
INFORMATION AGGREGATION IN A FINANCIAL MARKET WITH GENERAL SIGNAL STRUCTURE†

Youcheng Loua r� Sahar Parsab r� Debraj Rayc d⇤ r� Duan Lie r� Shouyang Wanga f g

aMDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China

bDepartment of Economics, Tufts University, United States of America

cDepartment of Economics, New York University, United States of America

dDepartment of Economics, University of Warwick, United Kingdom

eSchool of Data Science, City University of Hong Kong, Hong Kong

fCenter for Forecasting Science, Chinese Academy of Sciences, China

gSchool of Economics and Management, University of Chinese Academy of Sciences, China

Forthcoming, Journal of Economic Theory

ABSTRACT. We study a financial market with asymmetric, multidimensional trader signals that

have general correlation structure. Each of a continuum of traders belongs to one of finitely many

“information groups.” There is a multidimensional aggregate signal for each group. Each trader

observes an idiosyncratic signal about the fundamental, built from this group signal. Correla-

tions across group signals are arbitrary. Several existing models serve as special cases, and new

applications become possible. We establish existence and regularity of linear equilibrium, and

demonstrate that the equilibrium price aggregates information perfectly as noise trade vanishes.

JEL Classification: D82; G14

Keywords: Multidimensional signals, asymmetric information, information aggregation, rational

expectations equilibrium.

†This paper combines (a) the results on existence and equilibrium structure in Lou et al. (2017), and (b) the
information aggregation result in Parsa and Ray (2017), extending the analysis to multidimensional signals. Names
are in random order, as proposed in Ray r� Robson (2018). Lou and Li acknowledge the support of Hong Kong
Research Grants Council under Grant 14204514. Lou also acknowledges the support of Hong Kong Scholars Program
under Grant XJ2015049. Ray acknowledges research support under NSF Grant SES-1629370. We thank the editor
Xavier Vives and three anonymous referees for helpful comments and suggestions. Lou would especially like to
express his gratitude to his wife Shujuan for her continued support.

⇤Corresponding author: Debraj Ray, NYU, 19 West 4th Street New York, NY 10012, USA.
Email addresses: louyoucheng@amss.ac.cn (Y. Lou), sahar.parsa@tufts.edu (S. Parsa), debraj.ray@nyu.edu (D. Ray),
dli226@cityu.edu.hk (D. Li), sywang@amss.ac.cn (S. Wang).



1. INTRODUCTION

Consider an economy in which a single risky asset is traded, with unknown fundamental of com-

mon value to all of a continuum of individuals. Each trader belongs to one of a finite number of

“information groups,” which could vary in size. There is a multidimensional aggregate signal for

every information group. Each individual receives an idiosyncratic signal built from her group

signal plus iid noise. The setting is multivariate normal, with arbitrary correlation structure across

fundamental and signals. In addition, each trader also observes the asset price and can make in-

ferences about the fundamental using that price. As in the seminal contribution of Hellwig (1980),

traders retain the incentive to use their private signals in the presence of noise trade. We will allow

noise trade to converge to zero to obtain our information aggregation result in the limit.

We are therefore in a classical rational expectations equilibrium (REE) world, but with significantly

added generality in information structure and dimensionality. Moreover, we allow traders to differ

not only in their access to information, but also in their attitudes to risk. Indeed, we permit risk

heterogeneity both within and across information groups. Of course, we can nest several existing

REE models — among them Grossman (1976) and the finite-agent model of Hellwig (1980) — by

properly selecting the mass and the risk-aversion coefficient of each trader type. But well beyond

that, the multidimensional signal structure we work with can facilitate other investigations. Except

for normality, we do not impose restrictions on aggregate signals and allow these to exhibit any

degree of asymmetry, or heterogeneity in correlation structure. This generality is important. For

instance, given different locations, risk attitudes or informational capacities, traders might have

access to diverse sources (newsletters, advisory services etc.) for their private information, which

leads to an asymmetric correlation structure not handled by the classical models. And multidimen-

sionality acquires particular salience when traders share their private signals with their neighbors

via a social network. Then the effective signals of traders are essentially many-dimensional, be-

cause two signals cannot be aggregated ex-ante without knowledge of the full equilibrium structure

generated by the price system. Therefore information-sharing over a network cannot be handled

by models with one-dimensional signals.
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Apart from conceptual generality, new analytical issues arise when these considerations — asym-

metry, multidimensionality, as well as arbitrary cross-signal correlation — are studied. Even the

seemingly intuitive properties of equilibrium that are immediate in the Grossman-Hellwig setup

must now be proved at a non-trivial level when the information structure is general. Among these

properties is the regularity of any linear equilibrium: an increase in demand implies also an in-

crease in price. More importantly, and owing to the generality of our signal structure, the exis-

tence arguments given in Hellwig (1980) cannot be applied to solve our model. We resort to a

non-standard argument involving sequences of fixed points to establish the existence of a linear

equilibrium price function.

An accompanying complication concerns the impact of signals on the equilibrium price. When

those signals are independently generated — and positively related to fundamental value — they

exert a positive influence on prices, as in Hellwig (1980). Because our model admits general

correlation across signals, no parallel assertion is available here: the corresponding coefficients

of signals in the price function are generally ambiguous in sign. They depend on the correlation

pattern, the sizes of information groups, as well as the distribution of risk attitudes, though we

can pin down the signs of the weights for some special cases. Nevertheless, it is in this general

context that we are able to revisit a solution to the Grossman-Stiglitz paradox first investigated

by Hellwig (1980).1 If an imaginary “super-agent” were to observe every one of the signals, she

would possess a best prediction of the fundamental, which is a linear function of the signal vector.

Any price function which is the same linear function (up to an intercept term) would aggregate

information perfectly. But an agent observing such a price function would entirely ignore her own

signals. Indeed, she would strictly prefer not to use any of her information, whether or not it is

freely available. Even the redundancy that tolerates some degree of mixing and allows information

to seep in via indifference, is not to be had. But then: how can the market imitate the super-agent?

Certainly, with the existence of noisy movements in trades, prices lose their ability to perfectly

aggregate information, contaminated as they must be by stochastic demand shocks.2 Then traders

1See Grossman (1976, 1978) and Grossman and Stiglitz (1980) for more discussion on information aggregation.
2Variants of such REE models have been developed; see, for example, multi-asset settings (Admati 1985;

Pálvölgyi and Venter 2015b; Chabakauri et al. 2017), equilibrium with a continuum of traders (Grossman and Stiglitz
1980; Ganguli and Yang 2009), signals about of the supply of tradable assets (Ganguli and Yang 2009; Manzano and
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will use their own information at least to some degree, which therefore enters the price. Specifi-

cally, we show that the equilibrium price is positively correlated with the value of the fundamental,

assuming, of course, that at least one of the observed signals is correlated with that value. But

the more subtle question remains: as noise trade vanishes, must the price function converge to the

perfect information aggregator? Our answer to this question is in the affirmative: as the variance

of noise demand converges to zero, the equilibrium price aggregates information perfectly, fully

capturing a linear relationship, including weights and correlation patterns, across the fundamental

and aggregate signals. This is consistent with (and substantially generalizes) the observations in

Grossman (1976) and Hellwig (1980).

Section 2 introduces the model. Section 3 characterizes linear equilibria. Section 4 states and dis-

cusses the information aggregation result. Section 5 discusses the weights of aggregate signals on

prices. Section 6 discusses related literature. Section 7 concludes. All proofs are in the Appendix.

2. THE MODEL

There is a single risky asset and a single trading period. The risky asset is in fixed supply X 2 R
and has fundamental value ✓, common to all agents. The value is not directly observed by market

participants, but it generates signals, the structure of which will be described in detail below.

There is a unit measure of market participants or traders. Each trader has a CARA utility function

and maximizes her conditional expected utility of her net profit W based on her information set F :

E [� exp{�⇢W}|F ] . (1)

In the setting at hand, W = x(✓ � p), where x is the holdings of the asset and p its price.

The parameter ⇢ is the coefficient of absolute risk aversion and it will vary across traders, as will the

sources of information. Specifically, a trader is described by her type r, which lies in some finite

set R. Let ⌧(r) be the measure of individuals of type r. An individual type r has two components:

Vives 2011; Diamond and Verrecchia 1981; Verrecchia 1982); signal transmission and sharing in social networks (Han
and Yang 2013; Ozsoylev and Walden 2011; Colla and Mele 2010; Walden 2019), etc.
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{i(r), ⇢(r)}, where i(r) denotes her information group membership, and ⇢(r) denotes her risk-

aversion. Each information group i has a positive mass. Members of that group access a distinct

collection of newsletters, websites, and advice that effectively permit a multidimensional signal,

yi = (yi1, ..., yim)0 2 Rm, to be “directed” towards them. There is one such signal for every

information group — the multiple dimensionality m of each group signal allows this structure to

be quite general.3 For instance, two information groups might have access to some common subset

of signals. We refer to y = (y0
1, . . . ,y

0
n)

0 as the aggregate signal structure of the economy.4

If trader j belongs to information group i, she observes a signal which communicates this aggregate

signal yi with idiosyncratic noise ✏i(j) 2 Rm:5

zi(j) = yi + ✏i(j).

This signal and the price will determine the trader’s demand; see (2) below. In addition to such

demands, there is noise demand u, to be interpreted as the stochastic demand of “noise traders”

left unmodeled in this paper. Assumption 1 below will be maintained throughout.

Assumption 1. All exogenous random variables are normal, with means normalized to zero. The

variance-covariance matrix of yi is positive definite for every i, and Var(✓|y) > 0.6 Idiosyncratic

noise ✏i(j) in each information group i could be degenerate, but if not, it is iid across individuals j,7

independent of other random variables, with positive definite variance-covariance matrix. Noise

demand u is independent of all other exogenous random variables, and has positive variance.

3Given the flexible structure of variances, it is essentially without loss of generality to assume that all group signals
have the same dimension m. We do so only for ease of exposition; all results hold for the more general case.

4The somewhat clumsy use of the double transpose ensures that all vector notation is for column vectors.
5This hierarchical structure of signals shares the same spirit as the one in Myatt and Wallace (2012), in which

signals received by individual traders contain both some “sender noise” regarding the fundamental, as well as receiver-
specific noise around the sender’s signal realization.

6The variance-covariance matrix V of a random vector x is always positive semi-definite because for any d with
the same dimension as x, d0V d = Var(d0x) � 0. Therefore V is not positive definite if and only if there is nonzero d
with d0x degenerate. Thus, the positive definiteness of the variance-covariance matrix of yi equivalently requires that
any component of any group signal cannot be expressed as a linear combination of other components of this group
signal.

7We adopt the usual convention for “iid” across a continuum of random variables without further comment. We
allow for general correlation across the dimensional components of each idiosyncratic noise ✏i(j).
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Except for joint normality and the reasonable non-degeneracy requirement that group signals, taken

together, cannot fully pin down the fundamental, we impose very little restriction on the aggregate

signal structure y or on the precise relationship of its several components with the fundamental

✓. Even the assumed positive-definiteness of yi is essentially without any loss of generality: after

all, it is always possible to remove the “redundant components” from the signal yi. We permit

arbitrary correlation patterns across the private signals of traders, and in addition we allow each

of these signals to be multidimensional. As a consequence, several existing models are nested

within our formulation by the suitable choice of signals y and (if needed) by setting the dimension

of signals to one and the variance of idiosyncratic signals in each information group to 0. As

examples, we have:

(a) Informed and uninformed. A fraction of a continuum of traders receives the same signal:

yi = ✓+" (the noise " is independent of ✓), while the remainder receives no signal at all (Grossman

and Stiglitz 1980).

