} j∈N, which is continuous in

(m, α); we omit the details.

Now define a function on M × ∆ × ∆i by

(4.15) vi(m, α, α′i ) ≡
∑

S

α′i (S)gi(S,m) +
∑
j�i

α′i ({ j})w
j
i (m, α),

and maximize this function with respect to α′i ∈ ∆i.

Let φ1
i (m, α) denote the set of maximizers of this problem. It is easy to

see that φ1
i (m, α) is a nonempty, convex-valued, upper hemicontinuous

correspondence.

Next, define φ2
i (m, α) to be the maximum value of this problem. It is easy

to see that φ2
i (m, α) is continuous and nonnegative. Consequently,

ψi(m, α) = δ

ρ(i, i)φ2
i (m, α) +

∑
j�i

ρ(i, j)Vj
i (m, α)


is also continuous in (m, α). Also, it is obvious that

∏
i ψi maps from M×

into M. Therefore the correspondence∏
i

ψi ×
∏

i

φ1
i : M ×  �→M × 

satisfies all the conditions of Kakutani’s fixed point theorem and has a
fixed point (m, α).

We shall now use this fixed point to construct an equilibrium. Let σ denote
the strategy profile such that:

(i) When the player set is N, player i as a proposer makes proposals
according to αi. To every coalition S containing i with αi(S) > 0, she
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proposes uS(π) which solves the problem defined by (4.8), (4.9) and (4.10).
To every j � i such that αi({ j}) > 0, she makes an unacceptable proposal:
offering in expectation any amount strictly less than mj (possibly negative).
By construction of the fixed point, this yields player i a discounted payoff
of precisely mi, conditional on rejecting an offer.

(ii) Suppose the player set is N, and that player i ∈ S is responding to a
proposal {uS(π)}. Proceed inductively on the number of respondents to
follow player i. If there are none, i accepts if and only if

(4.16)
∑
π

βS(π)yi(S, π) ≥ mi.

Inductively, suppose we have computed the accept-reject decisions of k
respondents to follow i. If there are no rejectors following i, use the rule
in (4.16) again. If there is a first rejector j following i, her decision will
now depend on the present value of her payoff resulting from j rejecting
the offer. In fact this value is precisely wj

i (m, α); see (4.12). We therefore
require that player i accept the proposal if and only if

wj
i (m, α) ≥ mi.

(iii) At all other player sets we append the equilibrium strategy profiles
chosen in the inductive step at the very beginning of this proof.

It is easy to see that a strategy profile satisfying (i)–(iii) is a stationary
equilibrium. First consider part (i), and any player i. By construction, αi is
chosen to maximize (4.15), so as proposer no profitable one-shot deviation
is possible. Next, observe that by construction, mi is player i’s payoff under
the given strategy profile from rejecting an offer. The (one-shot) optimality
of the responses prescribed in (ii) follows as an immediate consequence.
Item (iii) requires no additional discussion.

So no one-shot deviation is profitable, and we’ve therefore found a station-
ary Markovian equilibrium. Moreover, this equilibrium has nonnegative
payoffs, so bargaining must end in finite time. �

Remark. Our method of proof identifies a stationary Markovian equi-
librium in which mixing may be necessary, but in which the only source
of mixing is in the (possibly) probabilistic choice of a coalition by each
proposer. Ray and Vohra (1999) show that this degree of mixing is generally
necessary for the existence of equilibrium.

It is also of interest to ask whether our theorem extends without any
modification to games with “fully nontransferable” segments. Compre-
hensiveness fails for such games, although it is true that comprehensive
games can approximate lack of transferability arbitrarily closely.



52 Irreversible Agreements

But these are largely technical matters. In the cases of interest to follow,
existence will not be a concern.



CHAPTER 5

Irreversible Agreements: Symmetric
Games

An analysis of the general model introduced in the previous chapter
is complicated, though we hope to make some serious progress. We
begin by studying symmetric partition functions with transferable
utility. Such functions have the property that the worth of a coalition
depends only on the number of individuals in that coalition and the
ambient “numerical coalition structure” — the ambient coalition
structure described only by the vector of membership sizes.

Though we assume both symmetry and transferability, symmetry
is really the main assumption at work. Under some mild qualifi-
cations, our analysis can be easily extended to symmetric sets of
nontransferable payoffs (see Section 5.4 for a brief discussion).

Observe that the symmetry postulate places all individuals, ex ante,
in a similar position. But this is emphatically not to say that all
individuals must always receive the same payoffs: only that coali-
tions of the same size and in the same ambient numerical structure
must enjoy the same coalitional worth. So ex post, depending on the
particular configuration that different individuals find themselves
in, there may be substantial variation in payoffs.

While we go beyond the symmetry assumption to a substantial
degree in Chapter 7, it is worth noting that several applications fit
into this category. We discuss two of them in Chapter 6.

The main results of this chapter involve the unearthing of a particular
class of coalition structures, with the property that such a class
is predicted by a broad class of equilibria, within a general class
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of bargaining protocols. Under some conditions this prediction is
unique.

In summary, given the assumptions that commitments are irre-
versible and that the underlying game is symmetric, we obtain a
remarkably sharp prediction of equilibrium outcomes. Before we
get into the analysis, it may be useful to describe this prediction
informally.

Roughly speaking, we identify a particular coalition structure
created by recursively maximizing average worth. That is, at every
stage of the game, the size of the coalition that forms next will
be given by the coalitional size that maximizes the average worth
across all coalitions. But this description is incomplete, because
the “average worth” of a coalition is contextual when there are
externalities: it depends on the ambient structure within which the
coalition is embedded. This is where the word “recursive” comes
in: such a structure is calculated by supposing that average worth
maximization will be carried out in all later stages as well.

This apparently circular bout of reasoning is actually quite linear,
because we can proceed by recursion on the number of stages left in
the game. By starting with the simplest environments in which only
a single active player is left, we can work backwards to generate
a full coalition structure that satisfies recursive average worth
maximization. As we shall see in the examples, the structure can be
quite complicated — after all, apart from symmetry we impose very
few assumptions — but it is generated by the elementary conditions
of average worth maximization and is thus eminently applicable.

A corollary of this characterization is that equilibrium coalition
structures are not, in general, efficient. The latter necessitates
the maximization of total worths, while our prediction maximizes
average worth. Later, we discuss how general this particular
property is.

5.1 Symmetric Partition Functions

A partition function is symmetric if the worth of a particular coalition
in a given partition depends only on the number of individuals in
each coalition in that partition.

With a little abuse of notation, the transferable worth v(S, π) of a
coalition S in π can be written as v(s,n), where s is the size of S
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and n is the collection of coalitional sizes in π. We will call n a
numerical coalition structure, and will occasionally use the notation
n(π) to connect n to the underlying structure π.

It will also be useful to describe the partition function as a vector
of worths, one for each coalition in the partition: we will use the
notation v(π) or v(n) to do this.

5.2 An Algorithm

In this section, we recursively construct the coalition structure that
will be of central interest. There is no game theory in the algorithm
that follows and you can look at it simply as a mathematical
construction. What will give it meaning are the propositions that
will link the equilibria of our game to the structures generated by
this algorithm.

In what follows, objects such as n will refer not just to a numerical
coalition structure for the full game at hand, but equally to numerical
substructures, collections of positive integers that add up to any
number strictly less than the total number of players. For any such
substructure n = (s1, . . . , sm), define K(n) ≡

∑
j sj; then K(n) < n. Use

the notationφ to refer to the “zero-dimensional” or null substructure
containing no entries, and set K(φ) = 0. Let F be the family of all
substructures (including φ). While, as I’ve said already, there is
no game theory in the analysis to follow, it is useful to interpret a
substructure as a collection of coalitions that has “already formed”
in a subgame.

We are going to construct a rule t(n) that assigns to each member of
F a positive integer. Continuing in our interpretative vein: given
that the substructure n has already formed, t(n) is the size of the
coalition that forms next. By applying this rule repeatedly starting
from φ, we will generate a particular numerical coalition structure,
to be called n∗.

S 1. For all n such that K(n) = n − 1, define t(n) ≡ 1.

S 2. Recursively, suppose that we have defined t(n) for all
substructures n with K(n) ≥ m + 1 for some m ≥ 0. For any such n,
define

c(n) ≡ n.t(n).t(n.t(n)) . . . ,
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where the notation n.t1. . . . tk simply refers to the numerical coalition
structure obtained by concatenating n with the integers t1, . . . , tk.

S 3. For any n such that K(n) = m, define t(n) to be the largest
integer in {1, . . . ,n −m} that maximizes the expression

(5.1)
v(t, c(n.t))

t
.

S 4. Complete this recursive definition so that t is now defined
on all of F . Define a numerical coalition structure (for the entire set
of players) by

n∗ ≡ c(φ).

This completes the description of the algorithm. There will soon be
plenty of examples to give us a feel for n∗. But first we must show
that n∗ is deserving of special attention.

5.3 Connecting the Algorithm to Equilibria

This section proceeds in steps. We first show that the algorithmic
structure n∗ is predicted by a “reasonable” class of equilibria,
which we call standard equilibrium. We then to proceed to rule out
other equilibria. These exercises will require some conditions on
the partition function (so far we have imposed none, except for
symmetry).

5.3.1 Standard Equilibrium. An equilibrium is standard if every
proposer at every stage makes an acceptable proposal with positive
probability.

The terminology “standard” is deliberately chosen to suggest that
such equilibria are reasonable. There is no incompleteness of infor-
mation, so why make an unacceptable proposal that is guaranteed to
cause delays? Surely, there should be no real advantage to delaying
one’s inclusion in a formed coalition?

These questions (rhetorical though they may be) are sensible. In
general, equilibrium proposals will be acceptable; in the examples
of economic interest that we consider later, this is certainly the case.
But it is also important to note that — barring symmetry — we
have made absolutely no assumptions on the shape of the partition
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function. In certain situations, some equilibria need not be standard,
and in some cases, standard equilibria need not exist at all.

At the risk of appearing entirely perverse, I am now going to present
an example with “nonstandard” equilibria. The reader must keep
in mind that this example is not intended to cast doubt on the
reasonableness of standard equilibrium. However, if we are going
to impose further conditions on the game, it is useful to illustrate
the need for such restrictions, even though they may come across as
mild restrictions anyway.

Here is the example:

E 5.1. There are five players. The partition function is given by

v(4, 1) = (6, 2), v(3, 2) = (3, 8), v(2, 1, 1, 1) = (0.1, 3, 3, 3),

v(3, 1, 1) = (10, 0, 0), v(n) = 0 for all other n.

The first rejector for any proposal makes the next proposal.

I’ve deliberately put grand-coalitional worth to 0 to cut down on the
number of cases (a similar example can easily be constructed if the
game is required to be grand-coalition superadditive).

Proceeding informally for a moment, consider possible equilibria
in which a coalition of four players forms, and one player is left
out. Notice that at least one player in the four-player coalition must
receive no more than 1.5, whereas by being the lone outsider she
can do. Therefore it pays for at least one player to stand apart while
the remaining four players form a coalition. One way to do this
is to have that player unilaterally and irreversibly exit, leaving the
other four players to their devices. But in that case the four-player
coalition will not form. Instead, three of the remaining players will
form a coalition, leaving the original player with zero.

The only way for a player to avail of the high outsider payoff
is to “wait” until the four-person coalition has formed, and she
achieves this by making unacceptable offers. More formally, for all
discount factors sufficiently close to unity, there is an equilibrium
with numerical coalition structure (4, 1) in which one player makes
an unacceptable proposal (in the presence of all five players) and the
other four make acceptable proposals to each other. This equilibrium
is obviously not standard. Under it, the “intransigent” player
receives 2δ whenever it is his turn to propose, and all players are
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active. The others receive only 6
1+3δ in their role as proposer. We

leave the details of equilibrium construction to the reader.

There is another equilibrium — again, not standard — with coalition
structure (3, 2). It is constructed as follows. Players 1, 2 and 3 make
acceptable offers to each other and the other two make unacceptable
offers to player 1. Let xi, the equilibrium payoff to i if i starts the
game, be defined as

xi =
3

1 + 2δ
for i = 1, 2, 3,

xj =
8δ

1 + δ
for j = 4, 5.

For δ close to 1, players 1, 2 and 3 get approximately 1 while players
4 and 5 get approximately 4. Clearly, none of the first three players
can do better by including player 4 or 5, since v(4, 1) = (6, 2). Nor,
given the strategies of the others, can players 1–3 gain by making
an unacceptable proposal. Similarly, it is easy to see that players
4 and 5 do not have a profitable deviation. Therefore, the above
strategies (together with obvious specifications for non-equilibrium
subgames) constitute an equilibrium.

There may still be more equilibria, but what can certainly be shown
is that none of these can be standard under the rejector-proposes
protocol. Having Proposition 5.2 in hand helps us to establish this
very quickly, so we postpone a more detailed discussion of this
assertion until the statement of that proposition.

Nonstandard equilibria are characterized by the making of absurd
offers which the proposer knows will be rejected.1 Why would such
offers ever be made? The answer is that a proposer may wish to pass
the buck to another player, and benefit from possibly higher payoffs
in some subgame. Assuming that players within a coalition divide
their algorithmic worth roughly equally (we will need to prove this
of course), this suggests that the problem goes away if average
algorithmic worth a(n) declines “as the algorithm proceeds”. This
is the route we explore below.

1One might argue that the making of unacceptable offers is merely an artifact of the
assumption that a player must include herself in any proposal. But the problem
simply reappears in a different guise: players may make acceptable offers, but they
will do so to coalitions that don’t include themselves, preferring instead to form a
coalition later in the proceedings.
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5.3.2 Nonincreasing Average Worths. For each numerical sub-
structure n, define

(5.2) a(n) ≡ v(t(n), c(n.t(n))
t(n)

.

The numbers a(n) can, of course, be directly computed from the
primitives of the model. These are the average worths of the algorithm
at each “stage n”.

Say that algorithmic average worth is nonincreasing if

a(n) ≥ a(n.t(n))

for every substructure n such that n.t(n) is also a substructure.

Nonincreasing average worth — or NAW henceforth — is our first
real restriction on the partition function (apart from symmetry). It
may be worth pausing a moment to examine it further.

Note, first, that NAW has bite only for partition functions. For all
characteristic functions, in which the worth of a coalition depends
only on the coalition itself, the condition must be trivially satis-
fied. The reason is simple. Our algorithm involves the stepwise
maximization of average worth, setting each maximizing coalition
aside as the algorithm proceeds. If there are no externalities across
coalitions, such a process must result in a sequence of (maximal)
average worths that can never increase; for if they did, such
coalitions would have been chosen earlier in the algorithm, not later.

This simple observation also assures us that NAW is not connected to
other well-known features such as superadditivity. All (symmetric)
characteristic functions satisfy NAW.

Whether or not NAW applies more generally (i.e., when externalities
are present) is a less transparent question, and the answer will
largely depend on the application at hand. If personal experience
is of any help, I haven’t come across an interesting economic or
political application where NAW isn’t satisfied, though I certainly
cannot rule out the possibility. For instance, the two examples to be
examined in detail in Chapter 2 both satisfy NAW. But it is certainly
possible to write down a mathematical example in which NAW fails:
Example 5.1 is one such instance.

5.3.3 More on Protocols. As described in the previous chapter,
we consider a fairly broad class of protocols in which the first rejector
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of a proposal has the option to exit the game, but conditional on
staying she gets to be the next proposer with some probability. If
this probability is always one, we have the rejector-proposes protocol,
familiar initially from the alternating-offer bargaining model of
Rubinstein (1982), and used in a large literature on bargaining. If
this probability is equal across all active players, the rejector has
no particular claim on making a fresh proposal (as in Baron and
Ferejohn (1989)), and if this probability is close to zero, the protocol
is actually biased against the rejector.2 We’ve assumed, however,
that in all such cases the first rejector has the option to unilaterally
(and irreversibly) exit the game.

We will presently discuss the sense in which our results are robust
across this wide variety of protocols, but it will be convenient to
begin in a somewhat narrower class. Say that a protocol is rejector-
friendly if the rejector gets to counterpropose with better than even
probability, and if this probability does not decline as the number s of
active players decreases: ρ(s) > 1/2, and is nonincreasing in s. Our
results are initially restricted to this subclass, but we then discuss
(see Section 5.3.4.4 below) how they might extend to a broader
context.

5.3.4 NAW, Standard Equilibria and Equilibrium Coalition Struc-
ture. The following pair of propositions relates NAW to standard
equilibria. Proposition 5.1 unearths a particular coalition structure
predicted by all rejector-friendly protocols, provided that bargaining
frictions are close to zero. Proposition 5.2 shows that this structure
is the only one common to standard equilibria as we move over all
rejector-friendly protocols. We begin with precise statements of the
propositions and then proceed to a more informal discussion.

P 5.1. Under NAW, for every rejector-friendly protocol, there
exists a standard equilibrium yielding the algorithmic coalition structure
n∗, provided that the discount factor is sufficiently close to one.

P 5.2. Provided that the discount factor is sufficiently close to
one, n∗ is the only coalition structure under standard equilibrium in the
rejector-proposes protocol, and is therefore the only structure common to
standard equilibrium in all protocols.

2No restriction is imposed on the choice of a fresh proposer for the remaining active
players, following an accepted proposal. But see Section 7.7 of Chapter 7 for more
discussion in the general, asymmetric case.
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There are several aspects of these propositions that require further
discussion.

5.3.4.1 Why n∗? First, the reason why n∗ is singled out is that
the equilibrium behavior we identify is connected closely to equal
division of the available worth as bargaining frictions go to zero.
One way to see this is to simply recall the two-person Rubinstein–
Ståhl bargaining model: there, as the common discount factor
converges to one, the bargaining outcome converges to equal
division of the available surplus. Indeed, as Section 4.4 in Chapter
4 shows, such convergence to equal division holds over a variety
of protocols, which includes all the protocols in the statements of
the propositions. Equal division is, therefore, a very natural focal
point in the symmetric case (when two identical players bargain
over a prize, should we expect anything else?3), and our result may
be viewed as a transplant of this property it to the far broader
framework of this chapter. The algorithm supplies the correct
generalization of “equal division” in our extended framework.

5.3.4.2 The Role of NAW. The intuitive appeal of n∗ notwithstand-
ing, we must be careful here. Obviously, matters are not that simple,
as Example 5.1 already reveals. The far more nuanced strategic
structure of our model requires additional conditions for the equal
division intuition to carry through. NAW provides such conditions.
To see why these are needed in general, return to Example 5.1.
Proposition 5.2 (together with some additional calculations) can be
used to demonstrate that there is no standard equilibrium in that
example, as δ→ 1. Here is the argument.

Suppose, on the contrary, that such an equilibrium exists along a
sequence of discount factors tending to unity. Apply the algorithm
to the example to check that n∗ = (4, 1). Therefore — recalling that
rejectors propose in that example — Proposition 5.2 tells us that a
coalition of four individuals must form first along the equilibrium
path. It is easy to calculate that a proposer receives 6

1+3δ , and a
responder receives 6δ

1+3δ .

3It is true, for instance, that if discount factors are heterogeneous even as they all
converge to unity, unequal division might occur. I do not take this case seriously
as a possible reason for unequal division, and therefore presume that the discount
factor is common to all players. See footnote 8 in Chapter 4 for more discussion.
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Fix any δ ≥ δ∗ such that δ[0.5 + 6δ] > 6. Now observe that there is
some pair of individuals i and j such that if it is j’s turn to propose,
an offer is made to i with probability no more than 3/4. If individual
i deviates by making an unacceptable offer to j, then the present
value of i’s payoff is bounded below by δ[ 3

4
6δ

1+3δ +
1
4 2], while by

sticking to equilibrium policy, he obtains 6
1+3δ . Comparing these

two expressions under the given restriction on δ, it can easily be
checked that a deviation is profitable. This completes the argument.

A sharper query: is NAW logically necessary for our Propositions,
or might a weaker condition (which nevertheless excludes Example
5.1) suffice? It can be shown that NAW is actually necessary for
the existence of a pure strategy standard equilibrium, as long as
the rejector-proposes protocol is included in the class over which
existence is demanded. See Ray and Vohra (1999, Theorem 3.3).

5.3.4.3 Other Structures in Standard Equilibrium. There is a sec-
ond reason for caution. Proposition 5.2 makes it clear that n∗ is
the unique coalition structure that is common to all every rejector-
friendly protocol. As the statement of that proposition makes
explicit, this is so because the rejector-proposes protocol admits no
other outcome (in standard equilibrium). But the other protocols
might. To see this, consider the following example:

E 5.2. There are four players. The partition function is given by

v(3, 1) = (22, 0), v(2, 1, 1) = (16, 1, 1), v(n) = 0 for all other n.

The first rejector for any proposal can exit, as described in the text, or gets
to make the next proposal with probability 7/12.

Applying the algorithm is seen to yield the coalition structure
n∗ = {2, 1, 1}. It is very easy to check that NAW holds. Indeed, as
asserted in the proposition, there is a standard equilibrium (for low
bargaining frictions) that generates n∗. But there is another standard
equilibrium as well, one that generates the coalition structure {3, 1}.
I construct this equilibrium by studying a strategy profile in which
— at the initial stage with all players active — acceptable proposals
are made to a three-person coalition, and the rejector of a proposal
is excluded from the next proposal if she does not get to make that
proposal herself.

It is instructive to carry out this construction. Denote by x the
equilibrium payoff to a proposer and by m the equilibrium payoff
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to a responder, conditional on rejecting an offer. Suppose that an
acceptable offer is made to a three-person coalition (we shall verify
this below). Then

x = 22 − 2m and m = δ
7
12

x,

where the second equality incorporates the feature that a rejector is
excluded from a counterproposal unless it is made by the rejector
herself.

For δ is close enough to 1, this shows that m is approximately
5.92. Faced with these response thresholds, we must now verify
that a proposer will indeed prefer to propose to a three-person
coalition, obtaining 22 − 2m rather than proposing to a two-person
coalition and obtaining 16 − m. Performing the necessary sums,
it is trivial to see that the three-person coalition will indeed be
preferred. This completes an informal demonstration that every
standard equilibrium need not yield n∗ even if bargaining frictions
are close to zero.

The reason we nevertheless manage to find some standard equi-
librium that does yield n∗ is that an equilibrium strategy profile
which includes, rather than excludes, the rejector of the last proposal
in every counterproposal can always be constructed. Such an
equilibrium must generate equal division in every formed coalition,
and we are back to our predicted structure n∗. (Notice that in
the construction of the previous paragraph, equal division is not
obtained.) You can easily construct such an equilibrium in this
example, or if you prefer, study the proof of Proposition 5.1 which
achieves this task in greater generality.

5.3.4.4 Robustness to an Even Wider Class of Protocols. An
uncomfortably familiar feature of bargaining models is that their
predictions are often sensitive to the finer points of procedure —
to the protocol, in the language of this chapter. This is why I have
taken care to present results that cover a broad class of protocols.
One might worry, though, that the class isn’t broad enough. For
instance, the two propositions in this sections have been stated
for the class of rejector-friendly protocols, procedures in which the
rejector has quite a bit of power. Rejector-friendly protocols exclude,
for instance, the case of a uniform proposer protocol, one in which
a new proposer is chosen with uniform probability over the set of
active agents whenever a going proposal has been rejected. Do our



64 Irreversible Agreements: Symmetric Games

results extend to such cases: is n∗ still predicted by (some) standard
equilibrium for this and similar protocols?

To answer this question, recall our description of the n-person
Rubinstein–Ståhl bargaining model with Markovian strategies. In
that model, we permit a wide range of protocols which include the
class studied in propositions 5.1 and 5.2, the “uniform protocol”
mentioned in the previous paragraph as well as a variety of other
procedures. Yet equal division is always implemented as the
common discount factor converges to 1. This suggests that it should
be possible to extend our results to protocols in the wider class.

A careful study of the proof of Proposition 5.1 reveals the difficulty.
(The more hurried reader is invited to read the remarks following
the proofs of Lemmas 5.2, 5.5, and Proposition 5.1.) Recall our
discussion of the NAW condition. It pushes the proposer to make
acceptable proposals in equilibrium, by lowering average worths in
future stages. An important part of our formal proof deals with the
translation of the NAW restriction to the discounted case at hand, at
least when discount factors are close to unity. This formal argument
becomes extremely complex when NAW holds with equality in one
or more stages. If I were to drop equality from NAW, requiring
instead that

(5.3) a(n) > a(n.t(n))

for every substructure n, then it is possible to significantly widen
the class of protocols. In short, it is possible to prove

P 5.3. If NAW holds in the stricter sense described by (5.3),
Propositions 5.1 and 5.2 continue to hold for every protocol in which the
rejector, apart from unilateral exit rights, has some positive probability of
making a counterproposal.

A second robustness check on protocols has to do with the unilateral
exit rights we’ve conferred on any rejector. Recall that this simply
means that a rejector can form a “one-person coalition” and exit if
she so pleases, or she can stay on and submit herself to the vagaries
of a new choice of proposer (which might be herself or someone
else). Are the propositions robust to the dropping of such rights?

To understand this question, recall how we construct the equilibrium
in which equal division is “implemented” at every stage. We do so
by including the last rejector in every counterproposal (recall the
discussion following Example 5.2). But if the optimal coalition size
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is 1 (i.e., if t(n) = 1 at any stage n) this is impossible to do unless the
rejector herself gets to make the counterproposal. This snag might
cause a failure of the algorithm,4 but giving a rejector unilateral exit
rights gets around the problem. Notice that if singleton coalitions
are never chosen by the algorithm whenever there are two or more
active players, this problem disappears and our results are robust
to an even broader class of protocols, in which it does not matter
whether or not the rejector is given exit rights.

5.3.5 On the Uniqueness of n∗. Proposition 5.2 argues that n∗

is the only equilibrium coalition structure that is common to
standard equilibria across all rejector-friendly protocols, provided
that bargaining frictions are small. That proposition also makes
clear that such a singling-out is achieved by the rejector-proposes
protocol, which admits no other standard equilibrium. As we have
seen (see, for instance, Example 5.2), other protocols do permit
standard equilibria to generate alternative coalition structures, but
n∗ is always among the predicted structures. In this sense n∗ appears
to be a focal prediction.

But this finding is limited by our restriction to standard equilibrium.
It is entirely possible that there are other (Markovian) equilibria
which generate very different coalition structures, and that they
persist even under the rejector-proposes protocol. To see this,
consider the following variation on Example 5.1:

E 5.3. There are five players. The partition function is given by

v(4, 1) = (6, 1), v(3, 2) = (3, 8), v(2, 1, 1, 1) = (0.1, 3, 3, 3),

v(3, 1, 1) = (10, 0, 0), v(n) = 0 for all other n.
The first rejector for any proposal makes the next proposal.

The only change relative to Example 5.1 is the specification of v(4, 1).
But this change guarantees that NAW is satisfied. Proposition 5.1
tells us that a standard equilibrium must make an appearance, and
indeed one does when bargaining frictions are small, yielding the

4For instance, suppose that n = 10, v(1, 9) = (2, 1), v(10) = 10, and v(n) = 0
for other structures n. Then t(∅) = 1, so the proposition would state that a
standard equilibrium exists with a singleton coalition forming at the very first
stage. However, think of the uniform protocol in which a new proposer is chosen
uniformly following any rejection, and no rejector has exit rights. Then it is possible
to check that no such standard equilibrium exists: the proposer will wish to propose
the grand coalition.
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coalition structure (4, 1). However, the asymmetric equilibrium of
Example 5.1, with the coalition structure (3, 2), persists here as well.
What is more, this equilibrium is in no hurry to go away as we move
over our range of protocols. This shows that NAW isn’t enough to
single out n∗ (over different protocols), unless we restrict ourselves
to standard equilibria.

Such a restriction may be perfectly fine. Perhaps we’re not interested
in asymmetric equilibria. On the other hand, it might be reassuring
to be able to tighten our predictions further. The purpose of this
section is to show that under conditions somewhat stronger than
NAW, our algorithmic structure n∗ is the only predicted equilibrium
coalition structure common to all rejector-friendly protocols (with
low bargaining frictions), whether or not we restrict ourselves to
standard equilibria. This is an even stronger prediction that pushes us
closer still to accepting n∗ as a solution for symmetric games. Once
again, the rejector-proposes protocol accomplishes the narrowing
of equilibrium outcomes: we will establish uniqueness under this
protocol.

But first let us see what the stronger condition is. To this end, define
for each n ∈ F , and each positive integer 	 ∈ {1, . . . ,n − K(n)},

(5.4) τ	(n) ≡ arg max
t∈{1,...,	}

v(t, c(n.t))
t

.

In words, t ∈ τ	(n) solves the same maximization problem as
described in the algorithm, except that maximum size is restricted
by 	.5

Now consider a strengthening of NAW. Say that algorithmic average
worth is strongly nonincreasing (“strongly nonincreasing average
worth”, or SNAW) if for each n ∈ F and each positive integer
	 ∈ {1, . . . ,n − K(n)},
(5.5) a(n) ≥ a(n.t) for all t ∈ τ	(n).

This condition is stronger than NAW, which requires only that
average worth weakly decline as we progress along the algorithm,
step by step. More precisely, think of maximizing average worth at
a stage in which the partial structure n has already been removed.
Suppose it is maximized at the integer t. Then NAW only asks that
average worth not be increasing at the next step of the algorithm,

5Because of possible nonconvexities, this maximum restriction can be binding even
if 	 � τ	(n). Of course, t(n) ∈ τ	(n) whenever 	 ≥ t(n).
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when the removed partial structure is given by n.t. SNAW asks for
more. It requires that this condition hold not just for the maximizing
integer t, but for all “constrained maximizers” t′ obtained by solving
the average worth maximization problem over integers up to some
upper bound. Because the unconstrained maximizer t is also a
constrained maximizer for some large enough bound, SNAW is a
genuine strengthening of NAW.

The utility of introducing this condition is brought out in

P 5.4. Under SNAW, provided that discount factors are
sufficiently close to one, the only equilibrium coalition structure common
to all rejector-friendly protocols is n∗.

Proposition 5.4 provides a sharper prediction (under stronger as-
sumptions). It underlines the focal nature of the coalition structure
n∗ as an equilibrium prediction for symmetric partition functions.
Once again, it should be pointed out — and the proof of the
proposition will make this very clear — that the uniqueness result
is really driven by the presence of the “rejector-proposes” protocol,
under which n∗ is the unique prediction, given SNAW. Of course,
this is not to shun the usefulness of considering other protocols, in
which n∗ is always an equilibrium prediction.

Like NAW, SNAW is trivially satisfied for all characteristic functions.
Whether SNAW holds more abundantly in economic or political
applications with externalities remains to be seen.6 We will explicitly
verify SNAW in the applications that we consider later in this book;
see Chapter 6.

5.4 A Remark on Nontransferable Payoffs

Within the class of symmetric games, it isn’t hard to incorporate
arbitrary degrees of nontransferability. Suppose that we retain all
the symmetry assumptions, but replace the TU worth v(S, π) by some
symmetric set of payoffs U(S, π). Nothing of substance will change
as long as we are willing to assume that each such set is convex.

While the details are already complex (as the proofs in the next
section will reveal) and dropping transferability certainly does not
help, it is easy to obtain an intuition of why the same arguments

6Of course, it does fail in Example 5.3, which was artificially concocted to show
why something like SNAW is needed.
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go through. Average worth will now need to be replaced by the
symmetric utility obtained “along the diagonal” for each U(S, π),
and the same algorithm may be written down with average worth
replaced by this symmetric utility. It is easy enough to see why
convexity may be needed for such an argument. There is no
guarantee otherwise that “equal division” will be followed within
all coalitions, and our techniques cease to apply.

Section 14.8 of Chapter 14 contains further discussion on the NTU
case.

5.5 Proofs

In several chapters starting with this one, I will collect formal
derivations in a section marked “Proofs”. The status of these
arguments is that they deserve more attention than a technical
appendix, but at the same time they are not entirely necessary
for expositional continuity. Therefore a reader uninterested in
the deeper arguments can always skip this section and read on,
relatively unscathed.

I turn now to the proofs.

We will need to fix threshold values of the discount factor, and then
settle on the maximum of these. The lemmas that follow describe
the different thresholds. To this end, define, for any substructure n
and δ,

r(n, δ) = δv(1, c(n.1)) if t(n) = 1

= a(n)
δρ(s)t(n)

(1 − δ) + δρ(s)t(n)
if t(n) ≥ 2,(5.6)

where s, as before, is just n − K(n), and a(n) is the average worth
generated at “stage n” in the algorithm (see (5.2)).

Though this comment is unnecessary for the formal developments
below, the numbers r(n, δ) will serve as standard-equilibrium rejec-
tion thresholds for agents receiving offers after the substructure n
has left. We begin with

L 5.1. There exists δ1 ∈ (0, 1) such that for any δ ∈ (δ1, 1), and any
substructure n, t(n) uniquely maximizes (in t) the expression

(5.7)
v(t, c(n.t))

(1 − δ) + δρ(s)t
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where s = n − K(n), and also the expression

(5.8) v(t, c(n.t)) − (t − 1)r(n, δ).

Proof. Fix n and consider the maximization of the expression in
(5.7). By the well-known maximum theorem, the set of maximizers
is upper hemicontinuous in δ, and so all limit points of sequences
from this set must lie in the set of maximizers of

v(t, c(n.t))
t

,

as δ→ 1. But the maximizers are just integers from some finite set,
so in fact the collection of maximizers of (5.7) — call it µ(n, δ) —
must become a subset of µ(n, 1) for all δ large enough; bigger than
some δ1 ∈ (0, 1), where δ1 can be chosen uniformly over the finitely
many different substructures.

So for every δ > δ1 and for every maximizer t of (5.7) the value of

v(t, c(n.t))
t

is just the same (and at its maximum). Comparing this expression
and (5.7), it is obvious, then, that the maximizer of (5.7) must indeed
exhibit the largest value of

t
(1 − δ) + δρ(s)t

among all values of t that achieve the maximum of v(t, c(n.t))/t. But
this fraction strictly increases in t, so we’ve proved that for all δ > δ1

there is only one maximizer of (5.7), and that is t(n).

To establish the maximization of (5.8), notice that we can scale up
and rewrite (5.7) as

[(1 − δ) + δρ(s)]v(t, c(n.t))
(1 − δ) + δρ(s)t

= v(t, c(n.t)) − (t − 1)
δρ(s)v(t, c(n.t))
(1 − δ) + δρ(s)t

≡ v(t, c(n.t)) − (t − 1)y(t),(5.9)

where

y(t) ≡
δρ(s)v(t, c(n.t))
(1 − δ) + δρ(s)t

.

Because t(n) maximizes (5.7), it is immediate that

y(t) =
δρ(s)v(t, c(n.t))
(1 − δ) + δρ(s)t

≤
δρ(s)v(t(n), c(n.t(n)))

(1 − δ) + δρ(s)t(n)
=

δρ(s)t(n)a(n)
(1 − δ) + δρ(s)t(n)

,
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and this last expression equals r(n, δ) when t(n) ≥ 2, while it is
bounded above by r(n, δ) when t(n) = 1 (examine (5.6)). So y(t) ≤
r(n, δ) in all cases. Using this information in (5.9) and remembering
again that t(n) uniquely maximizes (5.7), we may conclude that

v(t(n), c(n.t(n))) − [t(n) − 1]r(n, δ) > v(t, c(n.t)) − (t − 1)y(t)
≥ v(t, c(n.t)) − (t − 1)r(n, δ),

which establishes the unique maximization of (5.8) at t = t(n). �

L 5.2. Assume that the protocol is rejector-friendly. Then there exists
δ2 ∈ (0, 1) such that for all δ ∈ (δ2, 1),

(5.10) r(n, δ) > δv(1, c(n.1))

whenever t(n) ≥ 2.

Proof. Recall that for t(n) ≥ 2,

r(n, δ) = a(n)
δρ(s)t(n)

(1 − δ) + δρ(s)t(n)
,

so that (5.10) will hold whenever

(5.11) a(n)
δψ

(1 − δ) + δψ
> δv(1, c(n.1)),

where ψ ≡ ρ(s)t(n).

Because t(n) ≥ 2 by assumption, a(n) — the maximal value of the
ratio v(t, c(n.t))/t — is no less than v(1, c(n.1)). If strict inequality
holds, it is obvious that there is a threshold δ(n) ∈ (0, 1) such that
(5.11) — and therefore (5.10) — holds for all δ ≥ δ(n).

If equality holds — i.e., a(n) = v(1, c(n.1)) = z, say — then a
similar threshold can be obtained but the argument is more subtle.
Differentiate the left and right hand sides of (5.11) with respect to
δ and evaluate these two derivatives at the limit δ = 1. The limit
derivative on the left is z/ψ, while the one on the right is just z.
Now observe that ψ = ρ(s)t(n) > 1, because ρ(s) > 1/2 by rejector-
friendliness and t(n) ≥ 2 by assumption. It follows once again that
there is δ(n) ∈ (0, 1) such that (5.10) holds for all δ ≥ δ(n).

To complete the proof, note that because there are finitely many n,
the threshold can be made uniform by selecting δ2 = maxn δ(n). �

Remark. Rejector-friendliness can be dispensed with in this lemma
if a(n) > v(1, c(n.1)) whenever t(n) ≥ 2.
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To continue, define

(5.12) a(n, δ) ≡ a(n)
[(1 − δ) + δρ(s)]t(n)
(1 − δ) + δρ(s)t(n)

,

where, as before, s = n − K(n). As an informal comment, a(n, δ) will
represent the equilibrium payoff to a proposer under a standard
equilibrium (compare with the definition of r(n, δ), the equilibrium
payoff to a responder, in (5.6)).

L 5.3. For all δ and substructures n, δa(n, δ) ≥ r(n, δ).

Proof. If t(n) = 1 this is trivially true because a(n, δ) = v(1, c(n.1)) and
r(n, δ) = δv(1, c(n.1)). The case t(n) ≥ 2 is also simple: compare (5.6)
and (5.12) and note that δ[(1 − δ) + δρ(s)] ≥ δρ(s). �

L 5.4. For any substructure n and nonnegative integer M,

(5.13) lim
δ→1

dδMa(n, δ)
dδ

= a(n)
[
M − t(n) − 1

ρ(s)t(n)

]
,

and

(5.14) lim
δ→1

dδr(n, δ)
dδ

= a(n)
[
1 +

1
ρ(s)t(n)

]
,

where s = n − K(n).

Proof. (5.13) and (5.14) follow from elementary differentiation with
respect to δ in (5.12) and (5.6) respectively; I omit the details. �

Say that a substructure n′ is a continuation of another substructure
n′ if n′ can be reached from n by repeatedly applying the algorithm
from n.

L 5.5. Assume NAW and a rejector-friendly protocol. Then there
exists δ3 ∈ (0, 1) such that for all δ ∈ (δ3, 1), for every pair of substructures
(n,n′) with n′ a continuation of n, and for every weight µ ∈ [0, 1] with
µ ≤ 1/[t(n′) − 1],

(5.15) a(n, δ) > δ
[
µa(n′, δ) + (1 − µ)r(n′, δ)

]
.

Proof. By NAW, a(n) ≥ a(n′). If strict inequality holds, we can easily
find a discount threshold δ(n,n′) such that (5.15) holds whenever
δ > δ(n,n′).7 So consider the case in which a(n) = a(n′) = a, say.

7After all, both a(n′′, δ) and r(n′′, δ) converge to a(n′′) as δ→ 1 for every substructure
n′′.
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Write t′ = t(n′) to ease the notation. Applying Lemma 5.4 and
noting that s′ = n − K(n′), we see that

lim
δ→1

dδ
[
µa(n′, δ) + (1 − µ)r(n′, δ)

]
dδ

= a − µa(t′ − 1)
ρ(s′)t′

+ (1 − µ)
a

ρ(s′)t′
.

This is obviously strictly positive whenever t′ = 1. If t′ ≥ 2,

lim
δ→1

dδ
[
µa(n′, δ) + (1 − µ)r(n′, δ)

]
dδ

= a − µa(t′ − 1)
ρ(s′)t′

+ (1 − µ)
a

ρ(s′)t′

≥ a − a(t′ − 1)
(t′ − 1)ρ(s′)t′

+
t′ − 2
t′ − 1

a
ρ(s′)t′

= a
[
1 − 1

t′(t′ − 1)ρ(s′)

]
> 0(5.16)

where the very last inequality follows from the fact that t′ ≥ 2 and
ρ(s′) > 1/2. So the above limit is strictly positive for all values of t′.

At the same time, Lemma 5.4 also tells us that

(5.17) lim
δ→1

da(n, δ)
dδ

= −a
t(n) − 1
ρ(s)t(n)

≤ 0.

The two opposing inequalities (5.16) and (5.17) imply that there
exists δ(n,n′) such that (5.15) holds for all δ > δ(n,n′). To complete
the proof, take δ3 = max δ(n,n′) over all (n,n′) satisfying the
conditions of the lemma. �

Remark. Note that if NAW holds with strict inequality, rejector-
friendliness can be dispensed with in this lemma.

Proof of Proposition 5.1. In what follows, we take the threshold δ∗

to be the maximum of the three values δ1, δ2 and δ3 identified in
Lemmas 5.1, 5.2, and 5.5. As required, we assume NAW, and prove
that a standard equilibrium exists for all rejector-friendly protocols
whenever δ ≥ δ∗.

We describe a strategy profile. In what follows, index every
individual by a number i, i = 1, . . . ,n. Counting from i will mean
looking at progressively higher indices from i, modulo n. (So, for
instance, n and then 1 are the two closest individuals counting from
n − 1.)

Suppose that a partial coalition structure π has left; let n be the
numerical structure corresponding to it.
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I describe proposer actions. The proposer chooses a coalition of size
t = t(n), the integer identified in the algorithm. The exact choice
of coalition will be described below (she must include herself of
course). She makes a proposal to this coalition which gives each
member (other than herself) the value r(n, δ), and gives herself the
value v(t, c(n.t)) − (t − 1)r(n, δ), which is easily checked, using (5.6)
and (5.12), to be a(n, δ).8

If t = 1, then there is no choice of coalition involved; the proposer
effectively exits as a one-person coalition. If t > 1 and the proposer
is the first individual to make a proposal following the exit of n, she
includes herself in the coalition and the t−1 closest active individuals
to her, counting from herself. Finally, if t > 1 and a previous proposal
following the exit of n has been rejected, the proposer includes
herself, the rejector of the latest proposal, and the t − 2 other closest
active individuals to her, counting from herself.

I now turn to responses at stage n. Recall the threshold r(n, δ) defined
in (5.6). Provided that all subsequent respondents to the same proposal are
offered at least r(n, δ) each, a responder accepts the proposal if and only
if it offers her at least r(n, δ).

This specification guarantees that a proposal is accepted if and only if
every responder is given at least r(n, δ). For completeness, I will still
need to specify what happens if a subsequent responder is offered
less. Before I do so, I describe a rejector’s unilateral exit actions.

A rejector can unilaterally exit as a one-person coalition or stay
on (with a proposer subsequently chosen according to the given
protocol). We specify that she must stay on if t(n) ≥ 2. If t(n) = 1,
she computes the two payoffs from unilateral exit and staying on,
which are fully defined given our specification so far. She chooses
the option with the higher payoff, breaking indifference by unilateral
exit.

Finally, to specify the identity of a rejector, we need to consider
the one remaining case. Consider a responder to a proposal in
which some subsequent responder is offered strictly less than r(n, δ).
Given our prescribed actions so far, such a proposal will be rejected.
Whether or not our responder should do the rejecting is a case of

8To be precise, remembering that a proposal is really a contingent plan, our propose
offers to each partner a payoff of r(n, δ) in the event that the numerical coalition
structure c(n) is formed, and any other payoff division otherwise.



74 Irreversible Agreements: Symmetric Games

tedious but elementary computation. If she rejects, her present-
value payoff is r(n, δ) by construction. If she accepts, an inductive
step tells us the identity of the later rejector, and allows us to compute
subsequent present-value payoffs for our responder. We require that
she accept the proposal if this latter payoff is greater, and reject it
otherwise.9

We have fully described a strategy profile. We now show that it is
an equilibrium. We will begin with the proposer at some stage n;
call her P. Because everyone is using exactly the same accept–reject
threshold, P will not care whom she includes, so all we need to
check is that the prescribed coalition size is optimal, given the rest
of the strategy profile. If the P makes an acceptable proposal, the
optimality of t(n) follows right away from the second part of Lemma
5.1. Otherwise, she makes an unacceptable proposal. Applying the
equilibrium strategy profile from that point on we note the following
consequences:

(a) a delay discounted using the factor δ,

(b) no further delays,

(c) at each future stage (indexed by k = 1, 2, . . .), conditional on
not having already exited, P is chosen to be proposer again with
probability fk, is not chosen as proposer but nevertheless included
in a proposal with probability gk, and passed on to the next stage
with remaining probability.

Therefore, conditional on P being included at some future stage k, the
present-value expected return to her is

(5.18) δ
[
µka(nk, δ) + (1 − µk)r(nk, δ)

]
,

9A bit more formally, proceed inductively as follows. Certainly the last responder
in the response ordering to be offered less than r(n, δ) will reject the proposal if
it ever gets to her for approval. Inductively, pick a particular responder R and
suppose that all responders following R in the order have been assigned accept-
reject decisions for the proposal in question. If R rejects, our prescribed strategy
yields her an expected value of r(n, δ). If she accepts, an expected value is also
well-defined, given the inductive step and our specification of the proposal. I
should add that in most cases, it will be in R’s interest to grab the initiative and do
the rejecting herself. But given the generality of our model, it is possible that in
some situations that she will benefit from passing the buck to another rejector.
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where nk is the numerical coalition structure at the start of that stage,
and µk ≡ fk/( fk + gk) is the appropriate conditional probability that
P will be proposer.

I claim that for each such stage with tk ≡ t(nk), µk ≤ 1/(tk − 1).

To see this, assume tk ≥ 2 (there is nothing to prove if tk = 1). First
consider any stage k ≥ 2, that is, a stage after the stage immediately
following the unacceptable proposal. Let sk be the number of
active players. Then fk = 1/sk (P is chosen equiprobably to be
proposer again). What are her chances of being chosen to be a
responder instead? There are clearly tk − 1 other individuals such
that P is among the closest active tk − 1 from each of them: given
our prescribed strategy profile, these and exactly these individuals
will include P as responder. So gk = (tk − 1)/sk, and therefore
µk = 1/tk ≤ 1/(tk − 1), as claimed.

Now consider the stage immediately following the unacceptable
proposal. Obviously s1 ≥ 2. Let R be the rejector of the unacceptable
proposal. Note that P is chosen again to propose with probability
f1 = [1 − ρ(s1)]/(s1 − 1) (because R is not chosen as proposer with
probability 1 − ρ(s1), and this residual is distributed equally among
the other active agents). Now we need to estimate g1, the probability
that P will be called upon to respond. Notice that there are t1−2 other
individuals such that P is among the closest active t1−2 from each of
them; these will surely include P. The probability of this happening is
at least [1−ρ(s1)](t1−2)/(s1−1), and it will be even more if R is among
these t1 − 2 individuals. Therefore g1 ≥ [1 − ρ(s1)](t1 − 2)/(s1 − 1),
and so µ1 ≤ 1/(t1 − 1), completing the proof of the claim.

Combine the claim, expression (5.18) and Lemma 5.5. It follows
immediately that P cannot gain by making an unacceptable proposal.

Now we turn to responses (and associated unilateral exit decisions).
Suppose that the substructure n has left, and a proposal is on the
table. First suppose that all subsequent responders are offered at
least r(n, δ). Then from the construction of r(n, δ) (see (5.6)) as
well as the presumption that the specified strategy profile will be
followed subsequently, it must be optimal for our respondent to
accept if she is offered at least r(n, δ), and to reject otherwise. The
remaining case, in which every subsequent responder is not offered
at least r(n, δ) is optimally specified by construction, assuming that
the going strategy profile is followed thereafter.
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Finally, consider exit decisions. Suppose that t(n) ≥ 2. Then the
optimality of staying on (as opposed to exit) is guaranteed by Lemma
5.2. If t(n) = 1, optimality is guaranteed by construction.

We have therefore established that the prescribed strategy profile is
indeed an equilibrium for all δ ∈ (δ∗, 1). It is clearly standard, for it
involves pure strategies and at every stage the proposer makes an
acceptable offer. �

Remark. By the remarks following Lemmas 5.2 and 5.5, the rejector-
friendliness restriction on protocols can be dropped if NAW holds
strictly at every stage. All we need is that the rejector gets to propose
with positive probability following a rejection.

We now prepare for the proof of Proposition 5.2. Note that under
the rejector-proposes protocol (RPP), and at every stage at which a
coalition structure π has already formed, an equilibrium payoff is
well-defined for every active player in her role as proposer at this
stage. Let xj denote this particular payoff for each player j.

L 5.6. Assume RPP, the rejector-proposes protocol. Consider an
equilibrium, and a stage in which the structure π has left the game, with
associated numerical structure n. Suppose further that if a coalition of size
t forms, the equilibrium numerical structure following n.t is c(n.t).

Then if player i as proposer makes an acceptable proposal with positive
probability in equilibrium, xk ≥ xi for every active player k.

Proof. Let i make an acceptable proposal to T with positive
probability. Pick active k � i. If k � T, k can make an offer to {T−i}∪k,
and give everyone slightly more than what i was giving them;
this is strictly acceptable to all (for post-acceptance the continuation
numerical structure is exactly the same by assumption). Therefore
xk ≥ xi − ε for all ε > 0, or xk ≥ xi.

On the other hand, if k ∈ T, k can acceptably propose T (again, an
ε-argument of the sort above will suffice). Consequently, writing t
for the cardinality of T,

xk ≥ v(t, c(n.t)) − δ
∑

j∈T; j�k

xj

= v(t, c(n.t)) − δ
∑

j∈T; j�i

xj + δxk − δxi

= xi + δxk − δxi,
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where the first line uses RPP (active players must be paid off their
equilibrium payoff as proposer), and the last line follows from the
fact that i’s proposal to t does attain her equilibrium payoff. Now
rearrange this inequality to see that

xk − xi ≥ δ(xk − xi),

which simply means that xk ≥ xi. �

Proof of Proposition 5.2. Consider the RPP. Fix a standard equilibrium,
and let δ ∈ (δ1, 1), where δ1 is set in the proof of Lemma 5.1. We
proceed by induction on the cardinality of the set of active players. If
there is one active player left, then there is nothing to prove. Induc-
tively, suppose that for every stage n with K(n(π)) = m+ 1, . . . ,n− 1
for some m ≥ 0, the equilibrium coalition structure generated is c(n).
Consider a stage π with associated numerical structure n, such that
with K(n) = m. Let T∗ (with cardinality t∗) be a coalition that forms
at this stage. We need to prove that

(5.19) t∗ = t(n).

Because the equilibrium is standard, every active player makes an
acceptable proposal with positive probability. By the induction
hypothesis and Lemma 5.6, xj = xi ≡ x for all active i and j.
Therefore, invoking induction again as well as the optimality of
the proposal leading to T∗,

(5.20) x = v(t∗, c(n.t∗)) − δ(t∗ − 1)x ≥ v(t, c(n.t) − δ(t − 1)x,

for all t ∈ {1, . . . ,n − K(n)}.

I claim now that t∗ maximizes the expression in (5.7) with ρ(s) = 1
(by RPP); that is, the ratio

v(t, c(n.t))
1 + δ(t − 1)

.

Suppose not; then there is t such that

v(t, c(n.t))
1 + δ(t − 1)

>
v(t∗, c(n.t∗))
1 + δ(t∗ − 1)

= x,

so that — rearranging terms —

v(t, c(n.t) − δ(t − 1)x > x,

but this contradicts (5.20). So t∗ maximizes the expression in (5.7)
but then we are done, by the first part of Lemma 5.1. �



78 Irreversible Agreements: Symmetric Games

A much easier variant of Lemma 5.5 applies to the RPP when SNAW
holds. Say that a substructure n′ is a weak continuation of another
substructure n′ if n′ can be reached from n by first concatenating any
restricted maximizer t∗ at n to obtain n.t∗, and thereafter applying
the algorithm.

L 5.7. Assume SNAW and the RPP. Then there exists δ4 ∈ (0, 1)
such that for all δ ∈ (δ4, 1), for every pair of substructures (n,n′) with n′

a weak continuation of n,

(5.21) a(n, δ) > δa(n′, δ).

Proof. Because limδ→1 a(n′′, δ) = a(n′′) for any substructure n′′, the
case a(n) > a(n′) is trivial to handle. By SNAW, the only other
possibility is a(n) = a(n′). In this case, apply (5.13) to a(n, δ) for
M = 0 and then again to a(n′, δ) for M = 1. It is immediate that

lim
δ→1

a(n, δ) > lim
δ→1

δa(n′, δ),

so that there exists a threshold δ(n,n′) such that (5.21) holds for all
δ > δ(n,n′). Pick δ4 = max δ(n,n′) over all the relevant pairs to
complete the proof. �

Proof of Proposition 5.4. First we fix a threshold δ. Pick δ5 ∈ (0, 1) such
that for all δ ∈ (δ5, 1), a(n, δ) > a(n′, δ) whenever a(n) > a(n′). Take
δ̂ ≡ max{δ4, δ5}, where we’ve defined δ4 in Lemma 5.7.

Fix any equilibrium. We will show that it must be standard. The
proof is by induction on the cardinality of the set of active players.
At every stage when there is only one active player left, the subgame
equilibrium is trivially standard. Now suppose that whenever there
are fewer than s active players, the subgame equilibrium is standard.
Consider any stage with s active players. Let xi be the equilibrium
payoff to active player i, if she is the proposer at this stage. Name
the players such that x1 ≤ . . . ≤ xs.

Now, some player must make an acceptable offer at this stage.10 By
Lemma 5.6 we can take this player to be player 1. We can also

10Recall our normalization that all coalitional worths are nonnegative, and that
eternal disagreement yields negative payoffs.
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without any loss of generality take the acceptable offer to be made
to a coalition of the form T∗ = {1, . . . , t∗}.11

We claim that

(5.22)
v(t, c(n.t))

t
≤ v(t∗, c(n.t∗))

t∗
for all t ≤ t∗.

To prove this claim, note first that by virtue of player 1 making an
acceptable equilibrium proposal to T∗,

(5.23) x1 = v(t∗, c(n.t∗)) − δ
t∗∑

j=2

xj ≥ v(t, c(n.t)) − δ
t∑

j=2

xj for all j ∈ S.

for all t ≤ s.

Suppose, now, that (5.22) is false. Then there exists t̂ < t∗ such that
v(t̂,c(n.t̂))

t̂ > v(t∗,c(n.t∗))
t∗ . Because δ > δ4,

â ≡ v(t̂, c(n.t̂)
1 + δ(t̂ − 1)

> a∗ ≡ v(t∗, c(n.t∗)
1 + δ(t∗ − 1)

,

or
v(t̂, c(n.t̂)) − δ(t̂ − 1)â > v(t∗, c(n.t∗)) − δ(t∗ − 1)a∗.

Since â > a∗, we may combine this inequality with (5.23) and
rearrange terms to see that

(t∗ − t̂)â >
t∗∑

j=t̂+1

xj,

which permits us to conclude that

(5.24) â > xj for all j = 1, . . . , t̂.

However, (5.24) implies that

v(t̂, c(n.t̂)) − δ
t̂∑

j=2

xj > v(t̂, c(n.t̂)) − δ(t̂ − 1)â = â > x1,

which contradicts (5.23) and so establishes (5.22).

An immediate consequence of the claim is that t∗must be a restricted
maximizer.

11The reason is simple. Under RPP, and given the induction hypothesis, if a
proposer i includes some j � i in an acceptable coalition, she must include all k
such that xk < xj.
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Suppose, now, that the theorem is false, i.e., there exists a player
who makes an unacceptable offer. By Lemma 5.6 once again and
our ordering of players, there is no loss of generality in assuming
that this is player s. There is, moreover, no sense in making that
offer to a player who will make another unacceptable offer for sure,
so we may as well suppose that player 1 is the first rejector of this
offer. Notice also that s � T∗, the coalition chosen by player 1.12 By
the induction hypothesis, the algorithm applies thereafter, and s is
absorbed later at some weak continuation n′ of n.

Applying the induction hypothesis again,

(5.25) xs ≤ δa(n.t∗ . . . tk−1, δ).

Moreover, by SNAW and (5.22), which established t∗ as a restricted
maximizer, a(n′) ≤ a(n). Applying Lemma 5.7, we conclude that for
all δ > δ̂,

(5.26) xs ≤ δa(n.t∗ . . . tk−1, δ) < a(n, δ) ≡ a.

Since a + δ(t(n) − 1)a = v(t(n), c(n)), (5.26) implies that

v(t(n), c(n)) − δ
t(n)∑
j=2

xj > x1,

which contradicts (5.23). �

5.6 Summary

In this chapter, we’ve studied the special case of symmetric coali-
tional bargaining games with transferable payoffs. The main
restriction is really symmetry; under weak conditions, the main
results carry over to the NTU case.

We begin this chapter by introducing an algorithm which works
for all symmetric TU partition functions. The algorithm is formally
described in Section 5.2, and generates a distinguished coalition
structure by recursively maximizing average coalitional worth. The
recursive definition is necessary because the “average worth” of a
coalition depends on the ambient structure within which that coali-
tion is embedded. By supposing that average worth maximization

12Otherwise player s’s expected payoffwould be precisely δxs rather than xs.
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will be carried out in all later stages as well, we can “predict” that
ambient structure.

The main task of the chapter is to connect the coalition structure of
this algorithm to the actual equilibria of coalitional bargaining. To
this end, we identify a particular kind of equilibrium, which we call
standard equilibrium. In this equilibrium, every proposer makes an
acceptable proposal with positive probability at every stage. Under
the restriction that the algorithmically generated average worth
is weakly decreasing from one stage of the algorithm to the next
(“condition NAW”), a standard equilibrium exists. What is more,
over a wide variety of protocols, there is a standard equilibrium
that yields the distinguished coalition structure identified in the
algorithm (Proposition 5.1).

Two more results tighten the characterization further. First, the
algorithmically identified coalition structure is not only common to
standard equilibrium regardless of the particular protocol, it is also
the unique such structure (Proposition 5.2). There isn’t any other
structure which can be generated by standard equilibria over the
same range of protocols. Second, under an additional condition
no other equilibrium exists, standard or otherwise, in the rejector-
proposes protocol (Proposition 5.4). The additional condition is a
stronger version of the NAW property.

