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A strategic situation with payoff-based externalities is one in which a
player’s payoff depends onher own action andothers’payoffs.We place
restrictions on the resulting interdependent utility system that generate
a standard normal form, referred to as a “game of love and hate.” Our
central theorem states that every equilibriumof a game of love andhate
is Pareto optimal.While externalities are restricted to flowonly through
payoffs, there are no other constraints: they could be positive or nega-
tive or of varying sign. We examine the philosophical implications of
the restrictions that underlie this theorem.

I. Introduction

A strategic situation with payoff-based externalities is one in which the
payoff of each player depends on her own action and the payoffs of some
or all of the other players. Others’ actions enter a player’s payoff only via
the payoffs they generate for other players.
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Payoff-based externalities are, of course, natural in situations of altru-
ism or envy (see, e.g., Pearce 1983; Kimball 1987; Ray 1987; Bergstrom
1999; Koçkesen, Ok, and Sethi 2000; or Vásquez and Weretka 2018). In
its purest form, we might derive our happiness or hatred directly from
the extent to which others are enjoying themselves and not from how
they are doing so. But payoff-based externalities also occur in situations
in which there is no love or hate as such but there are pecuniary external-
ities generated by firm profits, say, via demand (Murphy, Shleifer, and
Vishny 1989), or in which the payoffs of others serve as reference points
or aspirations for an individual (Genicot and Ray 2017).
The interacting cascade generated by interdependent payoff functions

can get out of hand, leading to implosions or explosions of utility or to
multiple utility solutions for some fixed action profile. Familiar Hawkins-
Simon-like conditions guarantee coherence, that is, a bounded utility sys-
tem with a unique solution for every action profile (Pearce 1983; Hori and
Kanaya 1989; Bergstrom 1999). This paper directly imposes coherence,
as well as coherence on all subsets of agents (“subcoherence”). We also as-
sume that the payoff of each player is continuous in the payoffs of others.
Then the strategic situation can be reduced to a standard game with pay-
offs defined on action profiles. We call this a game of love and hate. We
have just one main result to report:
Every equilibrium of a game of love and hate is Pareto optimal.
The purpose of our paper is to state, prove, and discuss this theorem. It

is worthmentioning here that this result is independent of the sign of the
externalities. “Love” creates full efficiency—despite the fears of a coordi-
nation failure—but so does “hate,” and so does anymixture of the two—a
player could hate some individuals and love others, or indeed could love
and hate the same individual at different points on the domain of her pay-
off function. This result appears to depend fundamentally—but only—on
the presumption that all externalities are transmitted via payoffs.
But a bit more is involved. One is naturally drawn to explaining just why

games such as the prisoner’s dilemma or the coordination game, with inef-
ficient equilibria, cannot be written as strategic situations with payoff-based
externalities. The answer is that they can be so written (see theorem 3), but
nomatter which payoff functionwe use to represent that conversion, either
coherence or continuity must fail. Since the connection between coher-
ence and efficiency is far fromobvious, this leads to a new andmore subtle
interpretation of the coherence restriction.
This discussion should not be taken tomean that we believe Nash equi-

libria to be efficient, or even efficient “most of the time.” Our result is
general, but it is general within the particular class of games of love
and hate. Such games do have applications (see sec. III), but our aim is
not to argue that this class is widespread or to provide algorithms to verify
that a game belongs to this class. What we do find interesting is the fact
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that equilibria of games of love and hate behave the way they do. In par-
ticular, we are drawn to the philosophical implications of our efficiency
theorem, knowing well as we do that Nash equilibria of games with exter-
nalities are “typically” Pareto suboptimal.
For instance, a common and obvious criticism of the libertarian doc-

trine is that when externalities are involved, behavior in accordance with
libertarian philosophy can lead to Pareto-inferior outcomes (Sen 1970).
Of course, we agree with this position. It is nevertheless of some interest
that when all externalities are “nonpaternalistic,” in the sense of being
transmitted entirely via payoffs, a libertarian (or a liberal, in Sen’s par-
lance) cannot but be a Paretian.1

II. The Setting

The set of agents is N 5 f1, :::ng. Each agent i ∈ N has a strategy set Xi.
Let X 5

Q
iXi . For each i, utility ui depends on her own action xi and on

all other utilities u2i ; fujgj≠i:

ui 5 fi ðxi , u2iÞ: (1)

A collection (N, {Xi, fi }) is a strategic situation with payoff-based externalities
(or a strategic situation, for short). It is continuous if for each i and strategy
xi, fi is continuous in u2i. Except in section VI, no continuity condition is
imposed with respect to xi; in fact, no topological restrictions are placed
on X.
Define the function f : X � RN →RN by2

f ðx, uÞ 5 f1ðx1, u21Þ � ::: � fi ðxi , u2iÞ � ::: � fnðxn, u2nÞ:
For any x, the mapping f(x, ⋅) is an instance of an interdependent utility
system, governed by n component equations fi(x, ⋅), where for every i, the
component fi that generates ui is defined on the vector of other payoffs
u2i. As Pearce (1983), Kimball (1987), Bergstrom (1999), Vásquez and
Weretka (2018), and others have observed, this interdependent system
could pose several analytical difficulties.
First, the system may have no solution. To borrow an example from

Pearce (1983), suppose that there are two players and that for some x,
we have

fi ðxi , u2iÞ 5 1 1 u2i

for i 5 1, 2. Then there is no solution to this interdependent utility system.

1 See also Bergstrom (1970) in the special context of a distributive Lindahl equilibrium
with nonmalevolent agents and, for a somewhat different perspective, Green (1982, 2019).

2 For S ⊆N , RS denotes FSF-dimensional Euclidean space with coordinates indexed by
members of S.
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It is also possible that the system admits multiple solutions. Consider a
two-person example from Vásquez and Weretka (2018), where

fi ðxi , u2iÞ 5 ffiffiffiffiffiffiffi
u2i

p

for i 5 1, 2, so that there are two solutions: u 5 ð0, 0Þ and u 5 ð1, 1Þ.
This reflects a situation in which two people who love each other could
bothbe eitherhappyor unhappy.Or one could generate asymmetricmulti-
plicities, for instance, in situations with intense antipathy. Multiple solu-
tions at some action profilemake it impossible to unambiguously pin down
the payoffs for that profile.
Finally, even if there is a unique solution, there may be cascades of self-

reinforcing echoes that amplify without bound. In other words, the solu-
tionmay be “unstable” in the sense that a small departure from it will cause
payoffs to explode. Drawing on Pearce (1983) and Bergstrom (1989),
suppose that there are two players and that

fi ðxi, u2iÞ 5 xi 1 2u2i

for i 5 1, 2. Then,

ui 5 2
xi 1 2x2i

3
(2)

is the unique solution to the system, but it is an absurd solution. In the
words of Pearce (1983), slightly adjusted for notation,

although the functions seem to indicate that the individuals en-
joy x1 and x2 and aremutually sympathetic, the reduced form in-
dicates that both u1 and u2 are increased when x1 or x2 is de-
creased! This does not correspond to any plausible dynamic
adjustment story, such as the following. If x1 is reduced by 1 unit,
this should ‘initially’ lower u1 by 1, which would then cause u2 to
fall 2 units, diminishing u1 by a further 4 units. This downward
spiral does not converge . . . such a counter-intuitive state of af-
fairs might be called instability.

We do not mean to dismiss any of these cases out of hand, and in our
discussion below we argue for an entirely different perspective on such
matters. For now, we wish to consider only those strategic situations that
are well behaved, in the sense of not being plagued by the problems
above. These are situations that can be unambiguously converted into
a well-defined game, with a unique and “stable” vector of payoffs at every
action profile. This is exactly the case considered by Pearce, Bergstrom,
and others, and as is seen below, it yields a remarkable conclusion on
the efficiency of equilibria. This result, in turn, will shed some new light
on the examples above, once we consider standard normal-form settings
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and attempt to “work backward” to their representation as a strategic sit-
uation with payoff-based externalities. With these considerations inmind,
say that a strategic situation is coherent if for every x,

1 (boundedness). there isBðxÞ < ∞ such that k f ðx, uÞ k < k u kwhen-
ever k u k > BðxÞ, where k⋅k is the sup norm; and

2 (uniqueness). the mapping f(x, ⋅) has a unique fixed point.