(b) Idiosyncratic information from a single source. All traders have the same information source,

but their signals are drawn independently: yi = ✓ + "i, where the "i’s are mutually independent

(Grossman 1976; Hellwig 1980). (We provide other specific connections to Hellwig (1980) below.)

This case is sometimes referred to as the common-values model.

(c) Multiple information sources with identical covariance. Traders have different information

sources, but these are correlated with a special pattern: for single-dimensional signals {yi} across

n traders or trading groups, we have Var(yi) = Var(✓) for any i and Cov(yi, yj) = & Var(✓) for

any i, j, with 0  &  1, where ✓ is the fundamental of the risky asset (Vives (2008), p. 381, but

with notation changed to fit ours). The actual signal received may be contaminated by additional

noise: zi = yi+ "i, also accommodated in our setup. When 0  & < 1 and Var("i) = 0 for every i,

this case is sometimes referred to as the private-values model, though we must add that the payoff

still arises via a common fundamental ✓.

(d) Social connections. Suppose that information is shared across a social network with node set

V = {1, . . . , n} and arc set E ✓ V ⇥V . Initially, each trader i receives a private signal si = ✓+ "i,
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where the error terms "i are mutually independent with mean zero. These private signals are shared

via social connections.

One approach to dealing with this setting is to presume that after neighboring signals are observed,

each trader i forms some scalar statistic — say the average
P

j2Ni
sj/|Ni| = ✓+(

P
j2Ni

"j)/|Ni|,
where Ni = {j|(j, i) 2 E} denotes trader i’s neighbor set — including herself — in the network

(Ozsoylev and Walden 2011). Because the derived error terms
P

j2Ni
"j/|Ni|, i = 1, . . . , n are

correlated, this model cannot be nested under Hellwig (1980). But it is a special case of our

formulation: set yi =
P

j2Ni
sj/|Ni|.

This is a reasonable approach, but has its limits. Except for special situations, there is no reason

why each trader should take an average of signals. Indeed, averaging isn’t the problem: any ex-

ogenous aggregation method is suspect. The equilibrium price will affect the cross-weighting of

signals in ways that cannot be pinned down a priori, except in very restrictive settings. A model

of signal-sharing in networks must therefore, of necessity, need to handle the case of multidimen-

sional signals at the individual level. How the individual aggregates those signals is part of the

equilibrium structure. In the language of our model, we simply set yi = {si, j 2 Ni}.8

(e) Informational hierarchies. Another special case that is easily handled by our framework is one

of informational hierarchies, generalizing models with the usual binary distinction between “in-

formed” and “uninformed” traders. Think of a setting with “fundamental signals” (s1, s2, . . . , sm).

Traders have access to subsets of these signals. That induces a partial order: trader j is more in-

formed than trader j0 if trader j sees a larger subset of the signal space than trader j0. Once again,

the multidimensional structure can be deployed to easily handle this case.

Notice how in cases (d) and (e) — and especially in (e) — it is imperative to impose the weaker

condition that the variance-covariance matrix of yi is positive definite for each i, rather than the

stronger restriction that the variance-covariance matrix of y is positive definite. The latter condition

will fail if one information group has access to a superset of signals compared to another.

8There are other REE models in which traders’ signals are multidimensional. For instance, Goldstein and Yang
(2017) study the implications of information disclosure in a multidimensional signal setting, where traders also observe
the public signals released by the government, apart from the price and their own signals.
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(f) Two-stage models. Our model does not fully exploit the special structures in (d) and (e) to

provide results that are specific to these settings. At the same time, it does throw light on some

basic questions of network formation or information acquisition. Consider a class of two-stage

models, in which individuals choose to form costly links with other individuals in a network, or

invest in acquiring costly information. Subsequently, they interact in the setting described in this

paper.9 One of our main results is Proposition 6, which show that with vanishing noise trade,

prices efficiently aggregate all information in the signals. This has the implication that while

new information not held by anyone is always welcome, the sharing or acquisition of existing

information that is already held by others will have low priority as noise trades vanish. In particular,

the better the job that a market does in aggregating information, the less incentive will there be

to build social networks. To the extent that the destruction of such social networks could have

implications for the decay of cultural connections and friendships, this is a depressing corollary of

Proposition 6.

Particularly relevant is the finite-agent model studied in Hellwig (1980) that we extend and gener-

alize. Apart from the dimensional generalization, there are also two additional distinct differences,

the second of which is more important than the first: (i) Hellwig (1980) studies a finite-agent set-

ting (along with a large economy which is the limit of a sequence of finite-agent economies), while

our model has a continuum of agents, thereby making exact the competitive price-taking assump-

tion; and (ii) Each agent i in Hellwig (1980) receives a private signal equal to the fundamental ✓

plus independent noise. Both (i) and (ii) can be represented as special cases of our model, in the

following way. Think of each Hellwig agent i as a positive measure of atomless agents in our set-

ting — information group i. Assume that the group signal yi is unidimensional, with yi = ✓+⇣i for

independent noises {⇣i}. Finally, set ✏i(j) equal to zero for all atomless individuals j in the group,

so that everyone in i sees yi exactly. This is, in essence, a representation of Hellwig’s setting that

fits perfectly with the perfect competition assumption.10 The presence of cross-signal correlation

9Considerations of information-sharing are important in a variety of contexts. For instance, one might be inter-
ested in the trade-off between possible collusion via information-sharing and direct welfare losses that could arise if
information-sharing is entirely prohibited (Boyarchenko, Lucca, and Veldkamp 2017).

10We say “in essence,” because we still have a continuum of agents when the idiosyncratic variance is zero. But of
course, this extreme case can mathematically mimic a finite number of price-taking agents.
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and signal multidimensionality does mean that in our more general case, a different approach to

information aggregation needs to be taken.

Details on notation. For expositional ease in a notationally intensive model we use some non-

standard notation. The operator Var will stand for variance (or sometimes a variance-covariance

matrix, in which case we use boldface Var) and Cov will stand for covariance (or sometimes a

vector of covariances, in which case we use boldface Cov). For instance, Var(p) will be the scalar

variance of the price, whereas Var(zi) will stand for the variance-covariance matrix of an individ-

ual’s signal zi in group i. For any vector µ = (µ0
1, . . . ,µ

0
n)

0 (with each component m-dimensional)

and random variable x, Cov(µ, x) is shorthand for Cov(
Pn

k=1 µ
0
kyk, x) and Var(µ) stands for

Var(
Pn

k=1 µ
0
kyk), where y = (y0

1, . . . ,y
0
n)

0 is the aggregate signal structure. These are scalars as
Pn

k=1 µ
0
kyk is a unidimensional random variable. We also use Var(✓|i) to describe the variance

of the fundamental ✓ conditional on a signal received by an individual in group i, and the price.

Neither the value of the signal nor the price will appear in the notation because variance updating is

independent of the specific realizations; more on this below. For any random variable x and group

signal yi, Cov(x,yi) is shorthand for the vector of covariances (Cov(x, yi1), ...,Cov(x, yim))0, and

in the special case where x =
Pn

k=1 µ
0
kyk for some vector µ, we write Cov(µ,yi) for the vector

(Cov(µ, yi1), ...,Cov(µ, yim))0. If x is a vector and � is a scalar, then x/� simply stands for a

vector where all entries are divided by the scalar �. For two matrices A and B, A � B (or A � B)

means that the matrix B � A is positive semi-definite (or positive definite). Finally, the 2-norm of

a vector or matrix is denoted by | · |.

3. EQUILIBRIUM

3.1. Definition and Description. A typical trader j of type r has information {zi(r)(j), p}. She

maximizes her CARA payoff function in (1). When µ and v are respectively set equal to her condi-

tional expectation E(✓|zi(r)(j), p) and conditional variance Var(✓|zi(r)(j), p) of the fundamental,

it is well known from the CARA-Gaussian model that

E [� exp{�⇢(r)W}| zi(r)(j), p] = � exp

⇢
�⇢(r)


x(µ� p)� ⇢(r)

x2v

2

��
.
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It follows that maximizing (1) is equivalent to maximizing x(µ � p) � ⇢x2v
2 . Consequently, the

optimal demand for the risky asset by trader j of type r is given by

x⇤
j =

E(✓|zi(r)(j), p)� p

⇢(r) Var(✓|zi(r)(j), p)
. (2)

By Assumption 1, the variance of ✓ remains strictly positive after conditioning on any or all of the

observables, so this object is well-defined. In this paper, we study linear equilibria, and so focus

on the class of affine price functions given by

p =
nX

k=1

⇡0
kyk + �u+ c, (3)

where ⇡ = (⇡0
1, ...,⇡

0
n)

0 represents the weights on group-specific signal vectors (each compo-

nent is m-dimensional so that ⇡k = (⇡k1, ..., ⇡km)0 2 Rm for each k), � 6= 0 is the weight on

noise trade, and c is an intercept term. Given this setting, we can describe the conditional expec-

tation E(✓|zi(r)(j), p) for a trader j of type r. The informational equivalent of the price p is the

variable p � c, where the intercept term is netted out. Because idiosyncratic noise ✏i(j) within

each information group i is iid, the conditional expectation is therefore described by a system of

weights {↵i(r), �i(r)}, with ↵i(r) 2 Rm, �i(r) 2 R, such that for any trader j of type r and signals

(zi(r)(j), p) received by her,

E(✓|zi(r)(j), p) = ↵0
i(r)zi(r)(j) + �i(r)(p� c), (4)

where this derivation invokes the projection theorem for normal random variables.

Now, the conditional variance Var(✓|zi(r)(j), p) depends on trader j only via her information

group identity i(r), but not via the particular signal zi(r)(j) she receives, nor her risk type, nor

the particular realization of p. So we may write the conditional variance as Var(✓|i), but with

the understanding that Var(✓|i) does depend on the form of the price function. We make this

dependence explicit when needed. By (2) and (4), we see that aggregate demand for the risky asset

by all individuals of type r depends on p and the group signal yi(r), and is given by

⌧(r)
↵0

i(r)yi(r) + �i(r)(p� c)� p

⇢(r) Var(✓|i(r)) , (5)

10



where recall that ⌧(r) is the population measure of type r.

We may now define an equilibrium price function. To this end, observe that while an agent’s de-

mand will depend on her risk-aversion ⇢(r), the coefficients ↵i(r) and �i(r) estimated from Bayes’

Rule will be independent of her risk type. Writing these as ↵i and �i, using the expression (5),

aggregating across types, and adding on noise trade, the market-clearing condition becomes
nX

i=1

↵0
iyi + (�i � 1)p� �ic

�i Var(✓|i)
+ u = X, (6)

where we recall that X is the supply of the asset, and where we define, for each i = 1, . . . , n,

�i =
1

P
{r|i(r)=i}

⌧(r)
⇢(r)

> 0.

This implicitly defines an equilibrium price function. By matching terms from the price function

(3) and the market-clearing condition (6), we see that

� =

"
nX

i=1

1� �i

�i Var(✓|i)

#�1

, (7)

c = �
"

nX

i=1

1

�i Var(✓|i)

#�1

X, and (8)

⇡i =
�

�i Var(✓|i)
↵i for i = 1, . . . , n, (9)

where Var(✓|i) will be given an explicit expression in (12) below.

We make six remarks on our price function. First, given a continuum of iid idiosyncratic signals

within each information group, linearity guarantees that only aggregate group signals matter. So

only {y1, . . . ,yn} enters the price function, and all idiosyncratic signal realizations disappear.