I claim that the conditions required to establish these results are
acceptably mild, and satisfied in a variety of contexts. But the proof
of the pudding lies in the eating, and so we turn to two applications
in the next chapter.
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CHAPTER 6

Applications

The analysis of the previous chapter may be viewed as cooperative
game theory redone for games with externalities (though we have
restricted our attention so far to symmetric games). This opens
the door to a variety of applications, something that the use of
characteristic functions cannot achieve. In this chapter we study
two such applications.

6.1 Cournot Oligopoly

This section takes up a textbook example of symmetric Cournot
oligopoly.1 The difference from the textbook exposition is that we
study binding agreements, as opposed to noncooperative equilibria.

6.1.1 Model. Suppose that n oligopolists produce a quantity x of
a homogeneous product, the price P of which is determined by a
linear demand curve: P = A − bx. Assume that there is a fixed unit
cost c of production, common to all firms.

In Chapter 3 we’ve already derived the partition function for this
game. The idea is simple: if the firms group themselves into m
distinct coalitions or cartels, with each cartel agreeing to write a
binding agreement, then each such coalition will behave like an
independent firm. So the worth of each cartel is just the equilibrium
firm payoff in the m-firm Cournot oligopoly. This yields a symmetric
TU partition function: for each cartel or coalition S and coalition

1The analysis of this section is based on Bloch (1996) and Ray and Vohra (1999).
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structure π with S ∈ π,

(6.1) v(S, π) =
1

(m(π) + 1)2 ,

where m(π) is the number of coalitions in π, and where the
parameters A, b and c have been normalized so that (A−c)2

b = 1.

6.1.2 Intuitive Approach. Chapter 3, Section 2.5.1, discusses the
three-firm version of this game, arguing that a single firm might
want to break off negotiations to form a cartel, especially if it’s under
the illusion that the other two firms will agree to write a binding
agreement. But that’s what illusions are: illusory, for the remaining
two firms will need to share the duopoly payoff, which — by (6.1)
— is 1/9. At least one of them is going to have to settle for no more
than 1/18, but that means that the two remaining firms are better off
splitting and picking up the “triopoly” payoff of 1/16 each. With this
in mind, no firm should attempt to break off negotiations to begin
with, and the grand cartel indeed forms.

This intuitive approach goes well with the algorithm. It is easy
enough to check that when n = 3, the algorithmic structure is given
by n∗ = {3}.

However, in taking this intuitive argument further, the various
possibilities multiply. All sorts of other deviations need to be
entertained, along with predictions about what will happen follow-
ing those deviations. Remember, apart from the assumption that
equilibria are stationary Markovian, we are allowing for all kinds
of strategy profiles, including those that are asymmetric and those
that require mixing. This is where the intuitive approach runs into
limitations, and the results of Chapter 5 play a productive role.

6.1.3 Using the Algorithm. The first item of business is to verify
that algorithmic average worths satisfy the criteria described in
Chapter 5, and indeed they do: SNAW holds, as we shall see
formally below. We therefore have the following proposition, which
is partly a consequence of SNAW and also describes the equilibrium
coalition structure.

P 6.1. The only equilibrium coalition structure common
to all rejector-friendly protocols (as bargaining frictions vanish) is the
algorithmically derived structure n∗. It consists of L singleton firms and a
single cartel of size n−L, where L is the smallest nonnegative integer such
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that
n − L < (L + 2)2 + 1.

In particular, there is full cartelization in this example whenever there are
four firms or less, and imperfect cartelization thereafter.

For some intuition, we invoke an important observation due orig-
inally to Salant, Switzer and Reynolds (1983): If several firms are
already out of a potential cartel, and the number of firms left is “small
enough”, then the remaining firms will not find it advantageous to
form a cartel. Intuitively, the gain in market concentration does
not justify the profit-sharing that will be needed. Applying this
idea recursively to the remaining number of players, we can find
a threshold at which the average payoff to the remaining players,
if they stay together, is approximately the same as when a player
quits, sparking off a cartel collapse.

Summarizing so far, we see that at this threshold, firms would rather
stay together than break up. But knowing this is so, those firms in
excess of this threshold will not agree to join the cartel, predicting —
correctly — that the remaining firms will stay together. This creates
an equilibrium outcome with one large cartel and several singleton
firms.

We relegate a formal proof of this proposition to the end of the
chapter.

6.1.4 On Efficiency. This result hints at a feature that we will
explore in greater detail in the next example. Note that full
cartelization — the formation of the grand coalition of all firms —
is efficient as far as the firms are concerned.2 Yet the outcome isn’t
efficient for n ≥ 4, despite the fact that all agents are free to make
any proposal they wish to anyone else. What creates the inefficiency
is the fact that the very act of making a proposal opens the door to possible
counteroffers. These potential counteroffers must be satisfactorily
dealt with in the proposal: the proposer must give away part of the
social surplus when a group is formed. This drives a wedge between
the proposer’s incentives and the socially efficient outcome.

Several remarks are in order. First, the wedge is not inevitable, or at
least it doesn’t have to be sharp enough so that it inevitably causes

2This is not the case for consumers, but that isn’t the point. The firms make up the
set of relevant agents for this example.
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an efficiency failure. (Recall that the grand coalition does emerge
when there are four firms or less.)

Second, the particular form that the wedge assumes in our theory
is sufficient for our purposes, but it is not necessary. To explain
this further, observe that in the standard equilibrium common to
all protocols, the proposer is so wary of possible counteroffers
that coalitions that do form are driven to divide their payoff
equally. This is why average worths play an important role in our
propositions. One might imagine a world, however, in which the
fear of counteroffers isn’t that stark, in which some sidepayments
have to be made but not to the extent of equal division. (We will
see more of this in the general asymmetric model.) But the potential
for inefficiency is present as long as some compensation has to be
made.

Third — and in some contrast to the preceding remarks — observe
that the outcome cannot be “too inefficient”. For if the degree of
efficiency loss is high, then a proposer will be able to generate
an efficiency improvement even with equal division, and such a
proposal will be acceptable to all.

Fourth — and this follows up on the third point — notice that
inefficient outcomes in symmetric games must be asymmetric. The
reason is that a symmetric payoff outcome can be Pareto-dominated
by equal division of the payoffs accruing to the grand coalition, as
long as we’re willing to grant that the game in question is grand-
coalition-superadditive. It certainly is so in the Cournot example
under consideration here: the joint monopoly payoff beats the sum
of all equilibrium payoffs arising from any other coalition structure.
Therefore symmetric inefficient outcomes are impossible: they can
be trumped by equal-division proposals to the grand coalition.

Finally, where there is inefficiency — especially in a world of
binding agreements — there is the scope for renegotiation. We
have already discussed this issue when motivating the study of
irreversible commitments, and the reader who wishes to refresh her
memory can consult Chapter 2, Section 2.6. As mentioned there, we
do drop the irreversibility assumption in later chapters.
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6.2 Public Goods

We continue with another textbook example: the voluntary pro-
vision of public goods.3 The twist is that we supplement the
noncooperative voluntary contributions story with the ability to
write binding agreements. The model that follows is one in which
agents attempt to control a public bad, and can form coalitions that
pledge cooperation across their members.

6.2.1 Model. Suppose that there are n regions (firms, countries,
geographical centers) Each region can produce a public good —
pollution control — the benefits of which accrue equally and
additively to all regions. To generate benefit z involves a cost of c(z)
(increasing and strictly convex). In short, if Z is the total amount of
pollution control produced by all regions, then the payoff to some
region who produces z of it is

(6.2) Z − c(z).

Our first task is to describe the partition function for any coalition
structure. We’ve made this very easy by assuming that all benefits
are additive, so that the optimal actions of a coalition are unaffected
by the ambient coalition structure. (Of course, this isn’t true of the
coalition’s payoffs.) In particular, a coalition of s regions will surely
produce pollution control of z per member, where z solves

(6.3) max
z

sz − c(z).

Let z(s) be the solution. Let f (s) ≡ sz(s), and h(s) ≡ c(z(s)). Thus,
f (s) denotes the optimal, aggregate output of coalition s, and h(s)
the corresponding per-member cost of provision of the public good.
Then the net “internal” per-capita payoff is g(s) ≡ f (s) − h(s). So if
n = {s1, . . . , sm} is a numerical structure, the average worth of si is
just

(6.4) α(si,n) ≡
∑

j

f (sj) − h(s) = g(s) +
∑
j�i

f (sj).

The second term above captures this average payoff as the sum of
the “internal” and “external” payoffs.

Multiplying average worth by si yields precisely the partition
function for the game.

3The analysis in this section is based on Ray and Vohra (2001).
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As a special case, suppose that the cost function is quadratic: c(z) =
1
2 z2. In this case, it is easy to see that a coalition of size s will set its
total production f (s) equal to s2, and will incur a per-region cost h(s)
equal to 1

2 s2 in doing so. It follows that

(6.5) α(si,n) =
m∑

j=1

s2
j −

1
2

s2
i .

In all of what follows, we will assume that per-capita output z(s)
is increasing in s and that aggregate output f (s) has nondecreasing
increments.4 The former condition is obviously self-explanatory
and mild. It holds for all strictly convex and differentiable cost
functions satisfying the end-point condition c′(0) < 1. The second
holds widely as well; for instance, it is satisfied for all convex,
constant-elasticity cost functions.5

6.2.2 Intuitive Approach. Study the quadratic case described in
(6.5). To begin with, suppose that there are only two regions. Note
that the stand-alone payoff to each region is 1.5, while if the two
regions form a coalition, then the per-region payoff is 2 (simply
apply (6.5)). It should therefore be obvious that any region will wish
to team up with the other (and that such an offer will be accepted).
Thus the two-region scenario implies full cooperation and efficiency.

The three-region case presents the first nontrivial prediction prob-
lem. If a single region contemplates staying on its own, it must
predict what the remaining regions will do. But we know that in
this case the remaining two regions will form a single coalition, so
that the average worth of being alone is 4.5. A two-region coalition
in this setting would average only 3. Finally, a three-region coalition
averages 4.5 as well. This suggests that a region is indifferent
between being on its own and being a member of a three-region
coalition. Let’s break this indifference in favor of the larger coalition
(this assumption will not be needed in the formal analysis). So the
three-region scenario is also conducive to efficiency.

Now turn to the four-region problem. By a similar process of
computation and prediction, it turns out that if a region stays on
its own, then it is in the interest of the other three regions to form

4That is, f (s + 2) − f (s + 1) ≥ f (s + 1) − f (s) for all s.
5Our results actually rely on the even weaker restriction that g(s) + f (n − s) has
nondecreasing increments. This is weaker because g always has this property.
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a single coalition. Therefore the average worth of the stand-alone
region is 9.5. In contrast, the formation of the grand coalition of four
regions yields an average worth of only 8. This suggests that full
cooperation cannot occur when there are four regions. Indeed, the
numerical coalition structure that finally obtains is (1, 3).

Now — strikingly enough — the five-region problem yields full
cooperation. If one region were to stand alone, it would not be
able to ensure the stability of the remaining four regions, which
would configure themselves into the (1, 3) structure. Consequently,
the average worth of the original region must be 10.5, whereas the
formation of the grand coalition yields 12.5.6

However — and now we start departing from an analysis based
on intuition alone — full cooperation can (thereafter) no longer be
reached unless there are at least eight regions, and then not again
until there are at least thirteen regions.7 But if we had to proceed
by brute-force methods beyond the five-region case, the problem
would very quickly become intractable. The results of Chapter
5 yield much quicker methods, and they apply to a wide class of
equilibria and bargaining protocols. We supplement these results by
drastically simplifying the algorithm of that chapter for the problem
at hand.

6.2.3 Using the Algorithm. We first put on record that the algo-
rithm in Chapter 5 applies here:

P 6.2. The only equilibrium coalition structure common
to all rejector-friendly protocols (as bargaining frictions vanish) is the
algorithmically derived structure n∗.

The proof of this proposition will involve a verification of SNAW for
the public goods model. But we go further in establishing a simple
characterization of n∗ for the problem at hand. The simplification
thus achieved is quite significant, and will reward the little patience
needed to absorb the definition, which now follows.

6Other possibilities are similarly ruled out. For instance, the formation of a two-
region coalition would yield an average worth of 11 for the two regions, which
again is lower.
7The obvious comparison to the Fibonacci sequence— suggested by Andrew
Postlewaite — ends here: the next size supporting full cooperation is 20!
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Let T = {m1,m2, . . .} be an infinite collection of increasing positive
integers, with m1 = 1. For any integer n ≥ 2 define the T -
decomposition of n as a finite collection s(n) ≡ (t1, . . . , tk) of (possibly
repeated) elements of T satisfying the following properties:

(1) tk is the largest integer in T which is strictly smaller than n.

(2) For any i ∈ {1, . . . k − 1}, ti is the largest integer in T no greater
than (n −

∑k
j=i+1 tj).

In other words, theT -decomposition s(n) is obtained by subtracting
the largest integer in T (that is strictly smaller than n) from n, then
subtracting the largest possible integer in T (no greater than the
remainder) from the remainder, and so on. Notice that since 1 ∈ T ,
s(n) is well-defined and unique for any positive n > 1.

Now consider a special collection T ∗ = {m1,m2, . . .} of positive
integers with the property that m1 = 1, and for each i ≥ 1, mi+1
is the smallest integer such that mi+1 > mi and

(6.6) g(mi+1) ≥ α(t1, s(mi+1)) =
k∑

i=1

f (ti) − h(t1)

where (t1, . . . , tk) is the T ∗ decomposition of mi+1.

This looks complicated but it really isn’t. In fact — despite the
apparent circularity in the construction — it is very easy to verify
that T ∗ is uniquely defined, and is computable recursively.8

For any positive integer n, define the decomposition of n — call it δ̄(n)
— to be equal to its T ∗-decomposition if n � T ∗, or the singleton set
{n} if n ∈ T ∗.

We’re now in a position to simplify the computation for n∗.

P 6.3. The algorithmic coalition structure is just the decom-
position of n: n∗ = δ̄(n).

In the standard equilibrium isolated by Proposition 6.2, coalitions
that form attempt to maximize their average worth. This is how
we obtain the algorithmic outcome n∗. To understand the claim of

8The collection {m1, . . . ,mi} is all that is needed to compute the T ∗-decomposition
of any integer n that exceeds mi, so recursion is possible. All we need to do is make
sure that the inequality (6.6) is satisfied for some mi+1 > mi. To see this simply note
that f (n) − h(n)→∞ as n→∞.
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Proposition 6.3 that this recursive procedure boils down to finding
the decomposition of n, return to the quadratic example. It is easy
to write down the first few terms in T ∗: these are {1, 2, 3, 5, . . .}.

Now follow the procedure. To construct the equilibrium structure
when there are, say, six regions, it will suffice to compare α(1, (1, 5)),
which is 25.5, to α(6, (6))), which is 18.9 This shows that (1, 5) is
the equilibrium coalition structure when n = 6. It also means that
6 � T ∗. Thus, when n = 7, we need only compare α(2, (2, 5)), which
is 27, to α(7, (7)), which is 24.5. This establishes that (2, 5) is the
equilibrium coalition structure when n = 7, and, in particular, that
7 � T ∗. Therefore, when n = 8, the comparison is to be made
between α(3, (3, 5)), which is 29.5, to α(8, (8)), which is 32. This
signals the return of the grand coalition: 8 ∈ T ∗.

With this sort of argument, it is easy enough to proceed further,
and to show that the next two elements in T ∗ are 13 and 20. Our
decomposition achieves a significant reduction in the number of
checks for an equilibrium coalition structure.

6.2.4 On Efficiency. Notice that efficient outcomes are to be had
only through the formation of the grand coalition. We’ve already
seen in the quadratic case that this happens sometimes, but not all
the time. Yet, as in the Cournot example, the system cannot tolerate
too great a loss in efficiency, for then the grand coalition would be
proposed (and accepted) by all. Let’s examine these ideas in some
more detail.

The quadratic example hints at a feature that is different from the
Cournot example. Recall in the latter example that once n exceeds
4, efficiency is never to be had. Yet the quadratic example for public
goods suggests that efficiency is “periodically” restored along a
subsequence of region sets. The generality of this observation (for
the public goods problem) is immediately confirmed by Proposition
6.3. The set T ∗ is an infinite set, so there must be infinitely many
values of n — precisely all the entries in T ∗ in fact — for which the
decomposition of n is just {n}. So along an infinite subsequence of
region populations, the outcome is fully efficient.

9According to our result, it is not necessary to compute α(2, (2, 4)), α(2, (1, 2, 3)) or
the average worth of a region in any of the several other coalition structures, which
saves on computation.
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What about the (more numerous) cases in which the outcome fails
to be efficient? In these situations the reasoning is broadly the same
as in the Cournot model: the potential for counteroffers drives a
wedge between private and social incentives. It also implies that
the equilibrium coalition structure must be asymmetric: symmetric
and inefficient outcomes must be dominated by the grand coalition
using equal division of payoffs. This asymmetry is both of intrinsic
and instrumental interest so let’s take a closer look:

P 6.4. Suppose that the grand coalition does not form in
equilibrium, i.e., n∗ = δ̄(n) = (n1, . . . ,nk), where k ≥ 2. Then ni � nj for
all i, j ∈ {1, . . . k}.

Unlike the Cournot model, the asymmetry here comes in a very
strong flavor. Every equilibrium coalition must have a different
size! The reason is that externalities are additive, so that every
substructure of the equilibrium coalition structure is indeed an
equilibrium of the game with player set equal to all the regions in
that substructure. (The Cournot model does not have this property.)
It follows that every substructure is asymmetric, and this can only
happen if no two coalitions have the same size.

Now for the instrumental use of asymmetry. A corollary of
Propositions 6.3 and 6.4 is that the largest coalition in the equilibrium
coalition structure must have more than half the players of the game
in it. For if it didn’t in some n-player game, the largest number would
appear at least twice in the decomposition of n, which contradicts
Proposition 6.4. This observation places an immediate upper bound
on just how inefficient things can get: the equilibrium social surplus
must be at least as large as the maximum social surplus generated in
a community of half the size. It also places a bound on how many
different coalitions can form in equilibrium. Both these observations
are summarized in

P 6.5. The following assertions about efficiency hold:

(i) For each n, the ratio of equilibrium to potential surplus exceeds g(n/2)
g(n) .

(ii) If k is the number of equilibrium coalitions, then k < log2 n + 1.

Ray and Vohra (2001, Theorem 2) actually establish a stronger (and
more subtle) version of part (i): they show that the ratio must be at
least 4g(n/2)/3g(n). We omit this argument here.
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In the case of a quadratic cost function the proposition yields an
“efficiency ratio” of at least 25% (or 33% if the Ray–Vohra result
is used). Note that the bound is independent of n, the number of
regions.

Finally, part (ii) is an immediate consequence of the discussion
preceding the statement of the proposition. If there are k coalitions
in a decomposition, and if the size of each successive coalition
(counting from the largest) must exceed half the number of the
remaining regions, then the total number of regions must exceed
2 raised to the power of the number of coalitions, which yields
the required result. Note that this bound predicts substantial
cooperation: for instance, no more than seven coalitions can form
when there are a hundred negotiating regions (or countries).

6.3 Proofs

Proof of Proposition 6.1. Our first step is to calculate t(n) as generated
by the algorithm.

For each substructure n, let R(n) denote the number of coalitions
in n and let m(n) be the number of “active players” who remain
“outside” n.10 Sometimes we will simply call these numbers R and
m when the context is perfectly clear.

S 1. t(n) = 1 if m(n) < (R(n) + 1)2.

Proof. By induction on m. The result is trivially true for m = 1 and
any R such that the above inequality holds (which is all R ≥ 1). Now
fix any m > 1. Suppose recursively that the claim is true for m − 1
and less.

Consider any n such that m(n) = m and R = R(n) satisfies m < (R +
1)2. For any choice of t, the induction assumption clearly guarantees
that the structure of singletons will form thereafter. Consequently
the average worth of t is given by

v(t, c(n.t))
t

=
1

t[R + 1 + (m − t) + 1]2 =
1

t[R + (m − t) + 2]2 .

Differentiate the expression t[R + (m − t) + 2]2 with respect to t. It is
easy to see that for low values of t the derivative is positive while
for all higher values the derivative is negative. So the reciprocal of

10In other words, m(n) = n − K(n), where K(n) was defined in Section 5.2.
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this expression (which is average worth) is U-shaped in t. Thus to
find the maximum, it suffices to simply compare t = 1 with t = m.
Do so; we see that t(n) = 1 if and only if

(6.7) (R +m + 1)2 < m(R + 2)2.

Manipulate this to see that the equivalent condition is

(6.8) (R + 1)2 > m

which completes the inductive proof of Step 1.

S 2. t(n) = m if (R(n) + 1)2 ≤ m(n) < (R(n) + 2)2 + 1.

Proof. Consider the choice of t to maximize average worth at this
stage. Note that for every t ≥ 1, if we define R′ ≡ R+1 and m′ ≡ m−t,
then the given condition of this step

m < (R + 2)2 + 1

assures us that
m′ < (R′ + 1)2,

so that the subsequent structure after choosing t will all be singletons
(using Step 1). So the comparison is just as in Step 1; it is a choice
between t = 1 and t = m. But this time, given that

m ≥ (R + 1)2,

t(n) = m must be the algorithmic choice.

S 3. t(n) = 1 if m(n) ≥ (R(n) + 2)2 + 1.

Proof. Omitted. Mechanical; various subcases need to be considered
(see Bloch (1996) for details).

Given this description of t(.), we first verify that n∗ is of the form
described in the statement of the theorem. Starting at φ, Step 3
dictates that singletons must form (so that t(n) = 1 and R(n) equals
the number of elements of n for all such n) until we reach the first
nonnegative integer L such that

(6.9) n − L < (L + 2)2 + 1.

At this stage it is easy to see that the condition of Step 2 holds exactly;
that is, L also satisfies

n − L ≥ (L + 1)2.
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For if not, then n − L < (L + 1)2. This means that L is a positive
integer, so that L′ ≡ L− 1 is a nonnegative integer. But then, n−L′ <
(L′ + 1)2 + 1, which contradicts the definition of L.

To complete the proof, we must verify that average algorithmic
worth is strongly nonincreasing.

To do so, we note that starting from any n, the algorithm guarantees
that larger coalitions always form later (if they do at all) than smaller
coalitions. It immediately follows that average worth is weakly
nondecreasing.

Now suppose t(n) = 1. In such cases there is nothing further to
be proved since restricted maximizers cannot be distinct from the
unrestricted maximizer t = 1.

It remains to consider the case in which t(n) = m(n) > 1. In this
case, we claim that the only other restricted maximizer is t = 1.
Obviously, it will suffice to show this for the case in which the upper
bound for the maximization problem is m(n) − 1. (For in that case
t = 1 must be the restricted maximizer for all other bounds as well.)

To prove this, note — just as in Step 2 — that no matter what coalition
forms at this stage, the remaining coalition structure will be one of
singletons. So the comparison is just as in Step 1; compare “end-
point” choice t = 1 and — remembering that we are restricted by the
bound m− 1 — the choice t = m− 1. That is, we substitute t = 1 and
then t = m−1 in the expression t[R+ (m− t)+2]2 and choose the one
with the lower value (remember this expression is the reciprocal of
payoffs). So t = 1 if

[R + (m − 1) + 2]2 = [(R + 1) + (m − 1) + 1]2 < (m − 1)[(R + 1) + 2]2.

This expression is exactly analogous to (6.7) in Step 1 with m − 1 in
place of m and R + 1 in place of R. So, invoking (6.8), the condition
equivalent to this is

[(R + 1) + 1]2 > (m − 1),

or
m < (R + 2)2 + 1,

which is certainly the case because the unrestricted maximizer is m
(consult the conditions in Step 2).

So t = 1 is the restricted maximizer, and thereafter we have the
coalition structure of singletons. But the worth after t = 1, a(n.1),
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is then just the payoff to a singleton, which is no higher than the
average worth of the grand coalition at n. By Step 2 this attains
the highest average worth a(n), and so a(n) ≥ a(n.1). Now we have
verified the required property, so that all equilibria of the game are
described by the algorithm. �

We turn now to proofs for the public goods model. It will be useful
to prove Propositions 6.2 and 6.3 in reverse order.

First, we collect some elementary observations regarding the func-
tions f and g.

L 6.1. (i) If g(t)+ f (n− t) ≥ g(s)+ f (n− s) for some 1 ≤ s ≤ t < n,
then g(t′) + f (n − t′) ≥ g(t) + f (n − t) for all t ≤ t′ < n.

(ii) If t ≥ s, then g(s) + f (t) ≥ g(t) + f (s), with strict inequality whenever
t > s.

Proof. By our assumption on f , g(s) + f (n − s) has nondecreasing
increments on [0,n]. If such a function is nondecreasing over some
range of s, it can never decrease thereafter; this proves (i).

To prove (ii), observe that h(s) is increasing in s (because z(s) is, by
assumption). It follows that if t ≥ s, then

g(s) + f (t) = f (s) + f (t) − h(s) ≥ f (s) + f (t) − h(t) = g(t) + f (s),

with strict inequality whenever t > s, which proves (ii). �

The next lemma collects some elementary observations regarding
decompositions. For any positive integer n, define its strict decom-
position s(n) to be just the T ∗-decomposition of n. (So δ̄(n) = s(n) if
n � T ∗.)

Use notation such as s.δ̄ or t.s.s to denote the numerical structures
generated by putting together s and/or t with a decomposition. (The
order of the integers is unimportant.) As a notational convention,
δ̄(0) = ∅ and s.∅) is just s.

L 6.2. For any positive integer n,

(i) If δ̄(n) = t1. . . . tk, then for all t ∈ {1, . . . , t1}, δ̄(n−t) = δ̄(t1−t).t2. . . . .tk.

(ii) If tk is the largest value in s(n) then δ̄(m) = δ̄(m − tk).tk for all m such
that tk ≤ m < n.

(iii) s(n) = δ̄(n − t).t, whenever t ∈ s(n).
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Proof. These observations follow directly from the definition of a
decomposition. �

The following lemma is central to the main argument.

L 6.3. Suppose that n has strict decomposition s(n) = {t1, . . . , tk}.
Then

(6.10) α(t1, s(n)) ≥ α(t, t.δ̄(n − t)) for all t ∈ {1, . . . , t1 − 1},

(6.11) α(t1, s(n)) > α(t, t.δ̄(n − t)) for all t ∈ {t1 + 1, . . . ,n − 1}.

Proof. Proceed by induction. Clearly for n = 2 the assertion is
trivially true because both the sets in question are empty. Suppose,
then, that the lemma is fully established for all integers m that lie
between 2 and n − 1, and consider the lemma for n.

First take t ∈ {1, . . . , t1 − 1}. Then δ̄(n− t) = δ̄(t1 − t).t2. . . . .tk (Lemma
6.2, part (i)), so that

α(t, t.δ̄(n − t)) = α(t, t.δ̄(t1 − t).t2. . . . .tk)

= α(t, t.δ̄(t1 − t)) +
k∑

j=2

f (tj)

≤ α(s1, s(t1)) +
k∑

j=2

f (tj)

≤ f (t1) − h(t1) +
k∑

j=2

f (tj)

= α(t1, s(n)),

where s1 is the first term in the strict decomposition11 of t1, and
the inequality in that line holds by the induction hypothesis. The
second inequality holds using (6.6) and the fact that t1 ∈ T ∗.

Next, take t ∈ {t1 + 1, . . . ,n − 1}. There are now two subcases, each
of which we consider in turn.

S 1. t1 < t ≤ n− tk. Note that in this case k ≥ 3. Using Lemma
6.2, part (ii), the decomposition of n− t is given by δ̄(n− tk − t).tk, so

11This is well defined because in the case under consideration, t1 must be at least
2.
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that

α(t, t.δ̄(n − t)) = α(t, t.δ̄(n − tk − t).tk)
= α(t, t.δ̄(n − tk − t)) + f (tk).(6.12)

Since k ≥ 3, it follows that δ̄(n − tk) = s(n − tk) and, by Lemma 6.2,
part (iii), δ̄(n− tk) = t1 . . . tk−1. Applying the induction hypothesis to
the integer n − tk, we see that

(6.13) α(t, t.δ̄(n − tk − t)) < α(t1, s(n − tk)).

Combining (6.12) and (6.13) and using Lemma 6.2 part (iii) once
again, we may conclude that

α(t, t.δ̄(n − t)) < α(t1, s(n − tk)) + f (tk) = α(t1, s(n))

which completes the proof in this subcase.

S 2. t > n−tk. Suppose (6.11) does not hold for some t > n−tk,
i.e.,

(6.14) α(t, t.δ̄(n − t)) ≥ α(t1, s(n)).

Recall that g(t) ≡ f (t)− h(t) for all t. Notice that the highest possible
average worth to a coalition of size t arises when the rest of the
regains form one single coalition, i.e., α(t, t.δ̄(n− t)) ≤ g(t)+ f (n− t).
Combining this information with (6.14), we see that

(6.15) g(t) + f (n − t) ≥ α(t1, s(n)).

Recalling the previous subcase (or the definition of s(n) in case n =
t1 + tk), and noting that δ̄(tk) = tk, it follows that

(6.16) α(t1, s(n)) ≥ α(n − tk, (n − tk).tk) = g(n − tk) + f (tk).

Combining (6.15) and (6.16), we have

g(t) + f (n − t) ≥ g(n − tk) + f (tk).

Applying Lemma 6.1, part (i), we conclude that

(6.17) g(n − 1) + f (1) ≥ g(t) + f (n − t) ≥ g(n − tk) + f (tk).

Applying Lemma 6.1, part (ii), to the first and third expressions of
the inequality (6.17), we conclude that n − tk > 1. This means that
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n − 1 � T ∗. In other words, we can write δ̄(n − 1) = (s1. . . . sq) where
q ≥ 2.12 Using (6.6), we conclude that

g(n − 1) < α(s1, δ̄(n − 1)) = g(s1) +
q∑

j=2

f (sj).

Since we know from Lemma 6.1, part (ii), that g(1) + f (s1) ≥ g(s1) +
f (1), this inequality can be rewritten as

g(n − 1) + f (1) < g(1) +
q∑

j=1

f (sj)

= α(1, 1.δ̄(n − 1))
≤ α(t1, s(n)).

But this, along with (6.17), implies

α(t1, s(n) > g(t) + f (n − t),

which contradicts (6.15). �

Proof of Proposition 6.3. When the number of regions is n, use the
notation T(n) to denote the algorithmic choice of coalition size at
the initial stage (this corresponds to t(∅) in Chapter 5). Use the
notation C(n) to refer to algorithmic coalition structure n∗. (Employ
the convention that C(0) is empty.) We are to show that C(n) = δ̄(n).

The proposition is trivially true when n = 1, so assume inductively
that for some integer n ≥ 2, C(m) = δ̄(m) for all m = {1, . . . ,n−1}. All
we need to show is that the algorithmic choice T(n) is the first term
in the decomposition of n. In other words, if δ̄(n) = t1 . . . tk, we need
to prove that

(6.18) t1 = max{arg maxt∈{1,...,n}α(t, t.C(n − t))}.
Let s(n) = s1 . . . sq. From Lemma 6.3 we know that

(6.19) s1 = max{arg maxt∈{1,...,n−1}α(t, t.C(n − t))}.

Consider the two following cases:

1. Suppose s1 = t1. This means that n does not satisfy (6.6), i.e.,

α(t1, t1.δ̄(n − t1)) > α(n,n).

12In fact we know that if t1 = 1, then δ̄(n − 1) = (t2. . . . tk) and if t1 > 1, then
δ̄(n − 1) = (δ̄(t1 − 1).t2. . . . tk). But this need not concern us in what follows.
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Since, by the induction hypothesis, C(n − t1) = δ̄(n − t1), and s1 = t1,
this along with (6.19) implies (6.18).

2. Suppose t1 > s1. This means that t1 = n and that n satisfies (6.6)
holds, i.e.,

α(t1, δ̄(n)) = α(n,n) ≥ α(s1, s1.δ̄(n − s1)),

and again (6.19) implies (6.18). �

We now turn to the proof of Proposition 6.2. By virtue of Proposition
5.4 in Chapter 5, it will suffice to establish SNAW. To this end, for any
positive integer n, say that t ∈ {1, . . . ,n− 1} is a constrained maximizer
if

(6.20) α(t,C(n − t)) ≥ α(t′,C(n − t′)) for all t′ ∈ {1, . . . , t}.

L 6.4. For any positive integer n, let φ(n) be the smallest integer
in s(n), and let φk denote the k-fold composition of φ. Then, if t is a
constrained maximizer, t = φk(n) for some integer k.

Proof. Suppose t � φk(n) for any integer k. Noting that φk(n) = 1
after some finite k, let s be the largest integer of the form φk(n) such
that s is smaller than t. Use the convention φ0(n) = n. Then

s = φk(n) < t < φk−1(n) ≡ m.

Using Lemma 6.2 and the fact that m = φk−1(n),

(6.21) δ̄(n − t′) = δ̄(m − t′).δ̄(n −m) for all t′ < m.

Since s is the first term in the strict decomposition of m, it follows
from Lemma 6.2 that

s.δ̄(n − s) = s.δ̄(m − s).δ̄(n −m) = s(m).δ̄(n −m).

Thus,

α(s, s.δ̄(n − s)) = α(s, s(m − s)) +
∑

t′∈δ̄(n−m)

f (t′)

> α(t, t.δ̄(m − t)) +
∑

t′∈δ̄(n−m)

f (t′)

= α(t, t.δ̄(n − t)),

where the inequality uses (6.11) of Lemma 6.3 applied to the integer
m. Since C(n) = δ̄(n) for every n, we may conclude that

α(s, s.C(n − s)) > α(t, t.C(n − t)),
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so that t fails (6.20) and cannot, therefore, be a constrained maxi-
mizer. �

Proof of Proposition 6.2. For any positive integer n, define

α∗(n) ≡ max
t
α(t, t.C(n − t)) = α(T(n),T(n).C(n − T(n))).

To establish SNAW, it will suffice to prove that if t is a constrained
maximizer, then

(6.22) α∗(n) ≥ α∗(n − t) + f (t).

The reason is simple. Interpret n as the “remaining set” of players
(some substructure has left). Because all externalities are additive
and and the good is purely public, α∗(n) is just average algorithmic
worth minus these externalities. For n−t, α∗(n−t)+ f (t) is also average
algorithmic worth minus the very same externalities, but including
the external effect of the just-formed coalition t. This is why (6.22) is
tantamount to establishing the SNAW condition (5.5) in Chapter 5.

So to establish (6.22), then, note that by Lemma 6.4, t = φk(n) for
some k ≥ 1. Let m = φk−1(n) (to be interpreted, by convention, as n
if k = 1). Then, if s2 is the second term in the strict decomposition of
m (t being the first),

α(t, s(m)) > α(s2, s(m)),

by virtue of the simple fact that t < s2 and by Lemma 6.1, part (ii).
Using (6.21), we have:

α(t, t.δ̄(n − t)) = α(t, s(m).δ̄(n −m)) > α(s2, s(m).δ̄(n −m)).

Since s(m) = t.δ̄(m − t), we can appeal to (6.21) to assert that

α(s2, s(m).δ̄(n −m)) = α(s2, t.δ̄(m − t).δ̄(n −m)) = α(s2, δ̄(n − t)) + f (t).

Since C(n) = δ̄(n) for all n, it follows from the definition of α∗ that

α(s2, δ̄(n − t)) = α∗(n − t).

Combining the last three equations, we see that

(6.23) α(t, t.δ̄(n − t)) > α∗(n − t) + f (t).

On the other hand, the definition of α∗ implies that

(6.24) α∗(n) ≥ α(t, t.C(n − t,T)) = α(t, t.δ̄(n − t)).

Combining (6.23) and (6.24), we obtain (6.22). �
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Proof of Proposition 6.4. Suppose there exist ni,nj ∈ δ̄(n) such that
i � j and ni = nj = m. Then it is easy to see that δ̄(2m) = (m,m). In
particular, 2m � T ∗, so that (6.6) is negated, which means that

(6.25) f (m) + g(m) > g(2m).

Recall that f (m) = mz(m), where z(m) is the solution to (6.3) for
s = m, and f (m) + g(m) = 2mz(m) − c(z(m)). But g(2m), by definition,
equals the maximum value of 2mz − c(z) over all z, so that (6.25) fails,
a contradiction. �

As discussed in the text, the proof of Proposition 6.5 follows quite
easily from Proposition 6.4, and so is omitted. For a proof of the
extended result mentioned in the main text, see the argument that
establishes Theorem 2 in Ray and Vohra (2001).

6.4 Summary

This chapter studies two applications of the theory developed for
symmetric partition functions.

First, we study a Cournot oligopoly. By verifying the appropriate
condition from Chapter 5, we are allowed to apply to algorithm of
that chapter to this case. We verify that once the number of firms
passes a critical threshold, the outcome is invariably inefficient for
the firms. Even though the formation of the grand coalition is a
potential binding agreement which is efficient, the equilibrium cartel
structure in the industry typically consists of one large firm, along
with several stand-alone firms.

In the second application, we study binding agreements in a
pollution control problem. Once again, equilibrium agreements
and coalition structures may be characterized by first verifying the
conditions in Chapter 5 and then applying the algorithm developed
there. The outcome here is somewhat different from the Cournot
counterpart: while it is typically inefficient, there is a subsequence
of agent populations along which an efficient outcome results.

These differences notwithstanding, both the applications have the
following features in common: (a) they serve as evidence for the
generality of the conditions (NAW and SNAW) used in Chapter 5;
(b) they generate inefficient outcomes despite the ability to write
any binding agreement, in principle; (c) they show why inefficient
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outcomes in symmetric games typically involve asymmetric coali-
tion structures; and (d) they reveal that the degree of inefficiency
cannot be “too high”, in a sense made clear in the discussion above.
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CHAPTER 7

Irreversible Agreements: The General
Case

The purpose of this chapter is to make progress on the important
question of coalition formation when agents are heterogeneous. It
is hardly necessary to motivate such an exercise. Symmetric games
are perfectly fine for a host of different applications. But there
are several situations in which the relevant agents differ in ability,
wealth or power, and we would like to be able to say something
about them.

The analysis that follows is necessarily complex. Not only are
we attempting to deal with heterogeneous agents, but we are
simultaneously in search of a general model that will incorporate
cross-coalitional externalities. This is why we proceed in two main
steps. In the first step we banish the externalities but allow for
arbitrary variation across players. In the second step we bring the
externalities back.

The first step is actually useful beyond its role as a transition
device. It is also the stuff of classical cooperative game theory,
built on the characteristic function. It therefore serves as a way of
benchmarking our results to the traditional literature. Moreover
— my reservations about characteristic functions notwithstanding
— there is little doubt that they fit well in a variety of situations.1

Accordingly, we begin with a quick survey of traditional cooperative
game theory, albeit in highly limited and selective form.

1My reservations had to do with twisting other entirely incompatible situations to
fit the characteristic function viewpoint.
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Throughout this chapter, we also restrict ourselves to transferable
payoffs. Unlike symmetric games, a full extension to the NTU case
when players are heterogeneous is not immediate. See Section 14.8
in Chapter 14 for more discussion.

7.1 Characteristic Functions and the Core

Chapter 2 (Section 2.2) already introduced the characteristic function,
a key concept in the theory of cooperative games. This will also be
our starting point for this chapter. Recall that a (transferable utility)
characteristic function is just a partition function in which partitions
play no role: each coalition S has a well-defined worth v(S) which can
be divided freely among its members. We have already mentioned
several examples which can be usefully captured as a characteristic
function game.

A central equilibrium notion in cooperative game theory is that
of the core. Consider the grand coalition N. Say that a feasible
allocation u for N is blocked by coalition S if v(S) >

∑
i∈S ui. The core of

a characteristic function is the set of all unblocked allocations.

To be sure, there is no particular reason to focus on the grand
coalition in this definition. After all, the game itself may not be
“physically superadditive”, and only subcoalitions may have any
shot at viability. We’ve discussed this possibility in Chapter 3
and will do so again in Chapter 10. In a game with irreversible
commitments, however, there is no loss of generality in the assump-
tion of “effective superadditivity”: a larger coalition has among its
cooperative options the option to break up into smaller subgroups.
This notion of the superadditive cover will be problematic when
negotiations are ongoing (see Chapter 10) but for now we adopt it.
The definition is standard: if S and T are disjoint coalitions, then

v(S ∪ T) ≥ v(S) + v(T).

With the superadditivity assumption in place, we may — without
loss of generality — look only to the grand coalition for efficient
payoff allocations. However, it is well known that superadditivity
isn’t good enough for a nonempty core:

E 7.1. Let N = {123}, v(i) = 0, v({i j}) = a for all i and j, v(N) = b
and assume that a > 0 and b > a. Then the game is superadditive. But its
core is nonempty only under the stronger restriction that b ≥ 3a/2.
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For suppose that the core is nonempty. Let y be a core allocation.
Then

yi + yj ≥ a

for all i and j. Adding this up over the three possible pairs, we see
that

2(y1 + y2 + y3) ≥ 3a,

or b ≥ 3a/2.

This argument is easy enough to generalize. As in the case of
partition functions, note that a characteristic function is symmetric if
the worth of each coalition is expressible as a function of the number
of players in that coalition. As before, we abuse notation slightly to
write v(S) as v(s), where s is the cardinality of S.

O 7.1. The core of a symmetric TU game is nonempty if and
only if

(7.1)
v(n)

n
≥ v(s)

s
for every coalition of size s.

Proof. To see that (7.1) is sufficient simply use equal division and
show that it is a core allocation. For the necessity of (7.1), use the
obvious extension of the argument in the example above. �

Of course, this elementary proposition can (and has) been further
generalized. For transferable utility characteristic functions the
well-known Bondareva–Shapley theorem provides a necessary and
sufficient condition for existence, using a generalization of the
“average worth” condition (7.1) known as balancedness. But it
is clear already that superadditivity, and the ability of a group to
seize upon an efficient allocation, are two properties that need not
coincide.

At the same time, does the notion of a core — empty or otherwise
— help us in understanding the agreements that might be written
“in equilibrium”, and the attendant coalition structures that might
arise? The answer is: it helps, but not by much.

First, if the core is empty, something still has to happen, presumably.
Perhaps a structure of subcoalitions forms, or perhaps an allocation
for the grand coalition still comes about, on the grounds that any
attempt to block the allocation will be “further” blocked in some
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way. In Part 3 of this book, which studies the “blocking approach”
to coalition formation, I try to take these matters further.

Second, one must observe that once these additional routes open
up, there is no guarantee that a core allocation will be implemented
even if the core is nonempty. The broader possibilities described in
the previous paragraph may still be pertinent even when the core is
nonempty.

Third, the concept of the core presumes that a solution (if nonempty)
must be efficient. The previous chapters display ominous signs that
this may not be the case.

Finally, the core cannot convincingly take us beyond characteristic
functions, even though attempts have been made in this direction
(see, e.g., Lucas (1963)). With partition functions, a coalitional block
cannot be suitably defined unless the ambient coalition structure is
fully described.

The purpose of this brief review was twofold. First, it acquainted
us with characteristic functions and a classical solution concept, the
core. Second, it will serve to place the analysis that follows in this
traditional perspective.

7.2 Equilibrium Response Vectors

We apply the model of coalitional bargaining introduced in Chapter
4. Throughout this chapter, we restrict ourselves to the rejector-
proposes protocol. As we discuss in Section 7.7 below, the broad
methodology will apply over a wider range of protocols, though the
general territory is admittedly unexplored at the time of writing
this monograph. Because the analysis here is harder going as
it is, expositional tractability suggests that I attempt to uncover
some of the features of the heterogeneous model without having to
simultaneously deal with an entire class of protocols.

I begin by developing the idea of an equilibrium response vector, a
player-specific collection of thresholds above which players will
(loosely speaking) accept the offers made to them.

Fix a stationary Markovian equilibrium. Let xi(S, δ) be the equilib-
rium payoff to player i when i is the proposer and S is the set of
active players. For each i, define

yi(S, δ) = δxi(S, δ).
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Then, if j were to receive a proposal (T, z) at player set S such that zk >
yk(S, δ) for all k ∈ T yet to respond, including j, then j must accept.2

On the other hand, if this inequality held for all k (yet to respond),
barring j for whom the opposite strict inequality holds, then j must
reject.3 I therefore use the terminology equilibrium response vector to
describe the collection y(S, δ).

The next observation is basic to all that follows:

O 7.2. For every (S, δ) and each i ∈ S,

(7.2) yi(S, δ) ≥ δ max
T:i∈T⊆S

v(T) −
∑
j∈T−i

yj(S, δ)

 .
with equality holding whenever i makes a proposal which is accepted.

The proof is pretty trivial. By making an offer z to any coalition
T (with i ∈ T) such that zj > yj(S, δ) for every j ∈ T, j � i, i can
guarantee acceptance of the proposal. It follows that

xi(S, δ) ≥ max
T:i∈T⊆S

v(T) −
∑
j∈T−i

yj(S, δ)

 ,
and using yi(S, δ) = δxi(S, δ), we are done with (7.2).

Notice, furthermore, that if (7.2) holds with strict inequality for
some i, then i must be making an equilibrium proposal (T, z) such
that zj < yj(S, δ) for some j ∈ T. Look at the last player in T’s
response order for which this inequality holds. That player must
reject — assuming the proposal makes it that far — so the proposal
cannot be acceptable. �

We’ve been careful about distinguishing between acceptable and un-
acceptable proposals in equilibrium. Might unacceptable proposals
ever be made in equilibrium? They might.

E 7.2. N = {1234}, v({1 j}) = 50 for j = 2, 3, 4, v({i j}) = 100 for
i, j = 2, 3, 4, and v(S) = 0 for all other S.

2This follows from a simple inductive argument which uses the assumption that
responses are sequential.
3The other possibilities have unclear implications at this stage. For instance, if
zj < yj(S, δ) but it is also the case that zk < yk(S, δ) for a later respondent k, should j
reject? Unclear. Indeed, should j accept if zj > yj(S, δ) in this case. Our description
is deliberately silent on these matters.
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I will return to a formal argument later but for now, note that if
player 1 is called upon to propose when all four players are present
he will always make an unacceptable offer, provided that discount
factors are close enough to 1.

The intuition is simply this: player 1 is a “weak partner” and
therefore his proposals will be turned down by the other players
unless he makes one of them — say player 2 — an offer equal to his
“outside option”, given by what 2 can get in her dealings with 3 or
4. In fact, it may be better for player 1 to simply let one of these
other partnerships form and then proceed to deal with the remaining
player on more equal terms.

The point of this exercise is not that you should be taking the bargain-
ing delay, or even the making of unacceptable offers, seriously. The
delay is in part an artifact of the assumption that player 1 must make
a proposal and is not allowed to simply pass the initiative to another
player, or to make a proposal on behalf of some other coalition.
In both these cases the “delay” will go away; no unacceptable
offers need be made. But the point is that an inequality like (7.2)
will still hold strictly, and then the algorithmic characterization of
equilibrium that we are about to attempt will no longer be possible.
More on this below.

The alert reader will have noticed that Example 7.2 bears some
similarities to Example 5.1 in Chapter 5, where a similar delay
was noted in equilibrium. But that delay came from the presence
of intercoalitional externalities, whereas at the root of this example
lies heterogeneity. The possibility of a situation like Example 5.1 is
ruled out by the Nondecreasing Average Worth (NAW) condition.
The corresponding condition with heterogeneous players — even
for characteristic function games — is more complex, and it’s also
different.4

We will presently move on to “no-delay” equilibria in which only
acceptable proposals are made. But let us close this initial discussion
with a useful property of equilibrium response vectors.

O 7.3. Let y(S, δ) be any equilibrium response vector, and
suppose that (7.2) holds with equality for some i ∈ S. Then for any T that
attains the maximum in (7.2) and for all j ∈ T, yj(S, δ) ≥ yi(S, δ).

4Indeed, in a symmetric characteristic function, the condition that we will impose
below will automatically be satisfied.
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This is an important observation. It states that if a player makes an
acceptable proposal in equilibrium, he either “proposes to himself”;
i.e., chooses to stand alone, or makes offers only to individuals who have
at least as high an equilibrium response threshold as he does.

While we relegate a formal proof to Section 7.8, it isn’t hard to see
why the observation is true. If i includes j in his proposal, j could
include i in hers, and in so doing can pick up the same return i can.
If j does indeed include i, it follows that yj = yi, and if she does not,
this must be because she can do even better.

7.3 No-Delay Equilibrium

Say that an equilibrium is no-delay if after every history, every
proposer makes an acceptable proposal. Then by Observation 7.2,
the inequality (7.2) holds with equality for such equilibria.

7.3.1 Response Vectors for No-Delay Equilibrium. Let m(S, δ)
be the solution to the equality version of (7.2).

P 7.1. For every (S, δ), m(S, δ) exists and is unique.

The existence of m relies on a perfectly standard argument based on
Brouwer’s fixed point theorem and I omit it. However, the asserted
uniqueness of m is central to our analysis and it is worth putting a
formal proof in the main discussion. As we shall see, the argument
depends crucially on Observation 7.3.

Suppose, contrary to the claim, that there are two solutions m and
m′ to the full equality version of (7.2). Define K to be the set of all
indices in S in which the two solutions differ; i.e., K ≡ {i ∈ S|mi � m′i }
and pick an index k such that one of these m-values is maximal.
Without loss of generality suppose that it is the unprimed value mk.

By definition, mk > m′k. Choose T ⊆ S with k ∈ T such that

(7.3) mk = δ

v(T) −
∑

j∈T−k

mj

 .
Of course,

(7.4) m′k ≥ δ

v(T) −
∑

j∈T−k

m′j

 .
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By Observation 7.3, mj ≥ mk for all j ∈ T. So, given our choice of
k ∈ K, it must be that m′j ≤ mj for all j ∈ T. But then (7.3) and (7.4)
together imply that m′k ≥ mk, which is a contradiction. �

The characterization of no-delay equilibria can be applied at once
to deduce that there must be “delay” in Example 7.2 above. Simply
calculate the m-vectors. For any two-player set with worth x, it is
easy to see that

mi(S, δ) =
δx

1 + δ
for i ∈ S,

while for the grand coalition N, it is easy to check that

m2(N, δ) = m3(N, δ) = m4(N, δ) =
100δ
1 + δ

m1(N, δ) = δ
[
50 − 100δ

1 + δ

]
.

(You can verify all this by simply observing that the equality version
of (7.2) is satisfied; after all, we already know that the solution is
unique.)

Now m1(N, δ), while always positive, converges to 0 as δ → 1.
This proves that the equilibrium must exhibit delay for some initial
choice of proposer. For if it didn’t, player 1 can always make an
unacceptable proposal. Then use the assumed continuation along
the no-delay equilibrium to conclude that she can get a payoff
bounded away from 0 (as δ→ 1). This is a contradiction.

7.3.2 Condition M. Example 7.2, while exhibiting delay, implicitly
suggests a condition that is sufficient for the existence of no-delay
equilibrium:

[M] If S ⊇ S′, then for all i ∈ S′, mi(S, δ) ≥ δmi(S′, δ).

Condition M is vaguely reminiscent of superadditivity, stating that
players have access to larger m-values when the set of active players
is larger, but it neither implies nor is implied by superadditivity.5

Relative to the material covered in the last chapter, it is also an

5To show that [M] does not imply superadditivity, consider a two-player charac-
teristic function in which v(N) = 0, while v(i) = 1 for i = 1, 2. Then [M] is satisfied.
Conversely, consider the superadditive cover of the game in Example 7.2. It does
not satisfy [M].
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entirely new condition, because it is automatically satisfied in all
symmetric games, and so does not make an appearance there.

These are somewhat cryptic and unsatisfactory remarks which we
shall presently expand upon, but our first line of business is to see
what Condition M implies:

P 7.2. Under [M], every equilibrium must be no-delay.

An equilibrium is described as follows. At any set of active players S a
proposer i chooses some probability distribution over those coalitions T that
maximize

v(T) −
∑

j∈T−k

mj(S, δ)

and promises to deliver mj(S, δ) to each j ∈ T. Any responder j accepts if
and only if yk ≥ mk(S, δ) for k equal to j and all those after him.

While a formal proof of the proposition is postponed to Section 7.8,
it is easy enough to understand how it works. Why might delay
occur in equilibrium? Example 7.2 explains. In that example, a
proposer wishes to get others out of the way before she concludes
her own dealings, so she stonewalls by making unacceptable offers.
The reason she wants others out of the way is that she is in a
stronger position once they are gone. While not entirely obvious,
an inductive argument reveals that Condition M rules out such a
possibility. Accordingly, under that condition, everyone wants to
make an acceptable offer. But then (7.2) always holds with equality,
and the equilibrium response vector must equal m. The proposition
should now be clear.

7.4 Condition M, Payoffs and Coalition Structure

Notice that for every δ and every set of active players S, m(S, δ)
is a fixed point of an appropriate set of equations. This makes
Condition M that much more cumbersome to check, though well-
known numerical methods can be applied. More significantly,
though, a “fixed-point description” of m makes it that much harder
to understand Condition M, for we lack an intuitive description of
the vector m itself.

The purpose of this section is to provide an algorithmic description
of m, so that equilibrium responses are amenable to ready computa-
tion, and a restriction such as Condition M is simple to verify. This
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algorithm, while related to the one in the previous chapter, is distinct
in two ways. First, we will set out the new algorithm for every
discount factor, not just at the limit. This isn’t a deep difference: with
some more work, we could have done the same earlier, and indeed,
we will pass to the no-discounting limit later in this chapter. More
significantly, the algorithm we shall now describe comes into its own
for asymmetric, heterogeneous situations. For the symmetric games
studied in the previous chapter, characteristic functions posed no
problem at all: all the hard work in that algorithm came from the
presence of externalities. In contrast, what follows is nontrivial even
in the externality-free world of characteristic functions.

7.4.1 An Algorithm. Fix a set of active players S and a discount
factor δ. For any coalition (C, S, . . . ), use corresponding lower-case
notation (c, s, . . . ) to denote cardinality.

Step 1. Begin by maximizing

v(C)
1 + δ(c − 1)

over all C ⊆ S. Let C1 be the union of all maximizers of this
expression, and let a1 be the maximum value attained. Define
m∗i ≡ δa1 for every i ∈ C1.

Step K+1. Recursively, suppose that we have defined sets {C1, . . . ,CK}
for some index K ≥ 1, corresponding values {a1, . . . , aK}, and have
defined m∗i = δak whenever i ∈ Ck. Now define D to be the union of
all the Ck’s, and consider the following problem:

Choose nonempty C ⊂ S − D and T ⊆ D (but possibly empty) to
maximize

v(C ∪ T) −
∑

i∈T m∗i
1 + δ(c − 1)

.

Define CK+1 to be the union of all sets C such that (C,T) maximizes
this expression for some T ⊆ D, and let aK+1 be the maximum value
attained. Define m∗i ≡ δaK+1 for every i ∈ CK+1.

Continue in this way until m is fully defined on the set S of all active
players.

The next proposition assures us that we’ve found the correct vector:
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P 7.3. For every set of active players S and discount factor
δ, the vector m as constructed in the algorithm is precisely the collection
m(S, δ) of equilibrium response thresholds in no-delay equilibrium.

This is a significant result in that it puts the direct computation
of equilibrium payoffs for arbitrary characteristic functions within
reach, provided of course that Condition M is satisfied.

A formal proof of this proposition may be found in Section 7.8, but a
loose intuitive argument may be useful. We will need to show that
for every individual i ∈ S,

mi = δ

v(W) −
∑

j∈W−i

mj

 .
for some coalition W containing i, and

mi ≥ δ

v(W) −
∑

j∈W−i

mj

 .
for every coalition W containing i. By the uniqueness result of
Proposition 7.1, that will be all that we need to do.

The first of these two requirements is easy enough to satisfy. If
i belongs to the set CK+1 in the algorithm, simply choose the
coalition that solves the maximization problem in Step K + 1. The
second requirement will follow from the fact that at each step in
the algorithm, a maximization problem is solved, so that non-
maximizing coalitions generate a “discounted surplus” to a potential
proposer i that is smaller than mi. These steps form the basis of a
formal proof.

We end this subsection by making an obvious but important remark.
Algorithm in hand, it is now very easy to verify Condition M for
any discount factor. Provided that that condition is met, Proposition
7.2 represents a powerful characterization of equilibrium. The next
section explains how to make the link to equilibrium payoffs and
coalition structure.

7.4.2 Equilibrium Payoffs and Coalition Structure. Assuming
[M] holds, how is the algorithm applied to generate a set of
equilibrium payoffs and associated coalition structure? Begin with
the grand coalition N and suppose that player i proposes first. To
use the algorithm, we first need to place i within the algorithm with
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active player set N: say she is located in the set CK. Then apply
Step K of the algorithm. She will make a proposal to one of the
coalitions W of the form C∪ T that solve the maximization problem
in Step K. That proposal will be accepted. Player i’s coalitional
compatriots will enjoy payoffs that are (approximately) described
by the projection of m(N, δ) on W. Player i earns a bit more —
mi(N, δ)/δ to be precise — but in any case all these payoffs coincide
with (the T-projection of) m(N, δ) as δ→ 1.

If W is the full set of remaining players the game is over. Otherwise
consider the remaining set of active players, say S = N −W. Now
exactly the same process repeats itself: a proposer from S is chosen
and she makes an acceptable proposal, but now we must invoke the
algorithm with active player set S. In particular, equilibrium payoffs
are not given by the vector m(N, δ), even when δ approaches 1. That
vector generates equilibrium payoffs for the initial proposer and the
coalition to which that individual makes her proposal, but to go
further we must use the corresponding vector for subcoalitions.

Thus equilibrium payoffs are generated by progressively marching
down the list of active player sets as acceptable proposals are made,
and using the m-vector for those sets to generate payoffs at each
stage.

In tandem with these recursively generated payoffs, a coalition
structure forms, and we now examine this in more detail. At a
proposer stage in which i proposes under active player set S, the
coalition that forms is determined in the following way:

Let i belong to Step K of the algorithm in Section 7.4.1. Choose one of the
coalitions that solve the maximization problem in Step K of that algorithm.