Indeed, we also ask for “subcoherence” on every sub-situation generated
by holding fixed the payoffs to a subset S of players, say at �uS . That is, for
every action profile fxjgj∈N2S , we impose coherence on the resulting util-
ity system with player set N 2 S given by fj ðxj , u2ðS[jÞ, �uSÞ for j ∈ N 2 S .
Of course, sufficient conditions for coherence can be provided. Pearce

(1983),Hori andKanaya (1989), andBergstrom(1999) do so. For instance,
Pearce (1983) considers the special case of “mutual sympathy,” placing
bounds on the extent to which uj affects ui; these emerge as a Hawkins-
Simon condition on the matrix of cross derivatives. His conditions guar-
antee both condition 1 and condition 2 above. Or one could presume—
mutual sympathy or not—that the f -mapping is a contraction for each
action profile, or assume that for each action profile, the associated directed
network of payoff interdependencies is acyclic and that payoff functions
are bounded. That, too, will generate coherence.
Note that coherence is a “robust property”: for instance, in the class of

all differentiable interdependent utility systems, a perturbation of the
Pearce sufficient conditions will still yield coherence. (To be sure, the
lack of coherence is robust as well; neither coherence nor the lack of it
is “generic.”) Note, moreover, that any of the above sufficient conditions
for coherence will also imply subcoherence.
“No explosions” and “uniqueness” are independent restrictions. For in-

stance, the former (but not the latter) would follow immediately if we as-
sume that f is bounded, as inVásquez andWeretka (2018). Conversely, our
third example above shows that uniqueness can coexist with lack of
boundedness.
Coherence is our starting point. Without it we may be unable to unam-

biguously assign a utility profile to a profile of actions.With it, we can: f(x, ⋅)
has a unique fixed point for every strategy profile x. Thus, a strategic sit-
uation generates a well-defined normal-form game with payoffs U(x),
where U ðxÞ 5 f ðx, U ðxÞÞ.3 We refer to a normal-form game generated
by a coherent, subcoherent, and continuous strategic situation as a game
of love and hate.
The following definitions are standard. A strategy profile x* is a Nash

equilibrium (or simply equilibrium) if for every i and action xi,
3 We use uppercase U to denote the utility function for the normal-form game and low-

ercase u for payoff values.
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Uiðx*Þ⩾Uiðxi , x*2iÞ:
A strategy profile x ∈ X is Pareto optimal or Pareto efficient if there does not
exist x 0 ∈ X with U ðx 0Þ > U ðxÞ.4

III. Applications and Examples

Beginning with Veblen (1899) and Duesenberry (1949), there has been
increasing interest in studying economic agents who obtain payoffs (al-
truistic or invidious) from the well-being of others. Several studies em-
phasize the relativistic nature of happiness or individual welfare, among
themEasterlin (1974), Frank (1985, 1989), Clark andOswald (1996), Ray
and Robson (2012), and many others. These papers typically emphasize
invidious comparisons.
There is also a large literature on altruism; for a small sample, see Strotz

(1955), Phelps and Pollak (1968), Ray (1987), Andreoni (1989), Galperti
and Strulovici (2017), and of course Pearce (1983), Kimball (1987),
Bergstrom (1999), and others already cited. One standard formulation
presumes that individuals are affected by some measure of the economic
standing of others, such as their income, wealth, or consumption. But a
subset of this literature also emphasizes a “nonpaternalistic” formulation
in which individuals care—positively or negatively—about the payoffs of
other individuals. It is common inmacroeconomics, for instance, to inter-
pret the value functions of dynamic programming as intergenerational al-
truism; see, for instance, Barro (1974) or Loury (1981). This is not to sug-
gest that all models of interpersonal externalities are profitably written in
this way. We may envy or admire the economic positions of others rather
than the payoffs that are derived from them. But there are other situa-
tions where the nonpaternalistic approach is more relevant, and those
are the ones we seek to study here.
For instance, and apart from the above interpretation of dynamic pro-

gramming, the foundations of modern welfare economics laid down by
Bergson and Samuelson rely on a nonpaternalistic form of interpersonal
sympathy. While Bergson’s notion of a social welfare function is usually
seen as a useful device for studying Pareto optimality in an economy with-
out externalities, Samuelson (1981) shows how this idea extends to the
case of nonpaternalistic agents with sympathy or envy toward others. Sup-
pose that each agent has a “private” or “first-level” utility function that de-
pends only on her own consumption of goods. A nonpaternalistic agent
who does care about others can then be modeled as one having a “final”

4 For vectors a and b, “a ⩾ b”means that ai ⩾ bi in every component, “a > b” implies that
a ⩾ b and a ≠ b, and “a ≫ b” means that ai > bi in every component.
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or “second-level” utility function that is a weakly separable function of all
the first-level utility functions; see section VII.B for further details.
The model of interdependent utilities that we study also connects with

the social psychology literature on empathy. Vásquez andWeretka (2018)
argue that it captures the psychological phenomenon of affective empa-
thy and emotional contagion, to be contrasted with the notion of cogni-
tive empathy, which works through intentions and beliefs of others, as in
Geanakoplos, Pearce, and Stacchetti (1989). They also discuss the rela-
tionship with “material games,” where the interdependence is modeled
through material outcomes such as money or consumption.5

Here are four examples that illustrate the concept of interdependent
utilities. We have deliberately chosen them to illustrate situations other
than the obvious ones of altruism or envy.
Example 1 (Aspirations). For some collection of continuous return

and cost functions {gi} and {ci},

ui 5 gi xi, aið Þ 2 ciðxÞ,
where ai is the average value of uj over some reference group of individ-
uals that influences i. To interpret this, suppose that person i lives in a
society in which she is influenced by the average payoff of her reference
group. She might observe their lifestyles and economic position, but in
the example she is moved, in the end, by how happy they are. The use of
perceived or imagined happiness as reference points is, in many cases,
just as defensible as the use of “objective economic position.”
Think of this average payoff as an “aspiration” for person i, a reference

point that affects her not just intrinsically but instrumentally.6 That is, if xi
is a costly investment in her own life, it will bring a return g that is influ-
enced—positively or negatively—by the aspiration she has. Apart from
this “intrinsic effect,” there will be an “instrumental effect” on her choice
of xi—her aspirationsmight serve either to inspire or frustrate investment—
the cross partials of g will determine that outcome. The more general
point is that individual payoffs could be affected in this way by own actions
and the payoffs of others. Of course, assumptions on g will have to be
placed to guarantee coherence and subcoherence, such as a contraction.
Alternatively, if payoff functions are bounded and the associated directed
network of payoff interdependencies is acyclic, then coherence will hold
automatically by a recursive argument.
Example 2 (Industrialization). We borrow from the multiple-

equilibrium theory of industrialization in Rosenstein-Rodan (1943) and
specifically invoke the baseline model of Murphy, Shleifer, and Vishny
(1989). The players are n firms, each producing a distinct good. Each

5 See Sobel (2005) for a survey.
6 See, e.g., Ray (2006), Dalton, Ghosal, and Mani (2016), and Genicot and Ray (2017).
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good can be produced by a cottage technique y 5 ‘, where ‘ is labor. This
technique is available to a competitive fringe. Our firms can also choose a
“industrial technique” in each sector, where y 5 a‘ 2 F for some a > 1
and fixed cost F > 0. Each firm chooses a binary action: to industrialize
or not.
Consumers have a utility function ∑i ln(ci) and so spend their income

equally on the n goods. The demand curve for good i is therefore Di 5
Y =npi, where Y is national income. National income, in turn, equals wage
income plus profit, which generates the payoff-based externality as fol-
lows. If m firms industrialize, each limit-prices the fringe, and therefore