Second, the matching equation (9) is unique when the variance-covariance matrix of the aggregate

signal y is positive definite, but not otherwise. Because we do not impose this positive definiteness

in our model, the matching equation (9) is only one of several potential matchings. Third, the

coefficient on each signal depends in an intimate way on the overall stochastic structure of signals,

asset supply, information group sizes, and the distribution of risk attitudes as also the distribution

of the fundamental. Fourth, the prior mean of ✓ is taken to be zero and so does not explicitly enter
11



the price function, but of course the prior will cast its influence, so in general,
Pn

k=1

Pm
s=1 ⇡ks 6= 1

(for an explicit computation in a special case, see (23)). Fifth, even if we were to reorder signals

(without loss of generality) so that each is positively correlated with the fundamental, every weight

⇡ij cannot be guaranteed to be nonnegative, given the generality of correlation patterns across

signals. Finally, � 6= 0 is jointly implied by equilibrium and our definition of a price function as a

non-trivial object, for if it were zero, the entire vector (⇡, �) would be zero, by (9). That said, and

in contrast to the special case of independent signals, a non-trivial argument is needed to show that

� must be positive.

3.2. Existence and Regularity of Linear Equilibrium. Consider trader j in information group i.

By the independence of idiosyncratic noise (Assumption 1), Var(zi(j)) = Var(yi) + Var(✏i(j)).
In addition, because all idiosyncratic noise within group i has the same distribution, Var(zi(j))

depends only on the identity of the information group i, but not on agent j’s risk-aversion. There-

fore, we drop j and simply write Var(zi) instead of Var(zi(j)). It follows from normality that for

every i, the triple (✓, z0
i, p)

0 has mean zero and positive definite variance-covariance matrix11

0

BB@

Var(✓) Cov(✓,yi)0 Cov(⇡, ✓)

Cov(✓,yi) Var(zi) Cov(⇡,yi)

Cov(⇡, ✓) Cov(⇡,yi)0 Var(⇡) + �2 Var(u)

1

CCA =:

0

@ Var(✓) . . .
... ⌃i

1

A ,

where ⌃i is positive definite, and the inverse ⌃�1
i exists and equals12

0

BB@

h
Var(zi)� Cov(⇡,yi)Cov(⇡,yi)0

Var(⇡)+�2 Var(u)

i�1

� Var�1(zi)Cov(⇡,yi)
Var(⇡)+�2 Var(u)�Cov(⇡,yi)0 Var�1(zi)Cov(⇡,yi)

� Cov(⇡,yi)0

Var(⇡)+�2 Var(u)

h
Var(zi)� Cov(⇡,yi)Cov(⇡,yi)0

Var(p)

i�1
1

Var(⇡)+�2 Var(u)�Cov(⇡,yi)0 Var�1(zi)Cov(⇡,yi)

1

CCA

11If the variance-covariance matrix of (✓, z0
i, p)

0 is not positive definite for some i, then there exists a nonzero
vector (d1, d0

2, d3) such that d1✓+ d0
2zi + d3p = 0. Because � 6= 0 and u is independent of other random variables, it

must hold that d3 = 0. Also observe that d1 6= 0 by the assumed positive definiteness of yi and idiosyncratic noise. So
✓ = �d0

2zi/d1. That is, ✓ can be expressed as a linear combination of zi. But then Var(✓|y1, . . . ,yn)  Var(✓|yi) 
Var(✓|zi) = 0, which contradicts Assumption 1.

12Let A =

✓
A11 A12

A21 A22

◆
be a nonsingular matrix with det(A11) 6= 0 and det(A22) 6= 0. Then

A�1 =

✓
[A11 �A12A

�1
22 A21]�1 �A�1

11 A12[A22 �A21A
�1
11 A12]�1

�A�1
22 A21[A11 �A12A

�1
22 A21]�1 [A22 �A21A

�1
11 A12]�1

◆
.
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So by the projection theorem for normal random variables, the conditional mean of ✓ equals

E(✓|zi(j), p) = E(✓|zi(j), p� c) =
�

Cov(✓,yi)
0,Cov(⇡, ✓)

�
⌃�1

i (z0
i(j), p� c)0

⌘ ↵0
izi(j) + �i(p� c),

where

↵i =


Var(zi)�
Cov(⇡,yi)Cov(⇡,yi)0

Var(⇡) + �2 Var(u)

��1 
Cov(✓,yi)�

Cov(⇡, ✓)

Var(⇡) + �2 Var(u)
Cov(⇡,yi)

�
, (10)

�i =
Cov(⇡, ✓)� Cov(✓,yi)0 Var�1(zi)Cov(⇡,yi)

Var(⇡) + �2 Var(u)� Cov(⇡,yi)0 Var�1(zi)Cov(⇡,yi)
, (11)

and the conditional variance of ✓ is given by

Var(✓|i) = Var(✓)�
�

Cov(✓,yi)
0,Cov(⇡, ✓)

�
⌃�1

i

�
Cov(✓,yi)

0,Cov(⇡, ✓)
�0

= Var(✓)� [↵0
i Cov(✓,yi) + �i Cov(⇡, ✓)], (12)

noticing, as mentioned before, that neither the signal nor price realization affects its value.

Now we can make further progress on the coefficients recorded in (7)–(9). First, substitute (10)

into (9) to get

⇡i = �

h
Var(zi)� Cov(⇡,yi)Cov(⇡,yi)0

Var(⇡)+�2 Var(u)

i�1 h
Cov(✓,yi)� Cov(⇡,✓)

Var(⇡)+�2 Var(u) Cov(⇡,yi)
i

�i Var(✓|i)
. (13)

Our goal is to find solutions for ⇡ and � which can then be inserted into (10) and (11) to generate

the coefficients {↵i, �i}. To achieve this, it will be convenient to study the ratio of ⇡ to �.13

Recalling that � 6= 0, define Qi = ⇡i/� for i = 1, . . . , n, and Q = (Q0
1, . . . ,Q

0
n)

0. Using (13), we

obtain the following equations involving only the variables {Qi}, but not �:

Qi = fi(Q) ⌘

h
Var(zi)� Cov(Q,yi)Cov(Q,yi)0

Var(Q)+Var(u)

i�1 h
Cov(✓,yi)� Cov(Q,✓)

Var(Q)+Var(u) Cov(Q,yi)
i

�i VarQ(✓|i)
(14)

13We borrow this technique from Hellwig (1980).
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for i = 1, . . . , n. Notice how, in this fixed point mapping, we subscript the conditional variance by

Q, to emphasize that it does change with the price function, which is informationally equivalent to
Pn

k=1 Q
0
kyk + u because � 6= 0. Our existence theorem relies on a solution to (14).

PROPOSITION 1. The system of equations (14) has a solution.

While postponing the formal details, we make some remarks on the existence argument. Because

of the generality of our signal structure, we cannot guarantee that each Qi is nonnegative (we

return to this problem later). Consequently, the arguments in Hellwig (1980) cannot be applied

here. A specific problem arises precisely in the Hellwig case with a finite number of traders, which

corresponds in our model to the case of no idiosyncratic noise. When there is no idiosyncratic

noise, we cannot guarantee the uniform boundedness of the mapping f ⌘ (f1, . . . ,fn) with respect

to all Q 2 Rnm. The proof therefore proceeds differently, by first constructing a sequence of

uniformly bounded mappings over the domain, obtaining a fixed point (using Brouwer’s theorem)

for each such mapping, and then taking the limit of the resulting sequence of fixed points to obtain

a fixed point of the original mapping f . In contrast, when there is idiosyncratic noise, the uniform

boundedness of the mapping f over all Q 2 Rnm can be established, permitting a direct application

of Brouwer’s fixed-point theorem to obtain a solution to the system (14).

Given the existence of a Q satisfying (14), and suppressing the subscript Q from the conditional

variance, we can quickly solve for the coefficients of the accompanying price function. By virtue

of (7) and (11), we have

1

�
=

nX

i=1

1

�i Var(✓|i)
�

nX

i=1

1

�i Var(✓|i)
Cov(⇡, ✓)� Cov(✓,yi)0 Var�1(zi)Cov(⇡,yi)

Var(⇡) + �2 Var(u)� Cov(⇡,yi)0 Var�1(zi)Cov(⇡,yi)

=
nX

i=1

1

�i Var(✓|i)
� 1

�

nX

i=1

1

�i Var(✓|i)
Cov(Q, ✓)� Cov(✓,yi)0 Var�1(zi)Cov(Q,yi)

Var(Q) + Var(u)� Cov(Q,yi)0 Var�1(zi)Cov(Q,yi)
.

Rearranging the terms in this equation, we see that

� =
1 +

Pn
i=1

Cov(Q,✓)�Cov(✓,yi)0 Var�1(zi)Cov(Q,yi)
�i Var(✓|i)[Var(Q)+Var(u)�Cov(Q,yi)0 Var�1(zi)Cov(Q,yi)]Pn

i=1
1

�i Var(✓|i)
. (15)
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Observe that � is finite for any Q 2 Rnm because the denominator of the expression (15) is always

strictly positive. Provisionally assume that � is non-zero as well; then we can quickly establish

the existence of linear equilibrium. With � given by (15), we obtain a solution ⇡ to (13) using the

relationship ⇡ = �Q. Substituting the solution (⇡, �) into (10) and (11) leads to ↵i and �i. We

then obtain Var(✓|i) via (12). Finally, the value of c comes from (8). Taken together, we have a

linear equilibrium.

So there is just one remaining step, which is to assure ourselves that the premise from which we

started — � 6= 0 — can be respected in this solution. In Hellwig (1980), there is no idiosyncratic

noise and the aggregate signal for trader/group i takes the single-dimensional form yi = ✓ + "i.

For this special case, Lemma 3.1 in Hellwig (1980) shows that the system of equations (14) has a

strictly positive solution. This implies that � in (15) is also positive.14 This regularity result is also

true — but far from immediate — in our setting. For instance, Q will not generally be positive, so

the argument just made must be discarded.

PROPOSITION 2. For any solution Q to (14), we have � > 0.

Propositions 1 and 2 immediately yield:

PROPOSITION 3. There exists a linear equilibrium, and every such equilibrium is regular.

Ozsoylev and Walden 2011, p. 2260, underline the non-triviality of Propositions 1 and 2: “We

note that, in contrast to the analysis in [Hellwig 1980], the existence of a linear NREE [noisy

rational expectations equilibrium] for a finite number of agents is not guaranteed here, because in

our setup agents, who are each other’s neighbors or who have common neighbors, receive signals

with correlated error terms.” However, our Propositions show that even though the error terms

of private signals in a finite-agent economy are correlated with each other and the dimension of

signals is arbitrary, there always exists a linear equilibrium and each linear equilibrium is regular.

14Refer to equation (8b) in Hellwig (1980).
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3.3. Uniqueness of Linear Equilibrium. We now turn to a discussion of uniqueness of our equi-

librium, within the class of all linear equilibria.15 We therefore say that a linear equilibrium is

unique if all linear equilibrium prices equal each other almost surely. Specifically, if p1 and p2 are

two linear equilibrium price functions defined on (y0, u)0, then p1 = p2 almost surely.

Observe that this sort of “outcome-uniqueness” is different from the assertion that there is a single

linear equilibrium price function. The latter cannot be obtained in situations in which the signal

y fails to have a positive definite variance-covariance matrix, which is something we want to

allow for; see earlier discussion. Specifically, consider any maximal linearly independent subset

of {yij, i = 1, . . . , n, j = 1, . . . ,m}, denoted by ȳ. Then Var(ȳ) is positive definite, and every yij

not in ȳ can be expressed as a linear combination of ȳ. So any linear equilibrium p = ⇡0y+�u+c

can be equivalently rewritten as an equilibrium of the form p = ⇡̄0ȳ + �u + c. It is “outcome-

uniqueness” that we are interested in, and that is quite generally satisfied in our model, provided

that traders are sufficiently risk-averse.