Now, it is entirely possible that there may be more than one coalition
that solves the maximization problem in Step K. In that event
— and unlike the symmetric case studied earlier — we will not
have a precise prediction of equilibrium coalition structure even
conditioning on proposer identity. What is more, this indeterminacy
not only affects coalition structure but possibly equilibrium payoffs
at subsequent stages of the game. Of course, this isn’t to say that
anything can happen — far from it — but the prediction isn’t entirely
tight either.
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Such imprecision may simply be the price we have to pay for dealing
with a very general class of characteristic functions. Fortunately,
under a mild additional assumption, we can say quite a bit more:

[G.1] If S and T are two coalitions and at least one of them is not a
singleton, then v(S) � v(T).

Condition G.1 asks that characteristic functions come from some
“generic” class. It takes heterogeneity seriously, arguing that no
two worths should be exactly alike. Notice that the condition is
not satisfied for symmetric games! As always, assumptions such as
[G.1] or symmetry must always be applied with care, depending on
the essential features of the application at hand.

That said, both symmetry and [G.1] yield strong uniqueness proper-
ties. We’ve already seen this for the symmetric case. For the model
at hand, we have

P 7.4. Under [G.1], there exists a discount factor δ∗ such that
if δ ∈ (δ∗, 1), then the algorithm selects a unique coalition at every step,
and this selection is entirely independent of the value of δ ∈ (δ∗, 1).

In particular, if Condition M holds for all discount factors close enough to
1, the same property is true of equilibrium: every proposer selects a unique
coalition at every step, and these choices are independent of δ ∈ (δ∗, 1).

While a formal proof is postponed to Section 7.8, it isn’t hard to see
how [G.1] enters the picture. For “generic” characteristic functions
(as described by [G.1]), the presence of some discounting permits
an essentially unique resolution to our algorithmic maximization
problems, at least over a range for the discount parameter.

This is a good point to take stock of the progress so far, and
to describe what comes next. We’ve concentrated on no-delay
equilibria., those in which all proposers make acceptable offers at
every stage. Such equilibria are very simply characterized by a
collection of response vectors m(S, δ), one for each set of active
players S. Not only is this response vector uniquely defined, it
can be fully described by a recursive algorithm. That algorithm,
as we’ve just shown, also generates a unique coalition structure
for every proposer protocol, provided that the underlying game
satisfies a genericity condition.
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Moreover, under Condition M, which guarantees that the response
vectors are pointwise nondecreasing as the set of active players
expands, every Markovian equilibrium must indeed be no-delay.

This is an essentially complete theory for no-delay equilibrium
under very general conditions. However, it is also useful to consider
an alternative route — one that we took in Chapter 5. Under
this approach we develop an algorithm, as well as an analogue of
Condition M, that depends on the parameters of the characteristic
function alone, and can then be applied to all discount factors
sufficiently close to one. Let us study this limit theory more carefully.

7.4.3 Low Bargaining Frictions. A limit computation has several
advantages; we mention three. First, as we shall see below, it yields
a solution concept that can be compared with other solutions from
cooperative game theory. Second, it provides a quick and easily
computable approximation which is valid when bargaining frictions
are low. Finally, restrictions imposed directly on the limit (such as
uniqueness) easily carry over to the case of low bargaining frictions.

The first (and extremely straightforward) point to note is that the
algorithm holds without any change in the limit: simply set δ equal
to 1 and run exactly the same recursive procedure. We summarize
the main points in the following proposition:

P 7.5. For every set of active players S, there exists a unique
vector m∗(S) such that m(S, δ) converges to m∗(S) as δ→ 1.

This vector can be computed by a limiting version of the algorithm in
Section 7.4.1:

S 1. Maximize v(C)/c over C ⊆ S. Let C1 be the union of all maximizers
and let a1 be the maximum value attained. Define m∗i ≡ a1 for every i ∈ C1.

Step K + 1. Recursively, suppose sets {C1, . . . ,CK} are defined for some
K ≥ 1, and so are numbers m∗i for every i ∈ D = ∪K

k=1Ck. Choose
(nonempty) C ⊂ S −D and T ⊆ D to maximize

v(C ∪ T) −
∑

i∈T m∗i
c

.

Define CK+1 to be the union of all sets C such that (C,T) maximizes this
expression for some T ⊆ D, and let aK+1 be the maximum value attained.
Define m∗i ≡ aK+1 for every i ∈ CK+1.
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Continue in this way until m∗ is fully defined on the set S of all active
players.

Proposition 7.5 requires no proof, as it is simply a matter of passing to
the limit in the algorithm of Section 7.4.1. But it is useful nonetheless.
For instance, I could simply demand that the limit algorithm admit a
unique coalitional solution at every step (see Condition U below). If
that requirement were to be satisfied by some characteristic function,
then there is no need to invoke additional genericity restrictions
(such as [G.1]): the same uniqueness must automatically hold for all
discount factors sufficiently close to 1.6 We return to this approach
in Section 7.6.5 below, when we study games with externalities.

The checking of Condition M is more subtle, however. We now have
limit response vectors m∗(S), one for every set S of active players.
We could simply ask that

(7.5) m∗i (S) ≥ m∗i (S
′)

for every S ⊃ S′ and i ∈ S′. But this isn’t enough to check Condition
M for discount factors less than 1 or even sufficiently close to 1, and
examples to support this claim are not hard to find. Certainly, one
easy way around this problem is to hope that the stronger condition

(7.6) m∗i (S) > m∗i (S
′)

is satisfied for every S ⊃ S′ and i ∈ S′. But this is too restrictive
a condition and excludes many interesting and relevant situations.
The reason is that the relevant set for player i that determines her
value of mi (and the relevant sets for players in that set, and so on)
may simply have nothing to do with players in S − S′, and in that
case we would have equality: m∗i (S) = m∗i (S

′). Loosely speaking,
player i is “unaffected” by the change in the active player set.

To implement a working analogue of Condition M at the limit,
then, we have to find a compromise between the weak restriction in
(7.5) and the stronger restriction in (7.6). This is why the condition
below is somewhat convoluted: the unaffected players need to be
excluded.

In what follows, we assume

6It should be noted that Condition G.1 is not, in general, sufficient for uniqueness
at the limit, so the two approaches are complementary.
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[U] For every set of active players, the limit algorithm admits a
unique coalitional solution at every step.

This means, in particular, that for every active set, each member is
associated with a unique maximizing coalition.

(Recall from our earlier discussion that [U] guarantees the corre-
sponding uniqueness of coalitional choice for all discount factors
sufficiently close to 1.)

Now take two sets of active players S and S′, with S ⊇ S′.
Apply the algorithm in Proposition 7.5 for the smaller active
set S′; it sequentially generates collections {C1, . . . ,CM} of players
and associated maximizing coalitions (uniquely defined, by [U])
{C1,C2 ∪D2, . . . ,CM ∪DM}, where for each k > 1, Dk ⊆ ∪k−1

j=1Cj.

If we were to carry out the corresponding algorithm for the larger
active player set S, we would get a similar collection of player sets
and associated maximizing coalitions. For some of the members
of S′, having the larger set S around may leave them completely
unaffected: they are still associated with the same maximizing
coalition and no other member of this coalition is affected either. In
that case we must have m∗i (S) = m∗i (S

′) for all “unaffected” i. We will
place our condition on the remaining, “affected” individuals so we
need to define this group more precisely. Say first that individuals in
C1 are unaffected if under the larger active set S, they continue to all
be associated with the same maximizing coalition C1. Recursively,
having defined the concept for all j = 1, . . . , k−1, say that individuals
in Ck are unaffected if under the larger active set S, they continue to
all be associated with the same maximizing coalition Ck ∪Dk, and if
all members of Dk are unaffected. Finally, say that an individual is
affected if she is not unaffected.

Now for the new version of Condition M:

[M∗] If S ⊃ S′, then for all affected i ∈ S′, m∗i (S) > m∗i (S
′).

This is a variant that can be directly checked at the limit, and it
will assure us that [M] indeed holds for all discount factors large
enough.7

We summarize our discussion in

7It is also possible to verify that [M∗] is generic, relative to the universe of
characteristic functions in which Condition M is satisfied.
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P 7.6. Impose the generic restriction that for every set of active
players, the limit algorithm admits a unique coalitional solution at every
step. Suppose, moreover, that Condition M∗ holds.

Then there exists a discount factor δ∗ such that if δ ∈ (δ∗, 1), the equilibrium
is no-delay. It is described as follows: at any set of active players S a proposer
makes an acceptable proposal to the unique coalition that contains him in
the limit algorithm for the set S.

The payoff for each member i in that coalition converges to m∗i (S) as δ→ 1.

The discussion leading up to this proposition constitutes an informal
proof of it; we fill in the details in Section 7.8.

7.4.4 What Does m∗ Look Like?. It is extremely easy to compute
the m-vector for any given characteristic function, and even easier
to calculate the limit vector m∗. The most trivial example is

E 7.3. Two-Person Bargaining. N = {12}, v(N) = 1 and v(i) = 0
for i = 1, 2.

Then for singleton coalitions, mi({i}, δ) = 0, while

m1(N, δ) = m2(N, δ) =
δ

1 + δ
,

which converge to a limit vector of 1/2 each as δ goes to 1. Obviously
Condition M is satisfied, so Proposition 7.2 applies. Using the
algorithm of Section 7.4.1, each proposer makes a proposal to the
grand coalition, and share the resulting surplus almost equally as
δ→ 1.

Of course, all this is well-known and this example is not meant to
uncover new insights. I put it up simply to benchmark the m-vector
using an entirely familiar problem. Now here is a variant.

E 7.4. Two-Person Bargaining With Outside Options. N = {12},
v(N) = 1, v(1) = a, v(2) = b. Assume 1/2 � a > b ≥ 0 and a + b < 1.

I’ve put in the superadditivity restriction simply to cut down on
the number of cases. It is easy enough to compute the limit vector
m∗(N):

m∗1(N) = max{a, 1/2} and m∗2(N) = 1 −m∗1(N).
One can easily check that condition M∗ holds, so that Proposition 7.6
is applicable. It’s easy to see that we are back to the usual bargaining
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model if a < 1/2. Otherwise, if a exceeds 1/2, player 1 obtains
precisely this amount as proposer (for low bargaining frictions),
whereas player 2 as proposer picks up the rest of the surplus. This
is an interesting observation. Player 1’s superior outside option
acts as a constraint on the bargaining outcome, in the sense that
she obviously cannot be pushed down below that outside option.
But as bargaining frictions vanish, she is unable to do better than
her outside option, if it amounts to more than half the bargaining
surplus.

Some might find this an odd result. For instance, those familiar
with Nash bargaining might insist that the the available surplus
— over and above outside options — “should” be split equally, so
that player 1 “should” get a + (1 − a − b)/2. But I’ve put the word
“should” in quotes to deliberately suggest that such statements are
entirely a matter of taste, or at least a matter of what one is used to.
One could equally well argue that bargaining is a process which is
inherently geared towards egalitarianism — towards equal division
— and this tendency can only be halted by the (credible) threat of
walking away from the process, which is provided by the outside
option. So one might equally expect to see “the most equal division
of worth subject to outside options”.

In Section 7.7 I examine the robustness of this particular implication
of our bargaining model (the discussion in Section 14.2, Chapter
14, is also relevant). But it is worth noting that the “constrained
egalitarianism” displayed by our model is closely connected to a
solution concept in cooperative game theory: the egalitarian solution
developed by Bhaskar Dutta and myself in 1989.8 Roughly speaking,
the egalitarian solution searches for the Lorenz-maximal allocations
of coalitional worth subject to participation constraints. Dutta and
Ray (1989) prove that characteristic functions have a remarkable
property: despite the fact that the Lorenz ordering is a partial one,9

there is at most one egalitarian solution for each coalition. Using the limit
algorithm developed here, it is possible to show that our limit m∗

vector and the egalitarian solution are closely linked. Chatterjee,
Dutta, Ray and Sengupta (1993) prove that the two are exactly
the same for all convex games, those with the property that for all
coalitions S and T, v(S ∪ T) ≥ v(S) + v(T) − v(S ∩ T). Considerations

8See Dutta and Ray (1989, 1991).
9It is equivalent to second-order stochastic dominance if allocations are viewed as
wealth distributions.
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of space preclude a more detailed development of this idea, though
we briefly return to convex games in Section 7.5 below.

The tendency towards egalitarianism is sometimes responsible for
the exclusion of certain coalitional members. In the example that
follows, a coalition of players excludes others even though there are
potential gains from including them.

E 7.5. Exclusion. N = {123}, v({12}) = 3, v({123}) = 4, while
v(S) = 0 for all other S.

Applying the first step of our limit algorithm, it is easy to see that
v(S)/s is maximized at the coalition {12}. One can go the rest of
the way and fully verify [M∗]. It follows right away that players
1 and 2 will never propose the grand coalition when bargaining
frictions are small. One interpretation is that players 1 and 2 fear
the redistributive impact of allowing player 3 to join the coalition: a
worth of 3 split two ways is better than a worth of 4 split three ways.

On the other hand, player 3 is desperate to form the grand coalition,
as Step 2 of the algorithm will readily show. Given the credible
tendency towards exclusion displayed by players 1 and 2, she is
willing to pay them their higher outside options in return for a
(smaller) share of the surplus.10

This example also shows that equilibrium coalition structure cannot
be generally disassociated from the order of proposers. In non-
symmetric games, different proposers will generally want to form
different coalitions. There isn’t any getting away from this fact, and a
theory which attempts to do so would, in my opinion, be attempting
sharper predictions at the expense of a severe loss of realism.

We will return to the theme of exclusion below. But it is worth
noting an interesting property of the equilibrium outcome when
[M] (or [M∗]) holds and at least one player does not wish to exclude
anyone else, which is the case with player 3 in Example 7.5. Then
the limit vector m∗(N) must lie in the core of the game.

The reason is simple, and is related to a general property of the m∗-
vector. For every i and every coalition S containing i, it is always

10This feature is also shared by Example 7.4. If player 1 proposes first, she will
simply walk away with a, while if player 2 proposes first, she will want to form
the grand coalition.
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true that

mi(N, δ) ≥ δ

v(S) −
∑
j�i

mj(N, δ)


so that if we pass to the limit as δ→ 1, it must be that

(7.7)
n∑

i=1

m∗i (N) ≥ v(S).

In particular, it’s always the case that

(7.8)
n∑

i=1

m∗i (N) ≥ v(N).

When the inequality in (7.8) fails to hold strictly — and it must fail
when one player behaves in a non-exclusionary way — the vector
m∗(N) is a core allocation.

My final example returns to the theme of exclusion. Unlike the
previous examples, there are situations in which the final outcome
involves exclusion, irrespective of who proposes.

E 7.6. The Employer–employee Game. N = {123}, v(i) = 0 for
all i, v({23}) = 0, v({12}) = v({13}) = 1, v(N) = 1 + µ for some µ > 0.
The interpretation is that player 1 is an employer who can produce an
output of 1 with any one of the two employees 2 and 3. He can also hire
both employees in which case output is higher. No other combination can
produce anything.

It is very easy to compute the m-vector. For two-person coalitions,

mi({12}, δ) = mj({13}, δ) =
δ

1 + δ
,

for i = 1, 2 and j = 1, 3, while

mk({23}, δ) = 0

for k = 2, 3. For the grand coalition, an application of the algorithm
reveals that for values of δ sufficiently close to 1,

mi(N, δ) =
δ

1 + δ
for all i, provided that µ < 1/2, while

mi(N, δ) =
δ(1 + µ)
1 + 2δ

for all i, when µ ≥ 1/2. In either case one can check that [M] holds.
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The algorithm can now be used to predict equilibrium coalition
structure for δ close to 1. If µ ≥ 1/2, then each player proposes to
the grand coalition (the exact terms are described in Proposition 7.2)
and the proposal is accepted, yielding a three-way equal division of
1 + µ as δ→ 1. If µ < 1/2, then each player will make an acceptable
proposal to a two-player coalition, so that either coalition {12} or
coalition {13} will form (dividing their worth equally in the limit),
leaving the third player out.

Some features of this example, such as approximate equal division
among the coalitions that do form, are not robust to alternative
bargaining protocols. What is robust, though (and we shall see
this in Section 7.7), is that some degree of inefficiency is endemic.
Indeed, under the particular protocol we consider, the equilibrium
outcome is inefficient no matter who proposes first. I take up this theme
in more detail in the next section.

7.5 More on Efficiency

We exploit the characterization in Proposition 7.2 to throw light on
the question of efficiency. As I have made clear at several points, the
bargaining process contains an implicit externality: when someone
makes an offer, she has to adequately compensate her responders.
Otherwise they can seize the initiative. This means that “at the
margin” when a proposer is choosing a coalition, part of the surplus
from that coalition has to be “given away”. In this way a wedge
is driven between the “private surplus” and the “social surplus”,
which often results in an inefficient choice by the proposer.

To see this from another angle, consider the dictator version of our
game in which only one player gets to make offers and everyone
else can only say yes or no. In that case the outcome is efficient
in all equilibria because the entire social surplus is appropriated by
the dictator who therefore maximizes that surplus. The outcome
may not be very welcome from an equity point of view but that
is another matter. However, once we depart from the dictator
version by allowing a responder the power to formulate her own
counterproposal, the wedge is resurrected.

It is possible to distinguish between two notions of efficiency. In the
first notion, every initial proposer generates an efficient outcome.
Call this strong efficiency. In contrast, define weak efficiency to be
a property of equilibrium in which at least one initial proposer
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generates an efficient outcome. What follows are some observations
on these different notions of efficiency.

First, it is possible to exactly describe those games that permit strong
efficiency, at least for low bargaining frictions.

P 7.7. A coalitional bargaining game with a strictly superad-
ditive characteristic function is strongly efficient for all discount factors
close to 1 if and only if

(7.9)
v(N)
|N| ≥

v(S)
|S| for all coalitions S.

The proposition tells us that strong efficiency is possible, but only
under fairly demanding circumstances. The grand coalition must
have at least as high an average worth than any other coalition. If
we assume Condition M (which the proposition does not do), we
then have the algorithm in place, and it isn’t hard to get a sense of
why the proposition must be true. Suppose that bargaining frictions
are low. If the equilibrium outcome is to be efficient no matter who
proposes, the algorithm must terminate in a single step, with the
grand coalition a unique maximizer of v(C)/c over all coalitions C,
in that step. So (7.9) must hold. The formal proof in Section 7.8
handles the general case in which [M] is not assumed.

Notice that condition (7.9) is precisely the condition for a nonempty
core in symmetric games (see Observation 7.1). Of course, that
condition, while also sufficient for a nonempty core in general
asymmetric games, is not necessary. Yet the connection can hardly be
missed: the proposer-independent efficiency of a game is intimately
tied to a condition that is even stronger than the nonemptiness of
the core. Let us examine this relationship a bit more carefully.

To do so, it will be useful to consider the milder notion of weak
efficiency: for some initial proposer, the outcome is efficient. It
turns out that weak efficiency reveals a more direct connection to a
nonempty core (rather than to a sufficient condition for the core to
be nonempty).

P 7.8. Suppose that (N, v) has a strictly superadditive charac-
teristic function and suppose that we have weak efficiency along a sequence
of equilibria, under some sequence of discount factors converging to one. Let
z(δ) be the corresponding sequence of efficient equilibrium payoff vectors.
Then any limit point of z(δ) lies in the core of (N, v).
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The proof of this proposition is simple and intuitive and worth
recording as part of the main discussion. Suppose, then, without
loss of generality, that player 1 is the “efficient proposer” along
some sequence of weakly efficient equilibria.11 By efficiency and
strict superadditivity, she must be making an acceptable proposal
to the grand coalition. Then, if y(N, δ) is the equilibrium response
vector, we have

(7.10) z1(δ) =
y1(N, δ)
δ

,

while

(7.11) zj(δ) = yj(N, δ)

for all other j. Now pick any coalition S and any i ∈ S. By (7.2),

yi(N, δ) ≥ δ

v(S) −
∑
j∈S−i

yj(N, δ)

 ,
or

yi(N, δ)
δ

+
∑
j∈S−i

yj(N, δ) ≥ v(S).

Pick a subsequence such that z(δ) converges, say to z∗. Send δ to
1 along this subsequence and note that both yi(N, δ) and yi(N, δ)/δ
converge to z∗i . Therefore ∑

i∈S

z∗i ≥ v(S).

Because S was arbitrarily chosen, we are done. �

Now the connection with the core starts to become clearer. For
discount factors close to 1, games with empty cores will never have
efficient stationary equilibria no matter who proposes first. That is,
even weak efficiency is not possible.

What about the converse? If equilibria are inefficient, must the core
be empty? To see this, recall the employer–employee game from
Example 7.6: N = {123}, v(i) = 0 for all i, v({23}) = 0, v({12}) =
v({13}) = 1, v(N) = 1 + µ for some µ > 0. We know from our
discussion of that example that if µ < 1/2, inefficiency is endemic:
the efficient grand coalition never forms no matter who proposes.

11Of course the efficient proposer may change along the sequence, but then simply
take an appropriate subsequence.
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Therefore even weak efficiency is not to be had. Yet it is easy to verify
that the core of this game is nonempty.

Player 1 would love to include both players 2 and 3 and pocket the
resulting surplus, but the very act of including both players gives
them bargaining power (because they can reject an offer). Both
players will have to be compensated at overall rates that do not
justify the gain of the extraµ. (The rates would be justified ifµ > 0.5.)

Fortunately, the limit result of Proposition 7.5, as well as the
subsequent discussion of m∗, helps in establishing a sharper criterion
for inefficiency, one that incorporates both the empty core as well as
situations such as Example 7.6. Recall the property of the m∗-vector
described in (7.8):

(7.12)
n∑

i=1

m∗i (N) ≥ v(N).

This inequality is perfectly general. When it holds strictly, weak
efficiency must fail for low bargaining frictions:

P 7.9. For a strictly superadditive game satisfying Condition
M at δ close to 1, recall the limit vector m∗ described in Proposition 7.5. If∑n

i=1 m∗i (N) > v(N), then no sequence of equilibria can be weakly efficient
under any sequence of discount factors approaching 1.

The proof of this proposition is very simple, so we omit a formal
account. By [M], every player must make an acceptable offer, and
obtain a payoff of m∗i (N, δ)/δ in her role as proposer. Because (7.12)
holds with strict inequality, and because m(N, δ) converges to m∗(N)
as δ→ 1, such a proposal cannot be made to the grand coalition when
bargaining frictions are small. It follows from strict superadditivity
that an efficient outcome isn’t to be had.

The reason that Proposition 7.9 is a more expansive version of its
predecessor (at least within the restrictions imposed by Condition
M) is that core emptiness implies strict inequality in (7.12), which
is the starting premise of Proposition 7.9. Recall the discussion in
Section 7.4.4: if, on the contrary,

∑n
i=1 m∗i (N) equals v(N), it must be

a core allocation.

Proposition 7.9 also includes the employer–employee game from
Example 7.6. There, the core is empty but it is easy to see that (7.12)
holds strictly.
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The failure of efficiency (weak or strong) is the notable feature of
our analysis, and therefore our natural focus is on easily verifiable
sufficient conditions for inefficiency. At the same time, the reader
might also be interested in sufficient conditions for weak efficiency,
and so I end this section with a couple of remarks on the subject.

In fact, it isn’t easy to establish a satisfactory converse to Proposition
7.9. In the converse situation, (7.12) fails to hold strictly; that is,

(7.13)
n∑

i=1

m∗i (N) = v(N).

It should be noted that this equality condition is not knife-edge.
For example, every two-person superadditive game satisfies it.
Moreover, it is easy to see that every superadditive two-person game
is weakly efficient. However, (7.13) is not, in general, sufficient for
weak efficiency. Consider the following example:

E 7.7. Failure of Weak Efficiency Even When (7.13) Holds. N =
{123}, v(1) = 1, v(2) = v(3) = 0, v({12}) = 1.8, v({13}) = 1.6, v({23}) =
0.1, and v({123}) = 2.4.

This is a strictly superadditive game and Condition M holds for all
discount factors close to one. Moreover, it is possible to check that
for large discount factors,

m(N, δ) = (δ, 1.8δ − δ2, 1.6δ − δ2),

so that (7.13) indeed holds. Yet no player proposes the grand
coalition in equilibrium for discount factors close to 1. Weak
efficiency fails.

To understand the example better, consider a strictly superadditive
game satisfying Condition M. Recall the algorithm that defines
m(N, δ). Refer to an individual i with the lowest value of mi(N, δ)
as a weakest player. Notice that either some weakest player proposes
the grand coalition, or no one does, and weak efficiency must fail.
This assertion is an immediate corollary of Observation 7.3, which
states that any player makes an acceptable offer only to those with
an equilibrium response at least as high as hers.

With this in mind, notice that player 3 is the weakest player in
Example 7.7, when bargaining frictions are small. So weak efficiency
hangs on her making an offer to the grand coalition. Her payoff from
doing so is

2.4 − δ − [1.8δ − δ2],
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but her payoff from forming the smaller coalition {13} is 1.6 − δ,
which is easily seen to exceed the former expression for all discount
factors close enough to 1. This is enough to destroy weak efficiency
altogether.

Thus weak efficiency is intimately related to the willingness of the
weakest player to include everyone else in his proposed coalition.
Chatterjee, Dutta, Ray and Sengupta (1993) prove that such a
willingness can always be demonstrated when the game in question
is strictly convex. For completeness, we state this proposition but
omit the proof; the reader interested in a more detailed treatment
may consult the cited paper.

P 7.10. Suppose that a characteristic function game is strictly
convex, so that v(S ∪ T) > v(S) + v(T) − v(S ∩ T) for all coalitions S
and T. Then for all discount factors close enough to one, Condition M is
automatically satisfied, and the game is weakly efficient.

As a closing remark, notice that all strictly superadditive two-
person games are also strictly convex, and so the weak efficiency
of such games (at least for low bargaining frictions) is an immediate
corollary of Proposition 7.10.

As a summary, then, efficiency is far from guaranteed in charac-
teristic function games. Superadditive games with empty cores
are invariably inefficient in a strong sense: for no proposer is the
outcome efficient. But the condition for this sort of efficiency failure
is actually weaker: there are games with nonempty cores in which
equilibrium outcomes are inefficient (Proposition 7.9 illustrates).

7.6 Externalities Revisited

Now it is time to take our analysis a (large) step further, by
bringing intercoalitional externalities back into the picture. This
additional layer of complexity builds on the analysis conducted
so far, and the serious reader interested in a full understanding
should be reasonably comfortable with the preceding discussion
before proceeding further.12

12Relative to the symmetric case, even the arguments made for characteristic
functions are quite complex. This isn’t surprising. After all, we’re attempting
to formulate an approach that will work for a quite general class of characteristic
function games.
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The primitive of the analysis is now a partition function v, which
assigns to every coalition structure π and every coalition S in
that coalition structure a worth v(S, π). (We continue to impose
the restriction that payoffs are transferable.) Given our interest
in asymmetric situations, there is no longer any presumption that
coalitions of the same size generate the same worth. Indeed, the
following “genericity condition” squarely removes us from the
symmetric world:

[G.2] If S and T are two distinct coalitions (at least one of which
is not a singleton), then v(S, π) � v(T, π′) for any pair of coalition
structures π and π′ such that S ∈ π and T ∈ π′.

Obviously, [G.2] extends our earlier condition G.1 to partition
functions. As in the case of [G.1], we’ve been a bit heavy-handed
in our choice of assumption; something much weaker would have
sufficed. But the extra details involved in the exposition are probably
not worth the gain in generality.13

We need some more discussion of the protocol. As we have been
doing in this chapter, we continue to restrict ourselves to the rejector-
proposes protocol (though see Section 7.7 below). But we will also
need to be more explicit about what happens after an accepted
proposal. How is the new proposer chosen for the remaining set of
active players? Thus far we did not need to worry about the details
of this choice: for symmetric games, all proposers generated the
same numerical coalition structure (which is all that mattered), and
for characteristic function games the identity of the next proposer
was irrelevant anyway (because there were no externalities). When
the situation is asymmetric and has externalities, we need to be more
specific.

We will suppose that for every active set of players an initial pro-
poser is chosen according to some deterministic rule, and thereafter
the rejector-proposes protocol takes over.

I should add right away that the analysis could just as readily be
conducted with any rule, deterministic or stochastic, that chooses
the initial proposer from a set of active players. The approach that
we take will continue to hold for a generic class of games.14

13Considerable headway can be made by imposing the restriction in [G.2] on S and
T only when they have the same cardinality.
14Briefly, given the rule, the genericity assumption [G.2] will need to be rephrased
relative to that rule. It will still be of the form “the worth of S is different
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7.6.1 No-Delay Equilibrium. Our goal, as before, is to describe no-
delay equilibria, those in which every proposer in every subgame
makes an acceptable proposal. The first main result of this section
is

P 7.11. Under [G.2], there exists a discount threshold δ∗ such
that for every δ ∈ (δ∗, 1), at most one no-delay equilibrium exists. The
equilibrium coalition structure will depend on the order of proposers, but
the precise choice of coalition and allocation is fully determined for every
proposer at every stage of the game. Moreover, the choice of coalition is
independent of δ ∈ (δ∗, 1).

The proof of this central proposition essentially involves the piecing-
together of various results that we have already established. In what
follows we do just this. We break up the analysis into distinct steps.

7.6.2 Coalition Maps and Completion Maps. First, we introduce
the idea of a “coalition map”. Let π◦ be the collection of all coalition
substructures; i.e., the collection of all coalition structures on every
strict subset of N. (The “empty structure” φ is included in this
collection.) For every substructure π ∈ π◦, denote by S(π) the
remaining set of active players.

A coalition map Λ assigns to every substructure π ∈ π◦ a fresh
coalition Λ(π) drawn from the set S(π).

Coalition maps are the obvious extension of the algorithmic map-
ping t(n) in the symmetric case, which assigned a fresh numerical
coalition to every numerical substructure that has “already formed”.
There isn’t anything different here; it’s just that we now need to keep
track of coalitions rather than coalitional sizes.

Given any coalition map Λ, a substructure can be “completed” into
a full coalition structure of the entire player set in the obvious way.
Simply apply the map recursively starting from the substructure in
question, until no players are left. In this way, I can generate a new
map which maps substructures to “completed” coalition structures;
call this the completion map c(·,Λ) associated with the coalition map
Λ. It will be notationally useful to define c(π,Λ) ≡ π for all (full)
coalition structures π.

from that of T whenever S � T,” but these worths will have to be calculated
using probability mixtures over coalition structures in proportions related to the
distribution governing a choice of initial proposer.
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7.6.3 Characteristic Functions From Coalition Maps. For every
coalition map Λ, a corresponding characteristic function vΛπ on
the remaining player set S(π) is induced. This function is defined
as follows. For any coalition T from the player set S(π), apply
the completion map to the structure π.T to obtain a full coalition
structure c(π.T,Λ). Record the worth of T under this structure:

(7.14) vΛπ(T) ≡ v(T; c(π.T,Λ)).

Repeat the process for every such coalition. A characteristic function
has now been obtained.

Because we’ve assumed the genericity condition G.2, every such vΛπ
must satisfy the genericity condition G.1 for characteristic functions:
vΛπ(S) � vΛπ(T) whenever S and T are distinct (and at least one of
them is nonsingleton).

It follows right away that Proposition 7.4 must apply to each such
characteristic function: there exists a threshold discount factor such
that for all discount factors exceeding this threshold, every no-delay
equilibrium must single out the same, unique coalitional choice
for every proposer. The threshold conceivably depends on both
Λ and π, but as there are only finitely many coalition maps and
substructures, we can find one threshold discount factor δ∗ that
does the job for all of them.

7.6.4 Consistent Coalition Maps. The observations in the previ-
ous section point the way to a proof of Proposition 7.11.

Fix any discount factor greater than δ∗. Say that a coalition mapΛ is
consistent if for every substructure π ∈ π◦, Λ(π) is exactly the same
as the coalition uniquely chosen under the algorithm and containing
the initial proposer at player set S(π).

A consistent coalition map provides the appropriate generalization
of the algorithm for the symmetric case. Under a consistent coalition
map, a substructure will be “completed” exactly along equilibrium
lines, and those equilibrium choices in turn will justified at every
step of the way by the (correct) expectation that the coalition map
in question will be faithfully applied at all future stages of the
game. Every consistent coalition map must correspond to a no-
delay equilibrium, and vice versa.

But more can be said: under the assumptions of Proposition 7.11,
each protocol that deterministically assigns an initial proposer (for
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every set of active players) is associated with one and only one
consistent coalition map, provided that δ > δ∗. Verifying this is
a simple matter of backward induction. Begin with substructures π
such that S(π) is a singleton; uniqueness is trivial here. Recursively,
suppose that the mapΛ is uniquely defined for all substructures that
nest a given substructureπ. Then the completion c(π.T, ·) is uniquely
defined for every choice of coalition T at that substructure, and so is
the corresponding characteristic function vλπ (see (7.14)). Now the
algorithm kicks in, and the uniqueness theorem in Proposition 7.4
assigns precisely one coalition at this stage. Therefore the coalition
map at π can assume precisely one value at this stage, and the
recursive step needed to prove Proposition 7.11 is complete.

7.6.5 More on Uniqueness. As discussed earlier for characteristic
functions, there are other ways to obtain uniqueness in no-delay
equilibrium. Returning for a moment to the special case with no
externalities, recall the direct computation of the limit vector m∗

(and its associated coalitions) described in Proposition 7.5. If that
computation yields — by assumption — a unique coalition at every
algorithmic step, we are done: for discount factors close enough to
1, the no-delay equilibrium coalitions chosen by each player must
coincide with the coalitions described in that algorithm, and there
will be only one coalition for each proposer.

This alternative approach to uniqueness can be pursued here as
well. It may be worthwhile to record it explicitly. Once again, we
will need to invoke a genericity condition that takes heterogeneity
seriously. To develop the condition, fix a coalition map Λ. For any
substructure π, define the associated characteristic function vΛπ just
as we did in equation (7.14) of Section 7.6.3. The new restriction can
now be stated as

[U∗] For every coalition map Λ and substructure π, the algorithm
used to compute the limit m∗-vector for the associated characteristic
function vΛπ admits a unique coalitional solution at any step.15

The condition looks strong, imposed as it is for every coalition map
and substructure. Like its counterpart [U] for characteristic func-
tions, however, it is a bona fide genericity condition: if a partition

15A weaker but more complicated version that permits closer comparison with
[G.1] and [G.2] can be obtained by permitting multiple solutions only if each such
solution is a singleton coalition. The same uniqueness result follows.
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function were to be chosen from some continuous distribution over
the space of all payoff vectors, [U∗] would almost always be satisfied.

With [U∗] in hand, the generation of an equilibrium coalition
structure via the device of a consistent coalition map (see Section
7.6.4) must invariably result in a unique solution for each ordering
of initial proposers. We therefore have the following proposition,
which needs no proof but is worth recording formally:

P 7.12. Under [U∗], there exists a discount threshold δ∗ such
that for every δ ∈ (δ∗, 1), at most one no-delay equilibrium exists. The
equilibrium coalition structure will depend on the order of proposers, but
the precise choice of coalition and allocation is fully determined for every
proposer at every stage of the game. Moreover, for each proposer, the choice
of coalition is independent of δ ∈ (δ∗, 1).

7.6.6 An Algorithm for the General Case. Just as in the case of
characteristic functions, we can describe equilibrium coalition struc-
ture and payoffs by means of an algorithm. The algorithm combines
the recursive method used for symmetric games (Section 5.2 in
Chapter 5) with the limit computation introduced in Proposition
7.5, and incorporates within it the idea of a consistent coalition map.

Recall the space π◦ of coalition substructures (which includes the
“null substructure”φ). Just as in the algorithm for symmetric games,
we are going to construct a (consistent) coalition map Λ(π) that
assigns to each memberπofπ◦ a coalition drawn from the remaining
set of players S(π).

By applying this coalition map repeatedly starting from φ, we will
generate a particular numerical coalition structure, to be called π∗.
We will also be interested in an associated vector of payoffs, to be
described below.

Throughout, we impose the generic restriction [U∗].

S 1. For all π such that S(π) is a singleton, define Λ(π) ≡ S(π).

S 2. Recursively, suppose that we have defined Λ(π) for all
substructures π with |S(π)| ≤ k − 1 for some integer k ≥ 2. For any
such π, define the associated completion map c(π,Λ), which is a full
coalition structure.
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S 3. For any substructure π such that |S(π)| = k, construct the
characteristic function

vΛπ(T) ≡ v(T; c(π.T,Λ))

for all nonempty T ⊆ S(π), just as in equation (7.14).

S 4. Use the limit algorithm of Proposition 7.5 to obtain a vector
m∗(π,Λ) and associated maximizing coalitions for the characteristic
function vΛπ, on the player set S(π).

S 5. The protocol determines an initial proposer at the player set
S(π), say i. By [U∗], there is a unique maximizing coalition from the
limit algorithm in Step 4 that contains player i. Set Λ(π) equal to
this coalition.

S 6. Complete this recursive definition so that Λ is now defined
on all of π◦. Define a full coalition structure (for the entire set of
players) by

π∗ ≡ c(φ,Λ).

S 7. For any coalition S ∈ π∗, letπ∗S stand for the substructure that
immediately precedes it in π∗. For each i ∈ S, define m̂i ≡ m∗i (π

∗
S,Λ).

Note that the vector m̂ is slightly different from the m∗-vector that
we used for characteristic functions. It is “built” from the m∗-vector,
however, and the given proposer protocol. It assigns the m∗(φ,Λ)-
vector (or the appropriate projection of it to be precise) to the very
first of the coalitions Λ(φ). It then draws values from the vector
m∗(Λ(φ),Λ) for the second coalition; and so on until all players have
been accounted for. As the following proposition makes clear, m̂ is
a full description of the equilibrium payoff vector at the limit, just
as π∗ is a full description of coalition structure:

P 7.13. Under [U∗], and with a given initial proposer at every
active player set, there exists a threshold δ∗ ∈ (0, 1) such that for all
δ ∈ (δ∗, 1), a no-delay equilibrium must yield the coalition structure π∗
described in Step 6 of the algorithm. Moreover, the equilibrium payoff
vector must converge (as δ→ 1) to m̂, described in Step 7 of the algorithm.

Subject to the generic restriction [U∗], Proposition 7.13 is the over-
arching theorem of this chapter. It has many pieces embedded in
it, which have been built up in great detail over the course of the
chapter. With those pieces in place, the proof of the proposition
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simply consists in joining all the fragments into one connected
argument.

There remains one missing step. The proposition fully characterizes
no-delay equilibrium. But we still need to assure ourselves that a
no-delay equilibrium exists. This is the subject of the next section.

7.6.7 The Existence of No-Delay Equilibrium. The argument so
far assumes that equilibria are no-delay, and predicts equilibrium
coalition structure on that presumption. We end our discussion by
providing sufficient conditions under which this will indeed be the
case.

It is useful to recall two sets of conditions that guaranteed the
existence of no-delay equilibrium in special cases. The first is the
nondecreasing average worth condition (NAW) that we invoked for
symmetric games with externalities. The second is Condition M (or
its limit counterpart [M∗]), which guaranteed the existence of no-
delay equilibrium in asymmetric games without externalities. It will
come as no surprise that a similar sufficient condition for the general
model must somehow combine NAW and condition M (or [M∗]).

We will continue to assume [U∗], and will therefore work with the
limit algorithm from the previous section. That algorithm provides a
vector of payoffs m̂ and a coalition structure π∗ of the active players.
By using exactly the same method, we could construct correspond-
ing objects for any set of active players, after a substructureπ “exits”.
In addition, one could also assume any arbitrary player i to be the
first proposer and follow the given proposer protocol after that. The
algorithm would just as easily generate a payoffvector (and coalition
structure) for such a situation. Denote by m̂(π, i) this payoff vector,
where π is the exiting substructure and i is the arbitrarily chosen
first proposer; it is defined on the active player set S(π).

I now introduce a condition that combines [M*] and [NAW]. We
will need to define affected and unaffected players just as we did
for [M∗]. To this end, consider a substructure π, and apply the limit
algorithm from this point onwards. Fix a player j ∈ S(π). Let Tj
denote the maximizing coalition (unique, by [U∗]) that contains j.
Look at π′ ≡ π.Tj, suppose that it is also a substructure, and study
the players in S(π′). Say that player i ∈ S(π′) is unaffected by j if
the maximizing coalition that contains i is exactly the same at the
substructuresπ andπ′, if the same is true of all other members k of i’s
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maximizing coalition, true of all other members of the maximizing
coalitions for all such k, . . . and if the worths of all these maximizing
coalitions are completely unchanged across π and π′.16 Player i is
affected by j if she is not unaffected by j.

I can now state the condition:

[N/M] For every substructure π and every pair of active agents i and
j in S(π) such that i is affected by j, m̂i(π, i) > m̂i(π, j).

Just like Condition M∗, this is a condition that can be checked directly
at the limit, and needs no discount factor. Indeed (and for the same
technical reasons as in [M∗]), we ask for a strict inequality in the
condition. At the same time — and just as in [M∗] once again — it
would be too much to ask a strict change for every player, for some
of them may simply be unaffected by the change in initial proposer.
This is why the unaffected players need to be excluded.

To interpret this condition, restrict attention first to symmetric
games. Consider the algorithm for this class of games, introduced in
Section 5.2 of Chapter 5. It involves average worth maximization at
every stage, so that m̂i(π, i) coincides precisely with this maximized
average value, which we denoted by a(π). What about m̂i(π, j)? This
may be viewed as the algorithmic payoff to i when someone else,
j, gets to form her coalition first. In the symmetric case, this is just
average worth at a further step down the algorithmic line. So, for
symmetric games, our condition reduces to a stronger form of NAW:
one in which average worth strictly declines.17

Now consider asymmetric games without externalities. Then it is
immediate that [M∗] implies [N/M]. In fact, the former condition
is actually stronger: it is imposed on all pairs of coalitions S and
S′ with the latter a subset of the former. In contrast, [N/M] only
applies to pairs S and S′ such that the latter is “reachable” from the

16This definition can be given a recursive formulation just as in the development
of [M∗], but it isn’t necessary to do so.
17As the careful reader of Chapter 5 will have noted, we were nevertheless able
to make substantial progress with just the weak inequality. In turn, this allowed
us to consider applications that were natural and simple in the symmetric case.
However, hidden behind the simplicity is a significant increase in the complexity
of the proofs. Given the already complicated arguments for asymmetric games, I
did not consider the extra exercise worth the resulting gain in generality for the
broader class of games.
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former via the elimination of some maximizing coalitions given by
the algorithm.

More generally, condition N/M declares that there is no gain in
algorithmic value to any player if that player is removed from her
role as initial proposer and another agent substituted in her place.
This is the assumption that guarantees that a no-delay equilibrium
must exist:

P 7.14. Impose the genericity restriction [U∗], and suppose
that [N/M] holds. Then there exists a threshold δ∗ ∈ (0, 1) such that for all
δ > δ∗, a unique no-delay equilibrium exists; it is described in Proposition
7.13.

If you’ve accompanied me through the arguments up to this point,
you will find the proposition intuitive: intuitive enough to roll a
proof and discussion into one. Suppose that everyone follows a
no-delay strategy. Then we know what the next formed coalition
will be after any substructure: simply find the next proposer
according to the protocol, and (provided that the discount factor
is close to 1) invoke the unique coalitional maximizer from the limit
algorithm that contains this proposer. This means that a particular
proposer knows precisely how every substructure that he generates
(by means of a proposal) will be “completed” by the remaining
players. This creates for our proposer at substructure π the very
same characteristic function that our limit algorithm constructed,
which is vΛπ.

Construct the m-vector corresponding to this characteristic function.
By the assumption that everyone follows the no-delay strategy,
all respondents must use their component of the vector as their
response threshold. Therefore our proposer is left with only two
choices: to make an acceptable offer, or to make an unacceptable
offer as in Example 7.2 and settle into a subgame where (by
assumption) the no-delay strategy will continue to be followed.
By undertaking the latter course of action, our proposer — call
her i — will receive (approximately, for δ close to 1) a value of
mi(π, j), where j is the one who rejects i’s unacceptable offer. By
sticking to acceptable proposals, on the other hand, our proposer
will earn (approximately) mi(π, i). Now, both these payoffs are
approximations because they pertain to the limit as δ → 1, but
Condition N/M guarantees that the latter payoffmust dominate the
former for δ high enough. We have therefore proved that a proposer
will indeed follow her component of the no-delay equilibrium when
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everyone else is doing the same. This settled, it is easy to check that
a responder will abide by her prescription as well.

Therefore no one-shot deviation from the no-delay strategy profile
is profitable, and we are done.

7.7 Alternative Protocols

The analysis in this chapter relies on two assumptions made about
the bargaining protocol. First, an initial proposer is deterministically
attached to each active player set. Second, the first rejector of a going
proposal gets to make a new proposal. How sensitive are the results
to the protocol? And how applicable is the methodology developed
in this chapter to alternative protocols?

Begin with the first assumption, that an initial proposer is deter-
ministically assigned to each active player set. In symmetric games,
studied in Chapter 5, the identity of such a proposer is generally
irrelevant, and in particular it does not matter whether or not that
proposer is chosen in some deterministic way. The same is true for
characteristic function games, but for different reasons: the worth of
a formed coalition is independent of other coalitions, so once again it
does not matter who proposes after the coalition is formed, or indeed
whether this proposer is chosen deterministically or otherwise.

But the identity and ordering of initial proposers do matter in the
general case, in which there are asymmetries across players and
externalities across coalitions. And indeed, they should matter.
Player 1 may want to form coalition A, and player 2 coalition B, so
whether A or B form may depend on who gets to make a proposal
first. Indeed, a theory that purports to yield solutions that are
independent of proposer ordering is suspect. The main point is that
our methodology works perfectly for any deterministic proposer
order, though the predicted equilibrium structure will change (as it
well should).18

18If initial proposers are stochastically chosen, the analysis is a bit messier but
the same methods work. For instance, consistent coalition maps will now have
to be stochastic and the formation of the “artificial” characteristic function at
each step of the algorithm will now require us to take expected values over
various possible realizations of coalitional worth (depending on precisely how
a substructure will be finally completed). This is certainly more complicated, at
least in an expositional sense. But the same method works: an m-vector is still
defined for that characteristic function, no matter how it is constructed. And an



7.7 Alternative Protocols 141

Our second assumption concerns the rejector-proposes protocol.
Intuitively, it would appear that when a rejector is given less power
following her rejection, she can be “exploited” more easily by the
proposer. In turn, this means that a larger share of the social surplus
from the formation of a coalition accrues as private surplus to the
proposer, so that she is more likely to make an efficient offer.

This intuition is not incorrect, though it can be misleading. Recall
that for symmetric games, the uniquely predicted coalition structure
from the rejector-proposes protocol was immune to a wide range of
alternative protocols. The reason for this is that one could — for
symmetric games — always construct a class of equilibria in which
the rejector is included in every counter-proposal, whether or not she
makes that proposal. When the rejector is so included, the result is to
imbue her with a lot of effective power, equivalent to that under the
rejector-proposes protocol.19 On the other hand, there are equilibria
in which a rejector might systematically be excluded whenever she
does not get to counter-propose, and these equilibria may enhance
efficiency (though at the cost of within-coalition equity).

Example 5.2 in Chapter 5 makes some of these points for symmetric
games with externalities, but we can develop the idea in a more il-
luminating way for characteristic functions. Consider the following
example:

E 7.8. A Symmetric Game With Alternative Protocols. N = {123},
v(i) = 0 for all i, v({i j}) = a for all {i j}, and v(N) = b, where we assume
that b > a > 0. This game is strictly superadditive.

Expand the protocol as follows: a rejector gets to propose with
probability p, while with probability 1 − p some other active player
is chosen equiprobably. Suppose initially that each proposer only
makes an offer to a two-person coalition (we will presently verify the
condition under which this is true). Denote by m the expected payoff
to a rejector and by x the payoff to a proposer. Then, if a rejector
is always excluded from a counterproposal by her compatriots, we

appropriate genericity requirement — analogous to [U∗] — will guarantee that the
associated coalitional structure will be uniquely defined.
19To see this why this happens, recall our description of Rubinstein–Ståhl bar-
gaining in Section 4.4 of Chapter 4. As bargaining frictions vanish, equilibrium
payoffs in that model converge to equal division no matter how small the odds
that the rejector gets to counterpropose. Note that the rejector is included in every
counterproposal, because only one coalition — the grand coalition — has positive
worth in the Rubinstein–Ståhl model.
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have
m = δpx, while x = a −m.

Solve this to see that

m =
δpa

1 + δp
,

which converges to ap/(1 + p) as δ → 1. Now, the presumption
of a two-person equilibrium coalition is justified if the inclusion of
a third person brings a lower surplus gain b − a than the amount
needed to pay her off (ap/(1 + p)). So for there to be an (inefficient)
equilibrium under low enough bargaining frictions in which the last
rejector is invariably excluded, the condition

b < a
1 + 2p
1 + p

is necessary and sufficient. When p = 1, we are back to the rejector-
proposes protocol and the condition reduces to b < (3/2)a, which
lines up precisely with our characterization of strong efficiency.
In the other direction, we have the uniform protocol, in which a
rejector has the same chances as anybody else to become the next
proposer. Now the condition reduces to b < (5/4)a. A lower degree
of superadditivity is needed to force ubiquitous inefficiency.20

Now let’s play the flip side: what happens when this condition is not
met? Do we then get full efficiency in every equilibrium? Suppose
that we do. Then every proposer must make an acceptable proposal
to the grand coalition, and by a previous argument, the payoffs of
every player must converge to equal division — b/3 — as bargaining
frictions vanish. But now, provided that b < (3/2)a (which allows,
of course, for b to exceed (5/4)a), a proposer can make an acceptable
offer to a two-person coalition which yields strictly more than b/n
to each member, herself included. This is a contradiction. Therefore
full efficiency is not possible.

The argument in the previous paragraph is perfectly general, as
Okada (1996) has shown. Provided that there is some coalition
S with average worth that exceeds that of the grand coalition, a
proposer in S can engineer a profitable deviation from a putative
equilibrium in which everyone makes an offer to the grand coalition

20Don’t forget: there is still an equilibrium (in which the rejector is included)
which looks just the same as the one under the rejector-proposes protocol. That’s
a consequence of our earlier results for symmetric games, and I won’t dwell on
these any further.
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alone. In a sense, then, we reclaim Proposition 7.7 no matter what
the protocol is.

Summing up: we haven’t strayed too far from the analysis con-
ducted for the rejector-proposes protocol. Under the same con-
ditions as before, equilibria still fail to be strongly efficient, even
if new proposers fully exclude the rejector (thus dragging down
her outside option). Indeed, if the extent of superadditivity is low
enough (but still positive), every proposer makes an inefficient offer
in every equilibrium, whether or not the rejector is included in the
counteroffer.

As a transition to my final point in this section, consider this
question for Example 7.8: when (5/4)a < b < (3/2)a, the equilibrium
cannot be “fully” efficient by Okada’s theorem. But how “close”
to efficiency can we get? It should be intuitive that the “most
efficient” equilibrium must involve the exclusion of the rejector
from a counterproposal whenever possible. To this end, suppose
that an offer is made to the grand coalition by every proposer with
(interior) probability θ, and only in this case is the rejector included
by another proposer. Then

m = δ[px + (1 − p)θm],

but it must also be that m precisely equals b − a, otherwise no
proposer would be indifferent between making an offer to a two-
person coalition and to the grand coalition. We must therefore also
have x = a − m (regardless of whether the proposal is made to a
to- or a three-person coalition). It follows that as δ → 1, the limit
probability θ satisfies

b − a = p(2a − b) + (1 − p)θ(b − a),

or

θ =
b − a − p(2a − b)

(1 − p)(b − a)
.

When p = 1/3 so that proposer probabilities are always uniform
regardless of who rejects,

θ =
4b − 5a
2(b − a)

,

and now we have an answer to our little mystery: when (5/4)a < b <
(3/2)a, it is possible to get efficiency with probability (4b−5a)/2(b−a).
This probability converges to 0 as b→ (5/4)a, and to 1 as b→ (3/2)a.
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For some asymmetric games such mixed-strategy equilibria may
acquire even greater cogency, simply because no other equilibrium
might exist. To see this, recall the employer–employee game studied
in Example 7.6. Remember in that game that N = {123}, v(i) = 0 for
all i, v({23}) = 0, v({12}) = v({13}) = 1, and v(N) = 1 + µ for some
µ ∈ (, 1/2). The interpretation is that player 1 is an employer who
can produce an output of 1 with any one of the two employees 2 and
3. He can also hire both employees in which case output is higher.
No other combination can produce anything.

Alter the protocol by supposing that the first rejector of a proposal
gets to propose with probability p, while the remaining probability
is divided equally among the remaining two players. As before,
begin by assuming provisionally that all parties make proposals to
two-person coalitions. Notice that player 1 is included in every
coalition. However, let us make sure to exclude players 2 and 3 if
they reject a proposal and they are not called upon to propose next.
Then both players 2 and 3 have a threshold of

(7.15) m ≡ m2 = m3 = δp(1 −m1),

while
m1 = δ

[
p(1 −m) + (1 − p)m1

]
.

Solving for m1 and substituting this result in (7.15), we see that

m =
δp(1 − δ)

1 − δ(1 − p) − δ2p2 ,

so that m converges to zero as bargaining frictions vanish, no matter
how close p is to 1. This is quite different from the rejector-proposes
scenario, in which p equals 1, and m converges to 1/2 as δ→ 1.

But now we must recall the possibility that three-person coalitions
can also form. If so, player 2’s (or 3’s) response threshold cannot go to
zero, for if it did everybody would be making acceptable proposals
to the grand coalition. But then we start going around in circles,
for if everybody made acceptable proposals to the grand coalition
each of their m-values would converge to (1 + µ)/3, but because we
assumed that µ < 1/2 this can’t happen either (agents would then
only make two-person offers). This informal discussion suggests
that a pure-strategy equilibrium does not exist, and that the players
must want to propose to the grand coalition with some probability
between zero and 1. That, in turn, must mean that m equals µ, and
pins down the required probability θ that a proposal to the grand
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coalition will be made by a rejector’s compatriots, For players 2 and
3, we must have

m = µ = δ
[
p(1 −m1) + θ(1 − p)µ

]
.

For low bargaining frictions, it can be seen that θ < 1, so we do not
run afoul of Okada’s proposition that strong efficiency must fail in
this example. Yet, as δ → 1, θ converges to 1 and the equilibrium
can yield efficient outcomes with very high probability.

It is clear from this discussion that the study of alternative bar-
gaining protocols is bound to lead to new and interesting insights.
Some of these insights are fully in line with the rejector-proposes
protocol, though the quantitative implications may differ. Others
may be more radically different, as our study of the employer–
employee game suggests. Yet in all cases it appears that the general
methodology introduced in this chapter is useful. Whether or not
this assertion receives firmer support must be the support of future
research.21

7.8 Proofs

Proof of Observation 7.3. For i and T as described in the statement of
the lemma, we have that

(7.16) yi(S, δ) = δ

v(T) −
∑

k∈T−i

yk(S, δ)

 ,
while for j ∈ T − i,

(7.17) yj(S, δ) ≥ δ

v(T) −
∑

k∈T− j

yk(S, δ)

 .
Adding −δyj(S, δ) to both sides of (7.17) and using (7.16), we see that

(1 − δ)yj(S, δ) ≥ δ

v(T) −
∑

k∈T− j

yk(S, δ)

 − δyj(S, δ) = (1 − δ)yi(S, δ).

�
21As this book was going to press, Akira Okada sent me a draft of his new paper (
Okada (2007)) which studies mixed strategy equilibria under the random-proposer
protocol. He also brought to my attention the paper by Kawamori (2006), which
studies the mixed protocol discussed in this section.
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Proof of Proposition 7.2. First we show that the description in the
proposition constitutes an equilibrium. Inductively, assume that it
is true for all active player sets of cardinality s − 1 or less (indeed, it
is trivially true when s = 2). Now pick a set S (with cardinality s) of
active players, and any proposer i ∈ S. By following the equilibrium
prescription, our player can earn a payoff of mi(S, δ)/δ.

Suppose that he deviates by making an alternative proposal; then
that new proposal must be unacceptable.22 By applying the going
strategy profile from this point onwards, i’s subsequent present-
value payoff is bounded above by maxT⊆S mi(T, δ).23 By Condition
M, such a deviation cannot be profitable.

It is very easy to check that prescribed responder strategies are best
responses as well.

To show that nothing else can be an equilibrium, proceed inductively
once again. Suppose that uniqueness holds for all active player sets
of cardinality s−1 or less (this is trivially true when s = 2). Now pick
a set S of cardinality s. Consider any equilibrium response vector y
on S. Let

K ≡ {i ∈ S|mi(S, δ) � yi}
and pick an index i such that either mi or yi is the biggest of the values
featured in K. If it is yi, note that yi > mi(S, δ) ≥ δmi(S′, δ) for all
S′ ⊆ S (by Condition M). Notice that player i’s payoff as proposer is
yi/δ, so the previous inequality and the induction hypothesis jointly
imply that i must be making an acceptable offer. So pick T such that

(7.18) yi(S, δ) = δ

v(T) −
∑

k∈T−i

yk(S, δ)

 ,
and observe that

(7.19) mi(S, δ) ≥ δ
v(T) −

∑
k∈T−i

mk(S, δ)

 .
22Given that everyone else is using the response vector m, the prescribed payoff is
the most that i can get by making an acceptable proposal.
23If, following the unacceptable offer, i is included in the very next proposal, he
will get a present value of no more than mi(S, δ). If not, he will at best be proposer
in some subsequent subset T of active players, whereupon by induction he receives
mi(T, δ)/δ. However, this payoff is discounted by at least δ because of the delay
caused by the unacceptable proposal.
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By (7.18) and Lemma 7.3, yj ≥ yi for all j ∈ T. So mj(S, δ) ≤ yj for all
j ∈ T, j � i. But then using (7.19), we see that mi(S, δ) ≥ yi, which is
a contradiction.

Alternatively, if at the index i in the “maximal set” K we have
mi(S, δ) > yi, then note that there exists T such that (7.18) holds with
equality with mi in place of yi, and then follow the same argument
(from (7.18) onwards) with the roles of mi and yi interchanged. �

Proof of Proposition 7.3. Pick i ∈ S, and suppose that i is assigned a
value mi at Step K+ 1 of the algorithm. Suppose that W (of the form
CK+1 ∪ TK+1) is the algorithmic maximizer at that step, where CK+1
and TK+1 are as described in the algorithm. Then

mi = δ

[v(W) −
∑

j∈T mj

1 + δ(c − 1)

]

= δ

v(W) −
∑

j∈W−i

mj

 ,
where the equality follows from simple transposition of terms.