Y ðmÞ 5 m 1 2
1

a

� �
Y ðmÞ
n

2 mF 1 L,

where we have normalized wages to 1 and the labor force is L. We thus
have the aggregate profits of industrializing firms affecting national in-
come and therefore the profit of every firm, so creating a strategic com-
plementarity in payoffs. It is easy to verify that coherence and subcoher-
ence are satisfied.
Example 3 (Regulation). Again there are n firms, but this time the

cross-firm externality will be negative. Each firm makes an investment xi
to generate revenue r(xi) at cost c(xi). Society (or a collective regulator)
receives a payoff g(u) from the vector u of firm payoffs, where g is as-
sumed to be continuous and decreasing. A lower g increases the chances
of social animosity against the firms and consequently of a regulation
placed on the firms, generating a penalty p(g), where p is continuous.
The payoff for each firm is therefore given by

ui 5 fi ðxi, gÞ 5 r ðxiÞ 2 cðxiÞ 2 pðgÞ:
Note how we define g on the net payoff of each firm, with everything
taken into account, including the penalty. Our specification allows the
regulator’s payoffs to decline with an individual firm’s overall fortunes,
thereby creating a potential externality imposed by one firm on all firms.
Simple restrictions on these functions will guarantee coherence and
subcoherence.
Example 4 (A genuine game of love and hate?). Consider the follow-

ing prisoner’s dilemma, where a > c > d > b:

Player 2

Player 1 �x2 x*2

�x1 c, c b, a
x*1 a, b d, d
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Intuitively, this is not a situation of payoff-based externalities. A player’s
payoff depends on the actions of her opponent and not on the payoff
he derives from it. That said, it is mathematically possible to embed this
game within a strategic situation with payoff-based externalities. Consider
any bounded continuous fi such that for i 5 1, 2,

fi ð�xi , cÞ 5 c, fi ð�xi , aÞ 5 b, fi ðx*i , bÞ 5 a, fi ðx*i , dÞ 5 d:

Of course, the function must be defined for all utility vectors, but that is
not a problem. As we see below, however, such a representation must fail
coherence or continuity. In other words, although the prisoner’s di-
lemma can be made to fit the definition of a strategic situation with pay-
off-based externalities, it does not result in a game of love and hate.

IV. Main Result

Our main result is as follows:
Theorem 1. Every equilibrium of a game of love and hate is Pareto

optimal.
Of course, externalities can result in inefficient outcomes or market

failure. Game theory is replete with such examples. It turns out that re-
stricting externalities to be payoff based and assuming coherence, as well
as subcoherence, are enough to show that every equilibrium is efficient.
Apart from these restrictions, we assume little else. We ask for the conti-
nuity of all payoffs in the payoffs of others. We allow for both positive and
negative externalities, or indeed both, on different subregions of the do-
main. No assumptions are made on payoffs as a function of own actions;
indeed, there is no topological structure on action sets. No assumption is
made on the curvature of payoffs as a function of the payoffs of others.
The context in which this theorem might be easiest to understand is a

situation with strategic complementarities. Such is the case with exam-
ple 2, on “industrialization,”where the profits of one firmpositively affect
those of other firms. But even in this “best-case scenario,” there may be
Pareto-dominated equilibria, as in any coordination game. And yet, as
noted by Murphy, Shleifer, and Vishny (1989), this particular example—
or its competitive analogue, to be more exact—has a unique equilibrium.
The equilibrium is also efficient, which is an implication of our theorem.
But our theorem goes way beyond the complementarities in example 2,
and as already mentioned, it is independent of the direction of the exter-
nalities. (But see sec. VII.C for more on the special case of positive exter-
nalities, or “love.”)
Perhaps the theorem is best appreciated by reading its proof in detail,

but as the argument is long, we provide the reader with a discussion and
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outline. Suppose that x* is an equilibrium but is not Pareto optimal.
Then it is Pareto dominated by some �x with �u 5 U ð�xÞ, so that

f ð�x, �uÞ 5 �u > u*: (3)

At the same time, because x* is an equilibrium, it follows that

u*i 5 Uiðx*Þ⩾Uið�xi , x*2iÞ (4)

for all i, because a unilateral deviation to �xi from x*i cannot be profitable
for i. A central observation (lemma 1) proves that the absence of a prof-
itable deviation, as just described in inequality (4), is equivalent to the ab-
sence of a “naively profitable” deviation, in which player i deviates under
the (possibly mistaken) premise that other payoffs will not change—even
though they generally will. That is, inequality (4) is equivalent to

u* 5 f ðx*, u*Þ⩾ f ð�x, u*Þ: (5)

With inequalities (3) and (5) in hand, we graphically illustrate the proof
for n 5 2. Figure 1 draws the two functions f1ð�x1, u2Þ and f2ð�x2, u2Þ, where
the action vector is fixed throughout at �x 5 ð�x1, �x2Þ. By boundedness, all
the action takes place in some compact rectangle. The inequality (3) is
represented graphically by the location of �u to the northeast of the utility
vector u*. Next, inequality (5) places one restriction each on the func-
tions f1 and f2. The function f1ð�x1, u2Þ evaluated at u2 5 u*2 must lie

FIG. 1.—Proof of theorem 1 with two players.
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to the “left” of u*, and the function f2ð�x2, u1Þ evaluated at u1 5 u*1 must
lie “below” u*. But the former function continues on and eventually
intersects the horizontal axis, while the latter must eventually intersect the
vertical axis. By continuity, then, the two functions must cross at some u0 ≠
�u. But now we have a contradiction to the uniqueness of the interdepen-
dent utility system at �x. The argument generalizes beyond two-person
games in other special cases. For instance, if the game in question is
one of “love,” so that all individual utilities are nondecreasing in the util-
ities of others, a Tarski-style fixed-point theorem reveals the existence of
an additional fixed point to the “southwest” of u*. That, too, leads to a
contradiction to the uniqueness of the interdependent utility system at
�x. It should be noted that this “special case” is the central case of interest
in Pearce (1983) and Bergstrom (1999).
It is also possible to construct a direct argument in the case of “hate.”
But no direct analogue of this argument in the general case is possible

in three or more dimensions. For instance, with n 5 3, we can certainly
depict inequalities (3) and (5) graphically, as we have just done for two
players. But there is no guarantee that an additional fixed point to f ð�x, �Þ,
apart from �u, will exist, so that a contradiction can be established. Indeed,
example 7 below shows exactly this and also that subcoherence will have
to be invoked to go further. That necessitates a very different argument.
In the general case, we proceed by induction. We establish the follow-

ing claim, which is a bit stronger than what we need but is nevertheless
the more convenient to prove, as we need the additional power to com-
plete the inductive step.
Claim. There is no profile x* with U ðx*Þ 5 u* such that for some

other action profile �x and utility profile U ð�xÞ 5 �u,

f ð�x, �uÞ⩾ �u > u* ⩾ f ð�x, u*Þ: (6)

Theorem 1 follows from this claim. Suppose that x* is an equilibrium,
but it is not Pareto optimal. Then inequalities (3) and (5) hold for some
�x ≠ x*. But these together imply inequality (6), which contradicts the
claim.
The remainder of the proof establishes the claim using induction on n.

Specifically, we show that if inequality (6) is true for a game with n play-
ers, where n ⩾ 2, then we can find a game with a smaller number of
players where inequality (6) is true as well. But it is very easy to see that
for a single-person game, inequality (6) must be false. After all, for a one-
persongame, f ð�x, �uÞ 5 f ð�x, u*Þ, simply because therearenootherplayers.
Echoing the induction upward as the number of players increases, we see
that inequality (6) can never be true.
This attempt to provide an intuitive argument for theorem 1 does not

adequately highlight the importance of coherence. In fact, as a reading of
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the formal proof indicates, both parts of coherence are needed for these
arguments. Neither boundedness nor uniqueness can be dropped from
theorem 1 or lemma 1, which connects profitable and naively profitable
deviations. To see this in an explicit example, modify the “unstable
equilibrium” from section II, described in the discussion leading to
equation (2).
Example 5 (Unstable hate). Let n 5 2, and suppose that both players

hate each other:7

fi ðxi, u2iÞ 5 xi 2 2u2i

for i 5 1, 2. Let Xi 5 ½0, 1�, with i 5 1, 2. While boundedness fails, there
is a unique solution:

ui 5 2
1

3
xi 1

2

3
x2i

for i 5 1, 2. Clearly, the unique equilibrium is x* 5 ð0, 0Þ, with u* 5
uðx*Þ 5 ð0, 0Þ. The conclusion of lemma 1 does not hold because at
x*, if we keep u2i fixed at 0, player i has a naively profitable deviation
to xi 5 1. And the conclusion of theorem 1 does not hold because x 5
ð1, 1Þ Pareto-dominates x*.
It is easy to see that if we modify this example to impose boundedness,

we lose uniqueness. Thus, neither part of coherence can be dropped
from our main result. We return to these matters from a different per-
spective in section VII.D.