PROPOSITION 4. There exists ⇢̂ < 1 such that if ⇢(⌧) � ⇢̂ for every trader type ⌧ , the resulting

linear equilibrium is unique.

It should be pointed out that Proposition 4 is different from uniqueness arguments made in the

absence of noise trade. Given the information aggregation result in Proposition 6 that we prove

below, we already have the asymptotic uniqueness of all equilibria in the limit as noise trade van-

ishes — at least for linear limit equilibria that survive small perturbations in noise trade.16 This is

because Proposition 6 shows that every limit point of every sequence of equilibrium price func-

tions must serve as a perfect aggregator of information, and so must have the outcome-uniqueness

property described above. (Additionally, a best estimator is fully pinned down when the set of sig-

nals is full-dimensional.) Nevertheless, Proposition 4 is of separate interest because it establishes

uniqueness — albeit under some restrictions — away from the full-information limit.

15We do not address the more demanding question of uniqueness in the class of all potential equilibria. For instance,
in the context of the simpler model of Grossman (1976), DeMarzo and Skiadas (1998) show that the linear equilibrium
in is unique in the class of all possible equilibria, linear or not.

16This observation is directly related to uniqueness arguments in the literature (at least within the class of linear
equilibria) in the case where there is no noise trade; see, e.g., Grossman (1976) and Nielsen (1996).
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4. INFORMATION AGGREGATION

4.1. Some Aggregation. We begin with the question of whether the equilibrium price aggregates

some information, even when there is noise. In what follows, we maintain the convention

Cov(✓,yi) � 0

for every i. This restriction is without any loss of generality, as a signal can always be reordered

by a sign flip without changing anything of consequence. Next, say that the equilibrium price p

aggregates some information about the fundamental ✓ if Cov(✓, p) 6= 0. We can now state:

PROPOSITION 5. It is always true that Cov(✓, p) � 0. Strict inequality holds — i.e., the equilib-

rium price aggregates some information about ✓ — if and only if Cov(✓,yi) 6= 0 for some i.

Proposition 5 is intuitive, and it is especially transparent in the Hellwig (1980) setting with the

special one-dimensional signal and the special independent signal structure yi = ✓ + "i because

for this special structure, the solution to (14) is positive and the covariance Cov(✓, yi) is equal

to the unconditional variance Var(✓) for every signal yi. Proposition 5, combined with the rela-

tionship Var(✓|p) = Var(✓) � Cov(✓,p)2

Var(p) , also tells us that the equilibrium price is informative, i.e.,

Var(✓|p) < Var(✓), provided that at least one component in all the group signals is correlated with

the fundamental.

4.2. Full Aggregation With Vanishing Noise. Next, suppose that a “super-agent” can see the

entire set of aggregate signals y = (y0
1, . . . ,y

0
n)

0, and is asked to infer the fundamental value ✓.

The solution to this problem is standard: choose a weighting vector ⇡ for the signals that satisfies

the condition for perfect information aggregation: for every i,

Cov(✓,yi) = Cov(⇡,yi). (16)

If the vector of signals y is linearly independent, then Var(y) is positive definite and the solution

to (16) is unique. Let ⌃ stand for the variance-covariance matrix of signals y, and Cov(✓,y) for

the vector of covariances

[Cov(✓,y1)
0, . . . ,Cov(✓,yn)

0]0.
17



Then the unique solution to (16) must be given by

⇡ = ⌃�1 Cov(✓,y). (17)

When the vector of group signals is not linearly independent, as would be the case (for instance)

when one group is unambiguously more informed than another, then in general there will not be

a unique solution to the perfect aggregation condition. But it really does not matter, because all

solutions do an equally good job. A typical solution can be described as follows.

Consider a maximal linearly independent subset of {yij, i = 1, . . . , n, j = 1, . . . ,m}, and without

loss of generality, denote the vector of such a subset by ȳ. That is, the variance-covariance matrix

of ȳ is positive definite, and for every yij which is not in the maximal linearly independent subset,

the variance-covariance matrix of (ȳ0, yij)0 fails to have full rank. The signal ȳ is informationally

equivalent to the aggregate signal y. A solution to (16) could be described by an analogue of (17)

applied to this linearly independent subset:

⇡̄ = ⌃̄�1 Cov(✓, ȳ), (18)

where the associated notation using bars should be self-explanatory. Undoubtedly, if we fixed

another maximally independent subset ŷ, the corresponding weights ⇡̂ would do just as well in

aggregation, so the specific maximally independent subset does not matter.

We connect these remarks a bit more formally to a market context. Just for the discussion here, we

suppose that there is no noise trade (i.e., Var(u) = 0), and no idiosyncratic noise (i.e., Var(✏i(j)) =
0 for all i and j). Now consider the price function ⇡̄0ȳ + c. We claim that for every i,

E(✓|yi, ⇡̄
0ȳ) = E(✓|⇡̄0ȳ) and Var(✓|yi, ⇡̄

0ȳ) = Var(✓|⇡̄0ȳ), (19)

which formally captures the idea that nothing of informational value can be added once the weights

in (18) have been applied to predict the fundamental. We only show the first equality in (19),

because the second will follow immediately from the first by invoking the Law of Total Variance:

Var(✓) = Var(E(✓|·)) + E(Var(✓|·)). That equality is obvious when Cov(✓, ȳ) = 0. When

Cov(✓, ȳ) 6= 0, we have ⇡̄ 6= 0 because ⌃̄�1 is a positive definite matrix. By the projection
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theorem for normal random variables, we have

E(✓|⇡̄0ȳ) =
Cov(⇡̄0ȳ, ✓)

Var(⇡̄0ȳ)
⇡̄0ȳ.

Furthermore, it follows from (18) that

Cov(⇡̄0ȳ, ȳ) = Cov(✓, ȳ), (20)

which is just (16) for the maximally independent set. Multiplying by ⇡̄ on both sides, we obtain:

Var(⇡̄0ȳ) = Cov(⇡̄0ȳ, ✓). (21)

Now suppose that for every i, ⇡̄0ȳ cannot be expressed as a linear combination of yi. (For the

opposite case, see this footnote.17) Then it follows from Lemma 3 in the Appendix, identifying

⇡̄0ȳ with µ0y, that for any i, Var(yi) � Cov(⇡̄0ȳ,yi)Cov(⇡̄0ȳ,yi)0

Var(⇡̄0ȳ) is positive definite and Var(⇡̄0ȳ) �
Cov(⇡̄0ȳ,yi)0 Var�1(yi)Cov(⇡̄0ȳ,yi) > 0.

By setting �2 Var(u) = 0, zi = yi and p = ⇡̄0ȳ + c, equations (20) and (21) imply that the

coefficient ↵i in (10) equals zero, and �i in (11) equals one. Therefore (19) holds for every i.18

In summary, under the perfect aggregation condition, all information in y is combined optimally

in ⇡ to predict ✓. Adding any signal to it in a way that matters is not only redundant, but reduces

predictive ability for a market participant.

17If there is only one nonzero vector, say 1 6= 0, such that ⇡̄0ȳ = 0
1y1, (20) implies that Cov(0

1y1,y1) =
Cov(✓,y1) and consequently,  = Var�1(y1)Cov(✓,y1). Hence

E(✓|y1, ⇡̄
0ȳ) = E(✓|y1) = 0y1 = E(✓|0

1y1) = E(✓|⇡̄0ȳ),

where the first equality follows from the informational equivalence between {y1, ⇡̄0ȳ} and y1, and the second and
third equalities follow from the projection theorem for normal random variables. Then (19) holds for i = 1. We next
show that it also holds for 2  i  n. Consider some 2  i  n. If ⇡̄0ȳ cannot be expressed as a linear combination of
yi, then we can show that (19) holds for this i by applying arguments similar to those in the main text. If ⇡̄0ȳ = 0

iyi

for some nonzero i, then (19) also holds for this i by using arguments similar to those above in this footnote.
18Indeed, we can check that p̄ = ⇡̄0ȳ � X/

Pn
i=1

1
�i Var(✓|⇡̄0ȳ) is an equilibrium price in the sense of Grossman

(1976). Optimal demands clear the market, given that
Pn

i=1
E(✓|yi,⇡̄

0ȳ)�p̄
�i Var(✓|yi,⇡̄0ȳ) = X , and given that the mean and

variance of the noise demand equal zero.
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The discussion is obviously related to that in Grossman (1976). When each of a finite number

of traders obtains a conditionally independent signal (yi = ✓ + "i), Grossman showed that in the

absence of noise trade, the equilibrium price perfectly aggregates all traders’ private information.

A trader who only observes the price can achieve the same expected utility as one acquires an

additional private signal, and in fact any use of the private signal is payoff-reducing. But, of course,

as is well known, Grossman’s analysis only introduces the paradox of information aggregation, and

does not solve it. Consult Grossman (1976), Grossman and Stiglitz (1980) and Hellwig (1980) for

more discussion on the Grossman-Stiglitz paradox, and for Hellwig’s solution to it, that we now

proceed to extend and generalize.

With noise trade, it now makes sense to rely on private information, because the informativeness

of the price is now clouded by stochastic shocks to demand. That reliance must fade as the noise

trade approaches zero. The question we now ask is posed in an entirely general setting: does that

reliance fade “slowly enough” so that private information seeps into the price system, allowing for

full information aggregation as noise converges to zero? Our answer is in the affirmative:

PROPOSITION 6. Along any sequence of equilibria indexed by the variance of noise Vart(u) con-

verging to zero, any corresponding sequence of equilibrium price functions pt = ⇡0
ty + �tu + ct

must have the following properties:

(i) ⇡t is bounded in t and every limit point ⇡ of {⇡t} must satisfy perfect information aggregation:

Cov(✓,yi) = Cov(⇡,yi), i = 1, . . . , n, (22)

and in particular, there is a unique limit (i.e., ⇡t ! ⌃�1 Cov(✓,y)) when Var(y) is positive

definite.

(ii) �2
t Vart(u) ! 0 and ct ! Cov(⇡,✓)�Var(✓)Pn

k=1 1/�k
X whenever ⇡t ! ⇡ along some subsequence of t.

The above proposition has two parts. The central assertion is Part (i). In general, an equilibrium

price function will not aggregate information efficiently. Quite apart from the presence of noise

trade, different signals are observed by groups that vary both in their sizes and in their within-group
20



distribution of risk attitudes. Because the volume of group-specific trade also goes into determin-

ing the equilibrium price function, and because sizes and risk attitudes affect those volumes, the

equilibrium price function will incorporate not just pure information but also group sizes and the

full distribution of attitudes to risk. Finally, there are arbitrary correlations across possibly multidi-

mensional signals. From this perspective, it is of interest that as the impact of noise trade vanishes,

all these additional effects on the price function endogenously vanish, leaving only the efficient

aggregation of information.

Could there be several limit points? In general, the answer is yes: it would depend on how much

“slack” there is in the signal structure. But even then, as already discussed, each limit point would

exhibit the perfect aggregation property, so in this sense, nothing of substance is lost. As a special

case, if the set of group signals has full dimensionality, then we can assert that every sequence

of equilibrium price functions must indeed converge to a well-defined, unique limit as noise trade

vanishes. We remark that these considerations — many limit points all satisfying perfect aggre-

gation, or just one — are orthogonal to the question of whether equilibria are unique for each

parametric configuration: the results apply regardless.