It remains to show that for every other coalition W with i ∈W

mi ≥ δ

v(W) −
∑

j∈W−i

mj

 .
Suppose this is false. Then there is W such that i ∈W and

(7.20) mi < δ

v(W) −
∑

j∈W−i

mj

 .
Pick k ∈ W such that k belongs to the “highest” index in the
algorithm, say 	. Then by construction, mk ≤ mi, so that in
combination with (7.20),

mi + (1 − δ)(mk −mi) < δ

v(W) −
∑

j∈W−i

mj

 ,
and rearranging, this tells us that

(7.21) mk < δ

v(W) −
∑

j∈W−k

mj

 .
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Now, as far as k is concerned, W is a set of the form C ∪ T at Step 	,
and it is also true (by choice of k) that mj = mk for all j ∈ C. Therefore
(7.21) implies that

[1 + δ(c − 1)]mk < δ

v(W) −
∑
j∈T

mj

 ,
which contradicts algorithmic maximization at Step 	.

Proof of Proposition 7.4. We proceed by induction on the steps in the
algorithm. First consider Step 1. Look at the values generated by two
distinct coalitions C and C′, at least one of which is a nonsingleton;
they are

v(C)
1 + δ(c − 1)

and
v(C′)

1 + δ(c′ − 1)
.

Given [G.1], these values can never be equal if c = c′. If c � c′,
equality can hold for at most one value of δ. It follows that there
exists δ1 ∈ (0, 1) such that if δ ∈ (δ1, 1), the maximization problem
in Step 1 is solved either for a unique coalition (if it is nonsingleton)
or for one or more singleton coalitions. Moreover, the solutions are
uniform over δ in this interval.

Recursively, suppose that for Steps 1, . . . , K, there exists a threshold
δK ∈ (0, 1) such that the properties described in the previous
paragraph are true for every k ∈ {1, . . . ,K}. Consider Step K + 1.
Look at the values generated by two distinct coalitions C ∪ T and
C′ ∪ T′, at least one of which is a nonsingleton; they are

v(C ∪ T) −
∑

j∈T mj

1 + δ(c − 1)
and

v(C′ ∪ T′) −
∑

j∈T′ mj

1 + δ(c′ − 1)
.

Consider the difference; this is

v(C ∪ T) −
∑

j∈T mj

1 + δ(c − 1)
−

v(C′ ∪ T′) −
∑

j∈T′ mj

1 + δ(c′ − 1)
.

By the induction hypothesis, this is a polynomial expression in δ
over the domain (δK, 1). Such an expression either admits a finite
number of values for δ for which it equals zero, or it is entirely
independent of δ and equals 0 throughout. In the latter case one can
artificially extend the expression over all of [0, 1] by keeping each of
the coalitions in the previous steps unchanged at their solutions for
δ > δK. Setting δ = 0, we should then have

v(C ∪ T) − v(C′ ∪ T′) = 0,
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which is impossible given [G.1]. This means that that former case
is the one that applies, which proves the inductive step for K + 1: a
threshold δK+1 ≥ δK can be found with the required property.

Because there are only a finite number of steps, take δ∗ to be the
largest of all the δK’s; this lies between 0 and 1. For δ > δ∗, pick
any proposer i. Suppose that i belongs to set CK of the algorithm. If
that step prescribes a nonsingleton set, we are done. If it prescribes
(perhaps several) singleton sets, we know that she can choose only
one of them — the set {i}. �

Proof of Proposition 7.6. First we show that [M] must hold for all
discount factors sufficiently close to 1. By the assumed uniqueness
of maximizing coalitions under the limit algorithm, for each active
player set S there exists a threshold δ(S) ∈ (0, 1) such that the
algorithm yields the very same maximizing coalitions as the limit
algorithm (for the same active player set) at every discount factor
δ > δ(S). Define δ1 to be the largest of these thresholds as we range
over all active player sets; then δ1 ∈ (0, 1) as well.

Now consider the corresponding values m(S, δ). These converge to
m∗(S) for every active player set as δ → 1. Thus, given [M∗], for
any pair of active sets S and S′ with S ⊇ S′, there exists a threshold
δ(S,S′) ∈ (δ∗, 1) such that for all affected i ∈ S′,

mi(S, δ) ≥ mi(S′δ)

for all δ > δ(S,S′), while for all unaffected i,

mi(S, δ) = mi(S′δ)

for all δ > δ(S,S′). Pick δ∗ to be the maximum of all such δ(S,S′).
Then δ∗ ∈ (0, 1), and [M] holds for all δ > δ∗.

The remainder of the proof simply consists in applying Proposition
7.2, and noting that for all δ > δ∗, the algorithm yields a unique
maximizing coalition at every stage for every active player set. �

L 7.1. Fix an equilibrium. For any (S, δ), suppose that (7.2) holds
with strict inequality for some i:

yi(S, δ) > δ max
T:i∈T⊆S

v(T) −
∑
j∈T−i

yj(S, δ)

 .
Then there exists a strict subset S′ of S such that yi(S′, δ) ≥ yi(S, δ).
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Proof. Let S∗ be some minimal subset of S (which could be S itself)
such that yi(S∗, δ) ≥ yi(S, δ). Then I claim that

yi(S∗, δ) = δ max
T:i∈T⊆S∗

v(T) −
∑
j∈T−i

yj(S∗, δ)

 .
For if not, then i must make an unacceptable proposal at S∗. But after
that he can get at most yi(S′, δ) for some S′ ⊂ S∗. But by construction,
yi(S′, δ) < yi(S∗, δ), which is a contradiction. So equality does hold,
which means from our premise that S∗ must be a strict subset of
S. �

Proof of Proposition 7.7. First we show that (7.9) implies strong
efficiency. Pick any person i and look at yi(N, δ). Then, using Lemma
7.1, there exists S (could be N itself) and T ⊆ S with i ∈ T such that

(7.22) yi(N, δ) ≤ yi(S, δ) = δ

v(T) −
∑
j∈T−i

yj(S, δ)

 .
We know from Observation 7.3 that yj(S, δ) ≥ yi(S, δ) for all j ∈ T, so
using (7.9),

(7.23) yi(S, δ) ≤ δv(T)
1 + δ(t − 1)

≤ δv(N)
1 + δ(n − 1)

where t and n are the cardinalities of T and N respectively.

Note that strict inequality must hold in the second inequality of
(7.23) whenever T � N.

So, combining (7.22) and (7.23), we have shown that

(7.24) yi(N, δ) ≤ δv(N)
1 + δ(n − 1)

for all i, with strict inequality whenever i does not propose accept-
ably to the grand coalition.

At the same time, we know that

yi(N, δ) ≥ δ

v(N) −
∑

j∈N−i

yj(N, δ)

(7.25)

≥ δ

[
v(N) − δv(N)(n − 1)

1 + δ(n − 1)

]
(7.26)

=
δv(N)

1 + δ(n − 1)
,(7.27)
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where the second line uses (7.24). Together, (7.24) and (7.27) prove
that i must make an acceptable offer to the grand coalition, which
proves efficiency.

Conversely, suppose that we have strong efficiency for all discount
factors close to 1. Then yi(N, δ) is some constant y for all i, and

yi(N, δ) = δ

v(N) −
∑

j∈N−i

yj(N, δ)

 ,
so that

(7.28) y =
δv(N)

1 + δ(n − 1)
.

Moreover,

yi(N, δ) ≥ δ

v(S) −
∑
j∈S−i

yj(N, δ)


for all S, so that

(7.29) y ≥ δv(S)
1 + δ(s − 1)

.

Combine (7.28) and (7.29), and send δ to 1. �

Proof of Proposition 7.13. The argument pieces together several
propositions in the text. Begin by making the inductive assumption
that the proposition is true for all partition functions with player
sets of cardinality n − 1 or less. This presumption is trivially true
when n = 1. Now pick a partition function with player set N (of
cardinality n). Our induction hypothesis immediately guarantees
that the proposition is true at every stage for which some coalition
has exited and the game is about to continue for the remaining set
of active players. This is because a partition function is induced for
all such remaining sets in the obvious way. Because there are only
finitely many such partition functions, there is a single threshold —
call it δ̂ — such that the predictions of the proposition hold for all
these partition functions.

Fix any δ > δ̂. Pick any initial proposer i ∈ N. By induction,
if i forms the coalition S, the resulting full coalition structure will
surely form by applying the consistent completion map c(S,Λ) to the
substructure with single coalition S. Therefore the worth of coalition
S is unambiguously defined by

vΛφ(S) = v (S, c(S,Λ)) .
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This is a well-defined characteristic function. Therefore, no-delay
equilibrium response thresholds must be characterized by

(7.30) yi(N, δ) = δ max
S:i∈S⊆N

vΛφ(S) −
∑
j∈S−i

yj(N, δ)


for every i, which just means that the thresholds must be given by
the m-vector corresponding to the characteristic function vΛφ for the
player set N with discount factor δ. These values must converge in
turn to the limit m∗-vector for the associated characteristic function
vΛπ. Moreover, by [U∗], the algorithm used to compute the limit m∗-
vector admits a unique coalitional solution at any step. It follows
that there exists δ∗ ≥ δ̂ such that for all δ > δ∗, player i’s choice of
coalition is given precisely by the unique coalition containing i in
Step 4 of the limit algorithm for the general case.

Combining these observations, we are done with the inductive step,
and the proof of the proposition is complete. �

7.9 Summary

In this chapter, which is necessarily long and fairly complex in its
exposition, we study coalition formation for heterogeneous partition
function games. The symmetric case studied earlier is a useful guide
but several new considerations arise. For this reason we proceed in
two main steps.

The first step consists in developing the theory for general char-
acteristic functions; that is, for situations in which there are no
externalities. We allow for arbitrary degrees of heterogeneity
across players. The emphasis is on developing a workable theory
for no-delay Markovian equilibria, in which all proposers make
acceptable offers at every stage of the game. It turns out that the
equilibrium payoffs for such games have a remarkably clean and
simple structure: they are unique for each set of active players,
and moreover they are amenable to computation by the use of a
recursive algorithm. We spend a fair amount of time developing this
theory, and discussing the efficiency properties of such equilibria.
Most importantly, we lay down a set of conditions (summarized
as Condition M) under which every Markovian equilibrium must,
indeed, be no-delay.



7.9 Summary 153

The second step extends the theory to cover externalities across
coalitions. The idea of a completion map is central to this extension.
Loosely speaking, a completion map converts every partial coalition
structure into a full coalition structure for the game. It embodies an
equilibrium continuation that must, in the sequel, be solved for in its
own right. Setting aside this issue for the moment, the existence of
some — any — completion map implies that a characteristic function
can be suitably defined on the remaining set of active players once
some substructure of players has departed. On this characteristic
function we bring to bear the theory summarized in the preceding
paragraph. The circle is fully closed by requiring that the “next”
coalition predicted by this theory coincides with the “next” coalition
predicted by the completion map.

We therefore obtain a theory of coalition formation when commit-
ments to form coalitions are irreversible. Our next task is to study
the case in which commitments can be reversed, although only with
the consent of all contracting parties.





CHAPTER 8

A Framework for Reversible
Agreements

So far, we have assumed that a commitment to form a coalition, once
made, cannot be undone. As we have argued, in many situations
this isn’t a bad assumption. Often commitments cannot be made on
legal paper; they are executed through the taking of physical actions
that are costly to reverse. For instance, in the pollution control
example studied in Chapter 6, the costs of reversing a “commitment
to not participate in pollution control” may be low if anti-pollution
devices can be tagged on to factories in a modular way. If, on the
other hand, such factories must be rebuilt from scratch, the cost of
reversing the no-control commitment can be extremely high. Or
consider the decision of a group to start a conflict, or a region to
secede: once under way, these decisions are hard to reverse.

But my intention is not to defend the irreversible commitments
framework without qualification. There is a host of situations where
agreements are binding, but may be reversed freely (or at low cost).
A free-trade area or customs union may initially exclude certain
countries and later incorporate them. While two firms might merge,
a multi-product firm may also spin off divisions into sub-firms.
Political coalitions may form and reform.

The purpose of this chapter is to study a model of binding agree-
ments, in which fresh proposals can always be made, and existing
arrangements dissolved (with the consent of the signatories to
those agreements). Thus coalition formation occurs in “real time”,
with payoffs received concurrently. I accommodate a wide variety
of payoff structures, superadditive or otherwise, transferable or
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otherwise, and bargaining protocols — an even wider class than
considered in earlier chapters. For the main result, I also drop the
restriction to Markovian equilibria; I explain the significance of this
relaxation below. The analysis draws heavily on Hyndman and Ray
(2007).

We continue to keep in mind the benchmark of the Coase theorem,
which asserts that in the absence of incomplete information, the
outcome of group negotiations should always be efficient. We’ll see
that the ability to make reversible commitments may take us closer
to the efficiency result asserted by Coase, at least “in the long run”.
As we have already noted, this is far from true in the irreversible
commitments case.

8.1 An Example

What is the role played by a reversible commitment? Why would a
commitment to form a group first be made, then reversed? Why not
simply eschew the making of that commitment in the first place?
To see this, I recall the three-player public goods example from
Chapter 2, subsequently explored in greater detail in generality in
Chapter 6. I permit commitments to be reversed. The purpose of
this example is to not only to show why reversible commitments are
more conducive to efficiency, but also to argue that the emergence
of such efficient outcomes may not be immediate.

E 8.1. Three symmetric players provide a pure public good. Each
unit of contribution r yields one unit of the good, but generates a convex
utility cost (1/3)r3. Payoffs are transferable across agents, by the use, say,
of linearly-valued money.

In Chapter 2 (and more generally, in Chapter 6) we construct the
partition function for this situation:

v({123}) = {6
√

3}

v({1}, {2}, {3}) =
{
2

2
3
, 2

2
3
, 2

2
3

}
v({i}, { jk}) =

{
2
√

2 +
2
3
, 2

[
1 +

2
3

√
8
]}
.

As in the previous analysis, the exact numbers are unimportant.
The two critical features are: (a) the per-capita worth of the grand
coalition is smaller than the payoff to i in the coalition structure
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{i}, { jk}; and (b) the per-capita payoff to j and k in the coalition
structure {i}, { jk}, exceeds their corresponding payoff in the coalition
structure of singletons.

In line with the previous chapters, assume that an initial proposer
is drawn randomly, that proposals must be universally acceptable
to the players involved, and that the first rejector of a going
proposal gets to make a new proposal. Then, if group formation
is irreversible, there is only one (numerical) equilibrium structure.
Player i stands alone, and players j and k band together. The
outcome is inefficient.

Now suppose that proposals can be made on an ongoing basis, even
when a full set of coalitions have had the chance to form. Then there
are two possibilities, both leading to an efficient outcome. First, if
a player moves off on her own, the other two players disband as
well, incurring a temporary loss of payoff but thereby getting into
position to enforce a symmetric, efficient outcome with the grand
coalition forming. If this path indeed constitutes credible play, then
no player will move off in the first place, and the outcome is efficient
to begin.

Observe that this isn’t even a possibility if commitments are irre-
versible. Once player i moves off, there is no bringing her back, so
players j and k will never disband. Observe, moreover, that in this
outcome the tying and untying of commitment need not occur “on
the equilibrium path”, but its very possibility changes the play.

The second possibility concerns a situation in which once player i
moves off, players j and k do not find it worthwhile to disband.
For instance, this could happen if player i can make a commitment
which is irreversible for some length of time, a situation which can
be readily modeled by lowering the discount factor of all players. In
this case the outcome will still be efficient, but the path to efficiency
as well as the final outcome will look very different. Some player i
must initially move off. Thereafter, players j and k must cajole her
back to the grand coalition with an offer that gives her more than
what she gets in the structure ({i}, { jk}). By examining the partition
function in the example, it is easy to see that an allocation exists for
the grand coalition that makes both i as well as the pair jk better off.

So we are ultimately at an efficient outcome, but one that is “skewed”
in favor of the individual who was lucky enough to be the first to
make a commitment. Notice that the commitment must have been
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made for her to take advantage of it, and so the equilibrium path
involves a transitory phase of inefficiency, followed by a Pareto-
superior outcome.

It is important to note, in this case, that if unequal division cannot
be tolerated within the grand coalition, then the outcome could
be “inefficient” even if commitments are reversible. But I place the
word “inefficient” in quotes, for if unequal division cannot be
tolerated within the grand coalition, then it is unclear that efficiency
should be defined using aggregate payoffs in the first place. The
analysis to follow takes this criticism on board, and defines efficiency
appropriately.

A different issue (with similar implications) arises if the signatories
to the agreement to bring player i back into the fold cannot commit
to honor this agreement in the future. If — in that future — some
other player j were to unilaterally desert the agreement and take
up the same stance as player i did, then there may be little in the
situation to induce player i to take up the conciliatory offer in the first
place. It follows, then, that a general theory of ongoing negotiations
may want to contend with both agreements that are binding (on all
signatories) and agreements that are temporary, in the sense that
subsets of the signatories can renege on the agreement in the future.
I could study take up the general case here. However, recognizing
that infinite book length is not conducive to readership, I will not
study temporary agreements in this part of the monograph. To
be sure, the framework that I will describe is potentially amenable
to the study of such agreements and I return to this possibility in
Chapter 13.

It is now time to set up a more formal model.

8.2 A Proposal-Based Model of Coalition Formation

8.2.1 General Specification. A proposal-based model of coalition
formation in real time consists of the following objects:

[1] a finite set N of players;

[2] a compact set X of states, and an infinite set t = 0, 1, 2 . . . of time
periods;

[3] an initial state x−1 given at the start of date 0;
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[4] a protocol describing the choice of proposers — and order of
respondents — at each date t, possibly depending on the history of
events up to that date;

[5] for each state x and proposed new state y, a collection of subsets
S(x, y) that can “approve” the move, with S(x, x) the collection of all
subsets of N;

[6] for each player i, a continuous one period payoff function ui
defined on X, and a (common) discount factor δ ∈ (0, 1).

The basic idea of this model is both general and simple. Following
each history, date t begins under the shadow of a “going state”
xt−1, in place from the previous date. Using the protocol in [4], a
player is chosen to make a proposal. The player proposes a state y,
possibly different from the one already in place. The proposal must
be made to an “approval committee” — a coalition from S(xt−1, y).
(Notice that “no change” needs no approval.) If the proposal is
unanimously approved by the approval committee the state moves
to y; otherwise it stays at x. This process continues ad infinitum. Each
player receives payoffs as in [6], where expectations are taken not
just over proposer choices but possibly over the stochastic choice of
proposal as well. Discounted expected payoffs are added over time
to obtain infinite-horizon payoffs: these are well-defined because ui
is obviously bounded on X.

8.2.2 A Variant with Upfront Transfers. The specifications [1]–[6]
may be augmented to allow for the possibility of upfront transfers.
A proposer proposes a new state (just as in the previous section) and
a vector of upfront bilateral payments z = (zij), positive or negative
in the various components, that sum to zero. These one-time upfront
payments are presumably designed to lubricate the implementation
of the new state.1

To incorporate upfront transfers into the basic setup, we will need
to add the following points to items 5 and 6 above:

[5′] The approval committee for the proposed move from x to y with
transfers z must consist of all members of the approval committee in

1Gomes and Jehiel (2005) study this model in a more general context which allows
for nonbinding agreements. We discuss their important paper in more detail in
Section 10.4 of Chapter 10.
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the baseline model, as well as any individual involved in a nonzero
transfer.

[6′] Each player’s payoffs are quasi-linear. That is, current payoffs
for i under the state x and overall transfer received, z, are given by
(1 − δ)ui(x) + z.

Infinite-horizon payoffs are obtained, just as in the baseline model,
by adding discounted payoffs over time. Because ui is continuous
and X compact, side-payments can also be taken to come from some
compact set for every discount factor, so that infinite-horizon payoffs
are well-defined.

We will refer to this as the model (or variant) with upfront transfers.

Whether or not the baseline model makes more sense than the
variant with upfront transfers is a question that requires a contextual
answer. If agents are very patient, the required transfers will need
to be extremely large. If agents are liquidity constrained, it would
be silly to approximate such situations with a model of unlimited
upfront transfers: the no-transfers baseline model will do much
better. To be sure, there are other situations, such as negotiations
across firms with deep pockets, or across countries, where the
upfront transfer scenario may be much more plausible.

In the analysis to follow, we will largely focus on the baseline model.
Remember that that model also permits (by suitable interpretation
of the state) ongoing transfers between members of a coalition. At the
same time, the variant with upfront transfers has some particular
features that we will take up in Chapter 10.

8.2.3 Some More Structure on States. The specification so far is
quite general and can be used in a variety of ways. Our particular
emphasis is on permanently binding agreements. I will therefore
impose some more structure on the notion of a “state”.

Suppose that the underlying one-shot interaction is described by a
a partition function, which assigns to each partition π and coalition
S ∈ π a set of payoff allocations U(S, π). This is more general
than what we’ve done so far, in that payoffs may or may not be
transferable under this specification. But we will presume that each
element of U(S, π) is efficient for S, given the structure π. That is,
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all potential inefficiencies for S under some given coalition structure
can be costlessly done away with by the members of S.2

Of course, a characteristic function is a special case in which U is
independent of π.

Now for the added structure: we suppose that every state x can be
expressed as a pair (π,u), whereπ is a partition or coalition structure,
and uS ∈ U(S, π) for every coalition S ∈ π.3

8.2.4 Some Structure on Protocols. Notice that our description
of the proposer protocol is extremely general, in that it permits
the (possibly stochastic) choice of proposer to depend in arbitrary
ways on history. Sometimes we will specialize, of course, studying
the now familiar rejector-proposes protocol or the random-proposer
variant. But our main result in Chapter 9 will be valid for all
protocols that satisfy the following mild technical restriction:

[P] For each i, let Hi be the set of histories after which player i is asked
to make a proposal with positive probability. Then this probability
is uniformly positive on Hi.

All that [P] rules out is the rather arcane possibility that some
player may be asked to propose along a sequence of histories with a
corresponding sequence of positive probabilities that converges to
0. [P] is satisfied for every reasonable protocol that we can think
of, including all deterministic and history-independent random
protocols.

8.3 Binding Agreements

In the irreversible scenario studied thus far in the book, the notion
of a binding agreement is unambiguous. It is an agreement that can
be costlessly implemented once agreed upon. But more is at stake
when agreements can be renegotiated or discarded. We will need
to specify the groups of individuals that are in a position to alter a
going agreement. The concept of an approval committee is helpful

2As we have already noted in Chapter 3, Section 3.2.4, the conversion of a game into
partition function form isn’t automatic. The very definition presumes a “product
structure” in payoffs across coalitions, with each coalition having access to its
efficient payoffs (relative to the structure π).
3The notation uS denotes the projection of the vector u on S.
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for this. Loosely speaking, we would like to say that agreements
are binding if an individual is on the approval committee for every
proposed move that will “affect” an ongoing agreement enjoyed by
that individual.

The operative word is “affect”, and we break this into two parts.
First, if a player’s coalitional membership is affected as a consequence
of a proposed move, the move must be disrupting some previous
agreement to which that player was a signatory. Existing coalitional
membership is, after all, the product of some past agreement. In
this case we assume that the individual in question must be on the
approval committee for the move.

Second, a proposed move might affect the (ongoing) payoff to a
particular agent, without altering her coalitional membership. Must
consent be sought from that agent? The situation here is more subtle.
It may be that the payoff is affected because a fellow-member of a
coalition wishes to reallocate the worth of that coalition. In that case
— given that the existing allocation is in force — it is only reasonable
that our agent be on the approval committee for the move. On
the other hand, our agent’s payoff may be affected because of a
coalitional change elsewhere in the system, which then affects our
agent’s coalition via an externality. Our agent is “affected”, but
need not be on the approval committee because she wasn’t part of
the agreement “elsewhere” in the first place.4

We may summarize all this a bit more formally. For any move from
x to y, let C(x, y) denote the set of individuals whose coalitional
membership is altered by the move, and P(x, y) the set of individuals
j whose one-period payoffs are altered by the move: uj(x) � uj(y).
Say that agreements are binding if the following restrictions on
approval committees are satisfied:

[B.1] For every state x and proposed move y, C(x, y) is a subset of
any approval committee for the move.

[B.2] Consider a coalition S with membership entirely untouched by
a move from state x to state y. Then, provided either that there has
been no change at all in the coalitional structure or that payoffs are
described by a characteristic function, every member of S ∩ P(x, y)
must belong to any approval committee for the move.

4Notice that we wouldn’t insist that our player should not be on that approval
committee; it’s just that our definition of binding agreements is silent on the matter.
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The discussion above indicates that [B.2] is the more subtle of the two
restrictions. The implicit question that [B.2] asks is simply this: fix a
coalition and a move that does not alter membership in this coalition.
If, moreover, there is no change in the entire coalition structure, or
if the situation is describable by a characteristic function to begin
with, how could the payoff of a particular agent in the unchanged
coalition possibly change? The answer (again implicit in [B.2]) is that
it could only have changed because there is a deliberate reallocation
within that coalition, and then [B.2] demands that all individuals
affected by that reallocation must approve the move.5

In the variant with upfront transfers, the payoff could also change
if there are transfers. But we’ve already decreed that all individuals
receiving or giving transfers must approve the move (see Section
8.2.2, item [5′]).

Thus [B.1] and [B.2] formalize binding agreements, and we maintain
these restrictions throughout. Sometimes — mainly in the examples
— we invoke the sufficiency of these restrictions. Say that approval
committees are minimal if any coalition respecting [B.1] and [B.2] can
serve as approval committee for a proposed move.

In closing this section, it should be noted that an entirely different
theory may be written down when the restrictions [B.1] and [B.2]
are not met. For instance, a theory of “temporary agreements” can
be constructed by assuming that agreements only bind for, say, one
period. For any move from x to y, any approval committee must
contain all members of at least m − 1 of the m new coalitions that
form, and in particular, must include all new coalitions in y that are
not subsets of former coalitions in x.6

Chapter 13 will, in fact, study temporary agreements, though it will
do so using a blocking framework.

5Recalling the discussion in Chapter 3, Section 3.2.4, this restriction would make
less sense if there were multiple equilibria across coalitions. For then a changed
payoff in coalition S could be compatible with no change in the coalition structure
if somehow, the selection of across-coalition equilibria were affected by the move.
No “deliberate reallocation” within S is involved.
6The interpretation is that if a new coalition is formed by taking members from
more than one erstwhile group, then all the members of the new coalition must
approve the move. At best one coalition may be left out of the approval process,
and this coalition must be a subset of an erstwhile coalition. It is to be interpreted as
a “residual” left by the other “perpetrating coalitions” (compare with the definition
of perpetrators and residuals in Ray and Vohra (1997) and in Chapter 12).
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As a second variant, allow a coalition to break up or change if
some given fraction (say a majority) of the members in that coalition
permit that change. Some political voting games or legislative
bargaining would come under this category. Now any approval
committee must consist of at least a majority from every coalition
affected by the move from one state to another.

Going in the opposite direction, [B.1] and [B.2] could be further
strengthened: one might require that a coalition once formed can
never break up again. This would lead us back to the model with
irreversible commitments.

8.4 Strategies and Equilibrium

At each stage of the proceedings, we keep track of past proposers,
proposals, rejectors (if any) and upfront transfers (if any). A history
at some stage of the game is a list of such objects up to, but not
including, the events that will occur at that stage. Such stages
may be of various kinds: a proposer is about to be chosen, or a
proposal about to be made, or a responder about to respond, or
— such matters concluded — a state about to be implemented.
We use obvious nomenclature to distinguish between the different
types: “proposer histories,” “responder histories,” “implementation
histories,” and so on.

At proposer or responder histories players have to take deliberate
actions. A full listing of a particular player’s actions for all such
histories is a strategy for that player. Notice that we are being
deliberately quite general here by allowing for all history-dependent
strategies. We’ll see why in the next chapter.

To describe strategies more formally, consider an individual k. For
a proposer history h at which k is meant to propose, she must
choose a (possibly new) state y and an approval committee S for the
proposed move. (In the variant with upfront transfers she would
also choose a proposed vector of transfers z.) She could employ a
behavior strategy, which would be a probability distribution over
(y,S). Denote by µk(h) the probability distribution that she uses at
proposer history h.7

7Notice that we are allowing any proposer to make a proposal to any committee.
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Likewise, at a responder history h at which k is meant to respond,
denote by λk(h) be the probability that k will accept the going
proposal under that history. The full collection σ = {µk, λk} over
all players k is a strategy profile.

A strategy profile σ induces value functions for each player. These
are defined at all histories of the game, but the only ones that we
will need to track are those just prior to the implementation of
a fresh state (or the unaltered continuation of a previous state).
Call these implementation histories. On the space of such histories,
every strategy profile σ (in conjunction with the given proposer
protocol) defines a stochastic process Pσ as follows. Begin with
an implementation history. Then a state is indeed “implemented”.
Subsequently, a new proposer is determined. The proposer proposes
a state. The state is then accepted or rejected. (The outcome in
each of these last three events may be stochastic.) At this point a
new implementation history h′ is determined. The entire process is
summarized by the transition Pσ on implementation histories.

For each person i and given an implementation history h, the value
for i at that date is given by

(8.1) Vσ
i (h) = (1 − δ)ui(x) + δ

∫
Vσ

i (h′)Pσ(h, dh′)

where x is the state implemented at h. Given any transition Pσ, a
standard contraction mapping argument ensures that Vσ

i is uniquely
defined.

In the variant with upfront transfers the value functions at any
implementation history will include the prospect of transfers at
future dates, and so will satisfy

(8.2) Vσ
i (h) = (1 − δ)ui(x) + δ

∫
[Vσ

i (h′) + zi(h′)]Pσ(h, dh′)

where zi(h′) is the overall transfer received by player i following
history h′.

In the baseline model, say that a strategy profile σ is an equilibrium
if two conditions are met for each player i:

(a) At every proposer history h for i, µi(h) has support within the
set of proposals that maximize the expected value Vσ

i (h′) of i, where
h′ is the subsequent implementation history induced by i’s actions
and the given responder strategies.
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(b) At every responder history for i, λi(h) equals 1 if Vσ
i (h′) > Vσ

i (h′′),
equals 0 if the opposite inequality holds, and lies in [0, 1] if
equality holds, where h′ is the implementation history induced by
acceptance, and h′′ the implementation history induced by rejection.

In the case in which the proposer protocol is history-independent,
say that strategies are Markovian if h can be replaced by the going
state x everywhere in the definitions above. A Markov equilibrium is
an equilibrium involving Markov strategies.

With upfront transfers the equilibrium conditions must be modified
in the obvious way. An individual i as proposer can also announce
transfers and seeks to maximize Vσ

i + zi in (a), and as responder uses
the net payoff Vσ

i + zi as the appropriate criterion in (b). See Section
10.4 in Chapter 10 for more discussion.

This is a well-defined game of perfect information. Given that X is
compact and ui is continuous for every i, the existence of equilibrium
is guaranteed (see, e.g., Harris (1985)). The existence of Markov
equilibrium is easy enough to establish if X is finite or countable
(see Hyndman and Ray (2007, Supplementary Notes) for details).
We omit these relatively technical matters here.

8.5 Absorption and Efficiency

An equilibrium induces a stochastic process on the space of imple-
mentation histories. Consider the stochastic process of one-period
payoff vectors u(xt) thus generated. Say that an equilibrium is
absorbing if u(xt) converges almost surely from every initial state.

A vector of payoffs u Pareto-dominates another vector u′ if u� u′. A
payoff vector exhibits (static) efficiency if it is not Pareto-dominated
by any payoff vector associated with some other state.

We can easily apply this concept to absorbing equilibria with well-
defined payoff limits. Specifically, say that absorbing equilibria are
asymptotically efficient if their payoff limits are (static) efficient.

To be sure, we can be more demanding in our efficiency requirement.
Say that an equilibrium is dynamically efficient from some initial
history h if the vector Vσ(h) is not Pareto-dominated by the infinite-
horizon payoff arising from some, conceivably stochastic, sequence
of states.
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Whether dynamic or static, our notion of efficiency must respect
the very same constraints that the players themselves face. In
particular, if payoffs cannot be freely transferred across players
it would be inappropriate to label an equilibrium as inefficient if
it fails to maximize, say, the sum of total surplus. So lack of
transferability, for instance, should not be judged as a prima facie
correlate of inefficiency. The efficiency definition itself must be
suitably modified.

8.6 Summary

In this short chapter, we motivate and set up the reversible commit-
ments model. The basic viewpoint adopted here is that a model
of coalition formation with ongoing negotiations is best viewed
as a dynamic process in which proposals and payoffs are fully
intertwined. As new proposals are made and accepted, the going
state changes, and payoffs change accordingly. Individuals do not
use one-period payoffs to evaluate changes in state; they use the
entire continuation value.

Now, while renegotiation is permitted, we impose the restriction that
agreements are permanently binding, so that all past signatories to
a going agreement must approve any change to it. We discuss a
formalization of this idea.

Finally, we introduce notions of absorption and asymptotic ef-
ficiency. An equilibrium is absorbing if the one-period payoffs
accruing to every player ultimately settles down (instead of cycling
or moving around forever). An absorbing equilibrium is asymp-
totically efficient if that limit payoff is efficient in the sense of static
Pareto efficiency. Similarly, one can define dynamic efficiency.

This model has several useful properties. Apart from capturing
ongoing renegotiation, it naturally allows for farsighted behavior.
The very presumption that individuals use continuation values to
judge the wisdom of moving to a new state suggests that they can,
and do, anticipate further changes.

In the two chapters that follow, we proceed to a closer examination
of this general setup.
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CHAPTER 9

Reversible Agreements Without
Externalities

In this chapter, we are going to show that the possibility of reversible
commitments in games without externalities leads — ultimately
— to efficient outcomes. This is in sharp contrast to games with
irreversible commitments, in which inefficiency can be endemic
even for characteristic functions.

Section 8.1 of the previous chapter tries to make very clear why
reversibility may be conducive to efficiency. If commitments
are irreversible, the maximal social surplus is not seized because
proposer incentives are distorted by the potential loss of control
that accompanies a rejected proposal. This means that a proposer
must always give some fraction of the surplus away, and a wedge
is driven between socially and privately optimal actions.

On the other hand, intuition suggests that if outcomes can be rene-
gotiated, then the already-agreed-upon arrangements safeguard
existing payoffs against any loss of control from making a fresh
proposal. This suggests two things. First, if there is surplus left on
the table, then that surplus should eventually be seized and divided
in some way among all parties. Second — and somewhat in contrast
to the first point — the seizure of that surplus won’t generally
happen at the very first round. The safeguards may have to be
put in place in earlier rounds, necessitating step-by-step progress
towards efficiency (and hence a sacrifice of full dynamic efficiency).
The example in Chapter 8 makes these points informally. We will
develop these ideas more formally in the context of a characteristic
function example.
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Precursors to the ideas developed in this chapter include Seidmann
and Winter (1998), Okada (2000), and Hyndman and Ray (2007) on
which much of the discussion is based. The Seidmann– Winter and
Okada papers show that asymptotic efficiency may be reinstated if
renegotiation is ongoing and coalitions can only expand. These
papers — in line with most others on coalition formation —
study Markovian equilibria. With history-dependence, additional
complications appear. For instance, even simple bargaining games
with three or more players are known to exhibit multiple equilibria,
many of which are inefficient. Because we want to explicitly discuss
and tackle this problem, we’ve left ample room in the definitions for
arbitrary degrees of history-dependence.

9.1 Two Examples

9.1.1 Efficiency, But Not Immediately. Recall Example 7.6 from
Chapter 7: the employer-employee game. Three agents come
together to form a partnership. Agent 1 is special: she must be
included in any partnership with positive value. But agents 2 and
3 — call them the ordinary agents — are needed as well (agent 1
cannot produce value on her own). Write the characteristic function
as follows:

v({1 j}) = 1 for j = 2, 3; v({123}) = 1 + µ,

for some µ > 0, and v(S) = 0 for all other coalitions.

Here is the protocol: if a proposal has just been rejected, the first
rejector proposes. In any other situation, a proposer is chosen at
random.

If only irreversible commitments are possible, and the discount
factor is close enough to unity, no agent will ever want to form the
grand coalition of all three players, even if the characteristic function is
strictly superadditive, as long as µ < 1/2. The surplus may be highest
at the grand coalition, but no one agent has full control over its
division. Consequently, a two-person coalition — either {12} or {13}
— must form.

What if commitments are reversible? It can be shown that the
eventual outcome is indeed efficient (we will prove a general
theorem establishing this), but the move to efficiency must be
gradual. One of the two-person coalitions {12} or {23} forms first.
A subsequent move establishes the grand coalition. But there are
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unequal returns among the ordinary agents. It can be shown that
one of them gets approximately as much as the special agent. But
the other agent — the one absorbed later into the group — gets less.

As discussed in the introduction to this chapter, the formation of an
intermediate coalition essentially protects the parties to that agree-
ment. The ordinary agent included in the intermediate coalition can
block any attempt by the excluded agent to undercut him, because
he is already signatory to a binding agreement that can only be
abolished with his consent. Because this reduces the power of the
excluded agent to extract surplus, the grand coalition can finally
form.

We now turn to a second feature that may inhibit efficiency.

9.1.2 History-Dependence Frustrates Efficiency. Perhaps one
of the more irritating results of game theory concerns the nihilistic
implications of history-dependent strategies. While often used
to “explain” the possibility of cooperation in repeated games,
history-dependence extracts a price by predicting all sorts of other
equilibrium outcomes as well. A well-known expression of all
this is the Folk Theorem for repeated games, which shows that
all individually rational payoffs may be supported as a perfect
equilibrium, provided the discount factor is close enough to one.

When binding agreements are studied using the techniques of
noncooperative games, the situation is a bit better, but only by a
bit. A bargaining game, while possibly involving repeated offers,
is not a repeated game. (When the bargain is done with, so is the
game.1) And indeed, the folk theorem does not always apply. For
instance, in Section 4.4 of Chapter 4, we studied Rubinstein–Ståhl
bargaining and observed that two-person games yield a unique
bargaining equilibrium in the class of all strategy profiles, history-
dependent or otherwise.

On the other hand, this welcome predictability disappears as soon
as there are three or more players. As noted in Chapter 4, the first
result along these lines is due to Herrero and Shaked (see Herrero
(1985)), in the context of the Rubinstein–Ståhl bargaining model.

1It is true that we are now allowing for the continued possibility of proposals
even after agreements have been written. But our game isn’t repeated either: past
agreements act as state variables.



172 Reversible Agreements Without Externalities

Chatterjee, Dutta, Ray and Sengupta (1993) state a folk-theorem-
like proposition for all characteristic function bargaining games, not
just n-person bargaining games. This literature suggests — along the
unsatisfactory lines of the folk theorem — that all sorts of outcomes
(including inefficient ones) are possible.

A quick recall of the Herrero–Shaked observation, as well as a
variant of it, will be instructive, as it will also serve to motivate
an additional assumption to be made below. Suppose, then, that
|N| = 4, and that the underlying characteristic function is given as
follows:

v(S) = 3 if S = N
= 0 otherwise.

The protocol is “rejector proposes”.

Provided that the discount factor is close enough to unity, it is
possible to sustain an equilibrium outcome in which the grand-
coalitional surplus is never attained. If an individual attempts to
make a proposal to the grand coalition, that proposal is rejected and
every rejector subsequently asks for the entire surplus. Knowing
this, no individual makes a proposal to the grand coalition, and the
situation stagnates forever in this way.

Of course, matters need not be that dismal. Suppose that we
alter this example so that v({12}) = v({34}) = 1, and leave all else
unaltered. Then there is an equilibrium in which the coalition
structure {{12}, {34}} forms but no further progress is made: all
additional proposals to the grand coalition are rebuffed in the
manner described above (except that the rejector will now ask for
the entire surplus net of existing payoffs to the other three agents).

9.2 Benignness

Is it possible to translate the Herrero–Shaked idea to our framework
of binding agreements with repeated proposals? Technically, the
answer is yes, but the failure to achieve efficiency will be based on
rather knife-edge considerations. An efficiency-enhancing proposal
may be rejected, true, but events post-rejection cannot hurt our
existing players by too much, because ongoing agreements are binding.
Consider the examples in the previous section. If a proposer does
not mind being rejected as long as subsequent play benefits others
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and does not hurt her, such history-dependent inefficiencies can be
broken provided that the status quo agreements are binding.

Of course, the example in Section 9.1.2 is only one of many
possibilities: history-dependent inefficiencies could, in principle,
occur in a variety of ways. Nevertheless, the discussion motivates
the following concept: say that an individual is benign if she prefers
an outcome in which some other individuals are better off, provided
that she (and every individual) is just as well off.

The benignness “refinement” is of a lexicographic nature. Our
individual first and foremost maximizes her own payoff, and
benignness only kicks in when comparisons are made over outcomes
in which her payoff is unaffected. There is no danger to the payoff
of the individual concerned.

Alternatively, one could just as easily think of benignness as an
equilibrium refinement rather than as a lexicographic restriction on
individual preferences. Thus an equilibrium strategy profile is
benign if for no individual and no history is there a deviation which
increases the payoffs of some players while leaving all other payoffs
(including that of the deviating player) unchanged.

9.3 Absorption and Efficiency

This section contains the main results of the chapter. First, all
equilibria of characteristic-function games must be absorbing in
payoffs. Moreover, provided the benignness refinement is applied,
such absorbing states must be efficient, regardless of the degree
of history-dependence. We now turn to a precise statement and
discussion of these results. The formal analysis is conducted for the
baseline model, with some remarks on how to alter the results (if at
all) for the variant with upfront transfers.

9.3.1 Absorption. The first important property satisfied by all
characteristic functions is that all paths of equilibrium payoffs must
“ultimately” settle down.

P 9.1. Assume [B.1] and [B.2]. In a game of coalition formation
derived from a characteristic function, all equilibria are absorbing.

It isn’t difficult to see why such a proposition must be true.
Agreements are binding, as captured by the restrictions [B.1] and
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[B.2]. Moreover, characteristic functions don’t display externalities.
These two observations imply that any change in a player’s lifetime
value along an equilibrium path must be brought about by her
deliberate acquiescence. But this implies the monotonicity of
such lifetime values, and hence their ultimate convergence. The
associated convergence of one-period payoffs then follows from a
simple additional step.

While this proposition is stated (and proved below) for the baseline
model, nothing fundamentally different happens in the variant with
upfront transfers. Formally, one-period payoffs may not converge
simply because there may be ongoing cycles in states supported
by transfers back and forth. Such cycles are not of great import:
there will always be an equivalent equilibrium path along which
the one-period payoffs do converge. I omit these details.

I reiterate that the ability to write binding agreements cannot
guarantee immediate absorption. As illustrated in Section 9.1.1,
equilibrium paths will generally require “time” — i.e., the formation
of intermediate coalition structures — before an absorbing outcome
(or payoff) is finally arrived at.

9.3.2 Efficiency. Now I turn to the question of efficiency. We have
already seen more than one reason to be wary of such an assertion.
First, the very jockeying for intermediate handholds of power along
an equilibrium path suggests that full dynamic efficiency is generally
not to be had. We don’t have to go very far to verify this: Section
9.1.1 provides an example.

Second, history-dependence and folk-theorem-like arguments might
conspire to generate inefficient outcomes even in the long-run.
What we are going to show, however, is that benignness rules this
possibility out.

P 9.2. Assume [B.1] and [B.2], and suppose that the set of
states is finite. Then in characteristic function games, every pure strategy
benign equilibrium is asymptotically efficient: every limit payoff is static
efficient.

This proposition is particularly remarkable in the light of the folk-
theorem-like results obtained in Herrero (1985) and Chatterjee,
Dutta, Ray and Sengupta (1993). Under repeated negotiation,
we assert that no amount of history-dependence in strategies can
hold players away from an (ultimately) efficient outcome. Mainly
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because we allow for such history-dependence, but also because
we include both superadditive and nonsuperadditive cases, this
proposition represents a substantial extension of Okada (2000)
and Seidmann and Winter (1998), who showed that renegotiation
achieves efficiency in superadditive characteristic functions when
equilibria are restricted to be Markovian.

A formal proof of Proposition 9.2 is relegated to a later section, but
some intuition may be useful. Consider an equilibrium path of play.
By Proposition 9.1, the one-shot payoffs along that path converges.
Suppose, contrary to our assertion, that convergence occurs to an
inefficient limit. Then a proposer will have the incentive to propose
a payoff vector that Pareto-dominates this payoff. This follows
from two observations. First, because agreements are binding, the
proposer cannot be hurt by making such a proposal. She can always
continue to enjoy her going payoff. To make this argument work,
we must “already” be at the limit payoff, otherwise the proposer
may do some (small, but positive) damage to her own prospects by
the very act of making the proposal. This is why we work with a
finite set of states.

Second, the proposer is benign. She certainly gains from the
proposal if it is accepted, and there is no reason to invoke benignness.
But the point is that she prefers to make the proposal even if
it is rejected. For rejection must entail that all the rejectors are
better off by not accepting the proposal, while the assumption that
agreements are binding ensures that no one is strictly hurt (see
previous paragraph). A benign proposer would therefore prefer
the resulting outcome to the presumed equilibrium play, which is
continued stagnation at the inefficient payoff vector.

This informal argument is obviously not a complete proof, and
several additional points need to be checked. The reader is referred
to Section 9.4 for the details.

While we omit a formal analysis, the variant with upfront transfers
has no additional insight to offer here. Benignness will guarantee the
ultimate attainment of efficiency, with or without upfront transfers.

9.3.3 More on Efficiency. The efficiency proposition does not
come for free. We already know that benignness (or something like
it) has to be used, otherwise Section 9.1.2 contains a counterexample.
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But the statement of the proposition contains other restrictions. We
briefly discuss some of the issues here.

9.3.3.1 Static Versus Dynamic Efficiency. It must be reiterated
that the ability to write binding agreements cannot guarantee full
efficiency in the dynamic sense. As illustrated in Section 9.1.1,
equilibrium paths will generally require “time” — i.e., the formation
of intermediate coalition structures — before an final outcome
is finally arrived at. These intermediate outcomes may well be
inefficient. So the path taken as a whole cannot be dynamically
efficient.

There is another reason for the failure of dynamic efficiency. It is
simply that such efficiency may necessitate ongoing cycles across
different states. Consider the following example:

E 9.1.

x0 = {{1}, {2}} u(x0) = (0, 0)
x1 = {{12}, a} u(x1) = (5, 1)
x2 = {{12}, b} u(x2) = (2, 2)
x3 = {{12}, c} u(x3) = (1, 5).

It is easy to see that in any equilibrium, x1, x2 and x3 must all be
absorbing states. However, notice that x2 is an absorbing state which
is dominated by randomization between x1 and x3, provided that
the discount factor is close enough to 1. In a dynamic setting such
randomization may be mimicked by alternation between x1 and x3.
The reason that such inefficiencies cannot be removed by continued
negotiation is that the past is not binding on the present except via
the state, which is restricted to simply reflect the existing coalition
structure and payoffs. Once at x1, say, player 1 will be unwilling to
relinquish her highly favorable payoff position.

This example brings up the question: to what extent can history
weigh on the present? Can players 1 and 2 write a binding agreement
to alternate between states x1 and x3? If they can, the inefficiency
in the example disappears. One might be tempted to say that
such agreements can indeed be written. But similar (though more
complex) examples can be constructed in which the domination
requires ongoing change in coalition structure and not just the payoff
vector. It is unclear where one draws the line.
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9.3.3.2 Transferable Utility and Finite State Spaces. Observe that
even though our proposition is stated for finite state spaces, we can
approximate arbitrarily high degrees of transferable utility. It should
therefore not be concluded that our efficiency result is somehow
linked to the presence or absence of transferability in payoffs.

The reader may nevertheless wonder if the proposition goes through
if the state space is allowed to be infinite. We are not sure of the
answer to this question in general, though we would conjecture that
it is in the affirmative. For instance, here is a version of Proposition
9.2 when the proposer protocol is restricted to be deterministic.

P 9.3. Suppose that every individual is benign, the proposer
protocol is deterministic and the set of states is compact. Then in
characteristic function games with permanently binding agreements, every
limit payoff of every pure strategy equilibrium is efficient.

The proof is omitted; see Hyndman and Ray (2007).

9.3.3.3 Ongoing Negotiations and Benignness. If negotiations are
not permitted to continue indefinitely, then inefficiency is possible.
For n-person bargaining games, where n ≥ 3, Herrero and Shaked
provide the required analysis. The important point is that benign-
ness will do nothing to get rid of such inefficiency.

To see this point clearly, recall the four-person example from Section
9.1.2:

v(N) = 3, v({12}) = v({34}) = 1, v(S) = 0 otherwise.

The protocol is “rejector-proposes”. Using arguments similar to
Herrero (see Osborne and Rubinstein (1994, p. 130)), and provided
that discount factors are close enough to 1, one can easily construct
an equilibrium in which players 1 and 2 their worth of 1, while
players 3 and 4 divide their worth of 1. This outcome is supported
by rewarding a player for rejecting a deviant offer by receiving the
entire unit pie in the next (and, therefore, every future) period.

This equilibrium is inefficient, and what is more, the imposition of
benignness won’t eliminate it. The reason is that a deviant proposer is
strictly punished by the above strategies.

In addition, Section 9.1.1 shows that Markovian equilibria may be
inefficient as well. These equilibria are also robust to the imposition
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of benignness. Therefore the assumption of ongoing negotiations is
important to the efficiency result.

9.3.3.4 Is Benignness Reasonable? Is the benignness restriction on
player preferences reasonable? Obviously, like every assumption it
is open to scrutiny. We only mention that benignness has found
support in a number of different experimental settings (including
bargaining); see, e.g., Andreoni and Miller (2002), Charness and
Grosskopf (2001) and Charness and Rabin (2002) among others.
Indeed, these studies suggest something stronger: people are
sometimes willing to sacrifice their own payoff in order to achieve
a socially efficient outcome. Given its lexicographic insistence on
maximizing one’s own payoff, benignness certainly doesn’t go that
far.

9.4 Proofs

Proof of Proposition 9.1. Fix any equilibrium strategy profile σ and
initial condition x−1, and consider the stochastic process on histories
thus generated. Conditions [B.1] and [B.2] tell us that for every
player i, and for every history ht with going state xt,

(9.1) Vσ
i (ht+1) ≥ ui(xt)

for every equilibrium realization of the state ht+1 conditional on ht.

I claim that the induced stochastic process on Vσ
i is a submartingale.

To prove this, recall the functional equation

(9.2) Vσ
i (ht) = (1 − δ)ui(xt) + δ

∫
Vσ

i (ht+1)Pσ(ht, dht+1)

and use (9.1); it is easy to see that

(9.3) Vσ
i (ht) ≥ ui(xt)

as well. Now suppose, contrary to our assertion, that

E[Vσ
i (ht+1)|ht] < Vσ

i (ht)

for some history ht. Then the functional equation (9.2) implies that

Vσ
i (ht) < (1 − δ)ui(xt) + δVσ

i (ht),

which directly contradicts (9.3). This proves the claim.

Because Vσ
i is a bounded function on histories, the Martingale

Convergence Theorem (see, e.g., Ash (1972, Theorem 7.4.3)) implies
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that the induced sequence of random variables Vσ
i (ht) converges

almost surely to some limit random variable; call it V∗.

Next, observe that the random variable Z(ht) ≡ E(Vσ
i (ht+1)|ht) is also

a submartingale.2 To see this, recall that Z(ht+1) ≥ Vσ
i (ht+1), so that

E(Z(ht+1)|ht) ≥ E(Vσ
i (ht+1)|ht) = Z(ht). It follows that E(Vσ

i (ht+1)|ht)
converges a.s. to a limit.

Finally, recalling (9.2) and writing it along any sample path for
which both Vσ

i (ht) and E(Vσ
i (ht+1)|ht) converge, we must conclude

immediately that ui(xt) converges along the very same sample path.
Hence ui(xt) converges a.s., and the equilibrium is absorbing. �

Proof of Proposition 9.2. Consider any equilibrium σ. The proof of
Proposition 9.1 tells us that both Vσ

i (ht) and E(Vσ
i (ht+1)|ht) converge

to random variables V∗ and V̂∗ a.s.

By the submartingale property, V̂∗ ≥ V∗ a.s., but indeed equality
must hold. To see this, recall the notation Z(ht) ≡ E(Vσ

i (ht+1)|ht).
Observe that E(Vσ

i (ht)) and E(Z(ht−1)) converge to E(V∗) and E(V̂∗)
respectively (by the dominated convergence theorem), and that
E(Z(ht−1)) = E

[
E(Vσ

i (ht)|ht−1)
]
= E(Vσ

i (ht)) for every t ≥ 1. So
E(V̂∗) = E(V∗). Because V̂∗ ≥ V∗ a.s., equality must hold a.s.

Consider, then, any path {ht} for which the above equality holds.
Then the associated sequence of payoff vectors u(xt), values Vσ(ht),
and conditional expectations E(Vσ(ht+1)|ht) all converge to the same
limit u∗. Because there are finitely many states, the limit of one-
period payoffs is a.s. attained after finitely many dates. We
claim that the same is a.s. true for E(Vσ(ht+1)|ht) (and trivially
for Vσ(ht) as a consequence). Suppose that the assertion is false.
Then there is a positive measure of sample histories3 such that one-
period payoffs converge in finite time but the same isn’t true for
E(Vσ(ht+1)|ht). Indeed, because there are countably many dates,
there is an integer S such that a positive measure of histories exists
satisfying all the requirements in the preceding sentence and the
additional requirement that one-shot payoffs converge by date S.
Let Ω denote this distinguished set of sample paths, and let Ωc be

2To be sure, we employ the regular version of conditional expectations in defining
Z here.
3To be sure, this positive measure is generated by the protocol as well as equilibrium
strategies.
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its complement. For each path {ht} ∈ Ω there is an individual i and
a subsequence tk such that for every k,

(9.4) E(Vσ
i (htk+1)|htk) > ui,

where ui is the particular limit of one-shot payoffs for i along this
path. The strict inequality in (9.4) implies that there is a another
subsequence sk of dates, with sk > S for all k, such that at each of
those dates, some proposer makes a proposal which yields a higher
payoff to player i than the normalized value of ui. Because we only
study pure strategies, such a proposal must be made and accepted
with probability at least ζ > 0, where ζ is uniform across histories
and individuals, and is given by the restriction [P]. Now observe
that such a proposal, if accepted, must subsequently lead to paths
that are not in Ω. This is because (i) Ω contains only those paths
for which one-period payoffs have already converged by date S, (ii)
every sk exceeds S, and (iii) an accepted proposal must lead to a
change in the (by-then) stationary path of one-period payoffs. More
formally,

Prob(Ωc|hsk) ≥ ζ > 0 for all k,

whenever the path {ht} lies inΩ. It is easy to see that this must imply
Prob(Ωc) = 1, a contradiction. This proves the claim that u(xt),
Vσ(ht), and E(Vσ(ht+1)|ht) all converge in finite time to the same limit
u∗, a.s.

We complete the proof by showing that u∗must be efficient. Suppose
not; then there is a state x such that u(x) > u∗. Suppose a player were
to propose x. The offer must be rejected, otherwise we are not in
equilibrium. Consider all the rejectors: all the players who will
reject conditional on all previous responders accepting. Number
these players 1, . . . ,R in order of their appearance. For each rejector
i, let h′i denote the history following her acceptance and h′′i the history
following her rejection. Because the last rejector R rejects, it is easy
to see that VR(h′′R) ≥ uR(x) > uR(x∗). Moreover, no other player can
be worse off compared to u∗: Vi(h′′R) ≥ ui(x∗) for all i. In summary,

(9.5) Vi(h′′R) ≥ ui(x∗) for all i, with strict inequality for some i.

Now consider player R − 1. She, too, rejects the offer. Therefore the
first part of (9.5) holds for the history h′′R−1. In general, no more can
be said, but because R − 1 is benign and (9.5) holds for the history
h′′R , it must hold too for the history h′′R−1. Continuing recursively in
this way, we see that (9.5) must holds for the history h′′1 . But now
we have a contradiction. By benignness, then, it is profitable for
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our proposer to propose x irrespective of whether it is accepted or
rejected. �

9.5 Summary

This chapter studies ongoing negotiations in characteristic function
games. Apart from the assumption that there are no externalities,
the setup is extremely general: protocols are practically unrestricted,
strategies can display history-dependence, and payoffs may or may
not be transferable.

The main result of this chapter is that in characteristic functions, one-
shot equilibrium payoffs must ultimately settle down, and what is
more they settle down to a Pareto-efficient payoff vector.

Two important assumptions drive this result. First, we impose
the condition that negotiations are, in principle, always ongoing.
Second, we assume that all agents are benign, in that they do
not grudge others a payoff improvement provided that they don’t
personally lose in the process. These two conditions are critical.
Without them, counterexamples to asymptotic efficiency can easily
be constructed.

With externalities across coalitions, matters are very different, and
this is what we turn to next.
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CHAPTER 10

Reversible Agreements With
Externalities

In the last chapter, we showed that with no externalities across
coalitions, a model of reversible commitments may display in-
efficiencies, but these are transitional. Over time, payoffs must
converge to an efficient outcome. This result holds over a broad
class of equilibria, including all equilibria with history-dependent
strategies that satisfy a mild benignness restriction.

The purpose of this chapter is to argue that matters could be quite
different when there are externalities. The ubiquitous absorption
results reported for characteristic functions break down in this
setting. Equilibrium payoffs may cycle, and even if they don’t,
inefficient outcomes may arise and persist. Finally — and in sharp
contrast to characteristic functions — such outcomes are not driven
by the self-fulfilling contortions of history-dependence. They occur
even for Markovian equilibria.

Indeed, the ability to make sidepayments — presumably to elim-
inate such inefficiencies — may actually worsen the situation. In
particular, the variant of our model with upfront transfers, which
has thus far played a quiet and perfectly undistinguished role, now
exhibits very distinctive properties.

Let’s sidestep a common pitfall right away. It is tempting to think
of inefficiencies as entirely “natural” equilibrium outcomes when
externalities exist. Such an observation is true, of course, for games
in which there are no binding agreements. Nash equilibria are
“generally” inefficient, an assertion which can be given a precise
formulation (see, e.g., Dubey (1986)). When agreements can be



184 Reversible Agreements With Externalities

costlessly written, however, no such presumption can and should
be entertained. These are models of binding agreements, a world in
which the so-called “Coase theorem” is relevant. For instance, in all
that we’ve done so far, two-player games invariably yield efficiency,
quite irrespective of whether there are externalities across the two
players. This is not to say that the “usual intuition” has no role to
play in the events of this chapter. It must, because the process of
negotiation is itself modeled as a noncooperative game. But that is a
very different object from the “stage game” over which agreements
are sought to be written.