V. Proof of the Main Result

Let (N, {Xi,Ui}) be a game of love and hate generated by some continuous,
coherent, and subcoherent strategic situation. Consider the reduced
game resulting from the removal of some subset S of players, with their
payoffs pegged at uS. It has player set N 2 S and payoff functions

f 2S
j ðxj , u2jÞ ; fj ðxj , u2ðS[jÞ, uSÞ,

for j ∈ N 2 S , where, with some mild abuse of notation, the term u2j on
the left-hand side is presumed to exclude all players in S. (Note that u2ðS[jÞ
may have no components left; after all, a single-player game would be in-
duced if jS j 5 n 2 1.) For every action profile x in the original game,
subcoherence ensures a unique payoff profile in the reduced game; call
it U 2S(x, uS). Note that U 2S(x, uS) depends only on xN2S and uS; it is insen-
sitive to xS. Because fi(xi, ⋅) is continuous for all i and xi, the fixed points of

7 We are grateful to Ted Bergstrom for constructing this example and the accompanying
story. Hatfield and McCoy hate each other intensely and derive pleasure from their own
consumption of whiskey, which, alas, is bounded above by 1.
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each reduced game are upper hemicontinuous in uS. Uniqueness of the
fixed point then implies that for each x, U 2S(x, uS) is continuous in uS.
A special reduced game is obtained by excluding just one player i with

utility ui. For any action profile x, then, the payoffs toN 2 fig are given by
the vector U2i(x, ui). It is useful to introduce notation that describes how
U 2i(x, ui) maps back to i’s payoff in the original game. That is, define

fiðui, xÞ 5 fi ðxi ,U 2iðx, uiÞÞ:

In words, for a fixed action profile, we consider the reduced utility system
that results when player i’s utility is pegged at ui, extract the unique fixed
point of that reduced system, and evaluate player i’s utility at her action
choice xi when other players enjoy that fixed point. It follows from the
continuity of U 2i(x, ui) in ui that fi(ui, x) is a continuous function of ui.
For any x, the fixed point of f(x, ⋅) is closely related to that of fi(⋅, x).

Recall that U(x) is the unique fixed point of f(x, ⋅). Because U 2i(x,
Ui(x)) is the unique solution to the reduced system, given x andUi(x), we have
U2iðxÞ 5 U 2iðx,UiðxÞÞ. Therefore, fiðUiðxÞ, xÞ 5 fi ðxi, U 2iðx,UiðxÞÞÞ 5
fi ðxi ,U2iðxÞÞ 5 UiðxÞ; that is, Ui(x) is a fixed point of fi(⋅, x). In fact, it is
the unique fixed point. For if not, there is ~ui ≠ ui with ~ui 5 fið~ui , xÞ. Let
~u2i 5 U 2iðx, ~uiÞ. Then ~u satisfies equation (1), but because ~ui ≠ �ui, this
contradicts the uniqueness assumption. Thus, U(x) is a unique fixed
point of f(x, ⋅) if and only if Ui(x) is the unique fixed point of fi(⋅, x)
for every i. The function fi will turn out to be useful in checking equilib-
rium conditions.
A deviation by player i from x* to xi is profitable if Uiðxi, x2i*Þ > Uiðx*Þ. It

is naively profitable if fi ðxi,U2iðx*ÞÞ > fi ðxi*,U2iðx*ÞÞ; that is, player i prof-
its under the “naive” presumption that all other utilities will remain
unchanged.
Lemma 1. A unilateral deviation is profitable if and only if it is naively

profitable.
Proof. For any pair of action profiles x 0, x 00 ∈ X , let u0 5 U ðx 0Þ and

u00 5 U ðx 00Þ. We claim that

u0
i > u00

i if and only if fiðu00
i , x

0Þ > fiðu00
i , x

00Þ 5 u00
i : (7)

To see why this is so, suppose that fiðu00
i , x

0Þ > u00
i , as shown in figure 2A.

Since fi(⋅, x 0) is continuous and fiðB, x 0Þ < B for B large (by bounded-
ness), the intermediate-value theorem tells us that there is ~ui > u00

i with
~ui 5 fið~ui , x 0Þ. Since fi(⋅, x0) has a unique fixed point, ~ui 5 u0

i , so u0
i > u00

i .
Conversely, if fiðu00

i , x
0Þ⩽ u00

i (fig. 2B), then using the fact that fið2B,
x 0Þ⩾2B for B large enough (by boundedness), we know that there is
~ui ⩽ u00

i such that ~ui 5 fið~ui , x 0Þ. Since fi(⋅, x 0) has a unique fixed point,
~ui 5 u0

i , which implies u0
i ⩽ u00

i and so establishes inequality (7).
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Now suppose that i deviates from x* to xi. Let u* 5 U ðx*Þ and y 5
ðxi , x*2iÞ. By inequality (7),

UiðyÞ 5 Uiðxi , x*2iÞ > u*i if and only if fiðu*i , yÞ > u*i : (8)

Because U 2i(x, ui) is insensitive to xi and y2i 5 x*2i, we have U 2iðx, u*i Þ 5
U 2iðy, u*i Þ, so that

fiðu*i , yÞ 5 fi ðxi,U 2iðy, u*i ÞÞ 5 fi ðxi,U 2iðx, u*i ÞÞ 5 fi ðxi , u*2iÞ:

Substituting this into equation (8), we have

Uiðxi, x*2iÞ > u*i if and only if fi ðxi, u*2iÞ > u*i , (9)

which establishes the desired result. QED
To complete the proof of theorem 1, we use lemma 1 to prove the claim

described in section IV. The proof of the claim is by induction on the
number of players. To begin the induction argument, consider any game
with a single player: 1. Fix any action x*1 with utility u*1 . For any other ac-
tion �x, it is immediate that f ð�x, �uÞ 5 f ð�x, u*Þ, because there are no other
players. So inequality (6) can never hold.
Now for the inductive step. Suppose that the claim is true of every game

with m < n players satisfying the conditions of the theorem, where n ⩾ 2.
Consider a game with player set N, where jN j 5 n. Suppose, contrary to
the claim, that there are profiles x* and �x and payoff profiles u* and �u,
such that inequality (6) is satisfied. Now we consider the following two
possibilities.

FIG. 2.—A step in the proof of lemma 1.
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Case 1. There is some player, say k, such that in the reduced game
without k (and with uk 5 u*k ),

U 2kð�x, u*k Þ > u*2k: (10)

In this case, define S 5 fkg. In the reduced game with player set N 2 S ,
define ur ; U 2kð�x, u*k Þ. Then we have

f 2kð�x, ur Þ 5 ur > u*2k ⩾ f 2kð�x, u*2kÞ, (11)

where the equality is by definition of ur and the first inequality is from in-
equality (10). The final, weak inequality follows from two observations.
First, the last weak inequality of (6) holds, by our contradiction assump-
tion. Second, in the reduced game k has been removed with utility level
u*k , so f 2kð�x, u*2kÞ is f ð�x, u*Þ restricted to N 2 k. But the reduced game
satisfies all the conditions of the theorem, so that equation (11) contra-
dicts the induction hypothesis.
Case 2. For every k, inequality (10) fails. Then it must be that �u ≫u*

(for if not, case 1 would hold for some k such that �uk 5 u*k ). Pick any k.
Then for every j ≠ k,

U 2k
j ð�x, �ukÞ 5 �uj > u*j : (12)

Moreover, the fact that inequality (10) fails implies that for some j ≠ k,

U 2k
j ð�x, u*k Þ⩽ u*j : (13)

Pick the largest value ûk ∈ ½u*k , �uk� such that

U 2k
j ð�x, ûkÞ 5 u*j (14)

for some j ≠ k. Since U 2kð�x, �Þ is continuous and inequality (13) holds, ûk

is well defined. Moreover, given equation (12), it must be that �uk is not
binding for ûk :

u*k ⩽ ûk < �uk : (15)

Let S be the set of agents for whom equation (14) holds. Note that k ∉ S (so
S is a strict subset of N ), and if some other i ≠ k is also not in S, then

U 2k
i ð�x, ûkÞ > u*i : (16)