Part (ii) states two ancillary observations. First, as the variance of the noise trade goes to zero, its

overall impact on prices goes to zero as well. This is intuitive. Second, when the supply of the

asset X is non-zero, the intercept term c of the price function does indeed retain the influence of

group sizes and attitudes to risk, as captured by the �i’s. But confined as these influences are to

the intercept term, they do not impede efficient information aggregation. The main point is that all

group-level heterogeneity must completely vanish from the coefficients on y, as already described

in Part (i).

The above proposition significantly extends Proposition 4.3 in Hellwig (1980) to our fully general

signal structure. Noise trade is bad for information aggregation, but that is precisely what allows

the information to leak into the price in the first place, because traders see value in using their

private signals in the presence of noise. As noise trade vanishes, the reliance on own signals

vanishes as well, but the speed of that vanishing must be slow enough so that in the limit, full

information aggregation is achieved.
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5. A REMARK ON THE COEFFICIENTS OF THE EQUILIBRIUM PRICE FUNCTION

In this section, we remark on the weights ⇡ that aggregate the signals in the equilibrium price func-

tion. We consider only the special case of one-dimensional signals for each information group. For

simplicity we also assume that there is no idiosyncratic noise (Var(✏i(j)) = 0). When aggregate

signals take the special form of yi = ✓ + "i (where {"i} are iid ), Lemma 3.1 in Hellwig (1980)

shows that Qi > 0 (equivalently, ⇡i > 0) for any i. Even with a general signal structure, when

there is no noise trade, there is a linear correspondence between the weights ⇡ and the correlation

Cov(✓,y), as illustrated by (17). Indeed, when both these two cases apply, Cov(yi, yj) = Var(✓)

for any i 6= j and Var(yi) = Var(✓)+Var("i). Consequently, we can explicitly obtain the weights

⇡ as follows:

⇡i =
Var(✓)/Var("i)

1 +
Pn

k=1 Var(✓)/Var("k)
, i = 1, . . . , n. (23)

This is a generalization of Theorem 1 in Grossman (1976).19

Beyond these cases, and once faced with the generality of the correlation pattern that we allow

for, it is difficult to sign ⇡, even after imposing the convention that Cov(✓,y) � 0. Consider the

following three observations.

1: Cov(✓, yi) > 0 for all i does not imply that Qi 6= 0 for all i. As an example, suppose n = 2 and

Cov(✓, yi) > 0 for i = 1, 2, but that Cov(y1, y2) 6= 0. Then (Q1, Q2) with Q1 = 0 is a solution to

(14) if and only if the following two equalities hold:

Cov(✓, y1)[Q
2
2 Var(y2) + Var(u)] = Cov(✓, y2)Q

2
2 Cov(y1, y2),

Q2 =
Cov(✓, y2)

�2[Var(✓) Var(y2)� Cov(✓, y2)2]
,

which may well be true for some parameters.

2: Cov(✓, yi) = 0 for some i does not imply that Qi = 0. Again, let n = 2. Suppose that

Cov(✓, y1) = 0, Cov(✓, y2) > 0 and Cov(y1, y2) > 0. It is easy to show by contradiction that

19It also validates the observation that generally
P

k ⇡k is not equal to 1, given that some weight is always assigned
to the prior on the fundamental.
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Q1 6= 0. Otherwise, Q2 > 0 by Proposition 5 and

Q1 = � Q2
2 Cov(✓, y2) Cov(y1, y2)

�1 Var(✓|y1,
P2

k=1 Qkyk + u)[Var(y1)(Var(Q) + Var(u))� Cov(Q, y1)2]
,

which is a contradiction.

3: It is entirely possible for Qi0 < 0 for some i0, even under the assumption that Cov(✓, yi) � 0

for all i. Consider the example in the preceding observation 2. We can see that (Q1, Q2) satisfies

the equation

Q1 = � Q2 Cov(✓, y2)[Q1 Var(y1) +Q2 Cov(y1, y2)]

�1 Var(✓|y1,
P2

k=1 Qkyk + u)[Var(y1)(Var(Q) + Var(u))� Cov(Q, y1)2]
.

Proposition 5 and the previous equation imply that Q1 6= 0 and Q2 6= 0. If Q2 < 0, there is nothing

to prove, and if Q2 > 0, we can show by contradiction that Q1 < 0.

Our last proposition signs Qi (and therefore ⇡i) for some other special cases of possible interest.

PROPOSITION 7. Suppose that Cov(✓, yk) > 0 for at least one k. Then:

(i) If yi is uncorrelated with yj for every pair (i, j) with j 6= i, then Qi > 0 if Cov(✓, yi) > 0, and

Qi = 0 if Cov(✓, yi) = 0.

(ii) Suppose that Cov(✓, yi0) = 0 for some i0, and that Cov(yi0 , yk) > 0 for every k. Then there is

at least one index j with Qj < 0.

(iii) It is not possible that Qi  0 for all i.

(iv) There exists a threshold for the variance of noise trade, v, such that if Var(u) � v, then Qi > 0

for every i such that Cov(✓, yi) > 0.

The Proposition makes some progress in signing the coefficients in special cases, or by placing

some overall restrictions, as in parts (ii) and (iii). But even the overall nihilism expressed in this

section can be given a rich interpretation in applications. With many signals, some of which are

not observed by an individual trader, there is scope for interesting inference in specific situations.
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Suppose, for instance, that we are interested in the value of a pharmaceutical company, and there

are just two information groups, so that n = 2. A representative trader in group 1 knows about the

number of clinical trials are being performed by the pharmaceutical, but does not know the results

of those trials. A trader in group 2 knows about the number of successes in these trials, but does not

know the number of trials. Now, controlling for the number of successes, a larger number of trials

is bad news, because it suggests a lower percentage of successes. Therefore the number of trials

will enter negatively into the price function, when the number of successes exists as a separate

signal for others. (In contrast, if the number of successes is entirely private, the number of trials

could have entered positively, but that is another setting.)

Here is a concrete numerical example, though the reader is asked to forgive the replacement of

positive integers by lognormal signals: n = 2, X = 5, �1 = �2 = 1, y1 = log(trials),

y2 = log(successes), Var(y1) = 12, Var(✓) = Var(y2) = 10, Cov(✓, y1) = 1, Cov(✓, y2) = 8,

Cov(y1, y2) = 7, and Var(u) = 2. The fsolve function in MATLAB yields (Q1, Q2) =

(�0.001, 0.2221) for the system in (14) and a solution � = 0.4858 in (15). Therefore (⇡1, ⇡2) =

�(Q1, Q2) = (�0.0005, 0.1079), and the corresponding linear equilibrium price is p = �0.0005y1+

0.1079y2 + 0.4858u� 13.2059.

Now consider what happens when a trader in group 1 sees a higher value of her signal (more trials),

but observes the same market price. She can then infer that trader 2 must have received a really

positive signal regarding the number of interim successes. (Note that we show in Proposition 5 that

it is impossible that every sign is non-positive.) She understands that trader 2 is therefore taking a

larger position in the asset. But of course, she understands that trader 2 — who is making similar

inferences — will also know that part of the reason for her good signals must be that the company

is conducting more trials, so that trader 2 will be more cautious about the success rate. These two

forces temper the reaction of each side of the market. Knowing the signs of the price coefficients

is indispensable for making these arguments, and can help traders to understand well the positions

of other traders.
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6. BIBLIOGRAPHICAL NOTES

Our paper contributes to the extensive literature on equilibrium in financial markets with rational

expectations. The literature can be divided into two subareas — one set in the classical domain

of competitive price-taking behavior, and another that approaches the problem via theories of im-

perfect competition and strategic interaction; see Vives (2008) for a comprehensive account. Our

paper sits squarely in the former area. We discuss existence first, then information aggregation.

The competitive setting emanates from the pioneering contributions of Grossman (1976), Hellwig

(1980) and Grossman and Stiglitz (1980). Pálvölgyi and Venter (2015a) show that the linear equi-

librium in Grossman and Stiglitz (1980) is unique in the class of all continuous price functions.20

We restrict ourselves to linear equilibria throughout. Barlevy and Veronesi (2000) extend Gross-

man and Stiglitz (1980) in a different direction, assuming that the fundamental is binomial and

investors are risk-neutral, in place of the classical assumption of normality and exponential utility.

Garcı́a and Urošević (2013) analyze the effects of the level of aggregate supply of the risky asset on

the acquisition, revelation, and aggregation of private information for a variant of Hellwig (1980)

to allow for both the presence of informed and uninformed traders.

These contributions all presume that traders’ private signals are expressible as the sum of the funda-

mental and idiosyncratic noise. As already mentioned, we depart from this structure. In this sense,

our model is related to Breon-Drish (2015), which essentially analyzes the finite-agent model of

Hellwig (1980), but with an extension to more general signal structures of the exponential family,

which includes normal distributions.21 For tractability, this paper restricts the main analysis to the

case of two agents (one informed trader and one uninformed trader) and binomial distributions.

While Breon-Drish (2015) also discusses equilibrium existence for the multi-agent model, their

existence results all assume that some system of equations has a solution (refer to their Proposi-

tion 7 and Corollary 2 therein), without providing specific conditions that ensure the existence of

20The same result is generally not true for even larger spaces of functions: for idiosyncratic information structures
the authors also prove that there exist multiple discontinuous equilibria.

21Bernhardt and Miao (2004) also consider a model — different from ours — with a general signal structure.
Although this work characterizes necessary and sufficient conditions for linear equilibrium, it does not provide general
results on equilibrium existence.
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equilibrium. In contrast, we restrict ourselves to the normal case, but establish the existence and

regularity of linear equilibrium.22

Ozsoylev (2006) considers a generalized REE model in which traders can observe their neigh-

bors’ actions (their demands for the risky asset) over a social network, and can glean information

from those actions. Ozsoylev proposes a generalized concept of REE which accommodates this

interaction, and analyzes equilibrium existence for some special networks (cycles, trees), owing to

difficulties when dealing with more general network structures. In contrast, agents in our model

observe not the actions of other agents, but their signals. So conceptually, we do not (and do

not need to) extend the REE definition. However, because we establish our main results for any

correlation structure, the implication is that the analysis here can handle arbitrary networks.

Turning now to information aggregation, our paper is related to a vast literature on the informa-

tional role of prices in competitive markets. In Grossman (1976), a price function that aggregates

all information is an equilibrium, but there is no satisfactory explanation for how the information

gets into the system. Given the price function, traders have no incentive to use their private in-

formation. One interpretation of Hellwig (1980) is that noise trade acts as a device to resolve the

paradox in Grossman (1976),23 one that we adopt and significantly extend in our setting.

We end by briefly mentioning the imperfect competition setting. Now prices naturally encode

information, as they are typically set to clear the market “after” traders make their strategic choices.

So there is no potential informational paradox here as in the competitive setting, but it is still of

interest to learn when perfect aggregation is possible.24 The standard approach is to pass to the

limit as the number of traders becomes large.25 A continuous auction consisting of a single insider,

22There is also a literature that studies the existence, multiplicity and uniqueness of equilibrium for multi-asset
models; see, for instance, Pálvölgyi and Venter (2015b), Chabakauri et al. (2017) and Carpio and Guo (2017).

23Vives (2014) attempts a resolution of the Grossman-Stiglitz paradox by considering heterogeneous valuations
for the risky asset, and shows that the incentives to acquire information could be preserved without resorting to noise
trade — after all, the equilibrium price function caters to some average of all the valuations, leaving each trader with
some incentive to use her own information. See also Rahi and Zigrand (2018), where this happens to a partial degree.

24It is still possible to write down models of imperfect competition where information is not “forced” into the price.
See, e.g., Kyle (1989), where demand schedules as functions of the price are announced.