For the material in this chapter, I continue to rely on Gomes and
Jehiel (2005) and Hyndman and Ray (2007). We begin with the
baseline model and then move on to the variant with upfront
transfers.

10.1 The Baseline Model for Three-Player Games

Three-player games represent an interesting special case. Even
when externalities are allowed for, such games share a central
feature with their characteristic function counterparts: each player
possesses, in effect, a high degree of veto power in all moves that
alter her payoff. This will allow us to prove a limited efficiency
result, even when externalities are widespread.

It is worth noting that three-player situations have been the focus
of study in several applied models of coalition formation (see, e.g.,
Krishna (1998), Aghion, Antras and Helpman (2004), Kalandrakis
(2004) and Seidmann (2005)).

10.1.1 The Failed Partnership. Begin with an example. Suppose
that there are three agents, any two of whom can become “partners”.
For instance, two of three countries could form a customs union, or
a pair of firms could set up a production cartel or an R&D coalition
with a commitment to share ideas. I presume that the outsider to the
partnership gets a “low” payoff: zero, say. Finally, a three-player
partnership is assumed not to be feasible (or has very low payoffs).

The crucial feature of this example is that player 1 is a bad partner,
or — for the purposes of better interpretation — a failed partner.
Partnerships between him and any other individual are dominated
— both for the partners themselves and for the outsider — by all
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three standing alone. In contrast, the partnership between agents 2
and 3 is rewarding (for those agents).

We formalize this as a partition function game. In the examples that
follow, we simply record those states with nontrivial payoff vectors,
and omit any mention of the remaining states, with the presumption
that the payoffs in those states are zero to all concerned. We shall
also be somewhat cavalier in our description of equilibrium and
ignore these trivial states: equilibrium transitions from those states
are implicitly defined in obvious ways.

E 10.1. Consider the following three-player game with minimal
approval committees:

x0 : π0 = {{1}, {2}, {3}}, u(x0) = (6, 6, 6)
x1 : π1 = {{1}, {23}}, u(x1) = (0, 10, 10)
x2 : π2 = {{2}, {13}}, u(x2) = (5, 0, 5)
x3 : π3 = {{12}, {3}}, u(x3) = (5, 5, 0).

O 10.1. For δ sufficiently close to 1 in Example 10.1, the
outcomes x2 and x3 — which are inefficient — must be absorbing states in
every equilibrium.

A formal proof of this observation isn’t needed; the discussion to
follow will suffice. Why might x2 and x3 be absorbing? The reason
is very simple. Despite the fact that x2 (or x3) is Pareto-dominated
by x0, player 1 won’t accept a transition to x0. If she did, players 2
and 3 would initiate a further transition to x1. Player 1 might accept
such a transition if she is very myopic and prefers the short-term
payoff offered by x0, but if she is patient enough she will see ahead
to the infinite phase of “outsidership” that will surely follow the
short-term gain. In that situation it will be impossible to negotiate
one’s way out of x2 or x3. This inefficiency persists in all equilibria,
history-dependent or otherwise.

Notice that x2 or x3 wouldn’t be reached starting from any other
state. This is why the interpretation, the “failed partnership”, is
useful. The example makes sense in a situation in which players
have been locked in with 1 on a past deal, on expectations which
have failed since. To be sure, this interpretation is unnecessary for
the formal demonstration of persistent inefficiency from some initial
state.
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Notice that the players could negotiate themselves out of x2 if 2
and 3 could credibly agree never to write an agreement while at
x0. Are such promises reasonable in their credibility? One could
certainly assume that they are (economists and game theorists have
been known to assume worse). However, it may be difficult to
imagine that from a legal point of view, player 1, who has voluntarily
relinquished all other contractual agreements between 2 and 3, could
actually hold 2 and 3 to such a meta-agreement.

This example raises three important points. The first is an immediate
outgrowth of the previous discussion. Does one interpret the stand-
alone option (x0) as an agreement from which further deviations
require universal permission? Or does “stand-alone” mean freedom
from all formal agreement, in which case further bilateral deals only
need the consent of the two parties involved? Our discussion takes
the latter view.

Second, observe that the lack of superadditivity in this example is
important. If the grand coalition can realize the Pareto-improvement
then player 1 can control any subsequent shenanigans by 2 and
3, and he will therefore permit the improvement. The issue of
superadditivity is one to which we shall return below.

Finally, recall that upfront transfers are not permitted in this ex-
ample. Were they allowed in unlimited measure, players 2 and 3
could reimburse player 1 for the present discounted value of his
losses in relinquishing his partner. Depending on the discount
factor, the amounts involved may be considerable. But they would
break the deadlock. But upfront transfers have other, more subtle
implications, and here too we must postpone the discussion to a
later stage.

10.1.1.1 An Efficiency Result for Three-Person Games. The failed
partnership or its later variant is not the only form of inefficiency
that can arise. Appendix A to this chapter records three other forms
of inefficiency, including one which can even arise from the stand-
alone starting point of no agreements: the structure of singletons.
In the light of these several examples, it is perhaps of interest that
a positive (though limited) efficiency result holds for every three-
person game satisfying a “minimal transferability” restriction. To
state this restriction, let u(i, π) be the maximum one-period payoff
to player i over all states with the same coalition structure π.
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[T] If two players i and j both belong to the same coalition in coalition
structure π, then u(i, π) and u( j, π) are achieved at different states.

P 10.1. Consider a three-person game with a finite number
of states and satisfying condition T, with history-independent proposer
protocols and minimal approval committees. Then for all δ close enough
to 1, there exists an initial state and a stationary Markov equilibrium with
efficient absorbing payoff limit from that state.

The proof of Proposition 10.1 exhaustively studies different cases,
and is therefore relegated to Appendix B.1 But we can provide some
broad intuition for the result. Pick any player i and consider her
maximum payoff over all conceivable states. If this maximum is
attained at a state x∗ in which i belongs to a coalition with two or
more players, then observe that i’s consent must be given for the state
to change. (This step is not true when there are four or more players,
and invalidates the proposition, as we shall see later.) Because the
payoff in question is i’s maximum, it is easy enough to construct an
equilibrium in which x∗ is an absorbing state.

It therefore remains to consider games in which for every player,
the maximum payoff is attained at states in which that player
stands alone. If no such state is absorbing in an equilibrium,
one can establish the existence of a cyclical equilibrium path, the
equilibrium payoffs along which are uniquely pinned down by
the payoffs at the state in which all players stand alone. With
the transferability condition T, one can now find payoff vectors
for other coalitions (doubletons or more) such that some player
in those coalitions prefer these payoffs to the cyclical equilibrium
payoffs. The associated states then become absorbing, and a simple
additional step establishes their efficiency.

We conjecture that neither the minimality of approval committees
nor the history-independence of proposer protocols is needed for
this result, but do not have a proof.

10.2 The Baseline Model for Four or More Players

The analysis in the previous section shows that once externalities
are introduced, a failure of efficiency is a distinct possibility. In

1It should be noted that in most cases the result is stronger in that it does not insist
upon δ→ 1; in only one case do we rely on δ→ 1.
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the example of the failed partnership, one agent holds his partner
hostage in the fear that if the partner is relinquished (so as to create
a Pareto improvement), other deals will subsequently be struck that
leave our agent with very low payoffs.

Yet, as Proposition 10.1 goes on to show, it isn’t possible to create this
phenomenon from every initial state. In the example of the failed
partnership, the very state that the failed partner fears is undeniably
Pareto-efficient. It’s true that the failed partner suffers in this state,
but the other two agents are certainly as well off as they can be. If
negotiations were to commence with this state as initial condition,
the resulting outcome must be efficient. In short, if one state isn’t
efficient something else must be, and we must ultimately arrive at
some such state that’s absorbing. This is the content of Proposition
10.1.

But don’t make the mistake of supposing that such a proposition
must follow from a simple process of eliminating inefficient states.
Indeed, the proposition fails when the number of players exceeds
three. To show this, I present an example that displays the most
severe form of inefficiency: every absorbing state in every Mar-
kovian equilibrium is static inefficient, and every nonconvergent
equilibrium path in every Markovian equilibrium is dynamically
inefficient.

E 10.2. Consider the following four-player game with minimal
approval committees:

x1 : π1 = {{12}, {3}, {4}}, u(x1) = (4, 4, 4, 4)
x2 : π2 = {{1}, {2}, {3}, {4}}, u(x2) = (5, 5, 5, 5)
x3 : π3 = {{1}, {2}, {34}}, u(x3) = (0, 0, 10, 10)
x4 : π4 = {{12}, {34}}, u(x4) = (2, 2, 2, 2).

Assume that a fresh proposer is chosen with uniform probability at
each proposal stage.

O 10.2. For δ sufficiently close to 1 in Example 10.2, every
stationary Markov equilibrium is inefficient starting from any initial state.

The proof of this result may be found in Appendix C.

As we’ve already discussed, the fact that some absorbing state in
some equilibrium may be Pareto-dominated is not too surprising.
In part, a similar logic is at work here. Begin with the state x1, in
which players 1 and 2 are partners and 3 and 4 are separate. This
is a failed partnership (at least in a context in which players 3 and
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4 are not partners themselves): if the {12}-partnership disbands, the
state moves to x2 which is better for all concerned. But once at x2,
we see other latent, beneficial aspects of the erstwhile partnership
between 1 and 2: if players 3 and 4 now form a coalition, they can
exploit 1 and 2 for their own gain; this is the state x3.

So far, the story isn’t too different from that of the failed partnership.
But the similarity ends as we take up the story from the point at
which 3 and 4 fashion their counterdeviation to x3. Their gains can
be reversed if players 1 and 2 form (or depending on the dynamics,
re-form) a coalition. Balance is now restored; this is the state x4.2

Finally, in this context, the partnership between 3 and 4 is more a
hindrance than a help (just as {12}was in the state x1), and they have
an incentive to disband. We are then “back” to x1.

This reasoning appears circular, and indeed in a sense it is, but such a
circularity is in fact the essential content of Observation 10.2: as long
as equilibria are Markovian, there is asymptotic inefficiency from
every initial condition, despite the ability to write and renegotiate
permanently binding agreements.

One might suspect that the Observation is vacuous in that no
Markov equilibrium, efficient or not, exists. I could allay such
suspicions by appealing to the existence theorem mentioned in
Chapter 8, but it may be better to display such equilibria explicitly.
Here is one. In it:

State x1 is absorbing.

State x2 moves back to x1 when 1 or 2 propose, and on to x3 whenever
3 or 4 propose.

State x3 moves to x4 when 1 or 2 propose, and remains unchanged
otherwise.

State x4 moves to x1 no matter who proposes.

Observe that the state x1, which is plainly Pareto-dominated, is not
just absorbing but “globally” absorbing.3

To verify that this description constitutes an equilibrium, begin with
state x1. Obviously players 3 and 4 do not benefit from changing the

2So the partnership {12} is not entirely a failure; it depends on the context.
3We are neglecting the trivial states with zero payoffs for all. Including them would
obviously make no difference.
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state to x4, which is all they can unilaterally do. Players 1 and 2 can
(bilaterally) change the state to x2, by the presumed minimality of
approval committees. If they do so, the subsequent trajectory will
involve a stochastic path back to x1.4 Some fairly obvious but tedious
algebra reveals that the Markov value function Vi(x, δ) satisfies

Vi(x2) = 5 − 3δ +
δ2(1 + δ)

2
(
1 − δ

2

)
for i = 1, 2. This value converges (as it must) to that of the absorbing
state — 4 — as delta goes to 1, but the important point is that
the convergence occurs “from below”, which means that Vi(x2, δ)
is strictly smaller than Vi(x1, δ) = 4 for all delta close enough to 1.5

Perhaps more intuitively but certainly less precisely, the move to
state x2 starts off a stochastic cycle through the payoffs 5, 0 and 2
before returning to absorption at 4, which is inferior to being at 4
throughout. This verifies that players 1 and 2 will relinquish the
opportunity at x1 to switch the state to x2. It also proves that once
at state x2, players 1 and 2 will want to return to the safety of x1 if
they get a chance to move.

On the other hand, players 3 and 4 will want to move the state from
x2 to x3. Proving this requires more value-function calculation. A
second round of tedious algebra reveals that

Vi(x3, δ) − Vi(x2, δ) = 5 − 6δ + δ2

for i = 3, 4. This difference vanishes (as it must) as δ approaches 1,
but once again the important point is that the difference is strictly
positive for all δ close to 1 (indeed, for all δ), which justifies the move
of 3 and 4.

That 1 and 2 must want to move away as quickly as possible from
state x3, and 3 and 4 not at all, is self-evident. That leaves x4. At
this state players 3 and 4 receive their worst payoffs, and will surely

4We are arguing in the spirit of the one-shot deviation principle, in which the
putative equilibrium strategies are subsequently followed. Even though the one-
shot deviation principle needs to be applied with care when coalitions are involved,
there are no such dangers here as all coalitional members have common payoffs.
5We verify this by differentiating Vi(x2, δ) with respect to δ and evaluating the
derivative at δ = 1.
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want to move to x1, and indeed, players 1 and 2 will want that as
well.6 Our verification is complete.

There is actually a second equilibrium with no absorbing states, in
which players 1 and 2 randomize between states x1 and x2, while
players 3 and 4 randomize between states x3 and x4. While we omit
the details, it is easy to check that such an equilibrium displays
(dynamic) inefficiency from every initial condition, because it must
spend nonnegligible time at the inefficient states x1 and x4. We omit
the details.

Two final remarks are in order regarding this example. First, the
strong form of inefficiency is robust to (at least) a small amount of
transferability in payoffs. The reason is simple; given the payoffs
at x3 (resp. x4), the payoffs to players 1 and 2 (resp. 3 and 4) are
still minimal. Therefore, these states cannot be absorbing. But then,
even with a little transferability, we are in the same situation as in
the example.

Second, the example is not robust to the use of history dependent
strategies. Indeed, x2 can be supported as an absorbing state
provided that deviations from x2 are punished by a return to the
inefficient stationary equilibrium in which x1 is absorbing.

This last remark creates an interesting contrast between models
based on characteristic functions and those based on partition
functions. In the former class of models, the work of Seidmann and
Winter (1988) and Okada (2000) assure us that ongoing negotiations
lead to efficiency under Markovian equilibrium. It’s the possibility
of history-dependence that creates the inefficiency problem, albeit
one that we successfully resolved in Chapter 9 with the help of the
benignness condition. In contrast, partition functions are prone to
inefficiency under Markovian equilibrium, as Examples 10.1 and
10.2 illustrate. History-dependence might help to alleviate this
problem (it does in Example 10.2, though not in Example 10.1).

6Because we’ve developed the state space model at some degree of abstraction,
we’ve allowed any player to make a proposal to any coalition, whether or not she
is a member of that coalition. This is why players 1 and 2 ask 3 and 4 to move along.
Nothing of qualitative import hinges on allowing or disallowing this feature. The
transition from x4 back to x1 would still happen, but more slowly.
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10.3 Superadditive Games

An important feature of the examples in Section 10.2 is that they
employ a subadditive payoff structure. Is that a reasonable assump-
tion? This is a subtle question that recalls the discussion in Section
3.4 of Chapter 3. We continue that discussion here.

First, it should be noted that in games with externalities superaddi-
tivity is generally not to be expected. For instance, recall the example
of the Cournot oligopoly studied in detail in Chapter 6. Using the
partition function developed there, it is easy to see that if there are
just three firms, firms 1 and 2 do worse together than apart, provided
that firm 3 stands separately in both cases.

At the same time, this argument does not apply to the grand coalition
of all firms. Indeed, every partition function derived from a game
in strategic form must satisfy grand coalition superadditivity (GCS):

[GCS] For every state x = (u, π), there is x′ = (u′, {N}) such that
u′ ≥ u.

Is GCS a reasonable assumption? In Chapter 3 we’ve argued that
in many cases it may not be. To continue that discussion without
undue repetition, one possible interpretation of GCS is that it is a
“physical” phenomenon; e.g., larger groups organizing transactions
more efficiently, or sharing the fixed costs of public good provision.
Yet such superadditivities are often the exception rather than the
rule. After all, the entire doctrine of healthy competition is based
on the notion that physical superadditivity, after a point, is not to
be had. In general, too many cooks do spoil the broth: competition
among groups can lead to efficiency gains not possible when there is
a single, and perhaps larger, group attempting to act cooperatively.
In addition to competition, Section 3.4 lists a host of other reasons
for lack of physical superadditivity.7

But some game theorists might argue that this isn’t what is meant
by superadditivity at all. They have in mind a different notion
of GCS, which is summarized in the notion of the superadditive
cover. After all, the grand coalition can write a contract which

7In all of the cases, the argument must be based on some noncontractible factor,
such as the creativity or productivity created by the competitive urge, or ideological
differences, or the presence of stand-alone players who are outside the definition
of our set of players but nevertheless have an effect on their payoffs.
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exactly replicates the payoffs obtainable in some other coalition
structure. For instance, companies do spin off certain divisions,
and organizations do set up competing R&D groups. In a word, the
grand coalition can agree not to cooperate, if need be.

In a static setting, such a position represents, perhaps, no loss of
generality. But in a dynamic setting this view embodies a crucial
assumption: that future changes in the strategy of (or in the alliances
formed by) one of the subgroups will require the consent of the entire
grand coalition of which that group was supposedly a part. For
example, consider contracts between senior executives and firms.
They typically contain a clause enjoining the executive from working
for a competitor firm for a number of years — so-called no compete
clauses. To some extent, this reflects the notion of the superadditive
cover: surely, if all parties agreed, the executive would be free to
work for the competitor, while if the original firm dissents, she
would not — at least for a certain length of time. To the extent
that such contracts cannot be enforced for an infinite duration, the
model without grand-coalition superadditivity can be viewed as a
simplification of this, and other, real-world situations.

Nevertheless, GCS applies without reservation to many other cases.
So it is worth recording that GCS restores (Markovian) efficiency, at
least if the existence of an absorbing limit payoff is assumed:

P 10.2. Under GCS, every absorbing payoff limit of every
Markovian equilibrium must be static efficient.

The proof follows a much simpler version of the argument for
Proposition 9.2 and we omit it.

It must be noted, however, that GCS does not guarantee long-run
efficiency in all situations: Example 10.2 can be modified so that
GCS holds but there is an inefficient cycle over states that do not
involve the grand coalition. In order to guarantee that even this form
of inefficiency does not persist in the long-run, one needs enough
transferability of payoffs within the grand coalition. Indeed, it can
be proved that under GCS and the additional assumption that the
payoff frontier for the grand coalition is continuous and concave,
every Markov equilibrium must be absorbing — and therefore
asymptotically efficient.
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10.4 Upfront Transfers and the Failure of Efficiency

How does the ability to make transfers affect the examples? It is
important to distinguish between two kinds of transfers. Coalitional
or partnership worth could be freely transferred between the players
within a coalition. Additionally, players might be able to make large
upfront payments in order to induce certain coalitions to form. In
all cases, of course, the definition of efficiency should match the
transfer environment.8

Within-coalition transferability often does nothing to remove inef-
ficiency. For instance, nothing changes in the failed partnership of
Example 10.1. On the other hand, upfront transfers across coalitions
have an immediate and salubrious effect in that example. Efficiency
is restored from every initial state. The reason is simple. If player
1 is offered any (discount-normalized) amount in excess of 5, he
will “release” player 2. In view of the large payoffs that players 2
and 3 enjoy at state x1, they will be only too pleased to make such
a payment. The final outcome, then, from any initial condition is
the state x1, and we have asymptotic efficiency. It is true that the
amount of the transfer may have to be enormous when the discount
factor is close to 1, but we’ve already discussed that (see Section
8.2.2 in Chapter 8). Our concern here is with the implications of the
upfront-transfer scenario.

The beauty of the Gomes–Jehiel (2005) paper, on which I now
proceed to rely, is that it unearths an entirely different face of upfront
transfers. To see this, I introduce a seemingly innocuous variant of
Example 10.1:

E 10.3. Consider the following three-player game with minimal
approval committees:

x0 : π0 = {{1}, {2}, {3}}, u(x0) = (6, 6, 1)
x1 : π1 = {{1}, {23}}, u(x1) = (0, 7, 2)
x3 : π3 = {{12}, {3}}, u(x3) = (5, 5, 0)

and all other states have payoff 0.

8For instance, if transfers are not permitted, it would be inappropriate to demand
efficiency in the sense of aggregate surplus maximization. If an NTU game displays
inefficiency in the sense that “aggregate surplus” is not maximized, this is of little
interest: aggregate surplus is simply the wrong criterion.
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First, take a quick look at this example without introducing upfront
transfers and compare it with its predecessor, Example 10.1. Little
of substance has been changed, though we’ve broken symmetry by
assigning zero to any partnership between Players 1 and 3. Players 1
and 2 still form a “failed partnership” at x3, yet at that state player 1
continues to cling to player 2. They would prefer to move to state x1,
but player 1 rationally fears the subsequent switch to x2, something
that is out of his control.

But the introduction of upfront transfers in this example has a
perverse effect. Instead of taking the inefficiency away (as it does in
Example 10.1), it generates inefficiency from every initial condition.

O 10.3. In Example 10.3, every stationary Markov equilibrium
is inefficient starting from any initial state.

It isn’t hard to see what drives the assertion. With unlimited upfront
transfers, we are entitled to add payoffs across players to derive our
efficiency criterion. Only the state x0 is efficient on this score, and
if an equilibrium is to display asymptotic efficiency — whether
dynamic or static — it can stay away from x0 for a finite number
of dates at best. Now the root of the trouble is clear: players
2 and 3 invariably have the incentive to move away from x0 to
x1. Not that matters will come to an end there: the fact that x1 is
itself inefficient will cause further movement across states as upfront
transfers continue to be made along an infinite subsequence of time
periods. The precise computation of such transfers is delicate,9 but
the assertion that efficiency cannot be attained should be clear.

Actually, Example 10.3, while it makes the point well enough,
obscures a matter of some interest. In that example, players 2 and
3 gain on two counts when they move the state from x0 to x1. They
make an immediate gain in payoffs, and then they gain even more
subsequently as they are paid additional ransom in the form of
upfront transfers. The point of the next example is that the “ransom
effect” dominates, at least when discount factors are close to 1.

9Such transfers will have to be made with a rational eye on the fact that an endless
cycle across states will, in fact, happen.



196 Reversible Agreements With Externalities

E 10.4. Consider the following three-player game with minimal
approval committees:

x0 : π0 = {{1}, {2}, {3}}, u(x0) = (b, b, b)
x1 : π1 = {{1}, {23}}, u(x1) = (0, a, a)
x2 : π2 = {{2}, {13}}, u(x1) = (a, 0, a)
x3 : π3 = {{12}, {3}}, u(x3) = (a, a, 0)

and all other states have payoff zero. Assume that b > a > 0.

This example has none of the asymmetries of Example 10.3. There
is a unique efficient state by any criterion. It is state x0. It Pareto-
dominates every other state. Players moving away from this state
suffer an immediate and unambiguous loss in payoffs. Yet we have

O 10.4. In Example 10.4, every stationary Markov equilibrium
under the uniform proposer protocol is inefficient starting from any initial
state: the state x0 can never be absorbing.

This observation highlights very cleanly the negative effects of
upfront transfers. Players may deliberately generate inefficient
outcomes to seek such transfers as ransom. This effect is particularly
clear in Example 10.4 because each of the states x1, x2 and x3 are
Pareto-inferior to x0.

It will be instructive to work through this example by informally
proving Observation 10.4. For simplicity, we will spell out the details
for all symmetric Markovian equilibria.

Suppose, contrary to the claim, that x0 is absorbing. Then the
(discount-normalized) value to each player is just b: Vi(x0) = b for
all i. In each of the other states xi, player i is an “outsider” currently
earning 0; denote her lifetime payoff by c, evaluated ex ante, before a
proposer has been determined. The other two players are partners,
denote by d their corresponding payoffs.

It is very easy to see that d is at least as large as c: the partners
can make all the acceptable proposals that the outsider can make,
while enjoying a current payoff which exceeds that of the outsider.
Moreover, because x0 is absorbing, it must be that b ≥ d, otherwise
some pair would surely destabilize x0.

The last of our preliminary observations is that no proposer in any
of the nonabsorbing states xi stands to gain anything by switching
the state to another nonabsorbing state xj: the sum of all payoffs is
constant (at 2d+ c) so there is no surplus to be grasped. On the other
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hand, both the partners and the outsiders make a gain by steering
the state back to x0. Consequently, recalling that proposer protocol
is uniform, we have

(10.1) d =
1
3

[b + {b − (1 − δ)a − δd} + (b − δc)] +
2
3

[(1 − δ)a + δd].

The reason is simple. Take any partner at one of the nonabsorbing
states. With probability 1/3, she gets to propose. She successfully
moves the state straight away to x0, earning a lifetime payoff of b,
and can demand an upfront transfer of up to b − (1 − δ)a − δd from
her partner, and up to b − δc from the outsider.10 With remaining
probability 2/3, she is proposed to, in which case she will be driven
down to her reservation value, which is precisely (1 − δ)a + δd.
Together, this gives us (10.1).

A parallel argument tells us that as far as the outsider is concerned,

(10.2) c =
1
3

[b + 2{b − (1 − δ)a − δd}] + 2
3
δc.

The reasoning is very similar to that underlying (10.1), and we’ll
skip the repetition.

Now combine (10.1) and (10.2) and simplify to see that

d = b +
a
3
,

which contradicts our initial presumption that b ≥ d. We have
therefore proved that the unique efficient outcome cannot be stable.
Consequently, the equilibrium path, no matter what it looks like,
must display persistent inefficiency.

Notice that (in contrast to Example 10.3), the deviating players
do suffer a loss in current payoff when they move away from the
efficient state. But the prospect of inflicting a still greater loss on the
outsider raises the possibility that the outsider will pay to have the
state moved back — albeit temporarily — to the efficient point. This
is a new angle on upfront transfers. They may lubricate the path to
efficiency, but they might encourage deviations from efficient paths
as well, in order to secure a ransom. Thus the presumption that
unlimited transfers act to restore or maintain efficiency is wrong.

10If her partner refuses, she enjoys (1− δ)a today and starting tomorrow, a present
discounted value of δd. She will therefore agree to any proposal that gives her
more than this amount. A similar argument holds for the outsider, whose payoff
conditional on refusal is just δc.
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One more feature of Example 10.4 is worth mentioning. The efficient
state is one in which all three players stand apart. This is precisely
what makes that state persistently unstable, for two players can
always form an inefficient coalition. If this contractual right can be
eliminated in the act of making an upfront transfer, then efficiency
can be restored: once state x0 is regained, there can be no further
deviations from it. This line of discussion is exactly the same as in
Section 10.3, and there is nothing further to add here.

More generally, the efficient state in this example has the property
that a subset of agents can move away from that state (i.e., they can
act as approval committee for a move) such that some other agents
— not on the approval committee — are thereby rendered worse
off in terms of current payoffs. Whenever this is possible, there is
scope for collecting a ransom, and the potential for a breakdown in
efficiency.Gomes and Jehiel (2005) develop this idea further.

10.5 Summary

Our study of coalitional bargaining problems in “real time” yields
a number of implications. For characteristic function form games, a
very general result for all pure-strategy equilibria (whether history-
dependent or not) can be established: every equilibrium path of
states must eventually converge to some absorbing state, and this
absorbing state must be static efficient. This was the subject of
Chapter 9.

In contrast, in games with externalities, matters are more com-
plicated and none of the results for characteristic function games
continue to hold without further conditions. It is easy enough to find
a three-person example in which there is persistent inefficiency from
some initial state, whether or not equilibria are allowed to be history-
dependent. At the same time, we also show that in every three-
person game, there is some Markovian equilibrium which yields
asymptotic efficiency from some initial condition.

Yet even this limited efficiency result is not to be had in four-
person games. Section 10.2 demonstrates the existence of games
in which every absorbing state in every Markovian equilibrium
exhibits asymptotic static inefficiency.
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The situation is somewhat alleviated if the game in question exhibits
grand coalition superadditivity. In that case, it is possible to recover
efficiency, provided that the equilibrium is absorbing.

Finally, we show that the ability to make unlimited upfront transfers
may worsen the efficiency problem.

The main open question for games with externalities is whether there
always exists some history-dependent equilibrium which permits
the attainment of asymptotic efficiency from some initial state (that
there is no hope in obtaining efficiency from every initial state is
made clear in Section 10.1.1). I am pretty sure that the answer
should be in the affirmative: assuming — by way of contradiction
— that equilibria are inefficient from every initial state, one should
be able to employ such equilibria as continuation punishments in the
construction of some efficient strategy profile. Such a result would
be intuitive: after all, one role of history-dependent strategies is to
restore efficiency when simpler strategy profiles fail to do so.

Finally, the general setup in Section 8.2 may be worthy of study, with
or without binding agreements. For instance, the general setup is
applicable to games in which agreements are only temporarily bind-
ing, or in which unanimity is not required in the implementation of
a proposal. There is merit in exploring these applications in future
work.

Appendix A

Other Examples For Three-Player Games.

In the examples below, if a coalition structure is omitted, it means that
either every player obtains an arbitrarily large negative payoff or there is
some legal impediment to the formation of that coalition structure. In all
of the examples of this section, we assume minimal approval committees;
for example, from the singletons, players 1 and 2 can approve a transition
to any state y with coalition structure {{12}, {3}}.

More on Inefficiency. One response to the inefficiency example of Section
4.1.1 in the main text is that the inefficient state described there will
never be reached starting from the singletons. Setting the initial state to the
singletons has special meaning: presumably this is the state from which
all negotiations commence. However, this is wrong on two fronts (at least
for Markov equilibria) as we now show.
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Coordination Failures. Coordination failures, leading to inefficiency from
every initial state, are a distinct possibility, even in three player games.
Consider the following:

x0 : π0 = {{1}, {2}, {3}}, u(x0) = (2, 2, 2)
x1 : π1 = {{1}, {23}}, u(x1) = (−1, 1, 1)
x2 : π2 = {{2}, {13}}, u(x2) = (1,−1, 1)
x3 : π3 = {{12}, {3}}, u(x3) = (1, 1,−1).

O 10.5. Suppose that everyone proposes with equal probability at
every date. Then, for δ ∈ [ 3

5 , 1), there is an MPE in which xi is absorbing, and
from x0, there is a transition to xi with probability 1

3 for i = 1, 2, 3.

The proof is simple and we omit it.

Convergence to Inefficiency From The Singletons. Consider the follow-
ing example, which is a variation on the “failed partnership” example of
Section 4.1.1.

x0 : π0 = {{1}, {2}, {3}}, u(x0) = (5, 5, 5)
x1 : π1 = {{1}, {23}}, u(x1) = (0, 6, 8)
x2 : π2 = {{2}, {13}}, u(x2) = (3, 0, 10)
x3 : π3 = {{12}, {3}}, u(x3) = (4, 4, 0).

O 10.6. For any history-independent proposer protocol such that at
x0 each player has strictly positive probability of proposing, there exists δ ∈ (0, 1)
such that if δ ≥ δ, all stationary Markovian equilibria involve a transition from x0
to x3 — and full absorption into x3 thereafter — with strictly positive probability.

Proof. Let α = (α1, α2, α3) ∈ int(∆) denote the proposers’ protocol at x0.
First notice that in every equilibrium x1 and x2 must be absorbing. The
states x1 and x2 give players 2 and 3, respectively, their unique maximal
payoff. Moreover, at x1 (resp. x2) player 2 (resp. player 3) has veto power
over any transition. Second, in every equilibrium, x0 cannot be absorbing.
This follows because players 2 and 3 can always initiate a transition to x1
and earn a higher payoff.

We now proceed with the rest of the proof. First, we rule out a “cycle” by
proving the following: If there is a positive probability transition from x0
to x3, then x3 must be absorbing. Indeed, suppose not. Then for i = 1, 2,
Vi(x0) = Vi(x3) = 4. But then, from x0, player 1 will always reject a transition
to x2, which means that V2(x0) ≥ 5, a contradiction.

Next suppose that the probability of reaching x3 from the singletons is zero.
Observe that V1(x0) ≤ 3, for if not, x1 is the only absorbing state reachable
from x0, implying that V1(x0) → 0 for δ sufficiently high, a contradiction.
Similarly, V3(x0) ≤ 8, for if not, x2 is the only absorbing state reachable from
the singletons. But then for δ sufficiently high, V2(x0) ≤ 4, implying that
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players 1 and 2 would initiate a transition to x3, a contradiction. Finally,
observe that since x3 is not reached with positive probability, it must be
that V2(x0) ≥ 4, since otherwise, 1 would offer x3 and it would be accepted.

Let pi denote the probability of a transition from x0 to xi for i = 0, 1, 2. By
assumption, p3 = 0 and we have just shown that p1, p2 > 0. Given pi, write
the equilibrium value functions and take the limit as δ→ 1 to obtain:

(10.3)

V1(x0) = 3p2

1−p0
≤ 3

V2(x0) = 6p1

1−p0
≥ 4

V3(x0) = 8p1+10p2

1−p0
≤ 8.

From the third equation in (10.3), we see that p2 = 0, which then implies
that the first equation is satisfied with strict inequality. Therefore, player
1 strictly prefers to propose x2, and the offer will be accepted by player 3.
Hence, p2 > α1 > 0, a contradiction. It then follows that for δ sufficiently
high the same conclusion may be drawn. �

Cyclical Equilibria. Next, equilibrium cycles become a distinct possibility:

x0 : π0 = {{1}, {2}, {3}}, u(x0) = (1, 1, 1)
x1 : π1 = {{1}, {23}}, u(x1) = (0, 2, 1)
x2 : π2 = {{2}, {13}}, u(x2) = ( 1

2 , 4, 1).

O 10.7. Suppose that everyone proposes with equal probability at
every date. Then there is an equilibrium with the following transitions:

x0 →
2/3

x1 →
1

x2 →
2/3

x0.

Dynamic Inefficiency In Every Equilibrium. Though we did not formally
prove this for characteristic functions, every Markovian equilibrium must
exhibit full dynamic efficiency from some initial state. This is no longer true
for games with externalities:

x0 : π0 = {{1}, {2}, {3}}, u(x0) = (1, 1, 1)
x1 : π1 = {{1}, {23}}, u(x1) = (10, 0, 0)
x2 : π2 = {{2}, {13}}, u(x2) = (0, 10, 0)
x3 : π3 = {{12}, {3}}, u(x3) = (0, 0, 10).

If xi, i = 1, 2, 3 were absorbing, then for j � i, Vj(xi) = 0. However,
notice that in every Markovian equilibrium, for all i = 1, 2, 3, Vi(x0) ≥
1. Therefore, j must accept a proposal from xi to x0, hence a profitable
deviation exists. Finally, it can be shown that any cyclical Markovian
equilibrium must necessarily spend time at x0. We have therefore proved:
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O 10.8. Suppose that everyone proposes with equal probability at
every date. Then every Markovian equilibrium exhibits dynamic inefficiency from
every initial state.

Appendix B

Proof of Proposition 10.1.

In what follows, we denote by π0 a singleton coalition structure, by πi a
coalition structure of the form {{i}, { j, k}}, and by πG the structure consisting
of the grand coalition alone. Use the notationπ(x) for the coalition structure
at state x and Si(x) for the coalition to which i belongs at x. Subscripts
will also be attached to states (e.g., xi) to indicate the coalition structure
associated with them (e.g., π(xi) = πi).

For each i, let X∗i = argmax{ui(x) | x ∈ X}, with x∗i a generic element. Finally,
we will refer to π(x∗i ) = π as a maximizing (coalition) structure (for i).

Case 1: There exists i = 1, 2, 3 and x∗i ∈ X∗i such that |Si(x∗i )| ≥ 2.

Pick x∗i ∈ X∗i as described and consider the following “pseudo-game”.
From x∗i , there does not exist an approval committee capable of initiating a
transition to any other state. Notice that a Markovian equilibrium exists for
this pseudo-game (see the Supplementary Notes for the general existence
proof) and that x∗i is absorbing. Denote by σ∗ the equilibrium strategies for
the pseudo-game. Return now to the actual game and suppose that players
use the strategies σ∗; suppose also from x∗i , that player i always proposes x∗i
and rejects any other transition. For other players j � i, any proposal and
response strategies may be specified. Denote this new strategy profile σ′.
Notice that σ∗ and σ′ specify the same transitions for the pseudo-game and
actual game and no player has a profitable deviation from x∗i . Therefore,
σ′ constitutes an equilibrium of the actual game. This equilibrium has an
efficient absorbing state, x∗i .

Case 2: For all i and for all x∗i ∈ X∗i , |Si(x∗i )| = 1. A number of subcases
emerge:

(a) π(x∗1) = π(x∗2) = π(x∗3) = π0 for some (x∗1, x
∗
2, x
∗
3), but the maximizing

structures are not necessarily unique.

(b) π(x∗1) = π(x∗2) = π0 and π(x∗3) = π3, and while the maximizing structures
are not necessarily unique, Case 2(a) does not apply.

(c) For all players i = 1, 2, 3, πi is the unique maximizing structure.

(d)π(x∗1) = π0, π(x∗j) = π j, j = 2, 3 and each maximizing structure is unique.
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We now prove the proposition for each of these cases.

Case (a). Here x0, the unique state corresponding to π0, is weakly Pareto-
dominant and we construct an equilibrium as follows. From any state
x, every player proposes a transition to x0 and every player accepts this
proposal. A deviant proposal y is accepted if Vi(y) ≥ Vi(x) = (1 − δ)ui(x) +
δui(x0). This is clearly an equilibrium with x0 efficient and absorbing.

Case (b). The proof is similar to Case 1. Consider a pseudo-game in which
there is no approval committee that can initiate a transition away from x0.
Again, we are assured of a Markovian equilibrium for the pseudo-game;
denote the equilibrium strategies by σ∗ and notice that x0 is absorbing. In
the actual game, suppose that all players use the strategies given by σ∗,
and suppose that, at x0, players 1 and 2 always propose x0 and reject any
transition from x0. Call these strategies σ′.

As in Case 1, notice that σ∗ and σ′ specify the same transitions for the
pseudo-game and the actual game, and no player has a profitable deviation
from x0. Therefore, σ′ constitutes an equilibrium of the actual game.

The following preliminary result will be useful for cases (c) and (d):

L 10.1. Suppose that player i’s maximizing structure π̂ is unique, and that
π̂ ∈ {π0, πi}. Let Y = {y |π(y) ∈ {π0, πi}− π̂}. Then in any equilibrium such that
x ∈ X∗i is not absorbing, Vi(x) > Vi(y) for all y ∈ Y.

Proof. We prove the case for which π̂ = πi. The proof of the case for which
π̂ = π0 is identical. Let x ∈ X∗i . Note that Y = {x0}. Suppose on the contrary
that Vi(x0) ≥ Vi(x). We know that

Vi(x) = (1 − δ)ui + δ

∫
X

Vi(z)P(x, dz).

Now, there could be — with probability µ— a transition to the singletons,
which player i need not approve. All other transitions must be approved
by i, and she must do weakly better after such transitions. Using Vi(x0) ≥
Vi(x), it follows that

Vi(x) ≥ (1 − δ)ui + δ
[
µVi(x0) + (1 − µ)Vi(x)

] ≥ (1 − δ)ui + δVi(x),

so that Vi(x) ≥ ui. Strict inequality is impossible since ui is i’s maximal
payoff. So Vi(x) = ui, but this means that x is absorbing. �

The next two lemmas prepare the ground for case (c).

L 10.2. Assume Case 2(c). Let y be not absorbing, and π(y) = π j. Then y
transits one-step to x0 with positive probability.
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Proof. Suppose not. Then player j is on the approval committee for every
equilibrium transition from y. Therefore

Vj(y) ≥ uj(y).

At the same time, y is not absorbing by assumption. But then the above
inequality is impossible, since uj(y) is the uniquely defined maximal payoff
for j across all coalition structures. �

L 10.3. Assume Case 2(c). Suppose that a state xi, with coalition structure
πi, is part of a nondegenerate recurrence class (starting from xi). Then Vj(x0) =
Vj(xi) for all j � i.

Proof. First, since xi is not absorbing, by Lemma 10.2, xi transits one-step
to x0 (with positive probability) and both players j � i must approve this
transition. Therefore

(10.4) Vj(x0) ≥ Vj(xi).

Next, consider a path that starts at x0 and passes through xi (there must be
one because xi is recurrent). Assume without loss of generality that it does
not pass through x0 again. If both individuals j � i must approve every
transition between x0 and xi, we see that Vj(x0) ≤ Vj(xi), and combining
this with (10.4), the proof is complete.

Otherwise, some k � i does not need to approve some transition. This can
only be a transition from x0 to a state xk with coalition structure πk, with
subsequent movement to xi without reentering x0. So Vk(xi) ≥ Vk(xk). But
xk itself is not absorbing and so by Lemma 10.2 transits one-step to x0 (with
positive probability). By Lemma 10.1, Vk(xk) > Vk(x0). Combining these
two inequalities, Vk(xi) > Vk(x0), but this contradicts (10.4). �

Case (c). We divide up the argument into two parts. In the first part, we
assume that for some i, some state xi (with coalition structure πi) is part
of a nondegenerate recurrence class. Suppose that no efficient payoff limit
exists. We first claim that

(10.5) Vj(x0) = Vj(xi) = uj(xi) for all j � i.

To prove this, consider an equilibrium path from xi. If this path never
passes through x0, then it is easy to see that all three players must have
their value functions monotonically improving throughout, so one-period
payoffs converge. Moreover, the limit payoff for player i must be at the
maximum, so this limit is efficient. Given our presumption that there is no
efficient limit, the path does pass through x0, so consider these alternatives:

(i) For some j � i, the path passes a state yj (with structure π j) before it hits
x0. Moreover, yj is not absorbing, and so by Lemma 10.2 it must transit
one-step to x0 with positive probability. However, player i must approve
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all these moves; so Vi(x0) ≥ Vi(yj) ≥ Vi(xi). But this contradicts Lemma
10.1. So this alternative is ruled out.

(ii) Otherwise, the path either transits one-step to x0, or passes through a
sequence of moves, all of which must be approved by both players j � i.
So for any one-step transition from xi to a state y, we have

Vj(x0) ≥ Vj(y) ≥ Vj(xi)

for j � i. But by Lemma 10.3, Vj(x0) equals Vj(xi) for j � i. It follows that
for every one-step transit y,

Vj(y) = Vj(xi)
for j � i. Consequently, for each such j,

Vj(xi) = (1 − δ)uj(xi) + δ
∫

Vj(y)P(xi, dy) = (1 − δ)uj(xi) + δVj(xi).

Using this, and Vj(x0) = Vj(xi) for j � i, the claim is proved.

We now show that there is an efficient absorbing state, contrary to our
initial presumption. Consider a state xi (with structure πi) to which the
claim just established applies. By condition T, there is some other state
x∗, also with coalition structure πi, such that for some j � i, uj(x∗) >
uj(xi). Because j must approve every transition from x∗, Vj(x∗) ≥ uj(x∗) >
uj(xi) = Vj(x0), where this last equality uses the claim. So x∗ cannot have
an equilibrium transition to x0, but then i must approve every equilibrium
transition. However, since πi gives player i his unique maximal payoff, he
will reject every transition to a different coalition structure. Therefore, x∗

is both absorbing and efficient.

For the second part of case (c), suppose now that all recurrence classes are
singletons. Assume by way of contradiction that all these are inefficient.
This immediately rules out all absorbing states xi with π(xi) = πi for some
i, and it also rules out x0.11

Now consider any state xi withπ(xi) = πi. Since it is not absorbing, Vj(xi) ≥
uj(xi) for j � i. Also Lemma 10.2 tells us that xi transits one-step to x0 with
positive probability, so Vj(x0) ≥ Vj(xi) ≥ uj(xi). In particular, Vj(x0) ≥
max{u( j, πi), i � j} for all j = 1, 2, 3. Moreover, because π j is maximal for
j and j must approve all other transitions from x0 (as well as to all states
from the structure π j except for x0), we have Vj(x0) ≥ uj(x0), so Vj(x0) ≥
max{uj(x0),u( j, πi), i � j} for all j = 1, 2, 3. Since x0 and xi are transient, there
must be a path from x0 to an absorbing state xG, but this implies that any

11If x0 is absorbing and inefficient, then it is dominated either by a state for the
grand coalition or by a state with coalition structure πi for some i. Either way, by
minimality of approval committees, x0 will surely fail to be absorbing.
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such absorbing state must satisfy uj(xG) ≥ max{uj(x0),u( j, πi), i � j} for all
j = 1, 2, 3. Therefore, xG is efficient, contradicting our initial supposition.

Case (d). Proceed again by way of contradiction; assume there is no Markov
equilibrium with efficient absorbing payoff limit. It is immediate, then, that
any state x such that π(x) ∈ {π0, π2, π3} is not absorbing. It also gives us
the following preliminary result:

L 10.4. If any state x1 with π(x1) = π1 is absorbing, then x1 is not
dominated by any state y with π(y) ∈ {π0, πG}.

Proof. Suppose this is false for some x1. It is trivial that x1 cannot
be dominated by any grand coalition state; otherwise x1 wouldn’t be
absorbing. So x0 dominates x1. Consider any player j � 1. From x0,
there may be a transition to zj with π(zj) = π j, which j need not approve.
She must approve all other transitions from x0. Thus, along the lines of
Lemma 10.1, we see that Vj(x0) ≥ uj(x0) > uj(x1) = Vj(x1) for j = 2, 3, but
this contradicts the presumption that x1 is absorbing (given the minimality
of approval committees, 2 and 3 will jointly deviate). �

As in case (c), divide the analysis into different parts.

(i) All recurrence classes are singletons.

Since all absorbing states are assumed inefficient, it is clear that all
absorbing states must either have coalition structure π1 or πG (since all
states with coalition structures π0, π2 and π3 are efficient). Consider x0;
it is transient. Let x̂ be an absorbing state reached from x0. By Lemma
10.2, we know that there must be a transition from any state with coalition
structureπ2 orπ3 to x0, and — becauseπ0 is maximal for player 1 — from x0
to some state with coalition structure π1 with strictly positive probability.
Therefore, we may conclude that

V1(x0) ≥ max{u(1, π2), u(1, π3)}
V2(x̂) ≥ V2(x0) ≥ max{u(2, π3),u2(x0)}(10.6)
V3(x̂) ≥ V3(x0) ≥ max{u(3, π2),u3(x0)}.

This implies that x̂ is not Pareto-dominated by π0, π2 or π3.

Now, if π(x̂) = π1, then Lemma 10.4, the fact that π0, π2 and π3 are
not absorbing, and (10.6) allow us to conclude that x̂ must be efficient, a
contradiction. So suppose thatπ(x̂) = πG. Note that x̂ cannot be dominated
by a state y such that π(y) = π1. For Vi(y) ≥ ui(y) for i = 2, 3. Moreover, an
argument along the same lines as Lemma 10.1 easily shows that V1(y) ≥
u1(y). Therefore, if x̂ were dominated by y, there would be a profitable
move from x̂, contradicting the presumption that it is absorbing. Therefore,
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x̂ must be efficient, but this contradicts our assumption that no absorbing
state is efficient.

(ii) There is some nondegenerate recurrence class (and all other states are
either transient or inefficient).

Observe that analogues to Lemmas 10.2 and 10.3, and the first part of
case 2(c) can be established for case (d). However, whereas in case 2(c),
we were able to pin down the equilibrium payoff of two players along
some nondegenerate recurrence class, now we can only pin down the
equilibrium payoff of one player; that is, for a recurrent class which transits
from x0 to xi, i � 1, we have: Vj(x0) = Vj(xi) and Vj(x0) = uj(xi) for j � 1, i.

Observe that if, for the player j whose payoffs we have pinned down,
uj(xi) equals u( j, πi) and for the other player k who is part of the doubleton
coalition with j, Vi(x0) ≥ u(k, πi), the argument based on condition [T] will
not go through.12 That is, we cannot find another efficient state which
one player (whose consent would be required for any transition) prefers
to x0. In this case, we must construct an equilibrium with some efficient
absorbing state, and this is our remaining task.

First suppose that there does not exist a state x such that ui(x) > ui(x0) for
i = 2, 3 and for all y such that π(y) = π1, u1(x) ≥ u1(y).13 In the construction
of the equilibrium, the following sets of states will be important: {x0} and

Su
2 = {x|π(x) = π2, u3(x) > u3(x0)},

Sd
2 = {x|π(x) = π2, u3(x0) ≥ u3(x)},

Su
3 = {x|π(x) = π3, u2(x) > u2(x0)},

Sd
3 = {x|π(x) = π3, u2(x0) ≥ u2(x)},

Su = {x|π(x) ∈ {π1, πG}, x efficient},
SD

1 = {x|π(x) ∈ {π1, πG}, there is z ∈ {Su
2 ,S

u
3 ,S

u, x0}with u(z)� u(x)},
SD

2 = {x|π(x) ∈ {π1, πG}, there is z ∈ {Sd
2,S

d
3}with u(z) > u(x); and

there is j ∈ {23} such that uj(x0) < uj(x)} − SD
1

Consider the following description of strategies:

(a) For all players i = 1, 2, 3, from x0 all players offer x0 and accept a
transition to another state y only if Vi(y) > Vi(x0).

12Of course, if these conditions are not satisfied, the same argument as in 2(c)
implies the existence of an efficient absorbing state.
13That is, there is no state that players 2 and 3 prefer to the singletons which they
can achieve, either directly or indirectly (by initiating a preliminary transition to
the coalition structure π1).
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(b) From all states x ∈ Sd
2 ∪ Sd

3, players i such that |Si(x) = 2| propose
and accept x0, while player i such that |Si(x)| = 1 proposes the status
quo. An arbitrary player k accepts a transition to another state y only if
Vk(y) > Vk(x).

(c) From all states x ∈ Su
2 ∪ Su

3 ∪ Su, all players propose the status quo
and an arbitrary player k accepts a transition to another state y only if
Vk(y) > Vk(x).

(d) From all states x ∈ SD
1 , all players propose a state z(x) ∈ Su

2∪Su
3∪Su∪{x0}

and an arbitrary player k accepts a transition to another state y only if
Vk(y) > Vk(x). If x is dominated by x0, we require z(x) = x0.

(e) From all states x ∈ SD
2 , all players propose the status quo and an arbitrary

player k accepts a transition to another state y only if Vk(y) > Vk(x).

It is easy to see that these strategies constitute an equilibrium in which
the singletons are absorbing. Moreover, every other state is either
absorbing itself or transits (one-step with positive probability) to some
absorbing state. Note that the states in SD

2 are absorbing for δ high
enough and are inefficient. The reason they are absorbing is clear: if a
transition to a dominating state were allowed, there would eventually
be a transition to the singletons, which, by assumption, hurts one of the
players whose original consent is needed. That the actions defined in (e)
above constitute best responses for δ high enough follows from arguments
similar to van Damme, Selten and Winter (1990): with a finite number of
states and sufficiently patient players any such absorbing state could be
implemented; one player will always prefer to reject any other offer.

Now suppose that there exists a state x such that ui(x) > ui(x0) for i = 2, 3
and for some y such that π(y) = π1, u1(x) ≥ u1(y). In this case, the
singletons clearly cannot be absorbing for δ high enough. However, with
a finite number of states one can easily construct an equilibrium with a
positive probability path from x0 to some efficient absorbing state for δhigh
enough. In particular, from x0, there is a positive probability transition to
a state y ∈ π1; from y there is a probability 1 transition to some efficient
state y′ which dominates y (if such a state exists; if not, y is absorbing).14

�

Appendix C

Proof of Observation 10.2.

14From x0, there may also be a positive probability transition to some other state z.
However, if π(z) ∈ {π2, π3} it is clearly efficient since at these states players 2 and
3 obtain their unique maximum. Moreover, for δ high enough, it cannot be that
π(z) = πG, since then this would imply that z Pareto-dominates y′.
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Step 1: x3 and x4 are not absorbing.

It is easy to see that Vi(x4) ≥ 2 for i = 1, 2. Moreover, since players 1 and 2
can initiate a transition from x3 to x4, x3 is easily seen to be not absorbing.
Similarly, Vj(x1) ≥ 4 for j = 3, 4; therefore, since players 3 and 4 can achieve
x1 from x4, x1 is not absorbing.

Step 2: x2 absorbing implies x2 is globally absorbing.

Suppose that x2 is absorbing. Then clearly from x1, players 1 and 2 would
induce x2. Moreover, since x3 and x4 are not absorbing, if x2 is not reached,
then x1 must be reached infinitely often. But then 1 or 2 would get a
chance to propose with probability 1 and would then take the state to x2,
a contradiction.

Step 3: x2 cannot be globally absorbing.

If x2 is globally absorbing then, from x2, players 3 and 4 can get a payoff
of 10 for some period of time, by initiating a transition to x3, followed by,
at worst, 2 for one period and 4 for another period, before returning to x2,
where it will get 5 forever thereafter.15 This sequence of events is clearly
better for players 3 and 4 than remaining at x2.

Step 4: x1 absorbing implies x1 globally absorbing.

Steps 2 and 3 imply that x2 cannot be absorbing. Moreover, Step 1 tells us
that neither x3 nor x4 can be absorbing. In particular, from x2 players 3 and
4 initiate a transition to x3, from x3 players 1 and 2 initiate a transition to
x4 and (at least) players 3 and 4 initiate a transition back to x1. Therefore,
if x1 is absorbing, it is globally absorbing.

Step 5: Every equilibrium is inefficient.

First suppose that we had an equilibrium in which x1 is not absorbing.
Then from the above analysis, nothing is absorbing. Now consider x2. If
players 1 and 2 always accept an offer of a transition from x1 to x2, then 3
and 4 will strictly prefer to initiate a transition from x2 to x3: in so doing,
they can achieve an average payoff of at least 10+2+4

3 = 16
3 > 5. However, it

is easily seen that players 1 and 2 earn an average payoff strictly less than
4 in this case. Therefore, players 1 and 2 would rather keep the state at x1,
contradicting the presumption that x1 was not absorbing.

15Surely, players 1 and 2 must initiate a transition to x4 with some positive prob-
ability; otherwise, x3 would be absorbing (which Step 1 shows to be impossible).
However, once at x4, under the assumption that any player can propose to move
to any state, and the fact that (by Step 2) from x1 there would be an immediate
transition to x2, there is no need to even pass through the intermediate state x1.
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The only remaining possibility is one in which players 1 and 2 are
indifferent between a x1 and x2 and players 3 and 4 are indifferent
between x2 and x3. If such an equilibrium were to exist, it must be that
Vi(x1) = Vi(x2) = 4 for i = 1, 2, and Vj(x2) = Vj(x3) = 5 for j = 3, 4.
Therefore, if such an equilibrium were to exist, it would also be inefficient
since players spend a non-negligible amount of time at the inefficient states
x1 and x4.

Thus either x1 is the unique absorbing state or there is a sequence of
inefficient cyclical equilibria depending on δn ↗ 1 such that players 1 and
2 are indifferent between x1 and x2 and players 3 and 4 are indifferent
between x2 and x3. �



Part 3

A Blocking Approach to
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CHAPTER 11

Blocking

This part of the book describes a second approach to coalition for-
mation, one firmly grounded in the traditional theory of cooperative
games. In what follows, there is no protocol — no explicit protocol
anyway — that determines the choice of individual proposers and
responders. In short, there is no game form in the sense that is
commonly understood in noncooperative game theory. Rather,
we join traditional cooperative game theory in moving one step
away from methodological individualism, and regard coalitions as
fundamental behavioral units. That is, coalitions form, agree, object
or counterobject without a clear formal statement of which particular
individual may be instigating such behavior. At the same time, we
do not depart too far from an individual perspective: we presume
that coalitions cannot act without the consent of their members.

11.1 The Core Revisited

Section 7.1 in Chapter 7 already introduces the concept of the core.
Let’s look at the concept more closely. Begin with a characteristic
function U defined on a finite set N of n players: it specifies for every
coalition S a set of payoff vectors U(S) ⊆ �S for that coalition. Recall
that a characteristic function exhibits transferable utility (it is TU) if
for each coalition S there is a number v(S), describing the overall
worth of that coalition, such that

U(S) =

u ∈ �S|
∑
i∈S

ui ≤ v(S)

 .
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More generally, U(S) is simply a set of payoff vectors u ∈ �S that are
feasible for the coalition S. A payoff vector (or allocation) u on N is
feasible for the coalition structure π if for every S ∈ π, uS is feasible for
S.

Let u be an allocation (feasible or not) for a set of players S. Say that
(T,u′) blocks u if T is a subcoalition of S (∅ � T ⊂ S), u′ is feasible for
T, and u′ � uT. In this case we say that u is blocked and that T is a
blocking coalition. If there is no such blocking coalition, say that u is
unblocked.

Notice that a block requires every member of the “blocking coalition”
to be strictly better off. One might demand a weaker notion of
blocking, in which all individuals are weakly better off, and at least
one individual is strictly better off. More often than not, this change
makes no difference.1

The blocking notion swiftly yields the concept of the core of a coalition,
a fundamental solution concept in cooperative game theory. It
is simply the set of all feasible allocations for that coalition that
are unblocked. When we say “the core” without qualification,
we typically refer to the core of the grand coalition N. It is also
possible to define the core of a coalition structure π: it is the set of all
unblocked allocations that are feasible for the structure π.

We’ve already described what it means for a TU characteristic
function to be superadditive. The extension to general characteristic
functions is straightforward. Say that a coalition S is superadditive if
for every partition π of S and every allocation u feasible for it, there
is an allocation u′ feasible for S such that u′ ≥ u. A superadditive
characteristic function is one which only has superadditive coalitions.

It is, of course, well known that superadditivity is not sufficient
for the core of a coalition to be nonempty. We’ve already seen in
Example 7.1 and Observation 7.1 of Chapter 7 that more is required.
The celebrated theorem of Bondareva and Shapley provides a
necessary and sufficient condition for core nonemptiness in TU
games, called balancedness. The natural extension of this concept
to general games is sufficient (though not always necessary) for the

1When payoffs are transferable, the two definitions are equivalent. But there are
situations in which payoffs are not transferable, or effectively become nontrans-
ferable; see, e.g., the discussion following Example 11.1 below. Then the two
definitions of blocking could have very different implications, as they do indeed
in that example.
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nonemptiness of the core in those games; this is the theorem of Scarf
(1971). A precise description of the balancedness condition is not
really necessary for our purposes; suffice it to note that it is stronger
than superadditivity.