Consider the reduced game induced on players N 2 S by setting uS 5 u*S.
It has payoff functions

f 2S
i ðxi, u2iÞ ; fi ðxi , u2ðS[iÞ, u*S Þ,

for all i ∈ N 2 S , where we recall that u2i on the left-hand side excludes
all players in S.
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Consider the profile �x in the reduced game. Define a utility profile ur

on N 2 S by

ur
i 5

ûk for i 5 k,

U 2k
i ð�x, ûkÞ for i ≠ k, i ∈ N 2 S :

(
(17)

We claim that in the reduced game,

f 2Sð�xi , urÞ > ur ⩾ u*N2S : (18)

To this end, first note that if i ∈ N 2 S and i ≠ k, inequality (16) and
equation (17) together imply that

ur
i 5 U 2k

i ð�x, ûkÞ > u*i (19)

for all i ∈ N 2 S 2 k. Next, by definition, U 2kð�x, ûkÞ solves the interde-
pendent utility system at �x with k removed, which means, in particular,
that for all i ∈ N 2 S 2 k,

U 2k
i ð�x, ûkÞ 5 f 2k

i ð�xi, U 2k
2i ð�x, ûkÞÞ: (20)

But U 2k
j ð�x, ûkÞ 5 u*j for j ∈ S and U 2k

j ð�x, ûkÞ 5 ur
j for j ∈ N 2 S 2 k,

while ur
k 5 ûk ; see equation (17). Putting all this together with equation

(20), we must conclude that

ur
i 5 f 2S

i ð�xi, ur
2iÞ (21)

for all i ∈ N 2 S 2 k. Combining equations (19) and (21),

f 2S
i ð�xi , ur

2iÞ 5 ur
i > u*i (22)

for all i ∈ N 2 S 2 k. We now consider individual k. We first claim that

fkðûk , �xÞ > ûk: (23)

For if inequality (23) were false, then fkðûk , �xÞ⩽ ûk . Because fkð2B, �xÞ⩾
2B for B large enough and fk is continuous, there exists u0

k ⩽ ûk such
that fkðu0

k , �xÞ 5 u0
k . But that generates a utility solution (u0

k , U
2kð�x, u0

kÞ)
at the action profile �x of the original game. It is distinct from �u because
u0
k ⩽ ûk < �uk , using inequality (15). That violates coherence.
Next, observe that

fkðûk , �xÞ 5 fkð�x,U 2kð�x, ûkÞÞ 5 fkð�x, ur
N2S2k , u*S Þ 5 f 2S

k ð�xk , ur
2kÞ, (24)

where the first equality is just the definition of fk, the second equality
follows from u*S 5 U 2k

S ð�x, ûkÞ (see eq. [14]) and the definition of ur in
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equation (17), and the last equality is just the translation to the reduced
game where S is excluded with payoff u*S .
Combining inequality (23) and equation (24), along with ur

k 5 ûk ⩾ u*k
(the equality is from eq. [17] and the inequality from [15]), we must
conclude that

f 2S
k ð�xk , ur

2kÞ > ur
k ⩾ u*k : (25)

Combining equation (22) and inequality (25), we obtain inequality (18)
for the reduced game, as claimed.
We now use inequality (18) to prove that inequality (6) holds for the

reduced game. First, recall that by way of contradiction, we have main-
tained that inequality (6) holds for the original game, so that

u*i ⩾ fi ð�xi, u*2iÞ
for all i ∈ N 2 S . Because ui 5 u*i for all i ∈ S , f 2S

i ð�xi , u*2iÞ 5 fi ð�xi , u*2iÞ
for all i ∈ N 2 S . That implies

u*i ⩾ f 2S
i ð�xi, u*2iÞ (26)

for all i ∈ N 2 S . Now combine inequalities (18) and (26) to see that

f 2Sð�x, urÞ > ur ⩾ u*N2S ⩾ f 2Sð�x, u*N2SÞ: (27)

In particular, f 2Sð�x, urÞ > f 2Sð�x, u*N2SÞ, which implies that ur ≠ u*N2S . The
second inequality in (27)must therefore be strict, which now implies that
inequality (6) holds for the reduced game.
Now, the reduced game of a coherent and subcoherent game, with pay-

off functions continuous in others’ payoffs, inherits all these just-named
properties. But then, by the induction hypothesis, inequality (6) cannot
hold for that reduced game, a contradiction.
As already noted in section IV, our theorem follows from the claim. For-

mally, suppose there is an equilibrium x* Pareto dominated by �x. Let
u* 5 U ðx*Þ and �u 5 U ð�xÞ. Then

f ð�x, �uÞ 5 �u > u* ⩾ f ð�x, u*Þ,
where the last inequality makes use of lemma 1 and the fact that x* is an
equilibrium. But this implies inequality (6), a contradiction. QED

VI. Existence

Under what conditions does a game of love and hate possess a Nash equi-
librium?One approach to answering this question is to see when standard
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results apply, once the strategic situation has been converted to the normal
form. For instance, if for every i, Xi is a nonempty, compact, and convex
subset of a finite dimensional Euclidean space and Uið�Þ :

Q
jXj →R is con-

tinuous and quasi-concave in xi, then the existence of an equilibrium is as-
sured. But this is not satisfactory, because these conditions onUi should be
derived from the primitives of a strategic situation with payoff-based exter-
nalities. We therefore directly examine the strategic situation. It turns out
that this approach has the added advantage of yielding an existence result
for a pure-strategy equilibrium that is free of any convexity assumptions.
We assume the following.
Assumption A1. For all i, Xi is a nonempty, compact subset of a topo-

logical space, and fi : Xi � RN →R is a continuous function in all its
arguments.
We also strengthen boundedness to require a uniform bound for all

x ∈ X .
Assumption A2. There is B < ∞ such that for every x ∈ X ,

k f ðx, uÞ k < k u k whenever k u k > B, where k⋅k is the sup norm.
Theorem 2. Suppose that the strategic situation (N, {Xi, fi }) is coher-

ent and subcoherent and satisfies assumptions A1 and A2. Then the in-
duced game of love and hate has an equilibrium in pure strategies.
Proof. Given B as in assumption A2, let B 5 fu ∈ RN ∣ k u k⩽ Bg. Be-

cause fi is continuous and Xi � B is compact, Bi ; max fi ðxi, uÞ is well
defined for ðxi, uÞ ∈ Xi � B, for every i. Let C 5 maxfB1, :::Bn, Bg and
C 5 fu ∈ RN ∣ k u k⩽ Cg. By construction, the range of f lies in C for all
u ∈ B. Because C ⩾ B, assumption A2 implies that the same is true for
all u ∈ C. So for all ðx, uÞ ∈ X � C, f ðx, uÞ ∈ C.
Let bi : C→ Xi be player i’s naive best-response correspondence:

biðuÞ 5 xi ∈ Xi ∣ fi ðxi, u2iÞ⩾ fi ðx 0
i , u2iÞ for all x 0

i ∈ Xif g:
Given assumption A1, Berge’s maximum theorem implies that for every
i, bi is nonempty and upper hemicontinuous and that the maximum
function, gi : C → ½2C , C �, is continuous, where

giðuÞ 5 fi ðxi, u2iÞ ∣ xi ∈ biðu2iÞf g:
Since g 5

Q
igi : C→ C is a continuous function, by Brouwer’s fixed-point

theorem, it has a fixed point u*. For every i, pick any x*i ∈ biðu*Þ. We
claim that x* 5 ðx*i Þ is an equilibrium. Clearly, U ðx*Þ 5 f ðx*, u*Þ 5 u*,
and for every i, x*i is a naive best response to u*2i:

fi ðx*i , u*2iÞ⩾ fi ðxi, u*2iÞ
for all xi ∈ Xi . From lemma 1, the lack of a naively profitable deviation im-
plies that no player has a profitable deviation at x*; that is, x* is an equi-
librium. QED
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VII. Discussion

A. Some Intuition for Differentiable Games of Love and Hate

Assuming payoff functions to be differentiable and quasi-concave makes
it easier to elicit some intuition about why equilibria might be Pareto op-
timal. The exposition that follows aims to do this, but is not meant to be
rigorous or complete. And by no means is it meant to be a substitute for
the proof of our theorem, which follows a completely different approach,
relying only on the continuity of the payoff functions in other payoffs and
imposing no curvature condition on payoffs or topological structure on
actions.
Suppose that for all i,Ui(x) is continuously differentiable in x and quasi-

concave in xi. An equilibrium can then be characterized in terms of the
first-order conditions for each player. Using the equivalence of profitable
andnaively profitable deviations for a coherent situation (lemma 1), these
conditions are

