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In this online appendix, we prove Proposition 6 when there is no idiosyncratic noise (i.e., €;(j)) =

0 for all 7 and 7). All notation has the same meaning as in the main text. We consider two cases:

CASE 1. p contains at least two nonzero sub-vectors (u; # 0 for at least two indices 7). For this
case, it is without loss of generality to assume that Var(y) is positive definite. Otherwise, re-write
wiy as @y (e # 0), where y is a maximal linearly independent subset of y, and apply the same
technique by substituting p,y with @y/|f1,|, and ¢, with ¢, /| |-

All the proofs are the same as that in the proof for the case that there is idiosyncratic noise in
the main text except for a separate argument to show that (A.23) in the main text cannot hold,

reproduced here for convenience as:

Var(p) Var(p,y;) — Cov(p, u;yi)Z =0, (D

with z; replaced by y; in the absence of idiosyncratic noise. Suppose, on the contrary, that (1)
holds for every i. Because p'y # 0 and p contains two nonzero sub-vectors, it follows from (1)
that for every ¢, Zj p,;-yj = p,y; with probability one. That means that for every i, p;y; = 0 with
probability one. But this is impossible, given p; # 0 for some k£ and the assumption of positive

definiteness of Var(yy) in Assumption 1.
CASE 2. p contains only one nonzero sub-vector.

Without loss of generality, we assume g1 # 0 and p; = 0 for i # 1. Because Q; = /v,
Q./|Q:| — w. Observe that

Cov(Q:,0)
Var(Q;) + Var,(u)

COV(Qt/’QtLH)
Var(Q:/|Q:|) + Var,(u)/|Q:|?

Following the same arguments in the proof of Claim 1 in the main text, we have Var,(u)/|Q:|* —

Cov(Q,,y;) = Cov(Q:/1Q:l,y:). (2

0. Similar to the proof in Proposition 4, we know that {Q,} is bounded. For easy reference, we



repeat equations (14) and (15) from the main text below:

,1—1
Var(z;) — Cov(Q.y:) Cov(Q.ys) } [Cov(@, Y;) — _Oov(@0) COV(Q Y;)

Var(Q)+Var(u) Var(Q)+Var(u)
i — . ) 3
@Q A; Varg(0]i) ©)
1+ Z Cov(Q,0)—Cov(0,y;)’ Var~!(z;) Cov(Q,y;)
i=1 A; Var(0|i)[Var(Q)+Var(u)—Cov(Q,y; )’ Var—1(z;) Cov(Q,y;)] ' (4)

Y= n 1
Zi:l Aj Var(0]z)

Because Q;; — 0 for each i # 1 (and with (2) and Var,(u)/|Q;|*> — 0 in mind), we can pass to
the limit in (3) to obtain

Var(pyy1) Cov(0, y;) = Cov(0, piy1) Cov(p y1, yi) (5)

for each s = 2,...,n. But (5) also holds for ¢ = 1. To see this, multiply both sides of (3) by the

Cov(Q+,y1) Cov(Q:,y1)’
Var(Q¢)+Var(u)

positive definite matrix Var(y;) — , then by Q',, and finally pass to the limit as

t — 00. Then:

’ Cov(Q¢,0)
Cov(Qu, y1) Cov(Qi, 11 b [Covit.91) — g i Cov(Quw)

Q' lVar(yl) - ] Qi =

Var(Q:) + Var;(u) Ay Vary(0]1)
Qu Cov(Q¢/|Q¢|,0

0 ( [C"V(Q’W ~ @ s Cov(Qe/ Q] yl)] )

- t

0
A, Var,(0]1) s

where the second equality follows from (2) and the limit follows from the boundedness of {Q;},
Q1:/1Q:| — p1, Q:/1Q:| — p (u; = 0 for every i > 2), and Var;(u)/|Q;|*> — 0. So

Cov(Q:,y1) Cov(Qy, y1)
Var(Q:) + Var,(u)

Combining (2), (3) and (6) along with Var;(u)/|Q;|* — 0, we must conclude that

{Var(yl) — :| Qlt — 0. (6)

Cov(p1y1,9)

Cov(ly1) = Var (p) )

COV(H’/lyh Y1) =0 (7)

so that (5) also holds fori = 1.



Now, (7) along with Cov (¢, y,) # 0" also implies that
Var ™' (y1) Cov(6, 1)

M Var () Cov(0, 1) @
and
% = | Var*(y;) Cov (0, y1)|. )
Multiplying both sides of (5) by p;; and adding over all 7, we have
Var(pyyi) Cov(pe, 0) — Cov (0, wyy1) Cov(pe, piyr) =0 (10)
for every t, while fort = 2,... n,
Cov(pe,0) — Cov(0,y;) Var* (y;) Cov(p,, y;)
— Cov(0, wyy1) — Cov(0,y;)' Var~' (y;) Cov(p 1y, y;)
_ Govll.pmy) [Var(gi91) — Cov(p g1, y:) Var™ (y;) Cov(p 1, 9:)] (11)

Var(piy1)
where the limit follows from the fact that p; = 0 for every ¢ > 2, and the equality again makes
use of (5). By (9) and (10), Cov(us,6) = | Var~'(y;) Cov(0, y;)| Cov(p,, piy:) for every t.