25On the strategic foundations of information aggregation and revelation when the number of traders/bidders (and
objects) becomes large, see, e.g., Wilson (1977), Milgrom (1981), Pesendorfer and Swinkels (1997), Kremer (2002),
Reny and Perry (2006) and Kovalenkov and Vives (2014). For a double auction in which the average of the correlation
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noise traders and market makers is studied in Kyle (1985), in which all private information is

incorporated into prices. Based on the single-period model of Kyle (1985), Lambert et al. (2018)

study the trading behavior and the properties of prices in an general signal setting and obtain an

information aggregation result. Our paper complements Lambert et al. (2018), in that they work

with a similarly general signal structure but in the imperfectly competitive setting; in contrast, we

work with a fully competitive model.

7. CONCLUDING SUMMARY

We revisit Hellwig (1980) by studying a financial market with correlated information received

by traders. Our traders belong to finitely many “information groups,” and there is an aggregate

signal for each such group. Each trader observes an idiosyncratic signal — generated from that

aggregate signal — about the fundamental, and acts on the basis of that signal and the market price

of the traded security. Because signals are multidimensional and the information structure permits

general correlations, several existing models serve as special cases. The existence and regularity of

linear equilibrium are established, the former through a novel method involving sequences of fixed

points. We show that the equilibrium price function serves well as an information aggregator of

diverse and decentralized information in the market, as the variance of the noise demand converges

to zero.

APPENDIX

In this appendix, we present all proofs. We begin with three useful preliminary steps.

LEMMA 1. For each i, there is ✏ � 0 such that for any price of the form (3),

0 < Var(✓|y1, . . . ,yn)  Var(✓|i)  Var(✓)� ✏,

with ✏ > 0 when Cov(✓,yi) 6= 0.

of each bidder’s value with other bidders’ values is a constant, Rostek and Weretka (2012) show that the equilibrium
price is privately revealing (one trader’s private signal together with the price contains all information) if and only if
correlations of values coincide across all bidders.
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Proof. The first inequality is stated in Assumption 1. For the second inequality, recall that Var(✓|i)
is shorthand for Var(✓|zi, p), and now observe that a price function of the form (3), plus a private

signal, has no more information than y. The last inequality states that the unconditional variance

of ✓ must weakly exceed any of the conditional variances. That inequality is necessarily strict, and

uniformly so regardless of the price function, if any of the conditioning variables is informative

about ✓, as it will be when Cov(✓, zi) 6= 0, or equivalently, when Cov(✓,yi) 6= 0. ⇤

LEMMA 2. For any vector µ = (µ0
1, ...,µ

0
n)

0 2 Rnm, define �i(µ) ⌘ Cov(✓,yi) Var(µ) �
Cov(µ, ✓)Cov(µ,yi). Then

Pn
i=1 µ

0
i�i(µ) = 0.

Proof. Combine
Pn

i=1 µ
0
i Cov(✓,yi) = Cov(µ, ✓) and

Pn
i=1 µ

0
i Cov(µ,yi) = Var(µ). ⇤

LEMMA 3. Let µ = (µ0
1, ...,µ

0
n)

0 2 Rnm with µ0y 6= 0. Then the following hold:

(i) For any i, the matrix Var(yi) � Cov(µ,yi)Cov(µ,yi)0

Var(µ) is positive semi-definite, and is additionally

positive definite if µ0y cannot be expressed as a linear combination of yi;

(ii) For any i, Var(µ)� Cov(µ,yi)0 Var�1(zi)Cov(µ,yi) � 0, and the inequality is strict if µ0y

cannot be expressed as a linear combination of yi.26

Proof. (i) Observe that for any nonzero column vector d 2 Rm,

d0
h

Var(yi)�
Cov(µ,yi)Cov(µ,yi)0

Var(µ)

i
d = Var(d0yi)�

Cov(µ,d0yi)2

Var(µ)

� Var(d0yi)�
Cov(µ,d0yi)2

Var(µ)
� 0,

where the second inequality follows from the Cauchy-Schwarz inequality. When µ0y cannot be

expressed as a linear combination of yi, the second inequality is clearly strict: for any column

vector d 2 Rm, µ0y cannot be perfectly correlated with d0yi.

26The two inequalities in Lemma 3 (though not in strict form as stated here) have been proved in Tripathi (1999).
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(ii) Let s = (s1, . . . , sm)0 = Var� 1
2 (yi)yi. Simple computation shows that s ⇠ N(0, Im). Observe

that
Pn

k=1 µ
0
kyk can be linearly expressed as

nX

k=1

µ0
kyk =

mX

i=1

Cov
⇣ nX

k=1

µ0
kyk, si

⌘
si + sm+1,

where sm+1 ⌘
Pn

k=1 µ
0
kyk �

Pm
i=1 Cov

�P
k µ

0
kyk, si

�
si is independent of {s1, . . . , sm}. There-

fore, noting that Var�1(zi) � Var�1(yi),27

Cov(µ,yi)
0 Var�1(zi)Cov(µ,yi)  Cov(µ,yi)

0 Var�1(yi)Cov(µ,yi)

= Cov(µ, s)0 Cov(µ, s) =
mX

i=1

Cov
⇣ nX

k=1

µ0
kyk, si

⌘2


mX

i=1

Cov
⇣ nX

k=1

µ0
kyk, si

⌘2

+Var(sm+1) = Var(µ). (A.1)

When µ0y cannot be expressed as a linear combination of yi, it is easy to see that sm+1 6= 0, and

(A.1) holds with strict inequality. ⇤

Proof of Proposition 1. For each i = 1, . . . , n and for any � > 0, define

fi�(Q) =

h
Var(zi) + �Im � Cov(Q,yi)Cov(Q,yi)0

Var(Q)+Var(u)

i�1 h
Cov(✓,yi)� Cov(Q,✓)

Var(Q)+Var(u) Cov(Q,yi)
i

�i VarQ(✓|i)
, (A.2)

where Im is the identity in Rm. When � = 0, the system (A.2) coincides with (14). By Lemma 3

(i) and the fact that Var(yi) � Var(zi), we see that for any Q 2 Rnm,

�Im � Var(zi) + �Im � Cov(Q,yi)Cov(Q,yi)0

Var(Q) + Var(u)
, (A.3)

along with

|Cov(Q, ✓)| 
p

Var(Q) Var(✓) and |Cov(Q,yi)| 

vuutmVar(Q)
mX

j=1

Var(yij). (A.4)

27Because Var(zi)[Var�1(yi)�Var�1(zi)]Var(zi) = Var(✏i(j))+Var(✏i(j))Var�1(yi)Var(✏i(j)) is positive
semi-definite, Var�1(zi) � Var�1(yi), with “�” holding when there is idiosyncratic noise.
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Invoking Lemma 1 and (A.2)–(A.4), we see that

|fi�(Q)| 

����
h

Var(zi) + �Im � Cov(Q,yi)Cov(Q,yi)0

Var(Q)+Var(u)

i�1
����


|Cov(✓,yi)|+

Var(Q)
p

mVar(✓)
Pm

j=1 Var(yij)

Var(Q)+Var(u)

�

�i Var(✓|y1, . . . ,yn)


|Cov(✓,yi)|+

q
mVar(✓)

Pm
j=1 Var(yij)

��i Var(✓|y1, . . . ,yn)

 max
1kn

|Cov(✓,yk)|+
q

mVar(✓)
Pm

j=1 Var(ykj)

��k Var(✓|y1, . . . ,yn)
=: B�,

where the second inequality uses the fact that
����
h

Var(zi) + �Im � Cov(Q,yi)Cov(Q,yi)0

Var(Q)+Var(u)

i�1
���� is bounded

above by the inverse of the smallest eigenvalue of the related matrix, which in turn is no greater

than 1/�, by (A.3). Noting that all components of the mapping f� ⌘ (f1�, . . . ,fn�) described in

(A.2) are continuous in Q, it follows from Brouwer’s fixed point theorem that the restriction of

that mapping to the subdomain [�B�, B�]nm has a fixed point Q�.

Next, as � ! 0, we claim that any sequence of fixed points {Q�}�>0 is bounded. Evaluating (A.2)

at each fixed point Q�, transposing terms, and adding over all components i, we have:
nX

i=1

Q0
i�

⇣
[Var(Q�) + Var(u)] (Var(zi) + �Im)� Cov(Q�,yi)Cov(Q�,yi)

0
⌘
Qi��i VarQ�

(✓|i)

=
nX

i=1

Q0
i�

⇣
[Var(Q�) + Var(u)]Cov(✓,yi)� Cov(Q�, ✓)Cov(Q�,yi)

⌘

=
nX

i=1

Q0
i� Cov(✓,yi) Var(u), (A.5)
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where the second equality invokes Lemma 2 with µ set equal to Q�. Applying Lemma 3 (i) to the

left hand side of (A.5), we see that
nX

i=1

Q0
i� Cov(✓,yi) Var(u) �

nX

i=1

Q0
i�

⇣
Var(u)[Var(zi) + �Im] + �Var(Q�)Im

⌘
Qi��i VarQ�

(✓|i)

�
nX

i=1

Q0
i�

�
Var(u)Var(zi)

�
Qi��i VarQ�

(✓|i)

� Var(u) Var(✓|y)
nX

i=1

�iQ
0
i� Var(zi)Qi�, (A.6)

where the last inequality uses Lemma 1. Because Var(zi) is positive definite, the right-hand side

of (A.6) is quadratic in every component of Qi�, for every i, while the left hand side is linear. This

implies that {Q�}�>0 must be uniformly bounded in �, establishing the claim.

Let Q be any limit point of {Q�}�>0. Observing that the matrix Var(zi) � Cov(Q,yi)Cov(Q,yi)0

Var(Q)+Var(u) is

positive definite for any Q and passing to the limit as � ! 0 in (A.2) with Q set equal to Q�, we

must conclude that Q solves the system (14), thus completing the proof. ⇤

LEMMA 4. In any equilibrium, Cov(Q, ✓) � 0.

Proof. Follows from (A.5) and (A.6) by letting � = 0 and replacing Qi� with Qi. ⇤

Proof of Proposition 2. For easy reference, we rewrite (15) here:

� =
1 +

Pn
i=1

Cov(Q,✓)�Cov(✓,yi)0 Var�1(zi)Cov(Q,yi)
�i Var(✓|i)[Var(Q)+Var(u)�Cov(Q,yi)0 Var�1(zi)Cov(Q,yi)]Pn

i=1
1

�i Var(✓|i)
. (A.7)

By Lemma 1, the denominator of (A.7) is positive. When Cov(✓,yi) = 0 for every i, Cov(Q, ✓) =

0, so that � > 0. We next suppose that Cov(✓,yi) 6= 0 for some i. Multiplying both sides of (14)

by Cov(✓,yi)0 and then summing over all i, we obtain

Cov(Q, ✓) =
nX

i=1

Cov(✓,yi)0
h

Var(zi)� Cov(Q,yi)Cov(Q,yi)0

Var(Q)+Var(u)

i�1h
Cov(✓,yi)� Cov(Q,✓)

Var(Q)+Var(u) Cov(Q,yi)
i

�i Var(✓|i)
,
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which — given Cov(✓,yi) 6= 0 for some i and Lemma 3— implies Cov(Q, ✓) 6= 0. Divide through

by Cov(Q, ✓); then

nX

i=1

Cov(✓,yi)0
h

Var(zi)� Cov(Q,yi)Cov(Q,yi)0

Var(Q)+Var(u)

i�1hCov(✓,yi)
Cov(Q,✓) �

Cov(Q,yi)
Var(Q)+Var(u)

i

�i Var(✓|i)
= 1.