∂fi ðxÞ
∂xi

5 0 (28)

for all i. As we saw in example 5, this condition may not characterize an
equilibrium in the absence of coherence. The intuition discussed below
relies on equation (28) and therefore presumes coherence.
Now consider the problem of a social planner, who seeks to maximize

o
j

ljUjðxÞ,
where l ; ðl1, ::: , lnÞ0 is a system of nonnegative weights summing to
unity. Assuming that the relevant solutions are all interior, the first-order
conditions are given by

o
j

lj

∂UjðxÞ
∂xi

5 0

for all i. Collect this in matrix form to write

Dxl 5 0, (29)

where Dx is the matrix of cross effects:

Dx 5

∂U1ðxÞ
∂x1

∂U2ðxÞ
∂x1

:::
∂UnðxÞ
∂x1

∂U1ðxÞ
∂x2

∂U2ðxÞ
∂x2

:::
∂UnðxÞ
∂x2

⋮ ⋮ ⋱ ⋮
∂U1ðxÞ
∂xn

∂U2ðxÞ
∂xn

:::
∂UnðxÞ
∂xn

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:
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By the chain rule,

∂UjðxÞ
∂xi

5 o
k

∂fj
∂uk

∂UkðxÞ
∂xi

for j ≠ i, and for j 5 i,

∂UiðxÞ
∂xi

5
∂fi
∂xi

1o
k

∂fi
∂uk

∂UkðxÞ
∂xi

,

so that

Dx 5 F 1 DxDu, (30)

where

F 5

∂f1ðxÞ
∂x1

0 ::: 0

0
∂f2ðxÞ
∂x2

::: 0

⋮ ⋮ ⋱ ⋮

0 0 :::
∂fnðxÞ
∂xn

0
BBBBBBBBBB@

1
CCCCCCCCCCA
 and Du 5

∂f1
∂u1

∂f2
∂u1

:::
∂fn
∂u1

∂f1
∂u2

∂f2
∂u2

:::
∂fn
∂u2

⋮ ⋮ ⋱ ⋮
∂f1
∂un

∂f2
∂un

:::
∂fn
∂un

0
BBBBBBBBBB@

1
CCCCCCCCCCA
,

the latter written with the understanding that ∂fi=∂ui 5 0 for all i. Rewrit-
ing equation (30), we see that

Dx 5 F I 2Duð Þ21, (31)

where the presumption that I 2 Du has an inverse is closely connected to
coherence; see Pearce (1983). Combining equations (29) and (31), we
must conclude that the first-order conditions for a solution to the plan-
ner’s problem are

F I 2Duð Þ21
l 5 0: (32)

We can open this out as follows. Let bij be a generic entry for the matrix
ðI 2 DuÞ21; then equation (32) is equivalent to the condition

∂fi
∂xi o

n

j51

bijlj

 !
5 0 (33)

for all i. Using equation (28), we see that a solution to the equilibrium
first-order conditions is also a solution to the planner’s first-order condi-
tions (eq. [33]), suggesting that equilibria are Pareto optimal, or at least
solve necessary conditions for optimality. We reiterate: this is suggestive
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but incomplete, even with the coherence, smoothness, and curvature as-
sumptions in place. Moreover, without coherence or subcoherence, the-
orem 1 is not even generally true; see examples 5 and 7. For more discus-
sion, see the appendix.

B. Connection with the First Theorem of Welfare Economics

There is a parallel between theorem 1 and the first fundamental theorem
of welfare economics. In the latter setting, individual utilities are defined
on own consumption, but there is a potential externality: my consump-
tion comes at the expense of yours. That externality is mediated through
the price system—an agent who consumesmore pays for it at precisely the
rate of the marginal deprivation caused to others and so behaves as if she
is socially responsible. The first welfare theorem states that the resulting
outcome is efficient. In contrast, there are no prices in theorem 1, so
there is no way to pay for the externalities. But the point is that there
are no externalities inflicted locally when an agent hits a maximum, be-
cause her payoff is (locally) flat. As indicated in section VII.A, this argu-
ment is far from complete, but in any case, our theorem depends on the
vanishing of the externality itself, without the assistance of prices.
These are distinct channels leading to a similar final outcome. To ap-

preciate this distinctness, overlay onemodel on the other, so that we have
a setting with both prices and payoff-based externalities. Then the result-
ing equilibrium is generally not Pareto optimal. The reason is simple. If
agents are benevolent, they may well wish to allocate a larger part of the
resources to some agent(s) than is feasible through the market, given
that wealth redistribution is not permitted. Indeed, as Winter (1969)
and Bergstrom (1970) observe, even allowing agents to unilaterally trans-
fer wealth to others may not suffice to restore the first welfare theorem.
This literature does look for conditions for the first welfare theorem to
hold in the presence of externalities; see, for example, Ledyard (1971),
Osana (1972), and Parks (1991).8 It identifies a form of “nonbenevo-
lence,” which is related to, though not quite the same as, the condition
that all externalities are negative, but the point is that no such restriction
is needed for the analogous result in this paper. (Here, it does not matter
whether agents are benevolent or malevolent toward some or all oppo-
nents or indeed whether they are affected in some nonmonotone way
by the payoffs of others.)
Theorem 1 is cast in the setting of strategic situations, as opposed to

competitive equilibrium. A central difference is that in a game, the feasi-
ble strategy profiles span the entire set of social outcomes, whereas in an
exchange economy they do not—specifically, agents cannot alter the

8 We are grateful to Peter Hammond for alerting us to the existence of this literature.
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wealth distribution. Thismeans that the planner in an exchange economy
has an extra instrument compared to the agents, which makes it harder
for an equilibrium to satisfy Pareto optimality. While the first welfare the-
orem tells us that this does not impede Pareto optimality in the classical
setting, it clearly matters when there are externalities. On the other hand,
in the game-theoretic model the planner does not have the advantage of
an extra instrument. The game-theoretic analogue of the classical compet-
itive setting is one in which externalities are central and efficiency routinely
fails. The restriction to the subclass of payoff-based externalities restores
that efficiency, irrespective of the particular form of those externalities.
Of course, there is also a second welfare theorem for competitive equilib-

rium, and corresponding to that we have the parallel question for games:
might every Pareto optimum be a Nash equilibrium? In terms of our
first-order conditions, one might look for the reverse implication: “Does
equation (33) imply equation (28)?” This is not a question we investigate
here in any generality, though the appendix contains a discussion.9

Some of this cited literature on welfare theorems avoids the coherence
issue via a two-step procedure for defining final payoffs. In Samuelson’s
(1981) terminology, each consumer i has a “first-order” utility function
wi(xi) that depends only on i’s commodity bundle. Externalities are intro-
duced through a “second-order” Bergsonian utility function:

UiðxÞ5 hiðw1ðx1Þ, ::: , wnðxnÞÞ:
Samuelson (1981) observes that one could consider a “third-order”utility
function that depends on own consumption and others’ second-order
utility functions, and so on. The logical conclusion of this idea is to con-
sider not some arbitrary, finite iteration but a steady state in which conjec-
tures about others’ utility are accurate.10 In other words, requireUi to be a
function of wi(xi) and Uj ≠ i, which is precisely the model of interdepen-
dent utilities we have adopted. Under some conditions, Samuelson’s for-
mulation can be viewed as a special case of our framework.11

9 With externalities, it may not be possible to decentralize every Pareto-optimal alloca-
tion as a competitive equilibrium (so the second welfare theorem need not hold either).
However, interesting connections can be identified when externalities are payoff based; see
Winter (1969), Ledyard (1971), Osana (1972), Rader (1980), and Parks (1991).

10 See also the discussion in Vásquez and Weretka (2018). Samuelson does not pursue
this line, on the grounds that in the end, if this process converges, each agent’s utility func-
tion will be a function of all the first-order functions anyway.