11.2 Farsightedness in Blocking

There are two reasons I resurrect this perfectly classical discussion of
cores, empty or otherwise. One of them has been discussed at some
length in Chapter 7: when the core is empty, traditional theory is
silent on what exactly happens. This coalition (with an empty core) is
“unstable”, but which coalitions do form? The core concept does not
address this question. But there is a second aspect which acquires
particular importance in the context of our discussion of blocking.
Following a block, it may be possible (by further “blocks”) to keep
moving to an allocation entirely different from the original proposal
or the allocation that blocked it to begin with. Of what relevance,
then is the original block?

Here is a related way of looking at the issue. The core is the set of
all allocations which are unblocked by any subcoalition. But this
definition does not put subcoalitions to the test in the same way as it does
the grand coalition. Put yet another way, the definition of the core
presumes that agents are not farsighted and do not see forward to
the “ultimate” consequences of their own actions.

In the bargaining approach to coalition formation pursued in Part
2 of this book, this sort of farsightedness is very naturally built
in. A proposal is made. That proposal may be rejected. But the
rejector’s actions are invariably followed by a fresh proposal, and
the rejector knows this. The act of rejection is therefore “treated in
the same way” as the events leading up to the original proposal. In
a model based on blocking, however, such features will have to be
introduced in a more explicit way.

11.3 A First Pass at Farsightedness

Suppose that we have a characteristic function, given by U. Think of
a solution concept F as a mapping that assigns a subset of allocations
(possibly empty) to every coalition S: thus F(S) ⊆ U(S) for every S.
For instance, in the case of the core, F(S) = Core (S) is the set of all
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unblocked allocations. Formally:

Core (S) = {u ∈ U(S)| for no T ⊂ S and u′ ∈ U(T) is u′ � uT}.
Note that there are no constraints at all imposed on the potential
blocking coalitions. It is sufficient for coalition T to drum up
any allocation z ∈ U(T). We might demand, however, that such
an allocation in turn exhibit the same level of credibility that we
demand of the “original” coalition S. There is an obvious circular
feel to such a definition: the “credibility” of S is being tested, but
only by similarly “credible” objections from T. Here is a more formal
statement:

Core∗(S) = {u ∈ U(S)| for no T ⊂ S and u′ ∈ Core∗(T) is u′ � uT}.

Notice that “Core∗” appears both on the left and right hand sides
of the description. This is the implicit circularity I was discussing
above. With only subsets doing the blocking, however, there is no
fear of a conceptual impasse; one can simply define the concept
recursively upwards, starting from singleton coalitions.

In principle, then, blocking is harder, so that the “credible core”
defined in this way should be a superset of the core. But it turns out
that the imposition of credibility in this way does nothing to change
the core. The following observation (see Ray (1989)) is very simple:

O 11.1. Core∗(S) = Core (S) for all coalitions S.

Proof. Clearly Core (S) ⊆ Core∗(S) for all S. Suppose that for some S,
equality does not hold. Then there is u ∈ Core∗(S)−Core (S). Because
u � Core (S), there is T ⊆ S which blocks u using u′ ∈ U(T). Because
u ∈ Core∗(S), u′ � Core∗(T). So u′ is blocked by some coalition W
using an allocation u′′ in Core∗(W). Now W ⊆ S. Moreover, it is
easy to check that if (W,u′′) blocks (T,u′) while (T,u′) blocks (S,u),
then (W,u′′) blocks (S,u). But this contradicts our presumption that
u ∈ Core∗(S), and the proof is complete. �

One piece of good news, then, is that the core has some credibility
features already built in. If we alter the definition to permit only
those blocks that are themselves immune to further blocking, the set
of unblocked allocations should, in principle, expand. But it doesn’t,
and the reason it doesn’t is that for every “noncredible” block, there
is a further “credible” block that opposes not just the first block, but
the original proposal itself. The solution concept changes, but the
solution doesn’t.
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At the same time, don’t be entirely taken in by the simplicity of
the argument: even the simplest variants of it create entirely new
outcomes. For instance, suppose that after a coalition discovers
the set of its unblocked allocations, it implements only a particular
subset of them. Formally, suppose that for every set of payoffs A (to
be interpreted in the sequel as the “unblocked” set) for coalition S,
there is a choice rule θS that picks out a subset of those outcomes:
θSA ⊆ A.

Why might a coalition do this? The answer could have to do with
bargaining or norms. The coalition may internally bargain over
the choice from the various unblocked allocations. If this is done
and properly foreseen by all parties, the bargain must be taken into
account when forecasting a coalitional block. Or the coalition may
possess norms, having to do with egalitarianism or fairness, that
forces it to select further from the options open to it.

Now define a credible-core-like solution concept relative to this
choice rule; call it Σ. It has the property that for each coalition
S, Σ(S) = θSA, where

A = {u ∈ U(S)|For no T ⊂ S and u′ ∈ Σ(T) is u′ � uT}.

Variants such as these will generally have a significant impact on
the solution. To see this, focus on a particular specification of θS: the
egalitarian solution, studied by Dutta and Ray (1989, 1991).2 Suppose
that the underlying game is TU, and that for every coalition S and
potential set of payoffs A, θS picks out the “most equal” allocations
in A. Specifically, θS selects the Lorenz-maximal elements of A.

E 11.1. There is a set N of players, which can be split into two
groups as follows: N = L ∪ R, where |R| = |L| − 1 > 0. For any coalition
S, v(S) = min{|S ∩ L|, |S ∩ R|}.

This example is a classical one in cooperative game theory, and it is
known as the “right and left gloves” situation. Each player owns
one unit each of one of two kinds of inputs (a left-handed glove or
a right-handed glove), and one unit of a consumable good can be
produced only by joining together one unit each of the two inputs.

It is well known that the core of this game contains a single payoff
allocation. That allocation gives one unit each to members of R,

2We’ve already encountered the egalitarian solution in the context of coalitional
bargaining; see Section 7.4.4 in Chapter 7.
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and none to members of L, even if L and R are both very large sets
(so that relatively speaking, they are almost the same size). Indeed,
this disconcerting example is sometimes put forward as an implicit
criticism of the core concept.

However, suppose that every coalition is restricted to be egalitarian,
in the sense that ex-post, they invariably try to attain as equal a
division of their worth consistent with the no-blocking requirement.
Then we may use the solution concept Σ relative to θS being the
egalitarian rule, as described above. Proceed recursively, starting
from two-person coalitions. They must always divide their worth
equally. Now consider a three-person coalition, with two Ls in them
and just one R. The worth of this coalition is 1. What is the set of its
unblocked allocations? It is precisely the setu ∈ �3|

∑
i

ui = 1; for no i ∈ L and j ∈ R is (1/2, 1/2)� (ui,uj)

 .
We must apply θ to this set in order to obtain its Lorenz-maximal
element. There is a unique solution: give the R-type half the worth,
and the L-types a quarter each. Now we can build up to larger
coalitions. For each coalition, define a type (L or R) to be a minority if
it is not more than half the population in the coalition, and a majority
otherwise. We then have, via a similar process of computation,

O 11.2. For every coalition S in Example 11.1, there is a
unique allocation in Σ(S), given as follows: 1/2 for each minority type and
m/2(s − m) for each majority type, where s is the cardinality of S and m
the size of the minority.

Applying this observation to the grand coalition, we see that for
large numbers of players, the result is almost equal division. The
Rs, who are in the minority, obtain 1/2 each, while the Ls, who are
in the majority, obtain close to 1/2 each: |L|/2(|L| + 1), to be precise.
Unlike the core, which allocates payoffs in dramatically uneven
fashion when group composition is only slightly asymmetric, our
solution changes very little from fully equal treatment.

It isn’t my goal, however, to dwell on the philosophical merits of
this solution vis-a-vis the core. The point is simply to note that
the imposition of farsighted consistency can change the solution
a lot, sometimes even picking out — as in this case — noncore
allocations. Such allocations cannot be blocked, because we have
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imposed (consistent) restrictions on the credibility of the blocking
process.

This will be one important feature of the theory we develop in the
next chapters, but there is more to consider.

11.4 Externalities and Farsightedness

By far the more important consideration emerges once we consider
externalities across coalitions. Now a characteristic function is no
longer enough, and we must account for intercoalitional effects
on payoffs. As we’ve already seen in Section 2.4, this raises a
fundamental prediction problem.

When there are no externalities, a blocking coalition must indeed
worry about which blocks are “credible”. That is what we’ve just
discussed. With externalities, the group must also attempt to predict
the coalition structure that arises elsewhere. With no such prediction
in hand, it will simply be unable to compute its own worth, let alone
begin to think about which particular allocations are credible in the
sense discussed in this chapter.

As we have discussed already, this is a conceptually distinctive
problem which requires not just the presence of externalities but
the fact that negotiations are underway to implement an alloca-
tion. If those negotiations break down, it is common knowledge
that they have done so, and a deviating coalition must presume
that the complementary part of the group will suitably rearrange
themselves. In contrast, in theories of simultaneous, nonbinding
play, these deviations do not have to “anticipate” that the remaining
players will rearrange themselves, or indeed even change their
actions! There is nothing to “anticipate”.

This is the starting point for the methodology that we develop in
the rest of the book. It isn’t that we haven’t encountered this issue
before; of course we have. But so far we have concentrated on
explicitly defined noncooperative games of negotiation. The project
at hand is to extend the tools of cooperative game theory, and so
approach the same problem with a different set of techniques.
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11.5 Summary

This chapter begins a study of coalition formation by extending
the techniques of cooperative game theory. A central notion is
one of blocking, and the attendant concepts that stem from it —
blocking coalitions and the core — are important ideas in the theory
of cooperative games.

Starting with the core, we introduce two central ingredients of our
approach to coalition formation. Both have to do with farsighted-
ness. First, we explore the idea that a deviating coalition should
not simply look at the immediate consequences of its own actions.
Further deviations may follow, and the coalition should look ahead
to the “final” consequence of its original deviation.

Second, we recall the fundamental prediction problem. When there
are externalities, a deviating coalition must also attempt to forecast
what its complementary coalition might do, in an attempt to predict
its own worth. These two features will be central to the two chapters
that follow.

We proceed along lines parallel to the chapters based on bargaining
in Part 2. First we study irreversible agreements, in which coalitions
that once agree to form cannot continue to renegotiate. Then we
consider the problem of coalition formation in real time, in which
constant renegotiation is possible.

My objective in this part of this book is not to provide an exhaustive
analysis of the cooperative game-theoretic model. I simply put
the model up as a reasonable alternative to the extensive-form
bargaining approach followed so far, and I indicate some of the
salient points. The chapters that follow are largely based on Ray and
Vohra (1997) and Konishi and Ray (2003), but the reader interested
in various other aspects of this literature should also consult the
references in these chapters, on which I often rely heavily.
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Irreversible Commitments

We return to the fundamental backdrop for all that we do, described
in Chapter 3. We have, then, a game Γ in strategic form. N is a set
of players. Player i has action set Ai. A denotes the product of all
action sets. Player i has a payoff function ui defined on A.

A coalition is just a nonempty subset of N. As always, interpret a
coalition to mean a set of players who are willing signatories to a
binding agreement. The restriction of the product set A to coalition
S will be denoted by AS. Similarly, we denote (ui(a))i∈S by uS(a).

Finally, a partition π of N into coalitions will be called a coalition
structure.

As in the preceding chapters, we approach the coalition formation
problem in two stages. Each player must forecast the interactive
consequences of every conceivable coalition structure. Coalition
formation occurs “at an earlier stage” with this “second-stage
consequence” firmly in mind. In Chapter 3, we describe the second
stage as a “coalitional equilibrium” in the spirit of Nash. Suppose
that π is a coalition structure. An action vector a is a coalitional
equilibrium (relative to π) if for no coalition S ∈ π is there an action
vector a′S ∈ AS with uS(a′S, a−S)� uS(a).

For singleton coalition structures a coalitional equilibrium is just a
Nash equilibrium, and for the grand coalition it is simply the Pareto
frontier of the game.

Proposition 3.1 of Chapter 3 show that under general conditions, a
coalitional equilibrium always exists. For each coalition structure π,
denote by β(π) the set of coalitional equilibrium action vectors. We
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are now in a position to describe the “first-stage” theory of coalition
formation from a cooperative perspective.

12.1 Equilibrium Binding Agreements

In this section, I follow Ray and Vohra (1997) in defining the set
of equilibrium binding agreements B(π) for each coalition structure
π. A typical binding agreement is, of course, a full specification of
“equilibrium actions” taken by each of the agents, one specification
for each coalition structure. If equilibrium binding agreements do
exist for a given coalition structure π, we shall refer to π as an
equilibrium coalition structure.

A central feature of what follows is the possible formation of new
coalition structures from old ones. In keeping with the spirit of
the core concept, we only permit new coalitions to form via the
disintegration of existing coalitions. In a later section, we discuss
Diamantoudi and Xue (2007), who drop this restriction.

Consider two coalition structures π and π′, with π′ a refinement
of π. Think of having “moved” from π to π′ by the formation
of one or more new coalitions, each a subset of some element of
π. Some of these coalitions may be thought of as “active movers”,
or perpetrators, in the creation of π′, and others might be residual
coalitions, or simply residuals, of individuals left behind by the
perpetrators. Observe that we cannot uniquely identify a class of
perpetrators. But we can say this: if a coalition in π breaks into n
new coalitions, n − 1 of them must be labeled perpetrators, and the
remaining coalition must be taken to be a residual. A collection of
perpetrators and residuals in the move from π to π′ is any labeling of
the relevant elements of π′ which satisfies the requirement in the
previous sentence.

Fix a collection of perpetrators and residuals in the move from π to
π′. A re-merging of π′ is a coalition structure π̂ formed by merging
any collection of perpetrators with their respective residuals. Below,
this will be used to capture situations in which some perpetrators
contemplate not moving to π′.

I now recursively define equilibrium binding agreements (EBA) —
call theseB(π) — for each structure π. Two initial conditions will be
used to set the recursion going. First, begin with the finest possible
coalition structure π∗ of singleton coalitions. In this case, we simply
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set B(π∗) = β(π∗), the set of coalitional equilibrium actions under
π∗. Notice, moreover, that these are just the set of Nash equilibrium
action vectors of the underlying game.

Next, consider coalition structures π which have π∗ as their only
refinement. Let a ∈ β(π). Say that (π∗, a∗) blocks (π, a) if a∗ ∈ B(π∗)
and there exists a perpetrator S such that uS(a∗)� uS(a).

Now for the recursion. Suppose that for some π the set B(π′) has
already been defined for all π′ that are refinements of π. Moreover,
assume that for each such π′ and each a′ ∈ β(π′) we have described
all (π”, a”) that block (π′, a′).

Let a ∈ β(π). Say that (π, a) is blocked by (π′, a′) if π′ is a refinement
of π, and there exists a collection of perpetrators and residuals in
the move from π to π′ such that

[E.1] a′ is an EBA for π′: a′ ∈ B(π′).

[E.2] There is a leading perpetrator S which gains from the move:
uS(a′)� uS(a), and

[E.3] Any re-merging of the other perpetrators is blocked by (π′, a′)
as well, with one of these perpetrators as a leading perpetrator.
Formally, let T be the set of all perpetrators, other than S, in the
move from π to π′. Let π̂ be a coalition structure formed by merging
some of the elements of T with their respective residuals. Then
B(π̂) = ∅ and there is â ∈ β(π̂) and S′ ∈ T , such that (π̂, â) is blocked
by (π′, a′) with S′ as the leading perpetrator.

We may now complete the recursion. A strategy profile a is an EBA
for π if a ∈ β(π) and there is no (π′, a′) that blocks (π, a). Denote by
B(π) the set of all EBAs for π.

Thus, objections or blocks are defined perfectly consistently. A
perpetrator can only expect to induce an equilibrium binding
agreement in some refinement of the going coalition structure
π; this is analogous to the credible core studied in the previous
chapter, except that we take cross-coalitional externalities on board
as well. Moreover, if this refinement involves the defection of other
subcoalitions, conditions must be imposed that make it worthwhile
for such coalitions to have defected. [E.3] captures this. To see this,
observe that a re-merging — while it excludes the original leading
perpetrator by definition — partially reverses the defection process,
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returning to intermediate coalition structures of the form π̂. What
[E.3] states is that each such merger should lack the ability to write
EBAs, and moreover that there is some coalitional equilibrium under
π̂ which is blocked by the original defection(s).

Typically, many coalition structures admit EBAs . Which of these
should be considered as the set of EBAs for the game? The answer
to this question depends on what we consider to be the “initial”
coalition structure under which negotiations commence. In keeping
with the spirit of our exercise, which is to understand the outcomes
of free and unconstrained negotiation, we take it that the initial
structure is the grand coalition itself. Under this supposition, it is
natural to focus on the set of equilibrium binding agreements for the
grand coalition, or, if this set is empty, on the next level of refinement
for which the set of EBAs is nonempty.

12.2 Farsightedness and Prediction

Our definition of blocking attempts to incorporate, at one stroke, the
two related features of farsightedness and prediction. The farsighted
perpetrator must look ahead to the “ultimate” consequences of her
deviation, accounting for additional deviations that may follow
her own. The prediction problem requires, in addition, that the
perpetrator attempt to forecast what the ambient coalition structure
will be when the dust has died down. We discuss these two features
of the definition in this section.

12.2.1 Farsightedness and Sequential Blocking. Condition E.3
in our definition requires that if one or more (nonleading) perpe-
trators from a blocking partition are reunited with their erstwhile
compatriots, the resulting “remerged” coalition structure is also
blocked by the original blocking allocation. The idea is that other
perpetrators cannot help but go along with the leading perpetrator.
This attempts to capture the essence of farsightedness.

More concretely, blocking may be viewed as a sequence of acts,
in which one coalition’s proposal may be “counterattacked” by
another, perhaps over several rounds. Such sequentiality is the basic
idea behind the bargaining set of Aumann and Maschler (1964) and
the consistent bargaining set of Dutta, Ray, Sengupta and Vohra
(1989). The problem with these papers is that they do a bad job of
understanding farsightedness along a sequence: a blocking coalition
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looks only at the immediate consequence of its block. If the coalition
knows that an entire chain is involved, it should look instead at the
“ultimate” consequence of its behavior. This idea goes back at least
to Harsanyi’s (1974) criticism of the notion of stable sets, and is
further developed in Chwe (1994). Chwe argues for a sequential
notion of blocking in which all agents look ahead to the end result
of their actions, and not the state immediately following their block,
which may be entirely irrelevant.

Apply that idea here. Suppose that a ∈ β(π) is a coalitional
equilibrium under π. (π′, a′) is said to sequentially block (π, a) if
there exists a sequence {(π0, a0), (π1, a1), . . . , (πm, am)} such that:

[S.1] (π0, a0) = (π, a), (πm, am) = (π′, a′) and for every i = 1, . . . ,m,
there is a coalition Si such that Si is the only perpetrator in the move
from (πi−1, ai−1) to (πi, ai).

[S.2] uSi(a′)� uSi(ai−1) for all i = 1, . . . ,m.

This notion of blocking contains an explicitly sequential account
of how coalitions move, unlike our definition. Nevertheless, our
notion of blocking subsumes its sequential counterpart.

O 12.1. If (π′, a′) blocks (π, a), then (π′, a′) sequentially blocks
(π, a).

The proof, which I relegate to an appendix, isn’t hard at all. It shows
how the blocking notion that I use compresses chains of reasoning
into a single step, captured by [E.2] and [E.3]. If (π′, a′) blocks (π, a),
then one can use this fact to construct a “path” linking the latter to
the former, consisting of a single perpetrator at each stage of this
path, so that all the perpetrators prefer the end result (π′, a′) to their
starting points.

Indeed, the converse of this observation is generally not true. The
blocking notion I use encompasses more than a single chain, for
it allows the perpetrators to “reorganize” themselves in a variety
of ways, thus allowing for a diversity of possible paths (see [E.3]).
Using this intuition, Diamantoudi and Xue (2007) show that it is
possible to fully characterize the blocking notion used here by using
sequential blocking along a multiplicity of paths. I omit the details
here, but will return to sequential blocking in Section 12.5 below.



226 Irreversible Commitments

12.2.2 The Prediction Problem. Buried within the blocking def-
inition is also a prediction for the equilibrium coalition structure
once a leading perpetrator precipitates a deviation. If (π′, a′) blocks
(π, a), thenπ′ is precisely that prediction, and it is so on two grounds.
First, a′ is an equilibrium binding agreement under the structure π′,
which means that when π′ is in turn subjected to the same treatment
currently given to π, it will not disintegrate further. Second, no
“halfway house” between π and π′ is a natural stopping point: by
the condition E.3, that halfway house would continue to split up.

As I’ve explained earlier, cooperative game theory, based as it is
on the externality-free characteristic function, has largely ignored
such matters. And when the subject has come up, the solution has
been ad hoc. A leading instance of this is the important paper by
Hart and Kurz (1983), which represents an early and significant
contribution to the theory of binding agreements starting directly
from the strategic form. The objective is to obtain and characterize
“stable coalition structures”, just as ours is here, and they run (as
they must) into the prediction problem. To address it, they consider
two notions of coalitional stability. The first corresponds to a strong
equilibrium of a game in which a deviation by a coalition T ⊂ S
leaves S−T as a residual, and all other coalitions remain unchanged.
Under the second, when a coalition T ⊂ S deviates, the members of
S − T break up into singletons, while all other coalitions remain the
same.1 Clearly, neither of these formulations satisfactorily addresses
the prediction problem: there is no reason to believe either that the
residual left by a deviating coalition will stay in one piece, or that it
will break up into individual players.

The landmark paper which does attempt to provide a fully specified
solution to the prediction problem is Aumann and Myerson (1988).
But their approach is not within the blocking-based paradigm of
traditional cooperative games. They study an extensive-form game
in which where a given rule of order specifies the sequence in which
players are allowed to form links. They study the noncooperative
equilibrium of such a game. Because of their particular methodolog-
ical emphasis, this paper is connected more closely to the bargaining

1They consider other equilibrium notions as well, based on the α-core and the
β-core of the strategic game. For other examples in which the prediction problem
needs to be addressed, see Dutta and Suzumura (1993), Chander and Tulkens
(1995) and Carraro and Siniscalco (1993).
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models studied earlier in Part 2 rather than cooperative game theory
of the classical variety.

12.3 Inefficiency

Our definition permits the writing of any agreement to which players
can jointly agree. Yet, a central theme that runs through the book
— and this chapter is no exception — is that despite the ability to
write agreements, inefficient outcomes are possible. As in Part 2, it
is possible to write down several economic examples in which this
happens. But my simple objective in this section is to record the
fact that such situations are robust to arbitrary small perturbations
of the underlying game, unrestricted in any way by the underlying
economic context.

To be sure, we are unwilling to seriously consider instances of
inefficiency that rely on incompatibly optimistic views of blocking.
Such examples rely on the multiplicity of equilibria following a
block, each coalition optimistically anticipating the equilibrium
most beneficial to it. Consider, for example, a modified version
of the battle of the sexes, with two players and two pure Nash
equilibria yielding payoff vectors of, say, (5, 1) and (1, 5). Suppose,
now, that there are (non-Nash) payoffs that Pareto-dominate either
of these two outcomes, but do not dominate the vector (5, 5). This
game has no efficient binding agreement. However, such outcomes
are obviously not robust to reasonable alternative definitions that
rely on a lesser degree of optimism.2

We therefore demand of inefficient outcomes that they be compatible
with the “essential uniqueness” of coalitional equilibrium for every
coalition structure. Loosely, we ask that equilibrium payoffs be
unique modulo any (externality-free) transfers of payoffs among
players within any coalition. For a more precise description, consult
Section 3.2.4.
2Variants of our definition can easily incorporate increasing degrees of pessimism,
culminating in the requirement that a leading perpetrator must be better off in
every equilibrium binding agreement of every coalition structure induced by it.
As explained in Ray and Vohra (1997), such variants have their own potential
drawbacks. In the end, we feel that none of this poses a serious problem provided
that we apply the concept in a way that’s sensitive to the potential pitfalls induced
by multiplicity. Recall that the same issue came up in our discussion of the partition
function; see Section 3.2.4.
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Fix a finite action set for each player. Then the set of games may be
identified with an appropriate Euclidean space of payoff profiles. In
the proposition below, we refer to open subsets of games under this
identification.

P 12.1. Suppose that there are at least three players with at
least three actions each. Then there exists an open set of games such that
every game in this set satisfies essential uniqueness, and no EBA in any
game is efficient.

Observe that with essential uniqueness, every EBA for the grand
coalition must necessarily be efficient in a two-player game. This
justifies the use of at least three players in the proposition.3

To prove this proposition, consider the case of exactly three players
with three actions each; the remaining cases are handled by a simple
extension. In the following strategic form, player 1 chooses rows, 2
chooses columns and 3 matrices.

x3a

x2a x2b x2c
x1a 2.6,2.6, 2.6 3.2, 2.2, 3.2 3.7, 1.7, 3.7
x1b 2.2, 3.2, 3.2 2.7, 2.7, 3.7 3.1, 2.1, 4.1
x1c 1.7, 3.7, 3.7 2.1, 3.1, 4.1 2.6, 2.6, 4.6

x3b

x2a x2b x2c
x1a 3.2, 3.2, 2.2 3.7, 2.7, 2.7 4.1, 2.1, 3.1
x1b 2.7, 3.7, 2.7 3.1, 3.1, 3.1 3.6, 2.6, 3.6
x1c 2.1, 4.1, 3.1 2.6, 3.6, 3.6 2.9, 2.9, 3.9

x3c

x2a x2b x2c
x1a 3.7, 3.7, 1.7 4.1, 3.1, 2.1 4.6, 2.6, 2.6
x1b 3.1, 4.1, 2.1 3.6, 3.6, 2.6 3.9, 2.9, 2.9
x1c 2.6, 4.6, 2.6 2.9, 3.9, 2.9 3.3, 3.3, 3.3

Every player i has a dominant strategy, xia. Thus the unique Nash
equilibrium, and the only EBA for the singleton structure π∗, is
(x1a, x2a, x3a), which is Pareto-dominated by (x1c, x2c, x3c).

Next, consider an intermediate structure; say π = ({1}, {23}) (the
game is symmetric so there is no loss of generality in this choice).
Because x1a is dominant for 1, any z ∈ β(π) must have z1 = x1a. Thus
we need only look at the first row of each matrix. With this in mind,

3The proposition also assumes that there are at least three strategies for at least
three of the players. This assumption cannot be dropped free of charge, but I do
not know the extent to which it can be weakened.
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it is easy enough to see that (x1a, x2b, x3b) is a coalitional equilibrium.
Moreover, this action profile cannot be blocked by a deviation to π∗.
It is, therefore, an EBA.

Indeed, this is the only EBA for this coalition structure: in all other
coalitional equilibria, at least one of players 2 and 3 receives less than
2.6, the unique Nash payoff, and so these equilibria will be blocked.
By symmetry, then, every EBA for every intermediate structure is
inefficient.

Now consider the grand coalition. For any strategy profile it must
be the case that there exists a player, i, who gets less than 3.7. This
player can then block by deviating to ({i}, { j, k}) and earning 3.7. In
fact, this is the only coalition structure that i can induce by deviating
from the grand coalition. Thus, the grand coalition must break
up into some intermediate coalition structure with an inefficient
equilibrium.

Since all coalitional equilibria are strict, an open set of payoff
functions that yield the same qualitative outcomes can easily be
constructed.

Finally, this example is easily extended to consider additional
strategies and/or additional players; the details are left to a footnote.4

Notice that the three-person example used in the proof does not
allow for transfers of payoffs within a coalition. The conclusion
remains unchanged even if such transfers are permitted. The
nontransferability of utility isn’t needed for the breakdown of
efficiency.

The reader familiar with the public goods application in Section
6.2 of Chapter 6 will immediately see the connection with this
example. We have here a three-person structure where a player,
by inducing the coalition structure consisting of just herself in one
coalition, and the other two players in another, can do better than
the average payoff to a player in the (efficient) grand coalition. The
consequent inefficiency hinges on the fact that in such a case, the

4If any player has additional actions, simply set payoffs to all players equal to 0
when any of those actions are played. This specification guarantees a robust set of
games satisfying the properties of the proposition. If there are additional players,
include them as dummies as far as the first three players are concerned, and for
each such dummy player, define his payoff to be 1 provided (x1c, x2c, x3c) is played
by the first three players, and zero otherwise. It is easy to see that this modification
does not change the earlier conclusions.
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other two players are better off staying together than also breaking
apart. Observe that while the payoffs to the three potential singleton
deviants jointly dominate the outcome that can be achieved by the
grand coalition, the game is still superadditive in the sense that the
grand coalition can still Pareto-dominate each inefficient outcome.

12.4 An Application to Political Party Formation

The notion of equilibrium binding agreements is one with wide-
spread applicability. Unlike the core, which applies only to char-
acteristic functions, this solution concept may be used to study
situations in which there are externalities across coalitions: the
domain of applicability is significantly broader.

In what follows, I apply the idea to a model of political party
formation. The analysis draws heavily on Levy (2004).

Levy views political parties as coalitions of politicians; these will be
our set of agents. When a collection of parties compete for election,
they play a “platform game”, in which each party chooses whether
or not to participate and (conditional on running) a platform or
policy. The platform with the largest votes wins and is implemented.
This game corresponds to our stage game, and its equilibria corre-
spond to our coalitional equilibria. Levy then steps back to study the
equilibrium binding agreements that characterize party formation. A
more precise description now follows.

The set of feasible policies is some compact, convex subset Q of
Euclidean space. There are n groups of voters, each group consisting
of a continuum. Voters in group i share the same preferences, given
by a continuous, single-peaked, strictly concave utility function
u(q, i) on Q.

Each group is represented by a single politician, who shares the
same preferences as her group compatriots. She derives utility only
from the final policy implemented, and not from the fact of winning
or losing.5

First we describe coalitional equilibrium. Take as given a party
structure, which is to be interpreted as a partition of the set of all

5The case in which winning carries an additional payoff is another possible
application. The specific results will be different, but the same methodology
applies.
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politicians into coalitions (“parties”). The parties contest a general
election. Each party can announce a platform q ∈ Q, or some “null
platform” ∅ which may be interpreted as not running. With some
abuse of notation denote by q the full vector of platforms (including
the nulls if any). It has dimensionality equal to the number of parties.

The main restriction on announced party platforms is that they must
have ex post credibility. To describe this, define the Pareto set (of
policies) for coalition S by

Q(S) = {q ∈ Q| For no q′ ∈ Q is u(q′,S) � u(q,S)}.

Party S must announce a policy from Q(S). No other announcement
is credible, as it will be presumed S will immediately renegotiate its
platform to some location in Q(S), if it wins. In short, the action set
for S is Q(S) ∪ ∅.6

Now define payoffs. Assume that if all platforms are null the payoff
to each politician is lower than the minimum value of all u’s over all
policies. Otherwise, each voter is assumed to vote sincerely for her
favorite policy from q, and voters who are indifferent over one or
more policies split their votes uniformly. Write W(q) for the subset
of platforms with the highest vote shares, and let w(q) stand for the
cardinality of W(q).

The winning policy is determined by plurality rule: a policy is
chosen with equal probability from W(q). So the expected utility to
politician i from the vector of platforms q (not all null) is just

ui(q) ≡ 1
w(q)

∑
q∈W(q)

u(q, i).

We complete the description of coalitional equilibrium. Subject
to the credibility constraint imposed by Q(S), each party S best-
responds to the actions of others by choosing a Pareto-optimal

6At first glance, then, this formalism does not fit precisely with our description
of a coalitional game, in which an action vector was chosen from the product
of all member action sets. But this is easily dealt with. For instance, define a
“renegotiation mapping” which takes all policy profiles in the member product set
to a single element of S(S). When the former profile is announced, voters know
that the final outcome will be renegotiated using the renegotiation mapping. This
yields exactly the same game (but with a lot of extra unhealthy notation), and the
fit with our general framework is perfect.
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action, as measured by the utilities uS(q). A coalitional equilibrium
is the joint outcome of such best responses.

Because it is better to have any policy than no policy at all, so a
coalitional equilibrium will always be associated with a non-null
policy vector q. This describes a mapping from party structures π
to the set of all coalitional equilibria β(π).

We can now study the equilibrium party structures and policies
generated by EBAs, starting from the grand coalition of all parties.
In the interest of space, I avoid a general analysis, but borrow two
examples from Levy (2004).

E 12.1. There are three groups (and politicians), so N = {123}. No
group has a majority. The policy space is Q = [1, 3]. Group i’s preferences
are given by u(q, i) = −(i − q)2, for i ∈ N.

In this example, group 2 contains the median voter. Therefore, under
the party structure of singletons, the unique coalitional equilibrium
outcome involves the implementation of q = 2.

When the party structure is given by {{12}, {3}}, there is a continuum
of coalitional equilibria, in which any policy q ∈ (1, 2] can be
implemented. Similarly, under {{1}, {23}}, any policy in [2, 3) is a
coalitional equilibrium outcome. But it is obvious that only one
equilibrium outcome in each set can be an EBA: that involving the
median policy q = 2. Politician 2 can block any other outcome by
perpetrating the singletons.

What about the partition {{13}, {2}}? In this case, there is a unique
coalitional equilibrium outcome with policy q = 2. One implemen-
tation of this outcome is that party {13} stays out while 2 chooses
q = 2. There is actually another implementation in which 2 stays out
while {13} jointly choose q = 2! In any case, only the median voter’s
policy can be implemented so that these coalitional equilibria are
also EBAs.

These observations prove that the only EBA for the grand coalition
of all parties involves the median voter’s policy as well. Politician 2
can perpetrate the structure {{13}, {2}} and block any other outcome
for that coalition.

In this example, the ability to form parties and write equilibrium
binding agreements gets us nowhere. The equilibrium outcome is
unchanged at the median voter’s policy.
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q1 = (0,0) q2 = (1,0)

q3 = (1,1)

F 12.1. P S  E 12.2

Matters are different, however, when the policy space is multidi-
mensional.

E 12.2. There are three groups (and politicians), so N = {123}. No
group has a majority. The policy space Q has two dimensions, x and y.
It is the triangle formed by the three ideal points q1 = (q1

x, q1
y) = (0, 0),

q2 = (q2
x, q2

y) = (1, 0) and q3 = (q3
x, q3

y) = (1, 1). Group i’s preferences
are given by u(q, i) = −α(qi

x − q)2 − (1 − α)(qi
y − q)2, for i ∈ N, where

0 < α < 1.

Figure 12.1 illustrates the policy space and ideal points. It is obvious
(given α ∈ (0, 1)) that voters in groups 1 and 3 feel closer to the ideal
point of group 2 than they do to those of each other. Everything else
is symmetric, so without loss of generality we additionally restrict α
to be no greater than 1/2. This implies that group 2 (weakly) prefers
the ideal point of group 1 to that of group 3.

Levy interprets this multidimensional environment as follows:
Think of groups 2 and 3 as consisting of low-income voters; while
group 1 contains high-income voters. The x-axis may then be viewed
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as a tax rate, so that the high-income voters ideally have a zero tax
(q1

x = 0), while the others prefer full expropriation (qj
x = 1 for j = 2, 3).

Now think of expenditures on the y-axis as pure waste as far as
groups 1 and 2 are concerned, but catering to the needs of the
“special interest” group 3. To be concrete, suppose that when y = 0,
all tax revenues are spent on general public goods, and when y = 1,
they are all spent on some local public good that benefits group 3
alone.

To study EBAs, begin with coalitional equilibria for the singletons.
Despite the multidimensional nature of the situation, the policy
q2 = (1, 0) is the unique coalitional equilibrium outcome, and it is
an EBA. In our interpretation: when all politicians run separately,
there are high taxes in equilibrium and all the revenues are spent on
public goods.

Observe that there are policies that groups 1 and 3 jointly prefer to q2:
Figure 12.1 shows that these lie within the area marked P, between
the two indifference curves of groups 1 and 3 that pass through q2.
However, when politicians from groups 1 and 3 run on their own,
they cannot commit to offer such platforms.

When the party structure is given by {{12}, 3} (or by {1, {23}}), there
is, as in Example 12.1, a continuum of coalitional equilibria, but only
one of these is an EBA: the one that implements q2. I leave the simple
details of the analysis to the reader.

The partition {{13}, 2} is, however, of particular importance. Observe
that the Pareto set for the coalition {13} is

Q({13}) = {(z, z)|z ∈ [0, 1]},

the line segment joining q1 and q3. As shown in Figure 12.1, the
darkened portion of this line segment that intersects with P contains
policies that would win against q2 in a binary contest; all other
policies will result in 2 running, winning, and implementing q2.
Therefore, using the specific forms of the utility function that we’ve
chosen for the example, an equilibrium for this party structure must
involve the implementation of some policy of the form (z, z), where
z ∈ (1 −

√
1 − α,

√
α).

Indeed, each of these outcomes is also an EBA. Call this set of
outcomes E.
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We may now describe EBAs starting from the grand coalition.
Consider any outcome in the Pareto set of {123}. Because politicians
1 and 3 can individually depart and assure themselves the outcome
q2, an EBA for the grand coalition must lie in the set P. At the
same time, {13} can block an outcome using an EBA from the set
E. Therefore an EBA for the grand coalition must come from E as
well. Finally, note that politician 2 can also precipitate the coalition
structure {{13}, 2}. The notion of optimism inherent in our definition
therefore pins down a unique EBA for the game as a whole: the
outcome that maximizes group 2’s payoff among the set E.7

In short, when there are multidimensional platforms, two groups
may get together and form a coalition that outwits a third group.
Moreover, under the interpretation that we have adopted, it is clear
that any two groups will not do. In our example, it is the high-
income group that joins hands with the special interest group. The
former group accepts the inevitability of some taxation, but manages
to avoid outright expropriation, which would be the outcome in
a world without coalitions. The reason they manage to avoid
expropriation is that they agree, moreover, to have the tax revenues
used (in part) for special-interest activities. Together, they are in a
position to out-maneuver the “median voter”, who would otherwise
have achieved far-reaching redistribution with no concessions to
special-interest groups.

Levy (2004) shows how these examples can be translated into
general results. For example, her Proposition 3 (p. 265) establishes
sufficient conditions for EBAs to generate outcomes that differ from
the “median-voter” outcomes of singleton coalition structures. As
in the examples, the multidimensionality of the underlying policy
space plays a crucial role.

We see, then, that equilibrium binding agreements may be an
effective tool for the study of political coalition formation. Ray
and Vohra (1997) and Yi (1996) contain other applications.

7Without the assumption of optimism, one could obtain the entire set E as the
collection of EBAs for the grand coalition. This changes none of the interpretation
or discussion, however.
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12.5 Beyond Nested Deviations

A central assumption underlies the concept of equilibrium binding
agreements, which is that all threats to an existing coalition structure
come “from within”. That is, only subsets of existing coalitions
can block a proposed agreement. This is a perfectly reasonable
assumption in many situations. It may well be that members of
a coalition, once formed, do not (or can not) communicate with
individuals in some other coalition. Each coalition writes its own
binding agreements, and if there are objections raised to certain
potential agreements, it is natural to suppose that these come
entirely from within the coalition.

Reasonableness apart, the assumption of nested coalitional threats
possesses another advantage. Equilibrium coalition structures may
then be recursively defined. We did just this, starting from the
singletons. (A similar restriction may be found in coalitional
refinements of noncooperative equilibrium, such as the coalition-
proof Nash equilibrium of Bernheim, Peleg and Whinston (1987).)

That said, there are obviously many other situations in which fresh
coalitions can form more freely, and we would like to extend the
theory to encompass such situations. There are two steps here. First,
one might allow arbitrary coalitions to come together, starting from
any coalition structure, insisting nonetheless that all agreements are
irreversible. This step would bring the blocking theory roughly into
line with the irreversible commitments model based on bargaining
(and covered in Chapters 4–7). Second, one might allow for ongoing
negotiations, as coalitions form and re-form, in the spirit of Chapters
8–10. In this section, I briefly discuss how one might take the first
step, leaving the second to the next chapter.

I base the discussion that follows on Diamantoudi and Xue (2007).

The main problem with constructing a definition of equilibrium
binding agreements for the case of arbitrary coalitional deviations
is one of “circularity”. We would like a possible agreement to be
blocked, if at all, only by an equilibrium binding agreement. That, in
turn, relies on foreknowledge of which agreements are binding “to
begin with”. When coalitional deviations are nested, this problem
does not arise as we can proceed recursively.

One way to deal with the general issue is to think of equilibrium
binding agreements as a fixed point of an appropriately defined



12.5 Beyond Nested Deviations 237

blocking relation. In words, that fixed point would (loosely) declare:
“The set of equilibrium binding agreements is the collection of all
agreements that are ‘unblocked’ by the set of equilibrium binding
agreements.” As Greenberg (1990) and Chwe (1994) and several
others have noted, that fixed-point role is often admirably played
by the stable set of von-Neumann and Morgenstern. This is how
Diamantoudi and Xue (2007) proceed to extend the concept of an
EBA.

The first line of business is to settle upon a suitable blocking
relationship. To do so, we return to the notion of sequential
blocking in Section 12.2.1. The advantage of this notion is that
it specifies a single, farsighted “chain” along which perpetrators
move in sequence.8 We will need to widen the notion to allow for
arbitrary coalitions to form. This is very easy to do.

Begin with (π, a). Let S be any coalition, to be regarded in the sequel
as a perpetrator (S is not necessarily a subset of some member of π).
Say that coalition S induces (π′, a′) from (π, a) if

1. Some partition of S is included in the new structure π′.

2. The residual (after S breaks off) of any coalition in π belongs in
π′.

3. All unaffected coalitions in π continue to belong in π′.

4. The profile a′ is a coalitional equilibrium under π′.

Condition 1 allows for the perpetrator S to organize itself, if it so
pleases, into subgroups.9 Under a different interpretation, this
allows for two or more perpetrating coalitions to simultaneously
block an allocation (view S as the union of these perpetrators,
and allow each of them to separately belong to π′). Conditions
2 and 3 are perfectly self-explanatory; I add here only a formal
description that incorporates both: if coalition T ∈ π, then T−S ∈ π′.

8One might also adapt — at the cost of some additional complexity — the blocking
notion used here.
9This makes no difference to the connection between my original notion of blocking
and sequential blocking, explored in Section 12.2.1.
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Finally, condition 4 requires the new payoff vector to be a coalitional
equilibrium payoff under the new structure π′.10

We may now define sequential blocking in a manner analogous to
Section 12.2.1. Say that (π′, a′) sequentially blocks (π, a) if there exists
a sequence {(π0, a0), (π1, a1), . . . , (πm, am)} such that:

[S.1′] (π0, a0) = (π, a), (πm, am) = (π′, a′) and for every i = 1, . . . ,m,
there is a coalition Si that induces (πi, ai) from (πi−1, ai−1).

[S.2′] uSi(a′)� uSi(ai−1) for all i = 1, . . . ,m.

We may now complete the definition. To each coalition structure
π assign a set B∗(π) of allocations; call them extended equilibrium
binding agreements (EEBA) following Diamantoudi and Xue (2007).
To be sure, for some coalition structures such a set may be empty.
The defining property of this assignment is the provision that for
every π, B∗(π) is precisely the set

{a ∈ β(π)| no (π′, a′), with a′ ∈ B∗(π′), sequentially blocks (π, a)}.

Notice the circularity of this description: B∗ appears within its own
“definition”. What this really is, then, is a consistency condition
which any assignment of EEBAs to coalition structures must satisfy.
Indeed, there may be several such consistent assignments, and there
may well be none.

The reader familiar with cooperative game theory will see in this
condition a restatement of the von-Neumann–Morgenstern stable
set. That set may be defined for any abstract binary relation � on
any abstract set X. A subset Y of X is internally stable if for no two
elements z and w of Y is it the case that z � w. And Y is externally
stable if for every z not in Y, there is w in Y such that w � z. A set is
stable if it is both internally and externally stable.

Observe that internal stability can be dealt with by taking Y to be
any singleton set, while external stability can be assured by taking
Y = X. The tension behind the concept lies in assuring both internal
and external stability within one set.

Internal and external stability may be combined as follows: say that
Y is stable if Y is the collection of all elements of X that are unblocked
10Notice how this implicitly presumes that coalition S can induce any such payoff.
Those uncomfortable with this may simply wish to assume that each coalition
structure is associated with a unique coalitional equilibrium payoff vector.
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using elements of Y. This statement is equivalent to our definition
of EEBA, which is why EEBA corresponds to a stable set.11

The relationship between EEBAs and EBAs is subtler than appears
at first sight. Allowing for all kinds of coalitions — not just internal
threats — means that more blocks are potentially available. This
suggests that less allocations can stand the blocking test, so the
set of equilibrium binding agreements must shrink. This suggests
that EEBAs should be a subset of the set of EBAs. The problem
with this kind of reasoning is that it neglects the fact that blocking
allocations must pass the credibility test. Therefore the very forces
that make blocking easier also serve to make credible blocking
harder. Therefore, no simple inclusion relationship exists between
equilibrium binding agreements and their extended counterparts.

In particular, there are situations in which some EEBA assignment
may be efficient, while other EEBA assignments are more closely
related to EBAs. As an example, recall the game used to prove the
inefficiency result for EBAs in Proposition 12.1. I reproduce the
matrices here for easy reference.

x3a

x2a x2b x2c
x1a 2.6,2.6, 2.6 3.2, 2.2, 3.2 3.7, 1.7, 3.7
x1b 2.2, 3.2, 3.2 2.7, 2.7, 3.7 3.1, 2.1, 4.1
x1c 1.7, 3.7, 3.7 2.1, 3.1, 4.1 2.6, 2.6, 4.6

x3b

x2a x2b x2c
x1a 3.2, 3.2, 2.2 3.7, 2.7, 2.7 4.1, 2.1, 3.1
x1b 2.7, 3.7, 2.7 3.1, 3.1, 3.1 3.6, 2.6, 3.6
x1c 2.1, 4.1, 3.1 2.6, 3.6, 3.6 2.9, 2.9, 3.9

x3c

x2a x2b x2c
x1a 3.7, 3.7, 1.7 4.1, 3.1, 2.1 4.6, 2.6, 2.6
x1b 3.1, 4.1, 2.1 3.6, 3.6, 2.6 3.9, 2.9, 2.9
x1c 2.6, 4.6, 2.6 2.9, 3.9, 2.9 3.3, 3.3, 3.3

O 12.2. There is an EEBA assignment for this game, in which
B∗(π) is empty for every coalition structure except for the structure πG =
{N}, and B∗(πG) = {(3.3, 3.3, 3.3)}. The unique binding agreement under
this assignment is efficient.

11As Diamantoudi and Xue (2007) show, the EBA notion is connected to another
stable set, one which is based entirely on the internal blocking relation.
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There is another EEBA assignment consisting of the three asymmetric
coalition structures and their associated coalitional equilibrium payoffs.
These binding agreements are inefficient.

There is no other EEBA assignment.

Proof. To establish this claim, observe that the first specified
assignment is indeed an EEBA. It suffices to show that every
(π, a) with a ∈ β(π) is sequentially blocked by (πG, (3.3, 3.3, 3.3)).
The singleton structure (with associated payoff (2.6, 2.6, 2.6)) is
sequentially blocked in a single step: use N as the blocking coalition
leading to πG. The asymmetric structure {{1}, {23}} with unique
associated payoff vector (3.7, 2.7, 2.7) is sequentially blocked in two
steps: first player 2 precipitates the singletons, and then N moves.
By symmetry, we are done.

As for the second assignment, observe that no asymmetric structure
can sequentially block another asymmetric structure, so internal
stability is guaranteed. Both the outcome (πG, (3.3, 3.3, 3.3)) as
well as (π∗, (2.6, 2.6, 2.6)) are sequentially blocked (by each of the
asymmetric structures), which verifies external stability.

Now, no EEBA assignment can contain the singleton structureπ∗. So
any other assignment must have either the grand coalition structure
or one (or more) of the asymmetric structures. If the former, then no
asymmetric structure can be included, for internal stability would
be violated otherwise. This describes our first assignment. If the
latter, then all three of the asymmetric structures must be included,
otherwise external stability would be violated. This is our second
assignment, and so the observation is verified. �

Observation 12.2 illustrates a number of features. To begin with, the
necessary circularity of the EEBA construction often results in the
existence of several stable assignments. The observation describes
two assignments. Of course, such multiplicity is not peculiar to
EEBAs. It is well-known that the very same underlying situation
may admit several von-Neumann–Morgenstern stable sets.

That doesn’t mean, of course, that “anything can happen”. For
instance, in the example above, the singleton structure can never be
part of an EEBA assignment.

The same bootstrapping that generates multiplicity might also
jeopardize existence. Starting with the classic counterexample of
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Lucas (1968), it is known that stable sets do not, in general, exist.
Whether such examples of nonexistence can be found for EEBAs is
currently an open question.

Finally, the observation reveals the existence of an efficient EEBA
in the example. One might wonder if this is a general finding.
Diamantoudi and Xue (2007) discuss this issue in some detail. Their
Proposition 2 may be viewed as a generalization of the findings in
Observation 12.2, laying down sufficient conditions for the existence
of an efficient EEBA assignment. At the same time, they provide
an example in which there is no efficient EEBA assignment. That
inefficiency may persist even when all agreements are binding is a
central theme of this monograph. As Diamantoudi and Xue (2007)
observe, their example “reinforces the inefficiency puzzle”.

12.6 Summary

This chapter studies irreversibly binding agreements using a tradi-
tional methodology based on blocking, so familiar from cooperative
game theory. As described in Chapter 11, the blocking notion needs
to be amended substantially to allow for both farsighted behavior
as well as externalities. We begin by introducing the concept of
equilibrium binding agreements. These are agreements that cannot be
blocked — with the farsighted implications factored in — by other
equilibrium binding agreements. The obvious circularity of the
definition is cut through by presuming that only subsets of existing
coalitions can deviate, thus permitting a recursive construction.

Using the concept of an equilibrium binding agreement, we return
to the ever-present question of efficiency. We show that there is
a large class of games for which equilibrium outcomes indeed fail
to be efficient, despite the ability to write binding agreements. This
observation reinforces similar findings for the coalitional bargaining
model studied in Part 2.

Next, we study an application of the solution concept to political
party formation. We argue that the concept is useful in predicting
certain types of political coalitions.

The assumption that only subcoalitions of existing coalitions can
block existing allocations may be useful in many situations, but it is
restrictive. In the final part of this chapter we attempt to relax this
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assumption, and in so doing connect our extended concept to other
classical and recent notions in cooperative game theory.

An exploration of continued negotiations, in which all commitments
are reversible, is the subject of the next chapter.

Appendix

Proof of Observation 12.1. Suppose (π′, a′) blocks (π, a). Let S1 be the leading
perpetrator in this move. If there are no other perpetrators, then it is clear
that (π′, a′) sequentially blocks (π, a) with m = 1. Suppose, therefore,
that the set of other perpetrators is T = {S2, . . . ,Sm}. Define π1 to be
the coalition structure obtained by re-merging all other perpetrators in T .
Since (π′, a′) blocks (π, a), by condition [E.3], B(π1) = ∅, and there exists
a1 ∈ β(π1) such that (π′, a′) blocks (π1, a1), with a leading perpetrator from
T . Without loss of generality let this leading perpetrator be S2. Define
π2 to be the coalition structure obtained by re-merging all perpetrators
S3, . . . ,Sm with their respective residuals. By appealing to Condition E.3
yet again, we can assert that there exists a2 ∈ β(π2) such that (π2, a2) is
blocked by (π′, a′) with S3 (say) as a leading perpetrator. In this way
we obtain a sequence (π, a), (π1, a1), . . . , (πm, am) such that (a) (πm, am) =
(π′, a′), (b) for every i = 1, . . . ,m, ai ∈ β(πi), and (c) for every i = 1, . . . ,m,
(πi−1, ai−1) is blocked by (π′, a′) with Si as the leading perpetrator. Clearly,
{(π, a), (π1, a1), . . . , (πm, am)} satisfies conditions [S.1] and [S.2]. �



CHAPTER 13

The Blocking Approach in Real Time

13.1 Introduction

The motivation for this chapter is exactly the same as that for Chap-
ters 8–10. There are numerous situations in which the commitment
to form a coalition is irreversibly binding. But there are many others
in which negotiations can, in principle, open and reopen over an
indefinite period of time (see the introduction to Chapter 8 for
a detailed discussion of such issues). To study this phenomenon
requires an explicitly dynamic model of coalition formation.

What I’d like to do in this chapter, which is based on Konishi and Ray
(2003), is lay down a model of coalition formation in real time that
runs parallel to the setup in Chapter 8. The main difference between
the two approaches is that while the earlier model takes an explicit
bargaining-theoretic viewpoint, the current model is faithful to the
“blocking” methodology of traditional cooperative game theory. As
we shall see, there is far less of an emphasis here on precise protocols
and individual strategies, and more a transplantation of coalitional
blocking notions to a dynamic environment.1

There is a second difference between the analysis of these earlier
chapters and the one to be conducted here. In Chapter 8, I was
careful to restrict the analysis to binding agreements, in which
additional changes needed to be approved by those individuals
who were “directly affected” by those changes. The notion of what

1I use the terms “earlier” and “current” models to refer to their order of appearance
in this monograph. The correct chronology is that the Konishi–Ray framework in
this chapter was developed several years before the bargaining variant studied in
Chapters 8–10.
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it meant to be “directly affected” was not straightforward (recall the
conditions B.1 and B.2 from Section 8.3) but it certainly included
alterations in coalitional membership.

I could do the same in this chapter. Indeed, there are probably
pedagogical gains to retracing old results with a different method-
ology. But I felt it more useful (especially in a short monograph)
to put that new methodology to work on a different —though
complementary — set of issues. Accordingly, I am changing not only
the methodology, but will often emphasize temporary agreements for
a change. These are agreements which are also binding, but only
for a single period at a time. I will attempt to capture the temporary
nature of such agreements by suitably defining approval committees
for various changes in state; see below for details.

13.2 An Informal Description

Let N be a set of players and X a set of states. Suppose that for each
state in X and each coalition S, a possible set of “coalitional moves”
(by S) to some subset of states is given. A mapping from the current
state to a probability distribution over the set of all coalitional moves
feasible at that state induces a dynamic process on X. Noting that
moves are associated with actions taken by coalitions, we call this a
process of coalition formation.

Under such a process players receive (additive discounted) utility
from the entire path of states. This induces a value for each player
in the standard way, as a function of the going state.

This framework is very similar to the one used in Chapters 8–10,
except that there is no protocol, no proposals or counterproposals,
and no accept-reject decisions. Instead, as we now proceed to
describe, we use coalitions as our fundamental behavioral units.

A process of coalition formation is an equilibrium if at any date and
at any going state, a coalitional move to some other state can be
“justified” by the very same scheme applied in future: the coalition
that moves must have higher present value (starting from the state it
moves to) for each of its members, compared to (one-period) inaction
under the going state.

In the most general form that we study it, a process of coalition
formation precipitates a Markov process on X, the uncertainty
reflecting both the choice of the deviating coalition at some state
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(there may be several potential deviants) and the choice of state that
the coalition deviates to (there may be several potential moves). The
use of value functions induced by the scheme itself implies perfect
foresight on the part of all coalitions: players expect and understand
that coalitions may move in the future, and form (common) beliefs
about the likelihood of such events.

The explicitly dynamic nature of our definition possesses at least
three advantages relative to existing formulations.

First, by allowing all moves to take place in real time, as it were,
the definition allows us to bridge the gap between myopic notions
of stability (such as those implicit in the core or the bargaining set)
and the more recent definitions based on farsightedness (such as
those discussed in the previous chapter). Extreme myopia would
correspond to a discount factor of zero, while extreme farsightedness
would be approximated as the discount factor converges to unity.

The point is that the static concepts based on farsightedness are
really attempting to capture a fundamentally dynamic process, in
which an action may generate an entire chain of reactions. My
formulation takes this dynamic story seriously instead of writing
down a shorthand for it.

Second, the theory of coalitional deviations based on blocking is
often made complicated by the issue of multiple continuations
following a single deviation. In the previous chapter we discussed
this point in the context of EBAS (but see also Greenberg(1990),
Chwe (1994), Xue (1998) and many others). Greenberg distinguishes
between optimistic and conservative “standards of behavior”, in
which currently deviating coalitions evaluate the future multiplicity
of other deviations in hopeful or pessimistic ways. This approach
to the treatment of multiplicity can be avoided by borrowing more
freely from the language of repeated or dynamic games, which we
do. Future paths (perhaps probabilistic in nature) are evaluated
using common beliefs (as embodied in the transition probability)
and expected payoffs are calculated using these beliefs. In particular,
the problem of predicting how some complementary coalition might
respond to a deviation (see Section 12.2.2) is automatically taken care
of, albeit through the use of a specific solution concept.

Third, several solution concepts, especially those that concern
themselves with farsighted agents, inevitably run into the problem
of cycles (for an early discussion of this, see Shenoy (1979)). Chains
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of coalitions may appear and reappear in the blocking process.2

In the approach adopted in this chapter, recurrent cycles of moves
pose no problem at all. Payoffs from such cycles are simply to be
evaluated as any sequence of payoffs is evaluated: by adding up
discounted one-period returns over time.

A particularly relevant interpretation of cyclical outcomes — one
which forms the principal motivation for this chapter — arises
from the possibility of constant renegotiation. Agreements may
be torn up and rewritten, especially if the environment external to
a particular coalition is altered by the formation of other coalitions
(note that this would be irrelevant for characteristic functions, but
especially important when there are widespread externalities).

13.3 A Process of Coalition Formation

13.3.1 Basic Ingredients. Let N be a finite set of players and X a
finite set of states.3 A coalition is a nonempty subset S of N. For each
state x in X and each coalition S, define FS(x) to be the set of states
achievable by a one-step coalitional move (by S) from x. That is, for
every state y ∈ FS(x), S is a valid approval committee for the move
from x to y, just as in Chapter 8. A coalition S always has the option
to do nothing, so x is always a member of FS(x).

If player i is equipped with a one-period von Neumann-Morgenstern
payoff function ui on X and a discount factor δi ∈ (0, 1), her payoff
from a sequence of probabilities {λt} on X may be written as

∞∑
t=0

δt
i

∑
x∈X

λt(x)ui(x)

 .