Substituting this equality into the numerator of (A.7) to eliminate 1, we see that it suffices to show

Cov(✓,yi)
0
h

Var(zi)�
Cov(Q,yi)Cov(Q,yi)0

Var(Q) + Var(u)

i�1hCov(✓,yi)

Cov(Q, ✓)
� Cov(Q,yi)

Var(Q) + Var(u)

i

+
Cov(Q, ✓)� Cov(✓,yi)0 Var�1(zi)Cov(Q,yi)

Var(Q) + Var(u)� Cov(Q,yi)0 Var�1(zi)Cov(Q,yi)
� 0 (A.8)

for every i and the strict inequality holds for at least one i. By Lemma 4 together with Cov(Q, ✓) 6=
0, we have Cov(Q, ✓) > 0. Let ai = Var� 1

2 (zi)Cov(✓,yi) and bi = Var� 1
2 (zi)Cov(Q,yi). To

establish (A.8), it is equivalent to show that

a0
i

h{Var(Q) + Var(u)}Im � bib0i
Var(Q) + Var(u)� b0ibi

i�1h
ai [Var(Q) + Var(u)]� bi Cov(Q, ✓)

i
+ Cov(Q, ✓)2 � Cov(Q, ✓)a0

ibi � 0. (A.9)

Observe that
h{Var(Q) + Var(u)}Im � bib0i

Var(Q) + Var(u)� b0ibi

i�1

=
Var(Q) + Var(u)� b0ibi

Var(Q) + Var(u)

h
Im � bib0i

Var(Q) + Var(u)

i�1

=
h
1� b0ibi

Var(Q) + Var(u)

i"
Im +

1

1� b0ibi
Var(Q)+Var(u)

bib0i
Var(Q) + Var(u)

#
.

Substitute this equality into (A.9), which then becomes:

(Cov(Q, ✓)� a0
ibi)

2 + a0
iai{Var(Q) + Var(u)}

h
1� b0ibi

Var(Q) + Var(u)

i
� 0. (A.10)

It follows from Lemma 3 (ii) that b0ibi = Cov(Q,yi)0 Var�1(zi)Cov(Q,yi)  Var(Q) and conse-

quently, (A.10) is indeed true for every i, with strict inequality for some i, because Cov(✓,yi) 6= 0
for some i. The proof is now complete. ⇤

Proof of Proposition 4. If Cov(✓,yi) = 0 for all i, p = Var(✓)Pn
k=1

1
�k

(u �X) is obviously the unique

linear equilibrium. So assume Cov(✓,yi) 6= 0 for some i. We first focus on the case in which
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Var(y) is positive definite. In this case, the discussion in the main text before and after the state-

ment of Proposition 1 makes it clear that linear equilibria are intimately connected to solutions

Q to (14). Specifically, every linear equilibrium price function can be mapped to a vector Q that

solves (14), and conversely, every solution to (14) generates a particular linear equilibrium price

function.

In what follows we fix all parameters of the model but consider a variety of risk attitudes. Specif-

ically, fix some number a > 0. Let P(a) be the set of all linear equilibrium price functions under

some configuration {⇢(r)}, with ⇢(r) � a for all types. We claim that the set

Q(a) ⌘
⇢
Q 6= 0

���Q =
⇡

�
for some linear equilibrium price p = ⇡0y + �u+ c in P(a)

�

is well-defined and bounded. It is well-defined because � > 0 by Proposition 2. As in (A.6) we

can show that for every solution Q of (14),
nX

i=1

Q0
i Cov(✓,yi) � Var(✓|y)

nX

i=1

�iQ
0
i Var(zi)Qi, (A.11)

implying that the set Q(a) is bounded.

The map fi in (14) is continuously differentiable, so for any Q1,Q2 2 Rnm,

f(Q1)� f(Q2) =
⇣Z 1

0

Df(Q2 + t(Q1 �Q2))dt
⌘
(Q1 �Q2), (A.12)

where Df denotes the Jacobian matrix of f and the integral of a matrix is to be understood compo-

nentwise. Because Q(a) is bounded, it follows from (A.12) that |f(Q1)�f(Q2)| < |Q1�Q2| for

any Q1,Q2 2 Q(a) when �i’s are sufficiently large, or equivalently when traders are sufficiently

risk averse. That is, when �i’s are sufficiently large, f is a compressive mapping on the set Q(a),

implying that the system of equations (14) has a unique fixed-point. So, given the equivalence

analysis already conducted, there is a unique linear equilibrium.

We now extend the argument to y with Var(y) not of full rank. Select a maximal linearly in-

dependent subset of {yij, i = 1, . . . , n, j = 1, . . . ,m}, denoted by ȳ. Then Var(ȳ) is positive

definite, and every yij not in ȳ can be expressed as a linear combination of ȳ. For any linear

equilibrium p = ⇡0y + �u + c, we can rewrite ⇡0y as a linear combination ⇡̄0ȳ of ȳ. So to show
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uniqueness, it suffices to prove that the vector ⇡̄ with p = ⇡̄0ȳ + �u + c a linear equilibrium is

unique. Inserting the price function p = ⇡̄0ȳ + �u + c into (6), we can get a system of equations

involving Q̄ := ⇡̄/�, which is similar to (14). The remainder of the proof consists in applying

similar boundedness arguments, parallel to the positive definite case. ⇤

Proof of Proposition 5. The sign of Cov(✓, p) is the same as that of Cov(Q, ✓) because � >

0, as shown in Proposition 2, and because u is independent of ✓. That Cov(Q, ✓) � 0 then

follows from Lemma 4. We now show that equality holds if and only if Cov(✓,yi) = 0 for all i.

Sufficiency is immediate by noting that Cov(Q, ✓) =
Pn

i=1 Q
0
i Cov(✓,yi). For necessity, assume

that Cov(Q, ✓) = 0. Using (14), we see that for each i = 1, . . . , n,

Cov(✓,yi)
0Qi =

Cov(✓,yi)0
h

Var(zi)� Cov(Q,yi)Cov(Q,yi)0

Var(Q)+Var(u)

i�1

Cov(✓,yi)

�i Var(✓|i)
.

Summing over all i, we must conclude that

nX

i=1

Cov(✓,yi)0
h

Var(zi)� Cov(Q,yi)Cov(Q,yi)0

Var(Q)+Var(u)

i�1

Cov(✓,yi)

�i Var(✓|i)
=

nX

i=1

Cov(✓,yi)
0Qi = Cov(Q, ✓) = 0,

implying that Cov(✓,yi) = 0 for every i. ⇤

Proof of Proposition 6. We assume for this proof that there is idiosyncratic noise (Var(✏i(j)) is

positive definite). The case with no idiosyncratic noise is in the Online Appendix. We consider a

sequence of equilibria, indexed by t, along which the variance of noise trade vanishes parametri-

cally. So in what follows, all equilibrium values will be indexed by t. In addition, we write Vart(u)

for the variance of noise trade, and Vart(✓|i) for the variance of ✓ conditional on group i’s price

and private signal, because this estimate will move as the equilibrium price function changes.

We first dispose of the case in which Cov(✓,y) = 0. In this case, just as in the proof of Proposition

5, Qt = 0 and �t =
Var(✓)Pn
k=1

1
�k

, with pt = �tu + ct for some sequence of intercepts {ct} that each

solves (8). There is no dependence on the signals either in equilibrium or under the full-information

aggregator, so Part (i) follows trivially. Moreover, in the case under consideration, �t Vart(u) ! 0

and ct = �[
Pn

k=1
1
�k

]�1 Var(✓)X for all t, and Part (ii) follows as well.
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So in what follows, assume Cov(✓,yi) 6= 0 for some i. Then by Proposition 5, ⇡t 6= 0 and so

Qt 6= 0. Define µt ⌘ ⇡t/|⇡t| and ◆t ⌘ �t/|⇡t|. Note that ◆t > 0 by Proposition 2. Then by (10)

and (11), we have

↵it=


Var(zi)�

Cov(⇡t,yi)Cov(⇡t,yi)0

Var(⇡t) + �2
t Vart(u)

��1 
Cov(✓,yi)�

Cov(⇡t, ✓)Cov(⇡t,yi)

Var(⇡t) + �2
t Vart(u)

�
(A.13)

=


Var(zi)�

Cov(µt,yi)Cov(µt,yi)0

Var(µt) + ◆2t Vart(u)

��1 
Cov(✓,yi)�

Cov(µt, ✓)Cov(µt,yi)

Var(µt) + ◆2t Vart(u)

�
, (A.14)

�it =
Cov(⇡t, ✓)� Cov(✓,yi)0 Var�1(zi)Cov(⇡t,yi)

Var(⇡t) + �2
t Vart(u)� Cov(⇡t,yi)0 Var�1(zi)Cov(⇡t,yi)

(A.15)

=
1

|⇡t|
Cov(µt, ✓)� Cov(✓,yi)0 Var�1(zi)Cov(µt,yi)

Var(µt) + ◆2t Vart(u)� Cov(µt,yi)0 Var�1(zi)Cov(µt,yi)
. (A.16)

Notice that |µt| = 1. Also, by Lemma 1, 0 < Var(✓|y)  Vart(✓|i)  Var(✓), and indeed,

Var(✓|y) is just a constant independent of the realization of y. So we can presume (using a

subsequence if necessary, but retaining the original notation) that µt ! µ for some µ with |µ| = 1,

and Vart(✓|i) ! vi 2 [Var(✓|y),Var(✓)]. It is without loss of generality to assume that Var(y)
is positive definite. Otherwise, re-write µ0

ty as µ̄0
tȳ (µ̄t 6= 0), where ȳ is a maximal linearly

independent subset of y, and apply the same technique by substituting µ0
ty with µ̄0

tȳ/|µ̄t|, and ◆t

with ◆t/|µ̄t|.

Claim 1: ◆2t Vart(u) ! 0.

Suppose not. Then (using a subsequence of t if needed) we can presume that ◆2t Vart(u) is bounded

away from zero. Because Vart(u) ! 0 and ◆t > 0 by Proposition 2, it must be that ◆t ! 1. By

(9) and the definition of µ,

µit =
◆t

�i Vart(✓|i)
↵it (A.17)

for every i and t, and so, because {Vart(✓|i)} and {µit} are bounded, we have ↵it ! 0 for all i.

Using �i(µ) = Cov(✓,yi) Var(µ)� Cov(µ, ✓)Cov(µ,yi) and (A.14), we therefore see that

↵it =
⇣ ⇥

Var(µt) + ◆2t Vart(u)
⇤

Var(zi)� Cov(µt,yi)Cov(µt,yi)
0
⌘�1

[Cov(✓,yi)◆
2
t Vart(u) + �i(µt)] ! 0

(A.18)
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for all i. Because there exists at least one nonzero vector of Cov(✓,yi), say at i = k, it follows

from (A.18) that ◆2t Vart(u) is bounded. (For if not, ↵kt ! Var�1(zk)Cov(✓,yk) 6= 0 along some

subsequence of {t}, a contradiction.)

Thus, each limit point G of ◆2t Vart(u) must be finite, and it is strictly positive by our contradiction

assumption. For any such limit point G, (A.18) tells us that Cov(✓,yi)G + �i(µ) = 0 for all i.

Summing over all indices i, G
P

i µ
0
i Cov(✓,yi) +

P
i µ

0
i�i(µ) = 0. By Lemma 2,

P
i µ

0
i�i(µ) =

0, and therefore G
P

i µ
0
i Cov(✓,yi) = 0, or (because G > 0) Cov(µ, ✓) = 0.