11 This follows from the proof of the main result in Green (2019), who examines welfare
criteria when agents have both subjective preferences and objective interests, which leads
naturally to a model of (ordinal) interdependent preferences. An intermediate step in the
proof of his main result provides conditions under which such preferences can be repre-
sented by means of real-valued functions over the set of alternatives X, as follows. For each
agent there is a function Ui : X →R, representing subjective preferences, and another
function w : X →R, representing objective interests, where UiðxÞ 5 on

j51aijwjðxÞ 1 ai . This
is his condition (16), which formally corresponds to the additively separable form of the
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C. Love, Hate, and the Shape of the Utility
Possibility Frontier

Even though our theorem holds for fully general patterns of love and
hate, the special case of positive externalities, or “love,” has an interesting
structure. The corresponding utility possibility frontier has a single pay-
off profile, which Pareto dominates all other payoff profiles.12 By our
main theorem, every equilibrium picks out this unique payoff profile.
(We reiterate that the result continues to be nontrivial even in this special
case, as games of common or even identical interests could exhibit coor-
dination failures in general, whereas here they do not.)
To see why this assertion is true, assume in what follows that for every i,

fi(xi, u2i) is nondecreasing in u2i. Consider any two distinct payoff profiles
u and u0, and let x and x 0 be two corresponding action profiles with these
payoffs. Define a utility profile û by ûi 5 maxfui, u0

ig for all i. Define an
action profile x 00 by setting x 00

i to i’s action under one of the action profiles
x or x 0 that results in payoff ûi to i. Now pick any i and suppose, without
loss of generality, that x 00

i 5 xi. Observe that

fi ðx 00
i , û2iÞ 5 fi ðxi, û2iÞ⩾ fi ðxi, u2iÞ 5 ui 5 max ui, u

0
if g 5 ûi :

By boundedness and Tarski’s fixed-point theorem, the unique fixed
point of f(x00, ⋅)—call it u00—must weakly dominate û. But û, in turn, weakly
dominates both u and u00. This proves that the utility possibility frontier in
a strategic situation of love must consist of a unique payoff profile. The
appendix includes a simple example to illustrate this point.
In strategic situations with “universal hate,” and a fortiori in “mixed

situations,” the utility possibility frontier looks more conventional, with
nontrivial segments. Moreover, as noted above, the set of equilibria may
not fully cover such frontiers. The appendix contains a more detailed
discussion.

D. The Role Played by Coherence

In Pearce (1983), Hori and Kanaya (1989), Bergstrom (1999), and Vás-
quez and Weretka (2018), there is a concern with explosive or multiple
utility representations. That concern is often at some philosophical level:
“should” utility representations explode (no: bound them—as in Vás-
quez and Weretka 2018), or “should” utility representations exhibit the

12 This is to be contrasted with the case of an exchange economy, where xi refers to i’s
consumption rather than action, and aggregate consumption is required to equal aggre-
gate endowment. In that model, even with “universal love,” the utility possibility frontier
can have the usual shape; see the Romeo and Juliet example in Bergstrom (1989).

individualistic Bergsonian form stated above. Green shows that under his assumptions, this
can be expressed as UiðxÞ 5 wiðxÞ 1 oj≠idijUjðxÞ 1 bi , which is, of course, the additive form
of the model of interdependent preferences we are studying.
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wrong comparative statics (no: find a conditions that guarantee unique-
ness—as in Pearce 1983, Hori and Kanaya 1989, or Bergstrom 1999)? In
short, the coherence of any strategic situation with payoff-based external-
ities has intrinsic appeal.
The purpose of this section is to argue that coherence plays amore sub-

tle role, which is related to the intuitive appropriateness of the love-hate
representation for certain classes of games. To understand this, begin
with a standard game in normal form. We now assume that the strategy
spaces Xi are compact for every i and that the payoff function Ui : X →
R—now to be thought of as the primitive—is continuous in the product
topology on X. We say that such a game is regular if for every player i and
action xi ∈ Xi, and for every pair of action profiles x2i and x 0

2i for the other
players,

Uiðxi , x2iÞ ≠ Uiðxi , x 0
2iÞ implies U2iðxi, x2iÞ ≠ U2iðxi, x 0

2iÞ:
This is amild restriction, stating that if player i is sensitive to some change
in the actions of others, then so is at least one other player. It is easy to
see that if this condition does not hold, it may be impossible to express
a normal-form game as a situation with payoff-based externalities. But
if it does hold, we have the following theorem.
Theorem 3. Every regular game with continuous payoffs can be rep-

resented as a continuous strategic situationwith payoff-based externalities.
We relegate the formal proof to the appendix, but it is easy to see the

argument. For player i and action xi, let U2i be the compact set of utility
profiles u2i of the other players, such that u2i 5 U2iðxi, x2iÞ for some ac-
tion profile x2i. Define a function fi on xi and this subdomain U2i by

fi ðxi, u2iÞ 5 Uiðxi, x2iÞ,
where x2i is any action profile such that u2i 5 U2iðxi, x2iÞ. The exact
choice of x2i is unimportant, by regularity, but it should also be clear
at this step that regularity is needed. The appendix verifies the continu-
ity of fi on U2i , and a standard extension argument extends fi for every i
and xi to all opponent utility profiles on Rn21.
But equilibrium inefficiency is rife among games in general. How can

theorem 1 be reconciled with theorem 3? The answer is that either coher-
ence or subcoherence must fail for any continuous representation as a
strategic situation, whenever the game has an inefficient equilibrium.13

We alluded to this already in example 4. To explain further, consider a
2 � 2 family of regular symmetric games:

13 Recall that coherence asks for a unique vector of utilities at every action profile, given
the payoff functions fi. That is, it is not asking for the demanding—and unreasonable—re-
striction that there should be just one set of representing payoff functions but only that
there be one set of payoff numbers (per profile), given the representation.

1812 journal of political economy



Player 1

Player 2

�x2 x*2

�x1 c, c b, a
x*1 a, b d, d

To cut down on the number of cases, suppose that a, b, c, and d are all dis-
tinct numbers. Suppose that x* 5 ðx*1 , x*2 Þ is a Nash equilibrium that is
Pareto dominated by x 5 ð�x1, �x2Þ. This means that

c > d > b: (34)

Two cases of particular interest for us are (1) a prisoner’s dilemma, in
which a > c, so that the unique equilibrium is the Pareto inferior out-
come x* with payoffs (d, d ), and (2) a coordination game, in which c >
a, so that x* and x are both equilibria, the former Pareto dominated.
Both cases yield inefficient equilibria. But these games are regular

(and trivially continuous) and so have continuous representations as stra-
tegic situations with payoff-based externalities. Because subcoherence
holds trivially in a strategic situation with two players, it follows from the-
orem 1 that no such representation can be coherent. It is instructive to
directly verify this assertion. To this end, let {f1, f2} be a continuous repre-
sentation of our two-player game as a strategic situation. Without any loss
of generality, we can choose any bounded continuous { fi } such that for
i 5 1, 2,

fi ð�xi , cÞ 5 c, fi ð�xi, aÞ 5 b, fi ðx*i , bÞ 5 a, and fi ðx*i , dÞ 5 d:

Then, even though f1ð�x1, dÞ is not pinned down by the payoff matrix,
lemma 1 and the fact that x* is an equilibrium (which is implied by b < d,
as assumed in [34]) imply

f1ð�x1, dÞ⩽ d: (35)

Given the continuity of f1, inequality (35) and f1ð�x1,2mÞ⩾m for large m
(coherence) together imply, by the intermediate-value theorem, that
there is e ⩽ d such that f1ð�x1, eÞ 5 e. By symmetry, f2ð�x2, eÞ 5 e as well.
The uniqueness of the payoffs at �x must then mean that e 5 c. Because
e ⩽ d and c ≠ d, this implies that c < d, which contradicts inequality
(34). (As we see below in example 6, however, coherence can be restored
if the representing payoff functions are allowed to be discontinuous.)