Consequently, for every ¢,
Cov (g, 0) — Cov(0,y,) Var—' (y;) Cov(ps, y1)
= Cov(p, ) — | Var~*(y1) Cov(0, y1)| Cov(pe, piy1) = 0, (12)

where the first equality uses (8). (3) and (12) together let us conclude that for every ¢,

0 ~ Var '(y1) Cov(6, y1)
YA Var (1)

(13)

*If Cov (8, y1) = 0, then Cov(6,y;) = 0 for all i by (5), which contradicts the hypothesis that Cov (6, y;) # 0 for
at least one 1.
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To see this, use (3) to observe that (13) is equivalent to

Cov(Q:, y1) Cov(Qy, y1)'
Var(Q;) + Var,(u)

— Var~(y) Cov(6. yy).

Cov(Q,0)
Var(Q;) + Var;(u)

Var(y,) — ] B [cOv(e, 1) — Cov(Q., y1)

Cov(Q+,y1) Cov(Q:,y1)’

Therefore, multiplying by Var(y;) — =< O TVan (o)

on both sides of this equality, we see that

to establish (13), it suffices to show that

Cov(Qy, 0)
Var(Q;) + Var,(u) Cov(Qu.y1)

Cov(Q:,y1) Cov(Qy, y1)
Var(Q;) + Var;(u)

The above equality is further equivalent to

Cov(Qy,0)
Var(Q;) + Var,(u)

which is indeed true due to (12).

COV(@, yl) -

Var(y,) — Var ! (y;) Cov(0,y,).

Cov(Q:, y1) Cov(Q:, y1)'
Var(Q;) + Var;(u)

Cov(Q,,y)) = Var~!(y;) Cov(6, y1),

We have

14+ Zn Cov(Q:,6)—Cov(6,y;)' Var~! (y;) Cov(Q:,y:)
i=1 A; Vars(6]i)[Var(Q¢)+:2 Vars (u) —Cov(Qr,y; )’ Var—1(y;) Cov(Q+,y;))

Yt = Zn 1
=1 A; Var(0|7)

1+ A5 Cov(pt,0)—Cov(0,y)" Var—' (y;) Cov(pr,yi)
Q¢| £=i=1 A; Var,(0]i)[Var(pe)+7 Vare (u)—Cov(pe,y:)’ Var—" (i) Cov(pe,yi)]

PR v e o)
i=1 Ai Vart(9|i)

Cov(ut,0)—Cov(6,y;)’ Var—! (y;) Cov(y.t Yi)

_ 1+ \Qtl 2izz A; Vary (0]2)[Var (pe) + Vare (u) —Cov(pe,y:)’ Var—" (i) Cov(pe,yi)] (14)

Y1 Avan @
1=1 Al Vart(6'|i)

where the first equality follows from (4) (note that here there is no idiosyncratic noise, so z; = y;),

the second equality uses the fact that p; =
Consequently, from (14) and the fact that |Q;| — |Q1:| — 0 (because Q;; — 0 for every i > 2), we
have

1+ Aq Var¢(6]1) Z Cov (0,1 y1)
| Var—1(y1) Cov(0,y1)| 1=2 A; Var¢(0|i) Var(p)y1)

Tt n
Zz 1A Vart(9|)
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— 0. (15)




From (9) we also have

Aq Var(0]1) Cov(0,u]y1)
L+ |Var*11(y1 EOV(Q y1)| 27, 2 A; Var¢ (0|t )Vlarz[,l‘ y1) - 1+ Al Vart<0|]‘) Zz 2 A; Vart(9| 3)
n n 1
Zz 1A, Vart(0|z) Zl:l A Varg(07)
= A; Var,(0]1). (16)

Combining (15) and (16), we obtain

— Ay Var,(6]1) — 0. (17)

From (13) and (17), we can derive the two limits:
w1 — Var *(y;) Cov(0,y,), m; — 0,i =2, ....n, and 7} Var(u;) — 0.

Thus, Cov(6, y,) = Cov(7r, y;). Multiplying by 7r; on both sides, we obtain Cov(#, 7v) = Var(m).
Combining this with (5) leads to Cov (0, y;) = Cov(m,y;) for every i > 2.

In a similar way to (13), we can show that a;; = Var ' (y;) Cov(f, ;) for every t. By (12), we
have [3;; = 0 for every t. If follows from (5) that a;; — 0 for any ¢« > 2. By (11) and (9), we have
Bilw| — | Var~! (y1) Cov(6, y1)l,

the equality (8) in the main text, and the proof is now complete. U