Now, using (A.17) and the equality in (A.18), we have
h
{Var(µt) + ◆2t Vart(u)}Var(zi)� Cov(µt,yi)Cov(µt,yi)

0
i
µit

=
◆t

�i Vart(✓|i)

h
{Var(µt) + ◆2t Vart(u)}Cov(✓,yi)� Cov(µt, ✓)Cov(µt,yi)

i
. (A.19)

Because {µit} and ◆2t Vart(u) are bounded, so is the left hand side of (A.19). On the other hand, the

right hand side of (A.19) cannot be bounded in t for any i with Cov(✓,yi) 6= 0, because ◆t ! 1
and Cov(µ, ✓) = 0, as just shown above. But that is a contradiction. Therefore, our claim is true

and ◆2t Vart(u) ! 0.

Claim 2: ◆t ! 1, and for each i, ↵it ! 0, �i(µ) = 0.

For each i and t, let Bit := [Var(µt) + ◆2t Vart(u)]Var(zi)� Cov(µt,yi)Cov(µt,yi)0. Recall (9)

for each i and index t, and multiply both sides by ↵0
itBit to obtain:

↵0
itBit⇡it =

�t
�i Vart(✓|i)

↵0
itBit↵it.

Note that �t > 0 (by Proposition 2) and that Bit is positive semi-definite by Lemma 3 (i) and

Var(yi) � Var(zi). It follows that for each i and t, ↵0
itBit⇡it — and so ↵0

itBitµit as well — are

nonnegative for any t and all indices i.

Now multiply both sides of (A.18) by Bit, and then pass to the limit as t ! 1, using Claim 1, to

obtain for each i:

Bit↵it � �i(µt) ! 0. (A.20)
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Multiplying both sides by µ0
it and summing over i, we see that

lim
t!1

⇣X

i

µ0
itBit↵it �

X

i

µ0
it�i(µt)

⌘
= lim

t!1

X

i

µ0
itBit↵it = 0,

where the latter equality follows from Lemma 2. Because we have just established that ↵0
itBitµit =

µ0
itBit↵it � 0 for any t and every i, it follows that for all i,

lim
t!1

µ0
itBit↵it = 0. (A.21)

Next, multiplying both sides of (A.17) by µ0
itBit, we have

µ0
itBitµit =

◆t
�i Vart(✓|i)

µ0
itBit↵it. (A.22)

We now claim that ◆t ! 1. If not, then taking t ! 1 (along some subsequence for which ◆t tends

to a finite number) over both sides of (A.22) and using (A.21) along with Vart(✓|i) ! vi 2 (0,1),

we have µ0
iBiµi = 0, or

Var(µ) Var(µ0
izi)� Cov(µ,µ0

iyi)
2 = 0 (A.23)

for all i, where Bi = Var(µ)Var(zi) � Cov(µ,yi)Cov(µ,yi)0. Because µ 6= 0, there exists k

such that µk 6= 0. However, when there is idiosyncratic noise (i.e., Var(✏i(j)) is positive definite

for all i and j), (A.23) cannot hold for k because

Cov(µ,µ0
kyk)

2  Var(µ) Var(µ0
kyk) < Var(µ)[Var(µ0

kyk) + µ0
k Var(✏k(j))µk] = Var(µ) Var(µ0

kzk).

Hence, ◆t ! 1. Reapplying (A.17) to all other indices i and recalling that {µit} is bounded, we

can further conclude that ↵it ! 0 for every i and then, by (A.20), �i(µ) = 0 for every i as well.

Claim 3: Cov(µ, ✓) > 0.

Certainly, Cov(µ, ✓) � 0, because

Cov(µt, ✓) =
1

|⇡t|
Cov(⇡t, ✓) > 0

for all t (because Cov(⇡t, ✓) > 0 by Proposition 2). If, however, Cov(µ, ✓) = 0, then multiplying

both sides of (A.14) by the matrix Var(zi) � Cov(µt,yi)Cov(µt,yi)0

Var(µt)+◆2t Vart(u)
and subsequently passing to the
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limit, using Claim 1 and ↵it ! 0 in Claim 2, we see that

lim
t!1


Var(zi)�

Cov(µt,yi)Cov(µt,yi)0

Var(µt) + ◆2t Vart(u)

�
↵it = Cov(✓,yi) = 0

for any i, which contradicts the assumption that Cov(✓,yi) 6= 0 for some i. So Cov(µ, ✓) > 0.

Claim 4: lim
t!1

|⇡t| =
Cov(µ, ✓)

Var(µ)
and lim

t!1
�it = 1 for all i.

By the Law of Total Variance, we know that for every t and information group i,

Var(✓) = Var(E(✓|zi, pt)) + E(Var(✓|zi, pt)) = Var(E(✓|zi, pt)) + Vart(✓|i), (A.24)

where we recall that Var(✓|zi, pt) is independent of the realizations of zi and pt. Combining (A.24)

with (12), we must conclude that for every i and t,

Var(E(✓|zi, pt)) = Var(✓)� Vart(✓|i) = ↵0
it Cov(✓,yi) + �it Cov(⇡t, ✓)

= ↵0
it Cov(✓,yi) + �it|⇡t|Cov(µt, ✓). (A.25)

Passing to the limit in (A.25) as t ! 1, noting that Var(E(✓|zi, pt)) is bounded above by Var(✓),

using Claim 2 (every limit point of ↵it is zero), and using Claim 3, we must conclude that �it|⇡t|
is bounded in t for every i. It’s also the case that �it|⇡t| only has non-zero limit points. For if

0 were to be a limit point of �it|⇡t|, it would then follow from (A.16) and Cov(µ, ✓) > 0 that

Cov(✓,yi) 6= 0. But then the last inequality in Lemma 1 must hold strictly and uniformly in the

price function, so that Var(✓) > Var(✓|i) for any limit point of Vart(✓|i). That would contradict

(A.25), as the right hand must go to zero when �it|⇡t| ! 0 (↵it ! 0 by Claim 2), while the middle

term remains bounded away from 0 by virtue of Var(✓) � Var(✓|i) > 0. In summary, �it|⇡t| is

bounded in t for every i and has non-zero limit points. Pick any such limit point `i for each i; in

other words, extract a subsequence (but retain notation t) such that for every i,

�it|⇡t| ! `i 6= 0, (A.26)

in addition to the convergence of µt to µ and ↵it ! 0.
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Now, there is a second way to write Var(E(✓|zi, pt)). Recall from (4) that for every i and t,

E(✓|zi, pt) = ↵0
itzi + �it(pt � ct), and so

Var(E(✓|zi, pt)) = Var(↵0
itzi + �itpt). (A.27)

Passing to the limit with t in both (A.25) and (A.27), and using the fact that ↵it ! 0 (Claim 2),

we see that for each i,

`i Cov(µ, ✓) = lim
t!1

Var(↵0
itzi + �itpt) = lim

t!1
Var(�itpt) = lim

t!1
�2
it

h
Var

⇣X

k

⇡0
ktyk

⌘
+ �2

t Vart(u)
i

= lim
t!1

�2
it|⇡t|2

"
Var

⇣X

k

µ0
ktyk

⌘
+ ◆2t Vart(u)

#
= `2i Var(µ),

where the third equality uses the form of the price function and the independence of noise trade,

and the last equality invokes Claim 1 (◆2t Vart(u) ! 0) along with the fact that �2
it|⇡t|2 is bounded

in t. Because `i 6= 0, we can therefore conclude from these equalities that `i = Cov(µ, ✓)/Var(µ)

for every i, and using this information in (A.26), we have, for every i:

lim
t!1

�it|⇡t| =
Cov(µ, ✓)

Var(µ)
. (A.28)

To complete the proof of Claim 4, we argue first that |⇡t| cannot have a zero limit point. For

suppose that |⇡t| ! 0 along some subsequence, then — given (A.28) and the fact Cov(µ, ✓) > 0

— �it ! 1 for all i along that same subsequence. That implies — using (7) — that �t is negative

along a subsequence of t, which contradicts Proposition 2.

We can now combine this observation with Claim 2 (◆t ! 1) to conclude that �t = |⇡t|◆t ! 1
and so, by (7),

Pn
i=1

1��it

�i Vart(✓|i) ! 0. At the same time, (A.28) informs us that limt!1 �it is

independent of i. Therefore, �it ! 1 for all i. Applying this information to (A.28) again, the

Claim is proved.

We now complete the proof of Proposition 6. Noting that we’ve already chosen a subsequence so

that µt converges to µ, and that |⇡t| then converges by Claim 4, write ⇡ = limt ⇡t. Recall that
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�i(µ) ⌘ Cov(✓,yi) Var(µ)� Cov(µ, ✓)Cov(µ,yi) = 0 (by Claim 2), so that

Cov(✓,yi) =
Cov(µ, ✓)

Var(µ)
Cov(µ,yi) = |⇡|Cov(µ,yi) = Cov(⇡,yi) (A.29)

for all i, where the second equality follows from Claim 4. This proves Part (i) of the Proposition.

Next,

�2
t Vart(u) = |⇡t|2◆2t Vart(u) ! 0

by Claims 1 and 4. Finally, by Claims 2 and 4, ↵it ! 0 and �it ! 1 for all i, so invoking (12), we

must conclude that Vart(✓|i) ! Var(✓) � Cov(⇡, ✓) whenever ⇡t ! ⇡ along some subsequence

of t. The asserted limit on {ct} then follows from (8), and the proof of Part (ii) is complete. ⇤

Proof of Proposition 7. Part (i). If the condition there holds, equation (14) becomes

Qi =
Cov(✓, yi)[

Pn
k=1 Q

2
k Var(yk) + Var(u)]�Qi Var(yi) Cov(Q, ✓)

�i Var(✓|yi,
Pn

k=1 Qkyk + u)[Var(yi)(Var(Q) + Var(u))� Cov(Q, yi)2]
. (A.30)

Recall that Q = ⇡/�, that � > 0 by Proposition 2, and that Cov(p, ✓) = Cov(⇡, ✓) � 0 by

Proposition 5. It follows that Cov(Q, ✓) � 0. Now a simple inspection of (A.30) yields the desired

conclusion.

(ii). Fix i0 as in the statement of the Proposition. If Qi0 < 0, there is nothing to prove, so suppose

that Qi0 � 0. By Proposition 5, we have Cov(Q, ✓) > 0 (because Cov(✓, yk) > 0 for at least one

k), and we also know that Cov(✓, yi0) = 0. Using all this information in (14), we can conclude

that

Cov(Q, yi0) =
nX

k=1

Qk Cov(yk, yi0)  0. (A.31)

Now suppose, contrary to the assertion of the Proposition, that Qi � 0 for all i. Then our assump-

tion that Cov(yk, yi0) > 0 for all k, along with (A.31), implies that Q = 0. Invoking (14) again, it

is easy to see that this implies Cov(✓, yi) = 0 for all i, a contradiction.

(iii). Because Cov(✓, yi) > 0 for some i, Proposition 5 tells us that Cov(Q, ✓) =
Pn

i=1 Qi Cov(✓, yi)

> 0. Our conclusion follows immediately from the convention that Cov(✓, yi) � 0 for all i.

40



(iv). From (14) and the inequality |Cov(Q, ✓) Cov(Q, yi)|  Var(Q)
p

Var(✓) Var(yi), we have

Qi �
Cov(✓, yi)[Var(Q) + Var(u)]� Var(Q)

p
Var(✓) Var(yi)

�i Var(✓|yi,
Pn

k=1 Qkyk + u)[Var(yi)(Var(Q) + Var(u))� Cov(Q, yi)2]
(A.32)

for every i. Moreover, similar to (A.6), we have
nX

i=1

Qi Cov(✓, yi) � Var(✓|y1, . . . , yn)
nX

i=1

Q2
i�i Var(yi),

so Q is bounded uniformly over Var(u). Use this information in (A.32) to complete the proof. ⇤
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