2One approach is to exclude cycles explicitly by assuming the nestedness of
coalitional moves, as in the previous chapter (see also Bernheim, Peleg and
Whinston (1987) and Ray (1989)). Alternatively, one might exclude cycles by
implicitly assuming that such cycles gives the worst payoffs (see, e.g., Mariotti
(1997) or Xue (1998)). Finally, one might study coalition formation — as we’ve
done earlier in this book — within a bargaining context, in which infinite bargaining
delays result in zero payoff.
3The restriction to a finite set of states is for technical convenience. For instance,
I do not know whether existence results such as Proposition 13.1 below extend to
the general infinite case, though an extension to a countable infinity of states is
fairly standard.
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13.3.2 Interpreting States. Several interpretations of a “state” are
possible. In Chapter 8, we viewed a state as a pair: a coalition
structure, coupled with a vector of payoffs under a coalitional
equilibrium for that structure. While this continues to be a leading
interpretation in this chapter, there are others. For instance, a state
could represent a profile of actions taken in some normal-form game.
As discussed in the Introduction to this chapter, our main innovation
will be to study temporary agreements, and so the specification of
FS is rather more important. Here are some examples.

1. A Characteristic Function. Consider the simplest two-person NTU
characteristic function, in which there are two coalition structures
with a single payoff vector in each. Let x1 be the state with structure
{12}, and x2 the state with singleton structure. Then for x ∈ {x1, x2},
ui is just the payoff to player i under the corresponding structure.

If all agreements are permanently binding (in the sense of Chapter
8), then all that a single individual can approve is the going state:
F{i}(x) = {x}, while the grand coalition can additionally precipitate
x1 from x2 (and vice versa). If agreements are temporary then each
singleton coalition can additionally approve x2 from x1 (but not
x1 from x2 unilaterally). In this chapter we will be particularly
interested in the latter formulation.

2. A Partition Function. Suppose that there are three players. If all
three stand together, the payoff vector is (a, a, a). If all stand alone,
the payoff vector is (0, 0, 0). If i is alone and j and k are together,
the payoff is b to i and c each to the other two. These determine the
functions ui(x) for each player i and and each state x.

Once again, much of the description of FS is obvious. But partition
functions pose new issues. Suppose that agreements are temporary,
and i moves away from the grand coalition. Is the resulting structure
{i}, { jk} or the singleton structure {{i}, { j}, {k}}? This time it is more
than a mere question of interpretation, and the dynamic model of
coalition formation just described forces us to take a stand on the
matter. So far as the formal theory is concerned, this is not an issue
as long as FS(x) is fully specified for all coalitions S and states x.

3. A Game in Strategic Form. A situation in which a normal form
game is played at every date is particularly easy to embed. Let N
be a set of players, and let Ai be the (finite) action set of player i.
A state is simply an action profile a = (ai)i∈N. Starting from some
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action profile a a coalition S can induce any action profile of the form
(a′S, a−S), where a−S is that part of the profile not chosen by members
of S, and a′S is any vector of actions on the part of S.

Such an interpretation, while simple, is not devoid of conceptual
issues. Why is a−S fixed when S moves? One interpretation is that
an action profile constitutes a temporarily binding agreement, and
at every date some coalition receives the opportunity to costlessly
renege on such an agreement.

13.3.3 Equilibrium. A process of coalition formation (PCF) is a tran-
sition probability p : X ×X→ [0, 1] (so that

∑
y∈X p(x, y) = 1 for each

x ∈ X).

We interpret p as capturing the (possibly stochastic) transitions from
one state to another. These transitions will be induced by coalitions
who stand to benefit from them (see below). The restriction that
the PCF be Markov means that the corresponding “coalitional
strategies” are Markov too.4

A PCF p induces a value function Vi for each player i. This value
function captures the infinite horizon payoff to a player starting from
any state x, under the Markov process p. Standard observations tell
us that the value function for i must be the unique solution to the
functional equation

(13.1) Vi(x, p) = (1 − δi)ui(x) + δi

∑
y∈X

p(x, y)Vi(y, p).

We are now in a position to define a central concept in this chapter,
the notion of “profitable moves”. These will be used to impose
restrictions on an equilibrium process of coalition formation. Fix a
PCF p, a state x, and a coalition S. Say that S has a (weakly) profitable
move from x (under p) if there is y ∈ FS(x) (with y � x) such that
Vi(y, p) ≥ Vi(x, p) for all i ∈ S. S has a strictly profitable move from x
if there is y ∈ FS(x) such that Vi(y, p) > Vi(x, p) for all i ∈ S. Finally,
say that a move y is efficient for S if there is no other move for S, say
z, such that Vi(z, p) > Vi(y, p) for all i ∈ S.

A PCF is an equilibrium process of coalition formation (EPCF) if (i)
whenever p(x, y) > 0 for some y � x, then there is S such that y is a

4I would like to focus on some different issues in this chapter, and so I leave a more
general model with history-dependent strategies unexplored here.
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(weakly) profitable and efficient move for S from x, and (ii) if there
is a strictly profitable move from x, then p(x, x) = 0 and there is a
strictly profitable and efficient move y with p(x, y) > 0.

Thus a going state is allowed to move to another state only if there
is a coalition whose members all agree to move to the new state
and cannot find any strictly better alternative state (under the going
value functions). Moreover, if there is a strictly profitable move,
then the state must change, and there must be at least one move to a
state which is interpretable as a strictly profitable and efficient move
for some coalition.

Notice that this definition allows for (but does not insist on) possible
changes in state in which the initiating coalition is indifferent to
the change. At the same time, the definition does not insist that
every strictly profitable move (under the equilibrium PCF) be given
positive probability. This is true in a particularly stark way of
“deterministic” PCFs — to be introduced in Section 13.4 — in which
only one coalition is selected to act at each state containing some
profitable move (even though, in principle, there may be several
such moves).

Some more observations on “efficient moves” are to be found in
Appendix A.

Two more remarks assist in understanding our equilibrium concept.
The first is semantic: I use the term “moves” for what would
ordinarily pass as coalitional deviations or acts of blocking. In the
traditional theory, these are off-equilibrium constructs against with
the stability of a solution concept is tested. Not so here: the solution
allows for coalitions to “deviate” — and keep “deviating” — in a real
time definition of equilibrium. Second, the definition of equilibrium
reflects the looseness of underlying protocol: even the “choice” of
who moves (or deviates) at a particular state is left to the equilibrium
construct, provided, of course, that such a move is justified in its
profitability and efficiency.

It is this eclecticism regarding coalitional moves which permits an
EPCF to always exist:

P 13.1. An equilibrium process of coalition formation exists.

While the argument relies on a familiar fixed point theorem, the
construction of the fixed point map is not entirely standard. The
reader interested in the details is invited to consult Appendix B.
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The proposition extends to state spaces that are countable. Whether
existence holds in more general cases is an open question.

13.4 Deterministic Equilibrium Processes

In this section, we narrow our definition considerably by concen-
trating on EPCFs with absorbing limit states and fully deterministic
paths. We then relate our narrowed definition to well-known
concepts in cooperative game theory. This situates the proposed
solution in the context of existing literature.

A state x is absorbing under a PCF p if p(x, x) = 1. In turn, a PCF
is absorbing if for each state y, there is some absorbing state x with
p(k)(y, x) > 0 for some k ≥ 1.5 A PCF has a unique limit if it is absorbing
and possesses a single absorbing state. Finally, a PCF is deterministic
if p(x, y) is either 0 or 1 for every pair of states x and y.

Our first stop is the core.

13.4.1 Deterministic EPCFs and the Core. Recall our earlier
discussion of the core. At first sight, it is a myopic notion,
requiring the stability of a proposed allocation to deviations or
blocks by coalitions, but not examining the stability of the deviations
themselves. At the same time, Observation 11.1 tells us that the
the core automatically embodies a certain degree of farsightedness,
insofar as “internal” chains of deviations by nested coalitions are
concerned. We now show that each element of the core in an
arbitrary characteristic function game can be “supported” (in a
sense to be made precise below) as the outcome of a deterministic
EPCF with unique limit. In other words, the core passes a further
consistency test in which nested deviations are dispensed with.

We also establish a converse that yields an almost-complete charac-
terization of deterministic EPCF’s with unique limit.

Fix a finite set N of players. A (finite) characteristic function is a map
U that associates with each coalition S a nonempty finite set of payoff
vectors in�S. Normalize so that all payoffs are nonnegative.

5The notation p(k) describes the k-step transition probability derived from p in the
usual way.
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A state of a characteristic function is a pair x = (π,u), where π is
some partition of the player set into coalitions, and u is a payoff
vector such that uS ∈ U(S) for any coalition S ∈ π.

A strong core state is a state x = (π,u) such that there is no coalition S
and payoff u′ ∈ U(S) with u′ ≥ uS and u′ � uS. A weak core state is a
state x = (π,u) such that there is no coalition S and payoff u′ ∈ U(S)
with u′ � uS. Obviously, a strong core state is a weak core state.

We now embed a characteristic function into an intertemporal model
of coalition formation with temporary agreements. I begin with a
formal account. Let X be the collection of all states of the charac-
teristic function. For each partition π of N and each coalition S, let
W denote the set of left-behind players {i ∈ T − S : T ∈ π,T ∩ S � ∅}.
Let πS = {S} ∪ {T′ ∈ π : T′ ∩ S = ∅} ∪ π(W), where π(W) is some
exogenously given (but arbitrary) partition of W. (Clearly, πS = π if
(and only if) S ∈ π.) Now define FS(x) as any collection of states
y = (π′,u′) such that (a) π′ = πS, (b) u′S ∈ U(S), and indeed,
∪(π′,u′,π)∈FS(x)u

′
S = U(S), (c) u′T = uT for all coalitions T ∈ π such

that T∩S = ∅, and (d) if u1, u2 satisfy (π′,ui) ∈ FS(x) for i = 1, 2, then
u1
−S = u2

−S.

This unwieldy formalism is easily interpreted in words: a move is
available to S if the payoff vector (restricted to S) is feasible for S, if
the remaining coalition structure consists of the coalitions that S left
untouched and some partition of players that S left behind,6 if the
resulting payoffs to coalitions inπwhich have an empty intersection
with S remain the same as before,7 and if the resulting payoff vector
to all non-deviant players is independent of the particular payoff
vector chosen by the deviating coalition.

Observe that our description of FS implies that agreements are
temporary. Any coalition S is permitted to break away at any
time and “implement” a payoff vector that is feasible for it. It

6As an example, Hart and Kurz (1983) consider two formulations of coalition
formation games. A ∆-game considers a situation that players who are left behind
by a coalitional deviation S are dissolved and each player becomes a singleton.
On the other hand, a Γ-game considers a situation that each of the complementary
pieces that S left behind stays together. Since we allow any regrouping of players
who are left behind by S, our setting allows for both ∆- and Γ-games.
7Note that, in principle, several correspondences of the form FS(x) may be written
down that satisfy this “independence property”: our results hold for each one of
them.
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is worth contrasting this description with that for (permanently)
binding agreements: see conditions B.1 and B.2 in Chapter 8.

The following pair of propositions provide an almost-complete
characterization of deterministic EPCFs with unique absorbing
limits. Every core allocation can be described as the limit of some
EPCF, and every such limit is indeed a core allocation.

P 13.2. Let x∗ be a strong core state of a characteristic function.
Then there is δ∗ ∈ (0, 1) such that for any collection of discount factors
all in (δ∗, 1) and any associated intertemporal model of coalition formation
with temporary agreements, there exists a deterministic EPCF defined on
that model with x∗ as its unique limit.

P 13.3. Fix some characteristic function. There is δ∗ ∈ (0, 1)
such that for any collection of discount factors all in (δ∗, 1), and for
any deterministic EPCF defined on any associated intertemporal model
of coalition formation with x∗ as its unique limit, x∗ must be a weak core
state.

For formal proofs, see Section 13.6.

The propositions show that for characteristic functions, the concept
of the core and that of a deterministic EPCF with unique limit
are (essentially) equivalent,8 whenever players are sufficiently far-
sighted. The limit outcomes of deterministic equilibrium processes
are not only efficient, they are efficient in the strong sense that no
coalition can unilaterally improve on those outcomes. And the
converse is also true: for every core allocation, a suitable EPCF
can be constructed with absorbing limit precisely equal to that core
allocation. These results greatly extend the credibility properties of
the core.

Notice how the assumption of temporarily binding agreements
plays a role here. If agreements were permanently binding, as in
Chapter 8, one would conjecture once again that the limit outcome
must be efficient — a result analogous to Proposition 9.2. But core
membership would not be obtained, simply because the existing
coalition structure might preclude the formation of certain coalitions

8That is, they are equivalent up to the minor gap between strong and weak core
states. To the purist interested in closing this gap: it cannot be done free of charge.
Konishi and Ray (2003) provide two examples, one showing that Proposition 13.2
does not hold for all weak core states, while the conclusion of Proposition 13.3
cannot be restricted to strong core states.
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(approval would be needed from others to break away). In contrast,
when agreements are temporary, any coalition can always form,
which suggests that an absorbing outcome must be impervious to
all possible threats. To be sure, those threats may in turn be blocked
by other counterthreats, and those counterthreats by further threats,
and this is precisely what makes the proposition nontrivial. But the
argument does suggest, albeit in an extremely rough way, that a
limit outcome must be immune to all possible coalitional blocks.

This rough intuition actually works perfectly when individuals are
extremely myopic: that is, when δ is very close to zero rather than
unity. Then only the payoff consequences of the immediate block
matter to a coalition, and it is obvious that a unique limit outcome
must be a core allocation. So the propositions are actually true both
when players are very myopic and when they are very farsighted.
The former case represents just the traditional notion of blocking,
but the latter is completely new. Indeed, in this case, a deterministic
EPCF may rule out non-core allocations in ways that are strikingly
different from those suggested by the standard definition of the core.
To appreciate this, consider the following example.9

E 13.1. Suppose that N = {123}, and each coalition is associated
with a unique payoff vector: u({123}) = (2, 2, 2), u({12}) = (3, 3),
u({23}) = (4, 1), and u(S) = 0 for all other coalitions S. It is easy to
see that this game has a unique core state (coalition structure) {{1}, {23}}.

I first describe a deterministic EPCF with unique limit for this
example. Because each coalition structure has only one payoff
vector, we may equate states with the five coalition structures
and schematically write down the PCF. Arrows with coalitional
subscripts indicate how the state is being changed, and an absorbing
state is shown in boldface:

x1 = {{123}} →{2} x4

x2 = {{12}, {3}} →{23} x3

x3= {{1}, {23}} → x3

x4 = {{13}, {2}} →{23} x3

9Recall that we have used a general way of transforming characteristic functions
to FS-correspondences. In all the examples, we use the particular specification
that when a new coalition forms, the induced coalition structure (that immediately
results) corresponds to the Γ formulation in Hart and Kurz (1983); see our footnote
6 for a definition.
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x5 = {{1}, {2}, {3}} →{23} x3

It is easy to check that if player 2’s discount factor exceeds 1/2, this
scheme is indeed an EPCF. Now focus on x1. This coalition structure
is not a core state. The only blocking coalition is formed by players
1 and 2. However, if player 1 is farsighted enough, she would not
join such a move since she expects that player 2 would “betray” her
by forming a move with player 3 to achieve x3. That is, she would
be better off by not deviating from x1 in the first place. The point is
that our EPCF does eliminate the non-core state x1, but does not do so
by the argument that underlies the definition of the core.

The reason that x1 is nevertheless unstable is that player 2 deviates
alone, expecting to create a further subsequent move with player 3.
Actually, player 2 suffers from a low payoff for one period right after
the unilateral deviation, and enjoys higher payoffs for ever from the
next period. Thus, player 2’s motive for deviating from x1 is really
based on her farsightedness. Thus the reason why x1 is unstable
comes from farsightedness, while under the standard definition, x1
is eliminated for an immediate (myopic) gain. These are very different
arguments, yet they arrive at the same conclusion.10

It should be noted that these propositions are obviously vacuous
for games with empty cores. That doesn’t mean that a deterministic
EPCF won’t exist in those cases; see, for instance, Example 13.2
below. Moreover, a general EPCF certainly does exist. Therefore
our theory has the feature that it reduces to a well-known solution
concept — the core — whenever that solution is nonempty, but
continues to make specific predictions otherwise. In this sense,
the theory addresses issues of coalition formation in situations
that transcend nonempty cores, which is a desideratum that we’ve
already mentioned; see Section 7.1 for a discussion.

10Notice that under our deterministic EPCF, there may be several profitable moves
at a particular state. For instance, it is true that at state x1, both players 1 and 2 may
jointly wish to move if they are given the chance to do so. The reason why 1 also
wants to move, in contrast with the argument in the main text, is that if he does not,
he foresees disaster coming in the shape of 2 moving anyway, as prescribed by the
EPCF. But the point is that the coalition {12} is not given the opportunity to move.
If we do insist on going all the way with this line of reasoning while restraining
ourselves to deterministic PCFs, we must allow only {12} to move — not just today,
but tomorrow as well — but as the text argues, this cannot give rise to an EPCF. (To
be sure, there may be stochastic EPCFs where both coalitions {12} and {2} obtain the
chance to move.) This example therefore also illustrates the conceptual restrictions
mentioned at the end of Section 13.3.3.
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Finally, there are models of coalition formation which do not come
from characteristic functions. The core isn’t even well-defined in
these cases, but the concept of an EPCF continues to provide new
insights, as we shall see below.

13.4.2 Deterministic PCFs and Consistency. We’ve seen that
the tightest restrictions imposed so far — deterministic PCF’s with
unique absorbing limit — provide an almost-complete characteriza-
tion of the core. Now I loosen the restrictions slightly by dropping
the requirement of a unique limit, though I still require EPCFs to be
deterministic and converge from every initial state. That is, I now
work with the broader class of absorbing deterministic processes of
coalition formation.

I first show that this relaxation permits absorbing states that are
disjoint from core states, whether or not the core itself is empty.

E 13.2. Consider the following two characteristic function games.
In each game, each coalition has just one feasible payoff vector. Game
1 is as follows: N = {1234}, u(1234) = (4, 3, 2, 2), u(234) = (4, 3, 5),
u({13}) = (2, 4), u(14) = (3, 4), u(24) = (2, 3), u(i) = 1 for all i ∈ N, and
u(S) = 0 for all other coalitions S.

Game 2 retains all the features of Game 1, but changes u(234) to (4, 3, 4)
and u(14) to (3, 5). Game 1 does not have any core state (weak or strong),
and Game 2 has a unique (weak and strong) core allocation, given by
{{14}, {2}, {3}}.

Assume that all players have a common discount factor δ.

Because each coalition structure has only one payoff vector, there are
fifteen states in each of these two games. Once again, we describe an
absorbing deterministic PCF in a schematic way, just as in Example
13.1:

x1 = {{1234}} → x1

x2 = {{123}, {4}} →{1234} x1

x3 = {{124}, {3}} →{1234} x1

x4 = {{134}, {2}} →{24} x8

x5 = {{234}, {1}} →{13} x8

x6 = {{12}, {34}} →{1234} x1
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x7 = {{12}, {3}, {4}} →{13} x9 →{24} x8

x8 = {{13}, {24}} → x8

x9 = {{13}, {2}, {4}} →{24} x8

x10 = {{14}, {23}} →{1} x12 →{1234} x1

x11 = {{14}, {2}, {3}} →{1} x15 →{1234} x1

x12 = {{23}, {1}, {4}} →{1234} x1

x13 = {{24}, {1}, {3}} →{13} x8

x14 = {{34}, {1}, {2}} →{1234} x1

x15 = {{1}, {2}, {3}, {4}} →{1234} x1.

It is very easy to verify that if δ ≥ 3
4 , then this describes an

equilibrium PCF for both games 1 and 2. (I omit the tedious details.)

The absorbing states under the EPCF are x1 and x8. Neither of these
is a core allocation. The state x1 involves the grand coalition, which
is blocked by the coalition {234}. But that block is counterblocked,
in turn, by the formation of the coalition {13}, which takes us to
the absorbing state x8. If player 2 is farsighted, she will know the
full consequences of her initial deviation will generate a long-term
payoff of only 2, and so she will refuse to participate in the blocking
of x1.

In similar vein, x8, which features the structure {{13}, {24}}, is blocked
by {14}— with associated structure {{14}, {2}, {3}} (the state x11). But
matters don’t end there: our EPCF will transit thereafter to the state
x15 and from there to x1. A farsighted player 4 won’t want to start
this chain of deviations.

Put another way, players 1 and 2 prefer x1 to x8, while players 3 and
4 prefer x8 to x1. However, starting from x1, players 3 and/or 4 can
move only to x2, x3, and x6. All of these states will come back to x1.
Thus, players 3 and 4 cannot move the state to x8 without the help
of players 1 and/or 2. A parallel argument applies to players 1 and
2 at x8.

We have therefore shown that there may be an absorbing determin-
istic EPCF with no core elements among its absorbing states.
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Indeed, this is true whether the core is empty or not. To verify
this, consider the game 2 variant. It has a unique core allocation,
which is the state x11. Yet x11 is destabilized under our EPCF by the
departure of player 1, inducing the coalition structure of singletons
x15. Player 1 wouldn’t do this if matters were to end here, but they
don’t. Instead, she correctly anticipates that the system will move
thereafter to the absorbing state x1, in which she is better off relative
to the core outcome!

These arguments do not contradict our earlier propositions on core
equivalence. The reason they don’t is that they rely on the fact that
the EPCF under discussion has multiple absorbing states. Of course,
we know from Proposition 13.2 that in game 2 of the example, there
is another EPCF that uniquely picks out the core state. But there
is no obvious selection criterion that permits us to focus on that
equilibrium as opposed to the one we’ve highlighted here.

So the core does possess a remarkable consistency property: a
deterministic EPCF with a unique limit picks out a core point.
But when the self-referential nature of the process is dropped (by
admitting more than one absorbing state), then the possibilities
widen beyond the core.

It turns out, however, that all absorbing deterministic EPCF’s have
absorbing states that lie within the largest consistent set, a concept due
to Chwe (1994). We’ve already encountered the sequential blocking
relation that lies at the heart of this solution concept; see Section
12.2.1 from the previous chapter. We recall that notion now and
apply it to the state-based model at hand.

Consider any model of coalition formation (not just a characteristic
function). Say that a state y sequentially dominates some other state x,
if there exists a sequence of states {x0, x1, . . . , xm} in X with x0 = x and
xm = y, and coalitions S0,S1, . . . ,Sm−1 such that for j = 0, ...,m − 1,
xj+1 ∈ FSj(x

j) and ui(y) ≥ ui(xj) for all i ∈ Sj.

This is just the sequential blocking idea in Section 12.2.1, except that
we ask only that all players be weakly better off at the “final” state
y. Chwe’s definition requires that they all be strictly better off. This
is not a major difference: in the definition to follow we will simply
use indifferences in either direction, both as a rationale for a player
to deviate or to remain where she currently is.
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Say that a collection Y of states is consistent if the following holds:
x ∈ Y if and only if for every coalition S and for any state z ∈ FS(x),
there exists y ∈ Y, where either y = z or y sequentially dominates
z, such that the inequality ui(x) ≥ ui(y) holds for at least one player
i ∈ S.

In words, a collection of states is consistent if every coalitional move
from any element of that collection leads to a “domination chain”
(starting with the move and ending within that same collection of
states) such that at the “end” of that chain, there is some member
of the original deviating coalition who feels that the move was not
worthwhile.

Proposition 1 in Chwe (1994) establishes that there is a largest con-
sistent set among all consistent sets: a set which is itself consistent
and which contains every consistent set.11

I now link — at least in one direction — Chwe’s largest consistent
set to the limit states of absorbing deterministic EPCFs.

P 13.4. There exists δ∗ ∈ (0, 1) such that if δi ∈ (δ∗, 1) for all
i, then the set of all absorbing states of any absorbing deterministic EPCF
is contained within the largest consistent set.

We postpone a formal proof of this result to Section 13.6.

Notice that this proposition is true of any game of coalition forma-
tion, and not just characteristic functions. It is also worth noting that
the largest consistent set may be “large” but is certainly not exhaus-
tive. For instance, in the Prisoners’ Dilemma — transformed into a
dynamic model of coalition formation along the lines discussed in
Section 13.3.2 — the largest consistent set is a singleton consisting
of the cooperative outcome.

Nevertheless, there are reasons to believe that the largest consistent
set may be too inclusive — “too large” — in some situations (see,
for example, the discussion in Xue (1998)). Our notion of an EPCF
brings out one reason for this, as the following example illustrates:

E 13.3. N = {123}. There are four states, fully described by the
payoff vectors they generate: x1 = (2, 2, 2), x2 = (0, 0, 0), x3 = (6, 6, 0) and
x4 = (1, 0, 6). Describe FS as follows: at x1, coalition {12} or player 3 are
the only coalitions that can move, and the only move (in either case) is to

11As noted earlier, I use the weak domination ordering, but Chwe’s proposition
extends to this case with no changes.
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x2. At x2, only coalitions {2} and {13} can move, and in either case, they
can induce either x3 or x4. From no other state is any move possible, and
no other coalition is capable of any other move.

It is easy to see that the largest consistent set consists of the three
states (x1, x3, x4). In particular, the state x1 is a member of this set for
the following reason: the coalition {12} avoids inducing x2 because
it anticipates the continuation by {13} to x4, and player 3 similarly
negates a move to x2 because she fears the subsequent creation of
state x3 (by player 2).

However, there is no deterministic absorbing EPCF — and indeed,
no EPCF at all — with x1 as an absorbing state (provided that
discount factors are close enough to unity). To see this, let p be
the probability that some EPCF assigns to {2} moving at x2 (so that
1 − p is assigned to {13}). Neglecting discounting for a moment,
note that if p > 1/3, then {12} will want to move from x1, whereas
if p < 2/3 player 3 will want to move from x1. It is now trivial to
see that for all discount factors close enough to 1, x1 cannot be an
absorbing state.

This example shows quite starkly why the notion of consistency is
less restrictive than that of an EPCF. Two domination chains along
two sequential blocks may have different moves attached to them
starting from the same state. Thus, as seen above, in the largest
consistent set, coalition {12} entertains one sort of conjecture about
what will happen at x2 and player 3 entertains another. If all players
have common beliefs (as they must in an EPCF), then this possibility
cannot arise. This is one reason why the set of all absorbing states
(under all deterministic absorbing EPCFs) is typically a strict subset
of the largest consistent set. Another reason for strict inclusion has
to do with the efficiency of coalitional moves.12

13.4.3 Deterministic Schemes: Absorption, Cycles and Effi-
ciency. Example 13.3 in the previous section shows that the set
of absorbing states (under deterministic absorbing EPCFs) can be
a strict subset of the largest consistent set. In particular, our
EPCF prunes inefficient outcomes from that set. This suggests
that our dynamic structure may be generally adept at eliminating
inefficient outcomes. By virtue of Proposition 13.3, this is certainly

12See Xue (1998), in which similar issues are raised in the context of a static model
of coalitional moves.
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true of absorbing schemes that have unique limit, provided that
all players are sufficiently farsighted and the underlying game is
representable by a characteristic function. However, when an EPCF
exhibits multiple absorbing states, one or more of them may well be
inefficient.

E 13.4. N = {12} and X = {a, b, c, d}. Payoffs and approval
committees are as described in Figure 13.1.

In the class of absorbing deterministic schemes there is exactly one
equilibrium, provided the discount factor of each player exceeds
2/3. This equilibrium has absorbing states {a, c}. Notice that the
payoffs from these states are inefficient.13

To see why, first note that in any absorbing deterministic equilib-
rium, neither b nor d can be absorbing states. For suppose, on the
contrary, that b is absorbing. Then notice that a cannot be absorbing;
indeed, that a→ b. This means that a move from b to c, engineered
by player 2, has the following possible payoff continuations for
player 2: the constant payoff (2, 2, . . .), the path (2, 6, 6, . . .), and the
path (2, 6, 0, 1, 1 . . .). In each of these cases 2 earns a (normalized)
discounted payoff that exceeds 1, which contradicts the presumption
that b is absorbing. The argument that d cannot be absorbing is an
exact parallel.

So a or c (or both) must be absorbing, and there are no other
absorbing states.

13{a, c} is also the largest consistent set.
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Next, observe that both a and c must simultaneously be absorbing.
For say only a were absorbing. Then it must be the case that d →
a. Now consider a move from a to b, engineered by {12}. It is
obvious that player 2 must earn positive payoff from this move.
Moreover, for any δ1 < 1, player 1’s (normalized) discounted payoff
must strictly exceed 2 (we use here the observation that d → a).
This contradicts the assumption that only a is absorbing. A parallel
argument holds for c. Therefore both a and c are absorbing.

This leaves us with only one possible absorbing deterministic EPCF,
in which d → a and b → c. Indeed, such a PCF is an equilibrium,
provided that the discount factor of each player exceeds 2/3.

Readers interested in understanding better the source of this effi-
ciency failure are referred to Appendix A, item 5.

To conclude this section, consider the following PCF which, while
deterministic, has no absorbing states: a → b → c → d → a.
Provided that discount factors are close to unity, it is easy to
check that each move prescribed by the scheme is strictly profitable
(and efficient in the class of all profitable moves). Therefore this
cyclical scheme is an EPCF. For discount factors close to one, the
(normalized) discounted payoff to each player is approximately 2.25.
This payoff vector is efficient. In what follows, we move on to a
closer investigation of cyclical and stochastic schemes.

13.5 Stochastic Equilibrium Processes

In the remainder of this chapter, we concentrate on stochastic
processes of coalition formation. Uncertainty enters the story in
two distinct ways. First, at any stage, several coalitions may
have profitable moves. Which coalition gets to move may well be
probabilistically chosen. Second, it is possible that a particular
coalition has more than one efficient move, and that it might
randomize among them. The discussion that follows shows that
in many typical situations one or more of these randomizations
may be necessary in order to generate an equilibrium.

The uncertain nature of the process may or may not be intertwined
with cycles — possibly stochastic reversions of the state of the game
to some given state. Formally, a (nonsingleton) collection of states
(x1, . . . , xk) under a PCF forms a (stochastic) cycle if p(xi, xi+1) > 0 for
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all 1 ≤ i < k and p(xk, x1) > 0. A PCF that exhibits a cycle will be
called cyclical.

The purpose of the analysis that follows is to understand these
phenomena, largely through the use of examples. A large part of
our discussion will take place explicitly in the context of strategic
form games.

13.5.1 Randomization and Cycles: An Example . The purpose
of this section is to illustrate the need for cycles and/or randomiza-
tion in certain situations. We do this by considering the following
restatement of the “roommate problem”. This is a situation with
three players, any of two of whom can “share a room”. In each
case, the player left out obtains zero. Moreover, for each pair of
roommates, there is one who obtains a payoff of 1, while the other
obtains a payoff of a (to be parametrically varied in the example).
Details follow, couched in the language of a model of coalition
formation.

E 13.5. Let N = {123}, X = {x, y, z}, F{23}(x) = {x, y}, F{13}(y) =
{y, z}, F{12}(z) = {z, x}, and FS(x′) = {x′} for all other combinations of x′
and S. Players have a common discount factor δ. Payoffs for each state x′
are described in the following array:

x y z
1 1 0 a
2 a 1 0
3 0 a 1

Note that it is easy to rewrite this example in the more familiar guise
of a characteristic function.14 Appendix B contains a demonstration
of the following

O 13.1. For each a > 0 and δ ∈ (0, 1), the game in Example
13.5 admits a symmetric EPCF p. For a ≤ 1

1+δ , p(x, y) = p(y, z) =
p(z, x) = 1, and for a > 1

1+δ , p(x, y) = p(y, z) = p(z, x) = (1−a)(1−δ)
δ(2a−1) .

Moreover, for a > 1
1+δ , no deterministic EPCF exists.

This example (and the accompanying Observation) is designed to
illustrate several points.

14Let N = {123} with U({123}) = {(0, 0, 0)}, U({12}) = {(1, a)}, U({23}) = {(1, a)},
U({3, 1}) = {(1, a)}, and U({i}) = {0} for any i ∈ N.
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First, there is no hope of a general existence result for deterministic
schemes, even if we restrict ourselves to characteristic functions.
This is also true of strategic form games, though we will see
situations in which stochastic EPCFs coexist with their deterministic
counterparts.

Second, observe that once cycles and randomization make an
appearance, the cardinality of payoffs matters in the determination
of a particular equilibrium. In the example, if a is small enough
(that is, if a ≤ 1

1+δ ), then the equilibrium cycle is deterministic, and
there is no chance of remaining in the same state in any period.
However, as a goes up from a = 1

1+δ , the probability of moving to
the next state comes down. The cycles become stochastic. As a
increases further, each coalition structure becomes relatively more
stable as the cyclical movement becomes slower in the stochastic
sense, although no state ever becomes absorbing.

The consequences of an increase in the discount factor are similar.
provided that a > 1

1+δ , the cycles slow down as δ increases. If δ is
very close to unity, the cross-state transitions measured by p become
very close to zero. Notice that p never becomes zero — the tension of
a possible move is needed to sustain the scheme.15 Nevertheless, we
still can say that if δ goes to unity, each coalition structure becomes
more stable in a stochastic sense.

Third, the EPCF in the example illustrates only one of the two sources
of stochastic behavior discussed earlier. At each state, there is exactly
one potential deviating coalition. Yet an EPCF can (and sometimes,
as in the example), must be stochastic. Randomization occurs not
over multiple deviating coalitions, but over what a single coalition
actually does; “moving” versus “staying” in this example. This type
of randomization can occur only when at least one member of the
deviating coalition is indifferent between moving and staying.16 In
the next section, we will see several examples of the second source of
uncertainty: the sort that stems from randomization over multiple
coalitional deviations.

15However, asymmetric roommate problems (in which the cardinalities of vNM
utility functions or the values of discount factors differ across agents) may have
well absorbing states.
16Often, this makes it easy to compute equilibrium payoffs. As long as there is
only one possible coalitional deviation at each state, and that coalitional move is
randomized, an indifferent player’s normalized payoff must be exactly the same
as the atemporal payoff from the current state.
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13.5.2 Temporary Agreements for Games in Strategic Form.
In this section, we apply our method to strategic form games. We
use the formulation described in item (3) of Section 13.3.2. A state
is simply an action profile a of the strategic form “stage” game. A
coalition S has the power to unilaterally alter aS in any period in
which it is active, while the remaining players are “frozen” at a−S.

This is not the formulation that we have adopted elsewhere in
the book. The very device of a partition function presumes that
even when some coalition has a chance to form or regroup, the
remaining coalitions can — at the very least — change their actions.
By presuming, as we do here, that players outside the active coalition
do not change their actions, we are looking at a very different model.

One objective of our analysis is to study how the possibly stochastic
nature of coalition formation affects efficiency in strategic-form
games.

13.5.2.1 Games with Common Payoffs. It will be useful to begin
with a situation in which efficiency is not impaired, and this will
serve as a benchmark for the more interesting cases to follow. To
this end, consider the class of all strategic games with common payoffs,
which yield similar payoffs to all players for any action profile. To be
sure, such games are not without genuine strategic significance; for
instance, the following well-known pure coordination game (with a
and b negative) is a special case of what I have in mind:

L R
T 1, 1 b, b
B a, a 0, 0

Formally, consider a game in strategic form. N is a set of players.
Player i has action set Ai. A denotes the product of all action sets.
Player i has a payoff function ui defined on A. This game is one of
common payoffs if ui(a) = uj(a) for every action profile a ∈ A.

It is easy to embed this game into an intertemporal model of coalition
formation. A state is just the ongoing action profile a, and FS(a) is
the set of all states a′ such that a′S ∈

�
i∈S Ai, and a′i = ai for all i � S.

In words: an action vector is available to S if it is feasible for its mem-
bers and if the remaining players leave their actions unchanged.
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To complete the description, assume each player i has a common
discount factor δ ∈ (0, 1).

P 13.5. Consider a game of common payoffs with the property
that there is a unique action profile a∗ at which all player payoffs are
maximized. Then every EPCF for that game with a common discount
factor involves p(a∗, a∗) = 1 and has a∗ as the unique absorbing limit
starting from any a ∈ A.

See Section 13.6 for the proof of this proposition.

That at least one such EPCF exists with the claimed property is
trivially true. That EPCF would correspond, for instance, to the
playing of the “good equilibrium” in a coordination game. The
extra bite of this result lies in the assertion of asymptotic optimality
for every EPCF.

There is a related literature which seeks to eliminate “bad equilibria”
in coordination games. For instance, Lagunoff and Matsui (1997)
contains a related result (see also Corollary 2 in Kandori, Mailath and
Rob (1993)). Lagunoff and Matsui study repeated pure coordination
games in which only one player can change her action in each period,
and show that if the discount factor is close to unity there is a unique
subgame perfect equilibrium in which the action profile converges to
the Pareto-efficient one. To be sure, there are important differences,
not the least of which is that our approach permits the writing of
temporarily binding agreements.

Now for the bad news. Binding agreements notwithstanding, the
finding of ubiquitous cooperation in common-payoff situations does
not extend even to coordination games with non-common payoffs.
The following example describes a 2 × 2 game in which there is an
EPCF with an inefficient absorbing limit.

E 13.6. Consider the following 2 × 2 strategic form game, with
common discount factor δ.

L R
T 1, 1 −5,−1
B −1,−5 0, 0

Then the induced game of coalition formation has an EPCF with unique
absorbing limit (B,R) whenever δ ≥ 2

3 .
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Write the states (T,L), (B,L), (T,R), (B,R) as x, y, z, and w,
respectively. Consider the PCF described by p(x, y) = p(x, z) = 1

2 ,
p(y,w) = p(z,w) = p(w,w) = 1. Then

V1(x, p) = V2(x, p) = 1 + δ
(−1 − 5

2

)
= 1 − 3δ,

V1(y, p) = V2(z, p) = −1,
V1(z, p) = V2(y, p) = −5,

V1(w, p) = V2(w, z) = 0.

As we can easily see from these expressions, there is an incentive
for either player to move from x as long as 1 − 3δ ≤ −1, which
is equivalent to δ ≥ 2

3 . So the PCF is indeed an EPCF under this
condition.

The striking feature of this EPCF is that although x is the highest
payoff state for every player, it is not stable. The temporary agree-
ment x is upset by unilateral deviations, in which each deviation
is bolstered by the fear of the other player’s deviation. Observe
that this sort of “meta-coordination failure” relies intimately on the
failure of common payoffs. It is not the “standard” coordination
failure that would be present even in games with common payoffs.17

Finally, recall that we mentioned two sources of stochastic equilibria;
one stemming from the multiplicity of coalitional moves by a single
deviating coalition and the other from the multiplicity of deviating
coalitions. The EPCF in Example 13.6 represents an instance of
the second type of uncertainty and its effects. Randomization
among profitably deviating coalitions may cause inefficiency in the
resulting outcome.18

13.5.2.2 The Prisoners’ Dilemma. The Prisoners’ Dilemma is a
leading example in game theory. I therefore study the EPCFs of
this game in some detail.

17Equilibrium selection in Kandori, Mailath and Rob (1993) or Young (1993) is
related to the risk-dominance of an action profile ( Harsanyi and Selten (1988)),
and indeed, something similar plays an important role in the example. The Pareto
superior Nash equilibrium is a risk dominated equilibrium (1 − (−1) < 0 − (−5)).
However, in general, the conditions for the existence of an EPCF with breakdown
in cooperation are different even in coordination games.
18Of course, there are other EPCFs: for instance, a “cooperative” EPCF with p(x, x) =
p(y, x) = p(z, x) = p(w, x) = 1 exists for any value of δ. What Example 13.6 says
is that there can be another EPCF that attains a Pareto inferior state as the unique
absorbing state even in a coordination game unless we have common payoffs.
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Consider the following 2 × 2 strategic form game:

L R
T 1, 1 b, a
B a, b 0, 0

where a > 1 and b < 0. As in Example 13.6, write (T,L), (B,L), (T,R),
(B,R) as x, y, z, and w respectively.

Unlike games with common payoffs, x no longer attains the highest
possible payoff, and it is well-known that w is the unique dominant
strategy Nash equilibrium of this game. Our model of coalition
formation yields a more varied set of results, which we now attempt
to describe. We begin with an observation for deterministic EPCFs:

O 13.2. The Prisoners’ Dilemma admits various deterministic
EPCFs depending on specific parameter values:

a. There is a deterministic EPCF with its unique absorbing limit at x
(p(x, x) = p(y,w) = p(z,w) = p(w, x) = 1) if and only if a ≤ 1 + δ.

b. There is a deterministic EPCF with its unique limit at w (p(x, y) =
p(y,w) = p(z,w) = p(w,w) = 1) if and only if a ≥ 1

1−δ and b ≤ −1
δ .

c. There is a deterministic cyclical EPCF (p(x, y) = p(y,w) = p(z,w) =
p(w, x) = 1) if and only if a ≥ 1 + δ and b ≥ − 1

δ .

Notice that the observation provides a complete characterization of all
deterministic EPCFs. Case (a) permits cooperation to be sustained
as the unique limit of a deterministic EPCF as long as (and only if )
the “defection payoff” a is not too large. Although this finding is not
unintuitive, it provides a different perspective on the relationship
between our solution concept and the largest consistent set (see
above, Proposition 13.4). It is easy to see that the largest consistent
set is simply the singleton {x} no matter what values a and b take
(provided, of course, that a > 1 and b < 0). However, no EPCF
supports x if the defection payoff is too large even when δ is close to
unity.

This observation does not contradict Proposition 13.4, in which a
deterministic EPCF with absorbing limit was shown to lie within the
LCS. The point is that once the defection payoff is large enough,
such EPCFs fail to exist. Cycles occur (as Case (c) illustrates),
but Proposition 13.4 is silent on cyclical EPCFs. Another seeming
contradiction to Proposition 13.4 is Case (b), which asserts that a
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deterministic EPCF may support w as a unique absorbing limit.
Notice, however, that for every given value of the defection payoff,
the existence of such a scheme is conditional on δ not being too
large, whereas Proposition 13.4 only applies for discount factors
sufficiently close to unity. For given values of the other parameters,
Case (b) must disappear as the discount factor approaches unity.

Observation 13.2 has the following implications. First, deterministic
equilibria do not exist over the full spectrum of parameters, even as
the discount factor goes to 1. Therefore stochastic EPCFS must be
invoked for a full description of outcomes in the Prisoners’ Dilemma.
Second, provided that the discount factor is close enough to one and
provided a deterministic EPCF with unique absorbing limit exists,
then it can only sustain cooperation rather than defection. At the
same time, if the defection payoff is too large (larger than 2, to be
precise) then the existence of such EPCFs is jeopardized: Case (c)
shows that in such cases one typically cycles between cooperation
and defection. Moreover, these cycles run through the state w so
they cannot be efficient.

Inefficiency is also a feature of stochastic EPCFs. This is not to say
that stochastic equilibria cannot be asymptotically efficient. They
can. But they can be inefficient in a way that deterministic equilibria
with absorbing limits cannot be. The next Observation clarifies
this point, and also fills in the “existence gap” left by deterministic
EPCFs:

O 13.3. Here are some instances of stochastic EPCFs in the
Prisoners’ Dilemma:

a. There is a stochastic, symmetric, EPCF of the form p(x, y) = p(x, z) = 1
2 ,

p(y,w) = p(z,w) = p(w,w) = 1 if and only if b ≤ −a − 2
δ . This EPCF has

a unique absorbing limit at noncooperation.

b. There is a stochastic cyclical EPCF with p(x, y) = p(x, z) = p and
p(y,w) = p(z,w) = p(w, x) = 1 if and only if

−a − 2
δ
≤ b ≤

(
1 + δ + δ2

δ + δ2

)
a − 2

δ
.

Moreover, if a ≥ 1 + δ (resp. a < 1 + δ), then p = 1/2 (resp. p < 1/2).

I recognize that there may be other stochastic EPCFs, but I choose
to focus on the ones in Observation 13.3 for two reasons. First, the
five classes of EPCFs described in the two observations do span
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a

b

Stochastic EPCF 
absorbed at mutual 

defection (only in region A)

Deterministic EPCF absorbed 
at mutual cooperation (in 

regions A, B and C)

Deterministic
cyclical EPCF 

(only in region D)

Cyclical EPCF with stochastic 
departure from mutual cooperation 

(in regions B, D and E)

-1/2-3

2

F 13.2. S S EPCF   P’ D

the entire space of parameters, so we can see at least one kind of
EPCF for each configuration of parameters. Figure 13.2 illustrates
this very clearly for the limiting case as discounting vanishes. As
already discussed, the class (b) in Observation 13.2 vanishes in this
limiting case, but the remaining four categories of equilibrium do
span the entire domain.

Indeed, in the class of symmetric EPCFs, all we’ve left out is the
stochastic EPCF which converges to the cooperative outcome. It
can be checked that this looks very similar to its deterministic
counterpart, and exists under similar conditions on the parameters.

Second, it is clear that stochastic EPCFs tell a different story, at least
as far as absorption into an inefficient limit is concerned. Case (a)
in Observation 13.3 tells us that in contrast to the deterministic case,
it is possible (even when δ � 1) to construct stochastic schemes
with unique absorbing limit at mutual defection. The condition
for this to happen can be interpreted in the form of a low enough
value of b, the so-called “sucker payoff”. That b matters is not
surprising, as this payoff (induced by the other agent’s departure
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from cooperation) is what creates the “meta-coordination failure”
discussed in the context of Example 13.6.

Finally, Case (b) identifies (necessary and sufficient) conditions for
the presence of stochastic EPCFs that exhibit cycles. Notice that if
a is not too large then the cooperative outcome must exhibit some
inertia along this cycle (p(x, x) > 0).

It may be worth pointing out that the conditions identified in Case
(c) of Observation 13.2 and Case (b) of Observation 13.3 apply for
the entire range of values for a and b. In particular, we can use these
conditions to conclude that no (symmetric) coordination game can
exhibit a cycle.

The preceding discussion also makes clear that cardinalities do
matter in determining the sort of EPCFs that characterize any given
Prisoners’ Dilemma. To emphasize this and to focus on the leading
case in which δ is close to unity, we end this section (and the chapter)
with three examples.

E 13.7. (Prisoners’ Dilemma 1.) No EPCF supports the unique
dominant strategy Nash equilibrium as its absorbing state, but cooperation
can be supported as the unique absorbing state of a deterministic EPCF for
δ close to unity.19

L R
T 1, 1 −1

2 ,
3
2

B 3
2 ,−

1
2 0, 0

E 13.8. (Prisoners’ Dilemma 2.) The Nash equilibrium can be
supported as the unique absorbing state of a stochastic EPCF for δ close to
unity.

L R
T 1, 1 −6, 3
B 3,−6 0, 0

E 13.9. (Prisoners’ Dilemma 3.) Both cooperation and noncoop-
eration states may be supported as the unique absorbing state of EPCFs
(deterministic and stochastic, respectively) for δ close to unity.

19This game also has a stochastic cyclical EPCF with p(x, x) ∈ (0, 1).
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L R
T 1, 1 −4, 3

2
B 3

2 ,−4 0, 0

13.6 Proofs

Proof of Proposition 13.2. We will construct a deterministic PCF p
that absorbs into x∗ no matter where it starts from. Write out x∗
explicitly as (π∗,u∗), where π∗ is the coalition structure {S∗1, . . .S

∗
K}.

Let x = (π,u) be any initial state.

C 1. x = x∗. Set p(x, x) = 1.

C 2. Case 1 does not hold, and there exists a player i such that
{i} � π, and u∗i > ui. Pick the smallest index i with this property, and
set p(x, y) = 1, where y = (π′,u′) ∈ Fi(x) with u′i = max U({i}).

C 3. Cases 1 and 2 do not hold, and there exists a coalition S ∈ π∗
such that u∗i > ui for all i ∈ S. Pick the smallest index k such that S∗k
has this property, and set p(x, y) = 1, where y = (π′,u′) ∈ FS∗k

(x) with
u′S∗k
= u∗S∗k

.

C 4. Cases 1, 2 and 3 do not hold, and there exists a coalition
S ∈ π∗ such that u∗i ≥ ui for all i ∈ S, and either S � π, or S ∈ π and
u∗S � uS. Pick the smallest index k such that S∗k has this property, and
set p(x, y) = 1, where y = (π′,u′) ∈ FS∗k

(x) with u′S∗k
= u∗S∗k

.

For this construction to be sensible, at least one of the situations
described must obtain. To see this, assume that Cases 1–3 do not
hold. We show that Case 4 must hold. To this end, pick any coalition
T in π. If it is a singleton, we must have ui ≤ u∗i (because a∗ is a core
allocation). We claim the same is true of all i ∈ T even if T is not a
singleton.

For if this is false, then uj > u∗j for some j ∈ T. But then, because u∗ is
a strong core allocation, there exists i ∈ T such that ui < u∗i . Clearly
{i} � π (because T ∈ π and T is not a singleton). But this means that
Case 2 holds, a contradiction.

So we have shown that u∗ ≥ u. In particular, for any S ∈ π∗, we have
u∗S ≥ uS. To complete the argument, suppose that for all S ∈ π, we
have u∗S = uS. Then π cannot equal π∗ (otherwise we would be in
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Case 1). This means that there must exist S ∈ π∗ (with u∗S ≥ uS, as
already shown) such that S � π. So Case 4 holds whenever Cases
1–3 do not.

Therefore the (deterministic) transition from x to y is well-defined in
all cases. It is also easy to see that apart from x∗, x � y for every other
state, and that there are no cycles. It follows that x∗ is the unique
absorbing limit of this PCF.

To complete the proof, we must show that all the conditions of an
EPCF are satisfied by this PCF. To assure this, we first choose the
threshold value of δ∗. For any individual i, let mi be the maximal
payoff that he enjoys over all states in which he receives less than his
core payoff u∗i . Define δ∗i by δ∗i

Cu∗i = mi, where C is the total number
of states, and δ∗ ≡ maxi∈N δ∗i . We take it that the discount factor of
every player strictly exceeds this threshold.

Begin with the state x∗, and consider any move by any coalition S
to x = (π,u). Let L be the members of S who are no better off in the
“static sense” by doing so: L = { j ∈ S|uj ≤ u∗j}. Observe that L is
nonempty. Now apply our constructed PCF thereafter. Notice that
the payoff to any member of S can only change if some member of
L initiates a future move (and indeed, this must happen under the
PCF). Let i ∈ L be one of the first movers from S after the initial move
by S. Given the PCF, i cannot enjoy any more than his core payoff
u∗i after this move is made. The same is also true for the intervening
period between the first move by S and the later move by i. We may
conclude that i cannot be strictly better off (relative to the core payoff)
by participating in the move by S. It follows that at x∗, no strictly
profitable move exists, so we are justified in placing p(x∗, x∗) = 1.

Now consider some state x � x∗. Suppose that we are in case 2.
Given the definition of our PCF, it only needs to be shown that the
stipulated move is profitable. Notice that

Vi(x, p) = (1 − δi)ui + δiVi(y, p)

while
Vi(y, p) ≥ δC

i u∗i > δ
∗Cu∗i

by the normalization that all payoffs are nonnegative, the fact that
the strong core allocation is reached under the PCF in at most C
periods, and the fact that δi > δ∗ for all i. Combining these last two
expressions, it is easy to see that

Vi(y, p) − Vi(x, p) > (1 − δi)
[
δ∗Cu∗i − ui

]
≥ (1 − δi)[mi − ui] ≥ 0,
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where the very last inequality follows from the fact that u∗i > ui, and
the definition of mi.

Now suppose that we are in cases 3 or 4. Then there is some coalition
S∗k which is required to move directly to its segment of the strong
core allocation, creating the state y. Moreover, by condition (c)
in the definition of the move correspondence FS, and given our
PCF, S∗k will receive this payoff for ever after. Clearly this move is
weakly profitable. To see that it is efficient, consider any other state
z = (π′,u′) ∈ FS∗k

(x). Following the same line of reasoning as in case
1, let L be the subset of people in S∗k who are no better off (relative to
their core payoff) by doing so: L = { j ∈ S|uj ≤ u∗j}. Observe that L is
nonempty. Now follow a parallel argument to see that there exists
i ∈ S∗k who cannot derive a higher payoff from the route precipitated
by this alternative move by S∗k. In other words, the prescribed move
for S∗k is efficient.

Finally, notice that our ordering of the cases guarantees that some
strictly profitable (and efficient) move is always made whenever one
exists. �

Proof of Proposition 13.3. Our first task is to fix δ∗. For any x = (π,u)
that is not a weak core state, there is some coalition S and u′ ∈ U(S)
such that u′ � uS. Pick ε > 0 such that u′ ≥ ε + uS. Because there
are only a finite number of states, we may choose ε so that this
inequality holds uniformly across all noncore states, all coalitions S,
and all feasible payoffs u′ ∈ U(S) that do better for S. Next, denote
by M the maximal (one-period) payoff accruing to any player under
the characteristic function. Finally, define δ∗ so that (1 − δ∗C)M < ε,
where C is the total number of states.

Consider any associated intertemporal model of coalition formation,
with δi > δ∗ for all i ∈ N. Suppose, contrary to the statement of the
theorem, that there exists a deterministic EPCF p with unique limit
x, where x is not a weak core state. Then there is some coalition S and
u′ ∈ U(S) such that u′ � uS. Let S induce the state y = (π′′,u′′) ∈
FS(x) such that u′′S = u′. Given the EPCF, starting from y, the system
must attain x again in at most C periods and stay there. Moreover,
for this to happen, some member i of S must participate in some
profitable move z from y (for if not, all members of S must receive u′

for ever after, a contradiction to the fact that x is the unique limit).
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This means that

(13.2) Vi(z, p) ≥ Vi(y, p).

Now observe that

Vi(y, p) = (1 − δi)u′i + δiVi(z, p),

so that

Vi(z, p) − Vi(y, p) = (1 − δi)[Vi(z, p) − u′i ]

≤ (1 − δi)
[
(1 − δC

i )M + δC
i ui − u′i

]
< ε + ui − u′i
≤ 0.

But this inequality contradicts (13.2). �

Proof of Proposition 13.4. Let C be the total number of states. Let M and
W be the maximal and minimal (one-period) payoffs to any player.
Pick δ∗ ∈ (0, 1) such that for any two states x and y in X and any
index i with ui(x) > ui(y), we have (i) ui(x) > (1 − δ∗C)M + δ∗Cui(y),
and (ii) (1 − δ∗C)W + δ∗Cui(x) > ui(y). Consider any collection of
discount factors all in (δ∗, 1), and fix some absorbing deterministic
EPCF. Let Z ⊆ X be its set of absorbing states.

Let z ∈ Z be some absorbing state. Fix any coalition S and
consider any x ∈ FS(z). Use the notation x0, x1, . . . , xm to describe
the subsequent path prescribed by the PCF starting from x = x0 and
ending at the absorbing state xm = y ∈ Z. Because the PCF is an
equilibrium, we also know that there are coalitions S0,S1, . . . ,Sm−1
such that for j = 0, . . . ,m − 1, xj+1 ∈ FSj(x

j) and

(13.3) Vi(xj+1) ≥ Vi(xj)

for all i ∈ Sj. Now observe that Vi(xj) = (1 − δi)ui(xj) + δiVi(xj+1), so
that by (13.3),

(13.4) Vi(xj+1) ≥ ui(xj)

for each Sj and i ∈ Sj. Next, note that

Vi(xj+1) ≤ (1 − δC
i )M + δC

i ui(y)

(because the PCF from xj+1 leads to the absorbing state y in at most
C steps), and combining this with (13.4), we may conclude that

(1 − δC
i )M + δC

i ui(y) ≥ ui(xj).



13.6 Proofs 275

But this means (by (i) in our definition of δ∗) that

(13.5) ui(y) ≥ ui(xj)

for all Sj and all i ∈ Sj. (13.5) proves that y, apart from being in Z,
sequentially dominates x.

Moreover, since x is a possible move (by S) from z and z is an
absorbing state, Vi(x) ≤ Vi(z) for some i ∈ S. Because z is absorbing,
we know that Vi(z) = ui(z), so that

(13.6) Vi(x) ≤ ui(z).

Now observe that

Vi(x) ≥ (1 − δC
i )W + δC

i ui(y)

(because the PCF from x leads to the absorbing state y in at most C
steps). Combining this with (13.6) we may conclude that

ui(z) ≥ (1 − δC
i )W + δC

i ui(y)

By part (ii) in the definition of δ∗, we deduce that

(13.7) ui(z) ≥ ui(y)

for some i ∈ S.

Now (13.5) and (13.7) together prove that f (Z) ⊇ Z, where f (Z) is
the set of all states x such that for every coalition S and for any state
y ∈ FS(x), there exists z ∈ Z (where either y = z or z sequentially
dominates y) such that the inequality ui(x) ≥ ui(z) holds for some
i ∈ S. Using the same argument in the proof of Proposition 1 in
Chwe (1994), we may conclude that Z is contained in the largest
consistent set. �

Proof of Proposition 13.5. First we prove that p(a∗, a∗) = 1. Suppose
not. Then there is some coalition S and a move to a state a such
that Vi(a, p) ≥ Vi(a∗, p) for all i ∈ S. Let a′ be some state having the
lowest value of Vi among all states satisfying the requirement of the
previous sentence. (By the assumption of common payoffs and a
common discount factor, the same state can achieve this for every
player.) By not moving, each member i of coalition S gets a payoff
of

(1 − δ)ui(a∗) + δ
∑
a∈A

p(a∗, a)Vi(a, p)

which is obviously larger than Vi(a′, p), a contradiction.

Next, we show that a∗ is the unique absorbing limit. To this end,
we first note that if a′ � a∗, then there exists a′′ � a′ such that
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p(a′, a′′) > 0. Suppose not; then p(a′, a′) = 1 for some a′ � a∗. In
particular, Vi(a′, p) = ui(a′), while Vi(a∗, p) = ui(a∗). However, since
ui(a∗) > ui(a′), we have Vi(a∗, p) > Vi(a′, p) for any i ∈ N. So there
is a strictly profitable move from a′, which contradicts requirement
(ii) of an EPCF. This establishes the claim at the beginning of the
paragraph.

Now, if a∗ is not the unique absorbing limit, then the set C(p) ≡ {a ∈
A : for any k ≥ 1, p(k)(a, a∗) = 0} is nonempty. By the common payoff
assumption, there exists a′ ∈ C(p) such that Vi(a′, p) ≥ Vi(a, p) for
any a ∈ C(p). By the claim of the previous paragraph, there is a state
a′′ such that p(a′, a′′) > 0.

In order to satisfy requirement (i) of an EPCF, it must be (recalling
common payoffs) that Vi(a′, p) ≤ Vi(a′′, p) for all i. But it is obvious
that a′′ ∈ C(p). Consequently, from the definition of a′ it follows that
Vi(a′, p) = Vi(a′′, p), and indeed, this is true for any state a′′ such that
p(a′, a′′) > 0.

At the same time, we know that Vi(a∗, p) = ui(a∗) > Vi(a′, p).
Therefore, we conclude that although Vi(a∗, p) > Vi(a′, p) for any
i ∈ N (common payoffs), p(a′, a′′) > 0 occurs only for a′′ with
Vi(a′′, p) = Vi(a′, p). This violates requirement (ii) of an EPCF, a
contradiction. �

13.7 Summary

This chapter studies a “real-time” model of coalition formation. As
in Part 2 of this book, such a process is viewed as a (possibly)
stochastic sequence in which coalitions and payoffs evolve over
time. However, in contrast to the protocol-based bargaining model
studied in Part 2, the approach in this chapter is in the tradition
of cooperative game theory. The process of coalition formation is
spurred on by coalitional moves to a new state. Such moves are not
explicitly proposed by any individual; they are simply presumed to
occur only if all individual members of the coalition gain thereby.

I “benchmark” the equilibrium concept by using a special case of
it to characterize the core. More precisely, I study the class of de-
terministic processes of coalition formation with unique absorbing
limit. I show that in all models of coalition formation that are
derived from an underlying characteristic function, the limits of
such processes (essentially) coincides with the core (Propositions
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13.2 and 13.3), provided that discount factors are close enough to
unity. Apart from benchmarking our solution concept, this result is
of independent interest because it reveals an interesting consistency
property of the core, which goes beyond the well-known “internal
consistency” of the core; see Observation 11.1.20

Next, I consider deterministic schemes that do not necessarily have
a unique limit (but nevertheless do not display cycles). I show
by means of an example that non-core limits might now emerge.
However, it turns out that such schemes yields absorbing states
that always lie within the “largest consistent set” (Chwe (1994)),
provided that discount factors are close enough to unity.

This result (Proposition 13.4) is valid without any restrictions on
the underlying model of coalition formation and serves as a second
important benchmark. However, the inclusion of absorbing limits
within the largest consistent set is generally strict. Example 13.3,
which shows this, brings out the fact that our solution concept
imposes more restrictions on the final outcomes than the largest
consistent set does. But this does not mean that the outcomes
selected by our solution are necessarily the “more efficient” ones;
Example 13.4 is devoted to an understanding of this point.

Next, I make some observations on deterministic cyclical solutions.
These typically exist in situations in which core-like restrictions
lead to an empty outcome. But there are examples in which no
such solution (and indeed, no deterministic solution) exists. This
motivates a study of probabilistic solutions, which takes up the final
section of the chapter.

Uncertainty enters a process of coalition formation in two possible
ways. First, a particular coalition may be able to induce two or more
states which are not payoff-comparable, and might randomize (or be
perceived as randomizing). Second, it is possible that at some state
several coalitions have access to profitable moves, and that these are
chosen randomly.

20Green (1974) and Sengupta and Sengupta (1996) prove a related result: starting
from an arbitrary state, a sequence of profitable coalitional deviations lead to a core
state (Green shows this for exchange economies and Sengupta and Sengupta for
TU games). But there is a fundamental difference between these results and the
one established here. The earlier results assume that players are myopic, so that
members of a moving coalition do not foresee what happens after their immediate
deviation takes place. In the model described here, in contrast, individuals are
farsighted and will need to forecast future deviations or moves.



278 The Blocking Approach in Real Time

It turns out that such forms of randomization occur naturally in
strategic form games, in the sense that randomization is often
necessary for existence of an equilibrium process (contrast this with
characteristic functions). Accordingly, we focus in the section on
games in strategic form. The simplest (though by no means trivial)
starting point is games with common payoffs. We show that for
such games, every equilibrium must lead to the efficient outcome,
provided that discount factors are close to unity (Proposition 13.5).

But this result fails when we depart from common payoffs. For
instance, we show (Example 13.6) that a 2×2 symmetric coordination
game may generate equilibria that hone in on the “bad” equilibrium.
The stochastic nature of the equilibrium is explained in detail;
indeed, we argue that such an equilibrium must be stochastic.

We turn finally to a detailed analysis of the Prisoners’ Dilemma.
Our solution concept applied here yield a rich variety of outcomes
(though, to be sure, not everything is possible). The main points
are: (1) cooperation can be sustained using deterministic schemes,
while defection can never be sustained in this way (provided that
discount factors are close to unity); (2) in contrast, stochastic schemes
can support defection as an absorbing state, and can also generate
cycles of movement with possibly some inertia at the cooperative
outcomes; and (3) cardinalities do matter in pinning down equilibria
— Observations 13.2 and 13.3 and Examples 13.7–13.9, which
conclude the chapter, make these points amply clear.

Appendix A

Remarks on Efficient Moves.

We make some brief remarks on the notion of efficient moves in the
definition of an EPCF. As observed in the main text, one might weaken
the definition of an EPCF to allow for all profitable moves, not just the
efficient ones. Call such an EPCF a weak EPCF.

1. The existence of weak EPCFs is obviously not an issue, because an EPCF
is clearly a weak EPCF.

2. Weak EPCFs might lead to outcomes that appear unreasonable.
Consider the following example with two players — 1 and 2 — and three
states, x, y and z. Payoffs are as follows:
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x y z
1 0 1 100
2 1 0 100

Suppose further that individual 1 can induce y and z from x, while 2
can induce x and z from y, and that no other coalition/state combination
permits nontrivial moves.

Now it is easy to construct a weak EPCF (for all discount factors, in fact) in
which, starting from either x or y, the system endlessly oscillates between
x and y, even though either player could induce z and make both players
much better off. An EPCF would negate this possibility by permitting —
indeed, demanding — that each player make an efficient move.

3. At the same time, it is worth noting that our core characterization
theorems may be strengthened by taking note of the distinction between
EPCFs and weak EPCFs. This is true in the following sense. In Proposition
13.2, a (strong) core outcome is “implemented” by an EPCF (satisfying the
efficient moves principle). At the same time, a cursory glance at the proof
of Proposition 13.3 will reveal that every weak deterministic EPCF with
unique absorbing limit must pick out a (weak) core allocation. That is,
Proposition 13.3 applies to the broader class of weak EPCFs.

4. It hardly needs to be mentioned that the “efficient moves” requirement
need not lead to efficiency overall, for exactly the same reason that Nash
equilibria need not be Pareto optimal. For instance, Observation 13.3 tells
us that an EPCF may lead to mutual defection as its unique absorbing limit
in the case of the Prisoners’ Dilemma.

5. However, there is an important sense in which our equilibrium concept
fails to capture certain aspects of “efficient moves”. We have proceeded
entirely in the spirit of dynamic games, in which the one-shot deviation
principle is applied: players take not only the strategies of other players
as given, they take as given their own strategies in the future. By the well
known principle of Blackwell that “unimprovability implies optimality”
in discounted situations, there is seemingly no loss of generality in doing
this.

But the principle fails when “players” are coalitions (and also if players
have vector-valued objectives). To create a profitable deviation for the
coalition as a whole (or for every component of the vector payoff function),
several moves may be needed. Indeed, this sort of consideration lies
behind the efficiency failure in Example 13.4. There, the coalition {12}
can engineer, if it so wishes, a move from one of the inefficient absorbing
states a or c. However, a move from a only ends at c, and vice versa, so
that both players cannot find it simultaneously worthwhile to participate
in the proposed move. At the same time, if players {12} were to
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simultaneously deviate at both a and c, the “double deviation” would
indeed be worthwhile.

This raises a conceptual issue. The principle of one-step deviations is built
into our solution concept: individuals and coalitions at different dates are
regarded as different individuals and coalitions. Therefore coalitions are
as involved (in this conceptualization) in a game against themselves as
against other coalitions. It is unclear whether this formulation should be
dropped (compare this, for instance, with the literature on changing pref-
erences, e.g., Strotz (1958) and Phelps and Pollak (1968)). We tentatively
retain it, despite the disturbing feature of Example 13.4.

6. Finally — while accepting the efficient moves principle — one might
question the particular formulation adopted in our definition. For instance,
one could rule out an efficient move for S (as described by us) if there is
some strict subset of S, say T, which can generate another change that makes
its members still better off relative to the payoff under the efficient move
(by S). In this case one might want to assign probability zero to the move
by S (and positive probability to the move by T). However, this refinement
raises other issues. One interpretation of the probabilistic nature of a
move is that Nature chooses a coalition randomly and permits it to enjoy
a profitable deviation. In that case, the subset T might be bound by the
decisions of the entire coalition S. On the other hand, if this interpretation
is rejected, then other problems arise. For instance, why restrict the search
for better moves to subsets of S and not other sets T which share a common
intersection with S (where the intersecting members are allowed to go with
the coalition that has the better move)? But this further refinement leads
to possible circularities, rendering a conceptually satisfactory definition
impossible. At the same time, it should be noted that such potential
circularities in defining efficient moves — which we avoid by assumption
— do not in any way preclude the study of cycles over time, which are
allowed for in the definition.

Appendix B

Proofs Omitted in the Main Text.

Proof of Proposition 13.1. Denote by P the set of all possible PCF’s. We
construct a correspondence φ : P ⇒ P, show that a fixed point exists, and
observe that a fixed point of φ must be an EPCF.

We begin by observing that for every p ∈ P, a unique value function
Vi(x, p) exists for each player i, satisfying (13.1). Let Vi(p) denote the
vector of payoffs {Vi(x, p)}x∈X, ui the vector of current payoffs {ui(x)}x∈X,
and P the matrix of transition probabilities (under p). Then (13.1) may be
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immediately rewritten as

(I − δiP) Vi(p) = ui.

Since δi ∈ (0, 1), I − δiP has a dominant diagonal. This guarantees the
unique solvability and continuity of Vi(p) in p.

To construct φ, first consider (x, p) such that strictly profitable moves exist;
let Y(x, p) be the set of all strictly profitable and efficient moves. For each
y ∈ Y(x, p) there is a coalition S such that y is strictly profitable and efficient
for S from x (under p). Call such a coalition allowable (given (y, x, p)), and
for each allowable coalition S define σS(y, x, p) ≡ mini∈S[Vi(y, p) − Vi(x, p)].
Having done so, let σ(y, x, p) ≡ maxS σS(y, x, p), where the maximum is
taken over allowable coalitions S. Now define a probability measure over
Y(x, p) — call it q(x, p) — by

(13.8) q(x, p)[y] ≡
σ(y, x, p)∑

y′∈Y(x,p) σ(y′, x, p)
.

Define a correspondence ∆(x, p) as follows: when strictly profitable moves
exist,∆(x, p) = {q(x, p)}. Otherwise,∆(x, p) be the collection of all probability
measures with support contained in the union of {x} and the collection of
weakly profitable and efficient moves from x (under p).

Obviously, ∆(x, p) is nonempty and convex-valued for each (x, p). Now we
claim that it is uhc in p for given x. To this end, let pk be some sequence inP
converging to p. Study a corresponding sequence qk ∈ ∆(x, pk) and extract
a convergent subsequence converging to some q (retain original sequence
notation). We claim that q ∈ ∆(x, p).

This claim is obviously true if no strictly profitable move exists at (x, p).21

So suppose that a strictly profitable move does exist at (x, p). We note that
for any y ∈ Y(x, p), σ(y, x, pk) → σ(y, x, p) as k → ∞. (This is very easy to
verify, using the fact that Vi(x, p) is continuous in p for every i and x.)

In particular, this means that for k large enough, ∆(x, pk) is a singleton
containing the probability measure q(x, pk) defined by (13.8). It also means
that q(x, pk)→ q(x, p).

We have therefore shown that ∆(x, p) is nonempty, convex-valued and uhc
in p for each x. Define φ : P ⇒ P by φ(p) =

∏
x∈X ∆(x, p) for every p ∈ π.

Then, by the arguments above, all the conditions for the Kakutani fixed
point theorem are satisfied, and there exists p∗ ∈ P such that p∗ ∈ φ(p∗). It
is easy to see that p∗ satisfies all the conditions of an EPCF. �

21All we need to observe is that if y is strictly profitable for the sequence (x, pk),
then it must be weakly profitable for (x, p).
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Proof of Observation 13.1. I first construct an equilibrium in which every
state x′ either moves to state y′ with probability p, where (x′, y′) ∈
{(x, y), (y, z), (z, x)}, or continues unchanged with probability 1 − p. Then

1 − δ + δp 0 −δp
−δp 1 − δ + δp 0

0 −δp 1 − δ + δp




VH

VM

VL

 = (1 − δ)


1
a
0


where 

VH

VM

VL

 =


V1(x, p)
V1(z, p)
V1(y, p)

 =


V2(y, p)
V2(x, p)
V2(z, p)

 =


V3(z, p)
V3(y, p)
V3(x, p)

 .
By solving this equation we see that

VH = D{(1 − δ + δp)2 + a(δp)2}
VM = D{a(1 − δ + δp)2 + δp(1 − δ + δp)}
VL = D{(δp)2 + aδp(1 − δ + δp)},

where D = (1 − δ)/[(1 − δ + δp)3 − (δp)3] > 0, and p denotes the probability
of moving to the next state.

Note first that VM − VL = D(1 − δ)[δp + a(1 − δ + δp)] > 0. Thus, a player
who is currently getting 0 surely joins a coalitional move. The question
is whether a player who is currently getting a would also do so. Some
tedious calculations show that

VH − VM = D(1 − δ){(1 − δ + δp) − a(1 − δ + 2δp)},
so that

VH ≥ (<)VM ⇐⇒ a ≤ (>)
1 − δ + δp
1 − δ + 2δp

.

Note that p = 1 if VH > VM, and p ∈ (0, 1) can occur only if VH = VM. Thus,
when a < 1/(1 + δ), VH > VM holds for any p, and we must conclude that
p = 1. Similarly, when a = 1/(1 + δ), the only possibility is, again, p = 1.

When a > 1/(1+δ), p can no longer be 1, since p = 1 implies VH < VM. Since
a < 1, neither can it be that p = 0 (VH > VM). Thus, the only possibility
left is the case where VH = VM so that p ∈ (0, 1) holds. Hence, when
a > 1/(1 + δ), p = (1 − a)(1 − δ)/δ(2a − 1) is the unique symmetric EPCF.

The rest of the proof shows that no deterministic EPCF exists when a >
1/(1 + δ). Suppose one does. First consider the case in which p(x′, x′) = 0
for all states x′. In this case, p(x, y) = 1. For if not, we have p(x, y) = 0,
so that p(x, z) = 1. But then it is easy to see that player 1 will never agree
to the move from x to z. By the same argument applied to each state, we
conclude that p(x, y) = p(y, z) = p(z, x) = 1. But we’ve argued above that
this is impossible when a > 1/(1 + δ).

So the only remaining case is one in which p(x′, x′) = 1 for some state,
say x′ = x. In this case we must have p(y, y) < 1 (otherwise {23} will
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have a strictly profitable move from x) and p(z, z) < 1 (because {12} has a
strictly profitable move from z). By determinism, we may conclude that
p(y, y) = p(z, z) = 0. Now, p(y, x) must be 0 as well (2 would not agree to
move from y under a deterministic EPCF), so p(y, z) = 1. Likewise, we
have p(z, y) = 0 (3 will not agree to move under a deterministic EPCF), so
p(z, x) = 1. It follows that for player 3,

V3(z, p) = 1 − δ,
while by refusing to move from y under the deterministic EPCF, player 3
can guarantee herself a value of a. Consequently, V3(y, p) ≥ a. It is easy to
see that under our assumptions, a > 1− δ. We may therefore conclude that
V3(y, p) > V3(z, p), which contradicts the fact that coalition {23} moves the
state from y to z. �

Proof of Observation 13.2. First, note that in any deterministic EPCF, we
must have p(y, y) = p(z, z) = 0 and p(y,w) = p(z,w) = 1.

Case a. Deterministic EPCFs with unique absorbing state x. We already
know that p(y,w) = p(z,w) = 1 as described above. Moreover, it must be
that p(w, x) = 1. Notice that Vi(w, p) = δVi(x, p) > 0, so Vi(w, p) < Vi(x, p),
so the move from w to x is strictly profitable for both players. It remains
to check that a unilateral move from x to, say, y is not worthwhile. Such a
move fetches player 1 (1−δ)a+δVi(w, p) = (1−δ)a+δ2Vi(x, p) = (1−δ)a+δ2,
whereas remaining at x yields 1. It follows that such a deterministic EPCF
exists if and only if a ≤ 1/(1 + δ).

Case b. Deterministic EPCFs with unique absorbing state w. Once again,
we know that p(y,w) = p(z,w) = 1, and also that p(w,w) = 1. Because
p(x, x) = 0, consider first the possibility that p(x,w) = 1. This isn’t possible
because — using determinism — either player can negate such a move
and guarantee a flow of 1 forever. Therefore, I analyze a PCF with
p(x, y) = 1. (Since it is deterministic, the EPCF must treat moves to y
and z asymmetrically. The only other case is the mirror image of this, to
be studied in exactly the same way.)

First I justify p(x, y) = 1. For player 1 to move from x, we need (1 − δ)a +
δV1(w, p) ≥ V1(x, p). Note that V1(x, p) = (1− δ)+ δ(1− δ)a+ δ2V1(w, p) and
V1(w, p) = 0. Thus, what we need is a ≥ 1 + δa or a ≥ 1

1−δ .

Second, we must “justify” p(w,w) = 1. It is necessary and sufficient to
show that player 2 (who suffers more by moving to x) does not want to do
so. This condition is 0 = V2(w, p) ≥ V2(x, p) = 1 + δb + δ2V2(w, p) = 1 + δb,
or δb ≤ −1. These two conditions on a and b are precisely those listed in
the statement of the observation.

Case c. Deterministic cyclical EPCFs. Once again, there are two such
solutions, to be treated entirely symmetrically: one with p(x, y) = 1 and
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the other with p(x, z) = 1. We study the case in which p(x, y) = p(y,w) =
p(z,w) = p(w, x) = 1. To assure ourselves that p(x, y) = 1, it is necessary and
sufficient that a+ δV1(w, p) = a+ δ2V1(x, p) ≥ V1(x, p), or a ≥ (1− δ2)V1(x, p).
But it is easy to see that

V1(x, p) = (1 + δa + δ20) + δ3(1 + δa + δ20) + . . . =
1 + δa
1 − δ3 ,

so that our required condition is

a ≥ (1 − δ2)
1 + δa
1 − δ3 ,

which is equivalent to a ≥ 1 + δ.

To make sure that p(w, x) = 1, it is necessary and sufficient to check
incentives for the “weaker” player 2: V2(x, p) ≥ V2(w, p), or equivalently,
V2(x, p) ≥ 0. Direct computation tells us that

V2(x, p) = (1 + δb + δ20) + δ3(1 + δb + δ20) + . . . =
1 + δb
1 − δ3 ,

so that the condition in question is simply b ≥ − 1
δ . This concludes the

study of all deterministic EPCFs. �

Proof of Observation 13.3.

Case a. Stochastic symmetric EPCFs with an absorbing state w. To display
these, we set up the relevant value functions. By symmetry, we can simply
focus on Player 1:

V1(x, p) = 1 +
δ
2
(
V1(y, p) + V1(z, p)

)
,

V1(y, p) = a + δV1(w, p),
V1(z, p) = b + δV1(w, p),

V1(w, p) = 0.

By substituting V1(w, p) = 0 in the other equations, we may conclude that
V1(y, p) = a, V1(z, p) = b, and

V1(x, p) = 1 +
δ
2

(a + b) .

Since a < 0 and b < 0, p(y,w) = p(z,w) = 1 are incentive compatible.
Moreover, p(w,w) = 1 can be supported if V1(x, p) ≤ 0, or a + b ≤ − 2

δ .
The question is whether we can support p(x, y) = 1

2 . The answer is yes
if V1(y, p) ≥ V1(x, p), or a ≥ 2

2−δ +
δ

2−δb. Thus, if (i) a + b ≤ − 2
δ , and (ii)

a ≥ 2
2−δ +

δ
2−δb, then the above PCF is indeed an EPCF. Since condition

(ii) is satisfied trivially (a is the highest payoff of all), condition (i) is the
only one that needs to be satisfied. That is, if a + b ≤ − 2

δ , then w can be
supported as the unique absorbing state of a symmetric stochastic EPCF.
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Case b. Stochastic symmetric cyclical EPCFs. We analyze a PCF with
p(x, y) = p(x, z) = p ≤ 1

2 , and p(y,w) = p(x,w) = p(w, x) = 1. Again, the key
conditions are (i) V1(y, p) ≥ V1(x, p), and (ii) V1(x, p) ≥ V1(w, p). It is easy
to see that

V1(x, p) = 1 + δ{p(V1(y, p) + V1(z, p)) + (1 − 2p)V1(x, p)}
= 1 + δp(a + b) + 2δ2pV1(w, p) + δ(1 − 2p)V1(x, p)

= 1 + δp(a + b) + 2δ3pV1(x, p) + δ(1 − 2p)V1(x, p),

so that
{1 − δ + 2δp − 2δ3p}V1(x, p) = 1 + δp(a + b),

or equivalently,

V1(x, p) =
1 + δp(a + b)

(1 − δ)(1 + 2δp(1 + δ))
.

Now, we are ready to check condition (i). We need V1(y, p) = a+δ2V1(x, p) ≥
V1(x, p), or a

1−δ2 ≥ V1(x, p). Thus, we need

1 + δp(a + b)
(1 − δ)(1 + 2δp(1 + δ))

≤ a
(1 − δ)(1 + δ)

.

Hence, condition (i) boils down to

b ≤ { 1
(1 + δ)δp

+ 1}a − 1
δp
.

Now for condition (ii). This is equivalent to V1(x, p) ≥ 0, or a + b ≥ − 1
δp .

Putting these two conditions together, we finally obtain:

(13.9) −a − 1
δp
≤ b ≤ { 1

(1 + δ)δp
+ 1}a − 1

δp
.

Recall p ∈ (0, 1
2 ]. Thus, an stochastic EPCF with p(x, x) = 0 (p = 1

2 ) can be
supported in the parameter range of −a− 2

δ ≤ b ≤ ( 2+δ+δ2

δ+δ2 )a− 2
δ . The second

inequality is almost always satisfied if a > 1 (the Prisoners’ Dilemma)
and if δ close to 1. The first inequality is more demanding and we need
−2 ≤ a + b when δ is close to unity.

What if p is less than 1
2 ? In this case, we have p(x, x) > 0 holds, which

means that players 1 and 2 need to be indifferent between deviating from
x and staying at x. This means that the second inequality in (13.9) must
hold with equality. This implies that

p =
1 − a

1+δ

δ(a − b)
.

Thus, if a ≥ 2, then there is no such p > 0 for any δ < 1, and we can only
have a stochastic EPCF with p = 1

2 . If a < 2, then the above p satisfies
the first inequality as long as δ > a − 1, and p < 1

2 can form a stochastic
EPCF. �
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CHAPTER 14

Directions

In this book, I’ve tried to outline an approach to coalition forma-
tion and binding agreements, one that adopts an explicitly game-
theoretic perspective. It goes without saying that a game-theoretic
approach to this subject isn’t novel at all. Some of the earliest
questions in game theory were about binding agreements, as the
magisterial tome by von Neumann and Morgenstern (1944) so
clearly reveals. In this sense, I simply continue in the tradition
of a long literature.

Two methodological themes receive emphasis throughout this book.
First, while an agreement, once agreed to, may be implemented at
little or no cost, the process by which that agreement is arrived
at is fundamentally noncooperative. By marrying noncooperative
game theory to the traditional structure of cooperative games, we
can gain insight into this process. Second, I highlight throughout
a particularly significant failure of cooperative game theory. In
its near-universal acceptance of the characteristic function, it has
unwittingly downplayed the immense importance of externalities
across formed coalitions. (The characteristic function essentially
assumes those externalities away by assigning an unambiguous
worth to each coalition, irrespective of the ambient coalition structure
in which that coalition is located.)

These two themes combine in interesting ways. For more on that you
will have to read the book, if you haven’t done so already. However,
one overriding implication, which requires further research, is that
coalitional negotiations are often grossly inefficient. We’ve been
brought up on a steady diet of incomplete information — or failure
of contractibility — to understand the inefficiencies that we see
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around us. And of course, that viewpoint has yielded deep and
useful insights. Yet — and this is even more true of someone
brought up in a developing country — there is a huge variety of
situations in which incompleteness in information may not represent
the appropriate first cut. In the debates around major issues —
protectionism, infrastructural investments such as large dams, land
reform, taxation, the transition from agriculture to industry, ethnic
conflict — the vested interests of different parties are not exactly
state secrets. The Coase theorem would have us contract these
problems away, moving inexorably at each instance to the the
surplus maximizing outcome. That doesn’t happen.

To be sure, common sense dictates that no one approach can
do justice to these issues. Incomplete information, the lack of
commitment, and the difficulty of internalizing diffuse costs and
benefits all have their role to play. My only objective here is to also
call attention to the process of coalition formation, stripped of all
these other features that we understand relatively well. The hope
is that such theories will also become first-order participants in our
understanding of the obstacles to sustained economic development.

This monograph represents a particular perspective on coalition
formation, and in no way attempts to be a comprehensive treatise
on the subject. At the same time, lack of comprehensiveness cannot
be an excuse for ignoring complementary avenues of progress and
new directions. In this final chapter I’d like to explore some of
these themes. The classification of the material in this chapter is
entirely whimsical. Some of the headings are methodological; others
concern new questions or topics. I hope that the reader will forgive
this mixed-up taxonomy.

14.1 Coalition Formation Without Unanimity

An assumption maintained throughout this monograph is that every
coalition member must agree in the formation of a coalition. In many
situations — political legislation comes to mind as an example —
this is a strong restriction. Majority approval or more generally,
the achievement of some given supermajority, may be enough to
implement an outcome. Baron and Ferejohn (1989) formally develop
a noncooperative bargaining game along the lines of the Rubinstein–
Ståhl model with unanimity replaced by majority.
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We’ve already discussed the “closed rule” version of the Baron–
Ferejohn model in Section 4.5 of Chapter 4. A cake of unit size is
to be divided among n players, who make proposals. Responses
are sequential, but only some given supermajority m > n/2 need
approve the proposal for it to be implemented. Once a proposal is
rejected a fresh proposer is chosen at random. Once a proposal is
accepted the game is over.

We’ve seen in Section 4.5 that such a model of bargaining with
supermajority approval is equivalent to the study of unanimous
bargaining for the characteristic function

v(S) = 1 if and only if |S| ≥ m.

It therefore predicts the formation of minimal winning coalitions
of size m. Of course, a suitably defined characteristic function
bargaining model with unanimity would yield exactly the same
result.

For games with ongoing negotiation, such as those introduced in
Chapter 8, it is unclear how to study nonunanimity protocols.
Recall our study of binding agreements there: we presumed that
ongoing agreements are in force unless unanimously relinquished
by those whose coalitional memberships are altered (by the fresh
proposal under consideration). If we adopt the interpretational
view, described above, that the agreement of a subcoalition S is
simply a proxy for a majority agreement within a larger coalition
(which is the grand coalition in the case of the Baron–Ferejohn
model, but need not be so more generally), then who is it that
must approve the dissolution of that agreement? Must the breaking
up of an existing agreement be settled by unanimity? Or if not,
must a majority of the affected players agree, or simply a majority
of players directly involved in the fresh initiative? Questions such
as these must often be addressed on a case-by-case basis. It is hoped
that the general methodology developed for reversible agreements
remains largely valid, but this will require more careful study.

14.2 Equity Within Coalitions

The Baron–Ferejohn model contains a second implication, one that
is fundamentally the product of the random-proposer protocol. It is
that winning coalitions will generally not share the surplus equally,
and that the proposer (within the winning coalition) will pick up a
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larger share. When the protocol is “rejector-proposes”, the winning
coalition must exhibit approximately equal division, as per our
results in Chapter 5, even though only a majority is required for
implementation.

This sort of unequal division stems from two sources; first, that the
ability to make a proposal allows the proposer to be part of some
advantageous subcoalition (a winning coalition in the special case of
the Baron–Ferejohn model); and second, that the mantel of proposer
is not readily granted to a responder who rejects, a feature of the
random-proposer model.1 These two forces create a situation in
which the responder is fundamentally weaker than the proposer,
not because of any innate ability or type differences, but simply
because of bargaining protocol.

In this book, we’ve chosen instead not to focus too strongly on these
differences. If someone is included in a proposal, then — at least
from the bargaining perspective alone — she is roughly on equal
terms with the proposer. This is why our bargaining model tends
to generate equal division within coalitions. To be sure, someone
may be excluded from the coalition altogether, and then there is
no presumption of equal division between the “insider” and the
“outsider”.

Certainly, our model allows for unequal division within coalitions
when the agents in those coalitions have truly different characteris-
tics or outside options. This is what happens in the more general
coalitional bargaining model studied in Chapter 7, but nevertheless
there is a tendency towards “as much equality as possible”, subject
to outside options (see the discussion in Section 7.4.4).

My focus on such equilibria stems from an underlying view —
one that may be worth more systematic exploration — that within-
group equity among individuals viewed as ex ante similar is a
very strong driving force of human interaction. Within any group,
acknowledged to be engaged in some joint enterprise, the forces
making for equal treatment are strong (unless some special member
is universally acknowledged to have superior outside options or
abilities). In contrast, wholesale exclusion — the forming of separate

1As we’ve seen in our discussion of the Rubinstein–Ståhl bargaining model (see
Section 4.4), both these conditions are really required. In that model, there is only
one coalition to belong to — the grand coalition — and the random-proposer model
cannot prevent equal division as discounting vanishes.
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coalitions — rarely appears to be a problem, and questions of equity
arise less often.

In-group equity concerns appear to be fairly ubiquitous in experi-
mental studies of bargaining. It is well known that even in simple
bargaining situations in which a proposer has all the power, such
as in the ultimatum game, a high degree of equity is preserved in
observed divisions of the surplus. Several authors have attempted
to explain such outcomes by invoking notions of fair play on the
part of the proposer or anger/spite on the part of the responder if
the proposer abuses his privileged position.

There is far less on in-groups versus out-groups in a coalitional
bargaining context. But a recent paper by Frechette, Kagel and
Morelli (2005) [FGM] that is particularly sensitive to this question
finds strong evidence to support the in-group/out-group hypothesis.
Among other things, the paper serves as an experimental assessment
of the Baron–Ferejohn model. The authors consider a 5-person
model of majority bargaining in which the players need to divide
one unit. Proposers are chosen at random. It is easy to see that in
any stationary equilibrium, the proposer takes 3/5, offering 1/5 to
two others to form a minimum winning coalition.2

FGM also study a variant of this model in which one player (an
“Apex player”) is always chosen with “three times the power”. The
easiest way to think of the Apex is to imagine him as three players
rolled into 1. So there are effectively 7 votes, of which the Apex
has 3, and the Apex is also given the floor thrice as often as any
other player. Winning coalitions with the Apex included only need
contain two players; otherwise they must contain 4. This has, of
course, the effect of making the Baron–Ferejohn model generate
even more unequal payoffs: for instance, if the Apex proposes, he
gets 6/7 and offers a single other player 1/7. It also has the effect of
excluding the Apex player very often when other players propose.

The strong and robust finding in their experimental study is that
divisions are far more equal than these predictions would suggest.
The Apex player is generally included (over 70% of the time) when
a winning coalition is formed. Because such a coalition need not
contain many people, there is more surplus to go around. This

2As already noted, the inequality of payoffs arises from the fact that a rejector only
has a 1/5 probability of being the new proposer, and that she may be excluded from
the winning coalition otherwise.
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would not help much in the Baron–Ferejohn theory because the
Apex player eats up a lot of that surplus. Here, by contrast, the
surplus does go around. Therefore surplus-division within the
winning coalition is much more equal and also the Apex is included
more often than the Baron–Ferejohn model would predict.

FGM run an interesting variant in which the Apex is actually paid
(by the experimenters) one-third of what the Apex receives from
other players. One interpretation is that the Apex is a coalition
of three only one of whom is playing the bargaining game; the
remaining two have to be paid off. This changes none of the
theoretical predictions — after all, this just amounts to a proportional
tax on one of the players and should not change any of the equilibria.
But what is interesting is that the experiments now come into much
closer line with the theory as far as the inclusion of the Apex is
concerned. Other players invite the Apex in only 39% of the time
(as opposed to what they were doing before; over 70%).

The broad conclusion from all this is that when proposers form
coalitions, they either feel obliged to divide things within the
coalition pretty equally, or if such unilateral sentiments are missing,
the responders enforce equal division by threatening to reject other-
wise.3 When this is very expensive to do (as in the variant above),
they would rather exclude someone altogether. Exclusion appears
to be a more bearable instrument than within-group inequality.

14.3 Coalition Formation With Deliberate Exit

We’ve made a distinction between “final” commitments that are
irreversible and “intermediate” commitments that can be reversed,
provided the affected parties agree to do so. For instance, within the
broad compass of the bargaining approach to coalition formation,
this was the main distinction between the two lines of argument
initiated in Chapters 4 and 8. But one can clearly entertain extensions
of these ideas.

One particularly important line of reasoning considers the case
in which a player (or coalition) can choose to make one sort of
commitment or the other. If it were to choose the irreversible option,

3The rejector-proposes protocol, which occupies center-stage in much of this book,
may be interpreted as a shorthand for generating such within-coalition equity,
without having to resort to “other-regarding” preferences.



14.3 Coalition Formation With Deliberate Exit 293

one might describe it as “exit”. Otherwise, it forms provisional
agreements which are reversible, and “stays in the game.”

It should be noted, however, that a model in which a player can
choose a particular commitment structure is not a more “general”
model than one in which she cannot, just as a model in which
all commitments can be ultimately reversed is in no sense a more
“general” model than one in which they cannot. (Or vice versa,
I might add.) It all depends on the available “technology” that
underlies commitment structures, an issue that I have addressed in
some detail elsewhere (see, for instance, Section 2.6 in Chapter 2).

Perry and Reny (1994), Seidmann and Winter (1998) and Bloch and
Gomes (2006) analyze different models of deliberate exit. Here is a
version based on the Bloch-Gomes paper, which uses unlimited
upfront transfers in coalition formation. There are an infinite
number of dates, as in the reversible commitments model introduced
in Section 8, and each date has two stages. At the first proposal stage,
coalitions are formed. A proposal by i to a set of players S is simply
an offer to “buy” out the players in S; if accepted, the entire set
can be viewed as a single player/coalition in the following round of
proposals.

On the heels of every proposal stage comes an action stage, in which
each of the going player/coalitions can either choose to irreversibly
exit the game by choosing some irreversible action, or choose a
reversible action which is fixed for the remainder of that period.
One-period discounted payoffs are added together, as are any
upfront transfers made during a proposal stage, to arrive at total
payoffs.

The Bloch-Gomes analysis suggests that the results are in line
with those obtained in Chapters 9 and 10 for binding agreements
under reversible commitments. Specifically, when the payoffs of
exiting players are unaffected by the actions of those who choose to
remain, the long-run outcome of their game is necessarily efficient.
Characteristic functions fall into this category, of course, because the
actions of one group of players never affects the payoffs of a separate
group. But the Bloch-Gomes category is broader than that: it allows
for externalities across players as long as they “remain” in the game.
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So the results run parallel to those in Chapter 9 but apply to a wider
class of games.4

On the other hand, there is scope for persistently inefficient out-
comes when exit options for a coalition do depend on the actions
of other individuals. The discussion in this part of the paper nicely
ties up with the case of externalities and reversible commitments,
studied in Chapter 10.

I do not put forward the Bloch-Gomes analysis as a fully definitive
exercise. For instance, as they themselves discuss, some of their
results may vary with the proposer protocol (see, for instance, their
discussion of Seidmann and Winter (1998) in Example 3 of their
paper). Yet their analysis (along with those of the other authors
cited here) take the theory in an interesting discussion, one that is
well worth further investigation.

14.4 Overlapping Coalitions

There are many situations in which players may belong to more
than one coalition. Firm A and firm B might cooperate in the
production of a particular product or service, and so might firms
B and C, while firms A and C may have nothing to do with each
other. Likewise, free trade agreements are routinely signed across
overlapping collections of countries. Or overlapping groups of
individuals may be involved in relationships involving reciprocity,
information-sharing, or public-goods provision.

Now, none of this is of any serious concern as long as the writing
of one such agreement has no effect at all on the worth or value of
another agreement. If the formation of coalition S leaves the worths
of all other coalitions unchanged, including the worths of those
groups that intersect with S, one can go ahead and simply treat each
of these as separate bargaining problems. That would be the end of
the story.

But of course, matters are generally more complicated. The worths
of a formed coalition do affect those of another, and they do so in
two fundamental ways.

4A fuller comparison will require more careful study: the results in Chapter 9 hold
for all (benign) equilibria, while in the Bloch-Gomes paper attention is restricted
to the traditional class of Markovian equilibria.
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First, for reasons of law, custom or information, the formation of one
coalition may simply negate the formation of some other coalitions.
The logic of a partitional coalition structure implicitly presumes that
when coalition S forms, no other coalition that overlaps with it can also
form. In a single-product oligopoly, it makes no sense to say that
firm A cooperates with firm B, and B with C, but that A and B
interact noncooperatively with each other! The coalition structure
{AB,BC} simply does not make sense. Likewise, in a customs union
(as opposed to a free trade area), the presumption is that there is
free flow of factors and products within the union. Two overlapping
customs unions don’t make sense. Or consider communities that are
formed through the provision of local public goods, nonexcludable
as long as you are living in the same region.

These examples are all constructed to defend the partitional struc-
ture, but the general point at the start of the last paragraph is
obviously broader. There are many instances in which a similar
constraint holds, but in a nonpartitional way. For instance, the
formation of S may rule out separate agreements within subsets of S.

The partitional coalition structure — whether or not a characteristic
function or a partition function is defined on it — embodies such
restrictions. In this sense even the characteristic function carries
with it a cross-coalitional externality!

Second, even if the formation of S does not have any bearing on the
formation on the ability of another coalition T, it might nonetheless
affect what T can achieve. If S and T are overlapping sets of
countries, a free-trade agreement within S does not preclude another
for T, but the payoffs associated with the latter agreement will surely
be affected by the former (and vice versa). Indeed, we are now on
the same familiar turf as the partition function with intercoalitional
externalities, and there is little to add.

Some more formalization may be useful here. Let N be a set of
players. A cover of N is a collection of coalitions γ = {S1, . . . ,Sm}
such that their union is N. (A partitional coalition structure is a
special case of a cover.) A cover function assigns to each cover γ a
value v(S, γ) to every coalition S ∈ γ.

Now, some covers (such as nonpartitional covers in partitional
situations) may simply be infeasible. This is easy enough to
represent provided that the game is normalized to assure positive
payoffs for all coalitions that do “legitimately” form. Simply set the
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values of coalitions in all “illegitimate” covers equal to zero. With
this convention in place, it is easy enough to see that both partition
functions and characteristic functions are special cases.

This monograph does not handle cover functions. This is not
because I foresee serious difficulties in doing so.5 The text reports on
finished work, and cover functions represent part of the road ahead.
In my view an extension of the analysis to handle such functions
would be very welcome. It may well lead to new theoretical
insights, and it will certainly broaden the applicability of the theory
developed here.

14.5 Networks

If we’ve already gone from partitional structures to cover functions,
we can go a step further, though what I am about to discuss is —
along different dimensions — both more general and more specific.

In several situations, the structure of interactions between individ-
uals is perhaps best described by a network. Examples include the
sharing of information (Bala and Goyal (2000), Calvo-Armengol and
Jackson (2001), Bramoullé and Kranton (2002) and Kariv(2002)),
trading networks ( Tesfatsion (1997, 1998) and Weisbuch, Kirman
and Herreiner (2000)), mutual insurance (Fafchamps and Lund
(1997) and Bloch, Genicot and Ray (2007)), technology adoption
(Conley and Udry (2002), Chatterjee and Xu (2004) and Bandiera
and Rasul (2006)) and buyer–seller networks (Kranton and Minehart
(2000, 2001) and Wang and Watts (2006)). This is a burgeoning
literature, and Matt Jackson’s forthcoming book (Jackson (2007))
will serve as an excellent introduction to it.

The network formalism is used as follows. Describe the space of
interactions as a graph, where nodes are just the players, while an arc
between two nodes indicates the existence of a “bilateral interaction”
between the two corresponding players. Thus a network is just a

5This is provided we start from cover functions as a primitive. I must note that
there are interesting and deep conceptual issues in the derivation of cover functions
from an underlying game in strategic form. In particular, it is difficult to apply
a simultaneous-move framework, such as the coalitional equilibrium concept in
Chapter 3, to noncooperative interactions across coalitions in an overlapping cover.
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graph g on N: a collection of i j pairs, the interpretation being that i
and j are “linked”.6

A component of a network g is a subset c of g such that no i ∈ c is
linked outside c and such that every distinct i and j in c are directly
or indirectly linked. (Thus isolated singletons are components by
definition.) For a component c, let S(c) denote the set of individuals
in c. Now we can see the sense in which networks generalize
coalition structures. The set S(c) may be thought of as a coalition, but
it is also an object with finer structure “within” it, for all its members
are not directly linked to one another. Formally, we could embed
a coalition structure into a graph by simply requiring that every
component be completely connected: every pair of agents within each
component is linked. Indeed, with a bit more work, covers can be
integrated within the network formalism as well.

So in this sense, networks are indubitably more general. Yet it is
unclear whether an integrated theory of coalitions and networks is
possible or even desirable, though obviously each literature can gain
from the other in terms of methods, existing results, etc. The reason
is that network formation places the emphasis — as it should, in
my view — squarely on bilateral link formation. The presence of
other links may well impose an externality on the deliberating pair,
but nevertheless it is the pair that decides to form the link, and —
in many economic and social contexts — no one else. This view is
central to the vast majority of network-formation models starting
from the work of Aumann and Myerson (1988).7 I subscribe to this
approach to networks. Yet it is also worth noting that this special
feature is also what keeps the networks literature logically separate
from coalition formation, in which a group of agents (and not just
a pair) may deliberately choose to form. While it is mathematically
possible to describe models of link formation that generalize both
the bilateral (networks) view and the multilateral (coalitions) view,
the significance of such a research agenda from a social-science angle
is not entirely evident to me.

6Because the graph is undirected, these links are reciprocal. For analyses of
valuation structures which are directed graphs, see Bala and Goyal(2000) and
Dutta and Jackson (2000).
7Indeed, there are several situations in which link breakage may be an entirely
individual choice, even while link formation is bilateral. See Jackson and Wolinsky
(1996) for a formalization of this viewpoint. See also Dutta and Mutuswami (1997),
Dutta, van den Nouweland and Tijs (1998), and Slikker and van den Nouweland
(2000, 2001).
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That said, there may be much to be gained by applying methods and
results from one of these fields to the other. As an example of this,
consider the problem of farsighted network formation, studied in
Dutta, Ghosal and Ray (2005), henceforth DGR. Suppose that we are
interested in the dynamic evolution of a network, with individuals
receiving payoffs at every date from the network in place at that
date. Then link formation (or breakage) has repercussions not just
today, but also at future dates, because the evolution of fresh links
will generally depend on the link structure already in place. If
individuals understand these repercussions, they will take them
into account when forming or breaking a link in the current period.

Suppose, then, that each network g is associated with a set of one-
period payoffs, one for each agent. A process of network formation
would then simply be a (possibly stochastic) sequence of such
networks, one for each date, with each network connected to its
immediate predecessor via a set of newly formed or broken links.
Such a process would require every individual to follow a certain
strategy, one that prescribes the breaking or creation of links, or
perhaps inaction, at every stage at which she is supposed to move.

Such a process constitutes an farsighted equilibrium if every player
sticks to her prescribed strategy, and in so doing evaluates payoffs
not just from the current actions but from the entire process that
results, now and in the future. In particular, a potentially profitable
deviation is not necessarily myopic: individuals take the ongoing
process as given and evaluate the entire stream of consequences aris-
ing from a single action. One can imitate perfectly myopic behavior
by taking the discount factor to zero, and perfect farsightedness by
taking the opposite limit. DGR provide the needed formal account.

In this solution concept, network formation and payoffs occur
together. In particular, the definition permits cycles and continued
flux in the network, without creating any difficulty in the evaluation
of overall payoffs. This sort of structure is obviously and closely
related to several of the papers on coalition formation discussed in
the book,8 though at the same time the underlying network structure
imbues the concept with its own distinctive features (more on this
below).

8The concept is most closely related to Konishi and Ray (2003), Gomes and Jehiel
(2005), and Hyndman and Ray (2007).
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DGR use this solution concept to study the question of efficiency
in dynamic network formation. It is well-known from the work
of Jackson and Wolinsky (1996) and others that “stable” networks
in a static context may not be efficient. When a link is formed,
or destroyed, the players involved do so with their own gain in
mind. At the same time, these actions also affect the payoff of other
players, and so a wedge is driven between stability and efficiency.
A solution concept that incorporates farsightedness allows us to
investigate the same questions for dynamic processes of network
formation. Does the possibility of constant renegotiation of links
remove the static inefficiency, or heighten it? DGR establish a
dynamic counterpart of the stability-efficiency tradeoff: there are
situations in which the process will not converge to any efficient
network for any equilibrium strategy profile. But it is also possible to
identify situations in which the presence of farsightedness removes
inefficiency.

Indeed, there are several other questions one can ask of dynamic
networks. Do such processes invariably converge or are they forever
in flux? What is the precise connection between the degree of
farsightedness (proxied by the discount factor) and the extent of
efficiency? What if upfront transfers can be made to encourage link
formation? These are interesting issues indeed, but getting into them
would be taking us too far afield of the specific focus in this book.
Instead, allow me to hope that I’ve piqued your interest sufficiently
for you to think more about such matters.

14.6 Coalition Formation With Nonbinding Agreements

Nonbinding play sets us squarely in the world of noncooperative
theory, in which issues of coalition formation are often relegated
to a secondary role. It must be presumed, of course, that even
when a coalition forms its members must play some noncooperative
equilibrium among themselves. A coalition in this world has an
indicative role to play, by placing attention on a particular subset
of equilibrium strategies, one that is presumably beneficial to the
coalition concerned. In short, and presuming that no form of binding
play is possible, a coalition can be viewed purely as a device for
equilibrium selection.

An early instance of this is the notion of strong equilibrium, a Nash
equilibrium in which no set of players can gain by moving together
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to a fresh profile of strategies, while presuming that the complemen-
tary set of players continue to abide by the original profile (Aumann
(1959)). This refines the set of Nash equilibria, while bestowing
powerful stability properties on the equilibria that do survive the
criterion: imagine something that is immune not just to individual
deviations but arbitrary coalitional deviations: that would be both
Nash equilibrium and nonempty core rolled into one! But this very
conflation of two disparate ideas rings a warning bell. There is no
reason to judge a nonbinding agreement suspect if it can be blocked
by an agreement which itself may lack any stability properties (as
a nonbinding agreement in its own right). Thus Bernheim, Peleg
and Whinston (1987) introduce the concept of coalition-proof Nash
equilibrium (CPNE), in which coalitional deviations meet the same
rigorous stability criteria that constrain the arrangements that are
being deviated upon.

In a sentence, a potential coalitional deviation from a coalition-
proof Nash equilibrium must itself pass coalition-proofness in an
“induced game” in which the complementary coalition stick to their
presumed strategies. This creates a recursive definition.

There is a parallel between such a recursion and the notion of
farsightedness in this book. Deviating coalitions “look ahead”
not just to a deviation but to the consequences of that deviation.
The deviation must therefore be constrained as well (see an initial
discussion in Section 2.4 of Chapter 2).

The major difference is that CPNE applies only to games where no
binding agreements are possible (CPNE are always Nash). In con-
trast, the solution concepts in this book are emphatically not Nash
equilibria of the underlying games they study, though of course
they are “noncooperative” equilibria of the underlying negotiation
process. As a trivial example, the unique noncooperative outcome
in the Prisoner’s Dilemma is also the unique CPNE, while the only
equilibrium binding agreement for the induced partition function is
the cooperative outcome.

It is important to understand what lies at the formal heart of this
distinction. It is captured by the specification of what follows a
coalitional deviation. Imagine two players at a negotiating table.
If no binding agreements are possible, the CPE are precisely those
Nash equilibria which are Pareto optimal in the class of all Nash
equilibria. If binding agreements are possible, the word “deviation”
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translates as “breaking-off of negotiations”. In this example, the
environment then shifts to the coalition structure of the two players
acting independently (two singleton coalitions). When one of the
two players “deviates”, there is no question of taking the other
player’s strategy as given, as in CPE. Therefore, it is imperative to
explicitly model the “game” that results after the deviation, and use
the “equilibria” of this game to determine the limits of the original
negotiation process.

It would be of interest to investigate dynamic noncooperative games
with (nonbinding) coalition formation, along lines parallel to those
studied in Chapters 8–10 and Chapter 13. One can adopt several
approaches to this problem. For instance, one can extend the
standard theory of infinitely repeated games (or more generally,
dynamic games with a state variable) to allow for an intertemporal
analogue of CPNE.9 This is a worthwhile project but continues to
regard coalition formation as no more than an equilibrium selection
device. Alternatively, one might begin with the partition function,
so that the formation of a coalition structure at any date has a
definite impact on payoffs, perhaps through the writing of binding
agreements within coalitions in any period. But the important
difference from the model of Chapter 8 is that such agreements
would — by assumption — be up for grabs at the end of every
period. There are no binding agreements that last for longer than a
single date. In this sense, the analysis would have more in common
with Chapter 13, though specific results for partition functions are
yet to be obtained and fully understood.

14.7 Incomplete Information

This book assumes complete information throughout. When a
group of agents gets together, it is commonly known what each agent
brings to the coalition. Yet there are obviously several economic and
political situations in which coalitions form with incomplete infor-
mation about member types. In some cases, incomplete information
isn’t the “first-order problem” at hand. For instance, for each of
the applications mentioned in this book there is a corresponding
variant with incomplete information. But there are other cases in
which incomplete information may be the fundamental problem:

9For an exercise along these lines, see, e.g., Chung (2004).
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think, for instance, of cartels in auctions or group formation for the
purpose of informal insurance.

Coalitional considerations make an appearance in a variety of
situations that involve incomplete information.10 But it is probably
fair to say that an explicit theory of coalition formation in such
a context doesn’t exist at this time. There is a small but important
literature that attempts to develop notions of blocking and the core in
an environment of incomplete information; see, for instance, Wilson
(1978), Holmström and Myerson (1983), Myerson (1984) and (1991,
Chapter 10), and Forges, Mertens and Vohra (2002). The survey by
Forges, Minelli and Vohra (2002) contains additional references to
the literature and serves as an extremely useful introduction to the
subject.

There is another area, quite apart from the one emphasized in this
literature, where incomplete information plays a fundamentally
important role. This is in the matter of the so-called compensation
principle. Consider the problem of building a dam, or the imposition
(or removal) of a protective tariff, or the implementation of a new
environmental regulation. Uppermost on my mind as I write these
pages is the political crisis in the state of West Bengal in India, as
the government attempts to acquire agricultural land for industrial
purposes. In each of these situations there are losers and gainers,
and coalitions will form around the proposed policy. Let us suppose
that in each case, the policy does increase aggregate surplus, so that
in principle the winners can compensate the losers. Yet how do we
identify a loser, and how do we identify a winner? For instance,
it might seem trivial to identify “losers” in the land acquisition
example: surely these are just the owners of the land? The answer
is in the negative: the losing coalition includes sharecroppers and
landless laborers, all of whom will be affected by the proposed
policy.

The problem of incomplete information is a major stumbling block in
the design of proper compensation. In this sense it has fundamental
implications for the theory of coalition formation.

10A good example is mechanism design, in which it is sometimes required that
implementation be immune to coalitional deviations.
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14.8 Nontransferable Utility

The inability to make transfers or compensatory payments, perhaps
due to incomplete information or to the lack of commitment, pushes
us to study games with nontransferable utilities. This book certainly
doesn’t shy away from NTU games, and they make an appearance
at several different points. However, I haven’t chosen to particularly
emphasize the NTU case in the same way that I have emphasized
the case of transferable payoffs.

The contribution that is most significantly relevant to the material
in this book is Bloch (1996). This paper studies partition functions
with fully nontransferable utility. In other words, to each partition of
the player set into a coalition structure is associated a single payoff
division, taken to be completely symmetric within each coalition.
Bloch shows how an equilibrium coalition structure is generated in
this model.

Bloch’s results are closely related to the analysis of symmetric par-
tition functions with transferable payoffs, studied in Chapter 5. The
reason is simple: we show in that chapter that coalitional bargaining
leads to approximately equal division within any coalition that
forms, when discount factors are close enough to unity. The forces
that govern equilibrium coalition structure are, therefore, roughly
the same.

Of course, this is no longer the case in heterogeneous models (see
Chapter 7). The analysis in that chapter again predicts a specific
payoff allocation in equilibrium when utilities are transferable, but
this allocation is not given by equal division within coalitions.
Therefore a suitable algorithm appears to be extremely hard for the
general NTU case, though possibly not out of reach. Banerjee (2002)
makes some progress by providing conditions for the uniqueness
of no-delay stationary equilibria (an analogue of Proposition 7.1) in
NTU characteristic functions.

The literature on networks is another area in which specific payoff
divisions are assumed once a set of links has formed (see, e.g.,
Jackson and Wolinsky (1996)). A third area in which nontransferable
utilities form a leading case is that of “hedonic games”, in which each
player obtains a deterministic, immutable payoff from the coalition
that she chooses to join (Banerjee, Konishi and Sönmez (2001)).
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14.9 Axiomatic Approaches

The theory in this book relies explicitly on behavioral models
of coalition formation and payoff allocation. One might adopt
an alternative viewpoint based on the axiomatic properties that a
possible solution must satisfy. Such an approach is presumably
complementary to a behavioral model. One might be interested
in an axiomatic characterization of our equilibria, uncluttered by
behavioral detail. Alternatively, one might study game forms
that “implement” a solution concept derived from axiomatic first
principles.

Ever since von Neumann and Morgenstern characterized expected
utility from a primitive set of desiderata, the use of axioms has
permeated deeply into decision theory, as well as into cooperative
game theory. In cooperative game theory, the approach takes the
following specific form. A solution is a mapping from a particular
domain (characteristic functions, partition functions, bargaining
problems, and so on) to a set of outcomes (payoffs, coalition
structure, surplus division, etc.). On such a solution or mapping,
place a set of axioms, which usually restricts the way in which
the solution changes across specific elements of the domain. The
strength of the axiomatic method is that it often generates — via
these seemingly innocuous restrictions — a particular solution. Two
celebrated instances of the axiomatic approach in cooperative game
theory are the Nash bargaining solution ( Nash (1950)) and the
Shapley value (Shapley (1953)).

A recent attempt to axiomatically derive “equilibrium” payoff
allocations and coalition structures for partition function games is
Maskin (2003). Maskin begins with the class of all transferable-
utility, superadditive11 partition functions. The domain of analysis
is a pair: a partition function from this class, together with a coalition
substructure for that partition function, the latter to be interpreted
as a set of coalitions that have “already formed”. A solution is a
mapping on this domain with two outcomes, the first specifying a
payoff allocation, and the second describing the “final” coalition
structure that “forms”.

11As we have noted at several points, superadditivity is a restrictive assumption.
However, it should be noted that this paper represents a first step towards an
ambitious axiomatic approach.
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Thus a solution runs parallel to the completion maps studied in
Section 7.6.2 of Chapter 7, and first introduced in Ray and Vohra
(1999, Section 4.1.2). The difference is that a behavioral model is
used to generate the completion map, while a set of axioms will be
used here to derive a class of solutions.

Maskin (2003) employs four axioms. The first requires that coali-
tional worth not be wasted: the payoff allocation must be such
that the sum of payoffs for each coalition equals the worth of that
coalition. The second axiom requires that each player be assigned
to a coalition where her marginal contribution is highest. The third
requires that she be indeed allocated this marginal contribution.
The fourth is a consistency axiom, requiring that as the domain
substructure is partially augmented along the lines dictated by the
solution, the continuation prescribed by the mapping be unchanged.
These axioms are compatible with at least one and at most a finite
number of possible solutions (Theorem 1). In the special subclass of
characteristic functions, the solution reduces to the Shapley value
(Theorem 3).

I do not want to comment in much detail on the axioms, except to
note that the axioms on marginal contributions do push the solution
towards a not unexpected extension of the Shapley value. But that is
precisely the job of an axiomatic study: the researcher is looking to
implement a particular solution, and the axioms are the conversation
that take place between the researcher and the reader, serving as
supportive and presumably persuasive evidence for that solution.12

Maskin’s theory is most closely related to the general approach
espoused in this book, in that it takes explicit note of the possibility
that efficient outcomes may not result, and that in superadditive
games an equilibrium structure of subcoalitions cannot be ruled
out. However, there is also a literature that attempts to extend
efficient Shapley or Shapley-like solutions to partition functions
with externalities. Myerson (1977) initiates this literature; for more
recent contributions, see, e.g., Bolger (1989) and Macho-Stadler,
Pérez-Castrillo and Wettstein (2007). Owen (1977) extends the
Shapley value to coalition structures. McQuillin (2006) represents
a recent attempt to unite the Myerson and Owen approaches. In
its simultaneous consideration of both externalities and coalition

12In his Toulouse lectures (2004), available as slides on the web but not, to
my knowledge, in paper form, Maskin revisits these axioms, unpacking them
somewhat more in an attempt to characterize the same set of solutions.
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structure, this last paper is probably closest to Maskin’s, but stresses
(as do the other cited papers) the desideratum of efficiency as a
normative requirement for a solution, which Maskin does not.
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‘This beautifully written book synthesizes Ray’s compelling perspective on negotiation  
and coalition formation. It should be required reading for any young economic theorist  
who aspires to understand the frontiers of this critical topic.’

B. Douglas Bernheim , Edward Ames Edmonds Professor of Economics, Stanford University
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he develops a broad and fundamental theory to help us better understand the problems of 
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