E. Is Coherence Alone Sufficient for Theorem 1?

Theorem 3, in section VII.D, shows that coherence cannot be dropped
from the statement of theorem 1. For instance, the prisoner’s dilemma
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can be transformed into a strategic situation with payoff-based external-
ities. Because subcoherence holds trivially for two-person strategic situa-
tions, any such transformation must lack coherence.
But a game of love and hate relies on two further restrictions. First, it

assumes that payoff functions are continuous in the payoffs of others.
Second, it assumes that the game in question is not only coherent but
subcoherent. In this section, we argue that neither restriction can be
dropped free of charge.
Example 6 (The need for continuity). Consider a prisoner’s dilemma:

Player 1

Player 2

�x2 x*2

�x1 3, 3 1, 4
x*1 4, 1 2, 2

It is easy to verify that this normal form is generated by the following
strategic situation with pure payoff-based externalities:

fi ðx*i , ujÞ 5
6 2 2uj if  uj ⩽ 3,

3 if  uj > 3,

(

fi ð�xi, ujÞ 5
9 2 2uj if  uj ⩽ 4:5,

4:5 if  uj > 4:5,

(

for i, j 5 1, 2 and j ≠ i. We now verify that this situation is coherent,
which (given just two players) implies that it is also subcoherent. Begin
with the profile x 5 ðx*1 , x*2 Þ. If uj > 3, then ui 5 fi ðx*i , ujÞ 5 3. But then
uj 5 fj ðx*j , uiÞ 5 0, a contradiction.Therefore,uj ⩽ 3, so that ui 5 6 2 2uj

for i, j 5 1, 2 and j ≠ i, the unique solution to which is u1 5 u2 5 2. By a
similar argument, U ð�x2, �x2Þ 5 ð3, 3Þ. Finally, consider ðx*i , �xjÞ. If uj > 3,
then ui 5 fi ðx*i , ujÞ 5 3, which implies that uj 5 fj ð�xj , uiÞ 5 3, a contra-
diction. So uj ⩽ 3. By a similar argument, ui ⩽ 4:5. Together, these imply
ui 5 6 2 2uj and uj 5 9 2 2ui, or U ðx*i , �xjÞ 5 ð4, 1Þ. That completes the
verification of coherence. Of course, these functions are discontinuous, a
property necessitated by theorem 1.
While we often view continuity as a mere technical device, here it

emerges as having real conceptual power. The prisoner’s dilemma is not,
intuitively, a strategic situation with payoff-based externalities. Yet it math-
ematically can be straitjacketed into one. If we attempt that straitjacketing
with continuous payoff functions, then (as seen above) coherence must
fail. This example shows that one can also impose coherence, but then
continuity must fail. That failure is not a technicality. Indeed, as a parallel
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to theorem 3, one could also ask whether every regular game has a love-
hate representation satisfying coherence and subcoherence, if one is will-
ing to sacrifice continuity. We do not pursue this question here.
Example 7 (The necessity of subcoherence). To show that subco-

herence cannot be dropped from theorem 1, we construct a continuous
and coherent strategic situation with an inefficient equilibrium. Our ex-
ample has three players (with two, subcoherence is satisfied trivially). Let
Xi 5 fx*i , �xig for i 5 1, 2, X3 5 fx3g. Define the following payoff func-
tions on [0, 1]2 with range in [0, 1]:14

f1ðx*1 , u2, u3Þ 5
0:95 if u2 ⩽ 0:6,

95 u2 2 0:7ð Þ2 if 0:6⩽ u2 ⩽ 0:7,

0 if u2 ⩾ 0:7,

8>>><
>>>:

(36)

f1ð�x1, u2, u3Þ 5 u3, (37)

f2ðx*2 , u1, u3Þ 5 0:5 for all u1, u3ð Þ, (38)

f2ð�x2, u1, u3Þ 5 u1= 11u1ð Þ
3

1 1 u1= 11u1ð Þ
3

1 0:4 1 0:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2u1 2 u2

1

p !212u1

, (39)

f3ðx3, u1, u2Þ 5 u11u1

2 : (40)

Let x* ; ðx*1 , x*2 Þ and �x ; ð�x1, �x2Þ. (Player 3 has only one strategy, so we
do not need to take note of this.) We make the following three claims:

Claim 1. The strategic situation is coherent, and payoff functions are
continuous in others’ payoffs.

Claim 2. x* is an equilibrium that is Pareto dominated by �x:
U ð�xÞ ≫ U ðx*Þ.

Claim 3. Subcoherence fails (as implied by theorem 1 and claims 1
and 2).

1. Proof of Claim 1

Continuity is immediate on inspecting equations (36)–(40). To prove co-
herence, we need to show that for any strategy profile x, f(x, ⋅) has a
unique fixed point.
Consider the strategy profile x*. In this case, U(x*) must satisfy equa-

tions (36), (38), and (40). It is easy to see that these equations have the
unique solution U ðx*Þ 5 ð0:95, 0:5, 0:51:95Þ.

14 It is trivial to continuously extend these functions to all of R2, keeping them always in
the range [0, 1]. Therefore, our assertions of coherence below will remain unaffected by
this extension.
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Next, consider the strategy profile �x. Suppose that u is a fixed point of
f ð�x, �Þ. Eliminating u3 from equations (37), (39), and (40) we have

u1 5 u11u1

2 and u2 5
u1=ð11u1Þ
1

1 1 u1=ð11u1Þ
1

1 0:4 1 0:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2u1 2 u2

1

p !212u1

,

so that

u1=ð11u1Þ
1

1 1 u1=ð11u1Þ
1

1 0:4 1 0:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2u1 2 u2

1

p !212u1

2 u1=ð11u1Þ
1 5 0: (41)

One solution to this is clearly u1 5 1. Moreover, as figure 3 (plotted with
Mathematica) shows, the left-hand side of this equation is strictly positive
for all u1 < 1; see figure 3A. The unique fixed point of f ð�x, �Þ is therefore
U ð�xÞ 5 ð1, 1, 1Þ. Further verification can be provided by examining the
derivative of this function to the left of 1; see figure 3B.
There are two remaining cases to consider. In the first of them, x1 5 �x1

and x2 5 x*2 . Then u1 5 0:511u1 . The function g ðu1Þ 5 0:511u1 2 u1 is
strictly decreasing in u1. Moreover, g ð0Þ > 0 and g ð1Þ < 0, which implies
that g ðu1Þ 5 0 has a unique solution strictly between 0 and 1. The ac-
companying values of u2 and u3 are obviously unique.
In the second case, x1 5 x*1 and x2 5 �x2. In this case the relevant equa-

tions are (36), (39), and (40). Substituting equations (36) and (40) into
equation (39), we have

u2

1 1 u2

1 0:4 1 0:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2u1 2 u2

1

p� �212u1

2 u2 5 0:

Given equation (36), there are three distinct possibilities, depending
on whether u2 ∈ ½0, 0:6�,, u2 ∈ ð0:6, 0:7Þ, or u2 ∈ ½0:7, 1�. The appendix
shows that the only solution is one that corresponds to the first case:

FIG. 3.—Verifying coherence at the strategy profile �x in example 7 (eq. [41]).
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u2

1 1 u2

1 0:4 1 0:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:9 2 0:952

p� �3:9

2 u2 5 0, (42)

with u2 ⩽ 0:6. Figure 4A (again plotted with Mathematica) depicts the
left-hand side of equation (42). It shows that f(x, ⋅) has a unique fixed
point and completes the proof of claim 1.

2. Proof of Claim 2

Recall thatU ðx*Þ 5 ð0:95, 0:5, 0:51:95Þ andU ð�xÞ 5 ð1, 1, 1Þ. To see that x*
is an equilibrium, we verify that U1ð�x1, x*2 Þ⩽ u*1 5 0:95 and U2ðx*1 , �x2Þ⩽
u*2 5 0:5. The inequality follows from the fact that U1ð�x1, x*2 Þ is the solu-
tion to 0:511u1 5 u1, as we saw in the proof of claim 1. It is easy to see that
the solution is strictly less than 0.95. For the latter, observe that U2ðx*1 , �x2Þ
is the (unique) solution to equation (42). As figure 4A shows, that solu-
tion is strictly less than 0.5.

3. Proof of Claim 3

By theorem 1, subcoherence fails. Consider the reduced game f 2{1} with
players 2 and 3 and u1 5 0:95. Let x2 5 �x2. A fixed point of f 2{1} is equiv-
alent to a solution of equation (42), but with u2 ∈ ½0, 1� rather than in [0,
0.6]. And there are three solutions to this equation for u2 ∈ ½0, 1�, as fig-
ure 4B shows. The only difference between the two panels is that in B,
the range of u2 is [0, 1] rather than [0, 0.6]. There is indeed a unique
solution to the full utility system at ðx*1 , �x2Þ, but not when the utility of
player 1 is fixed at U1ðx*Þ 5 0:95.
In fact, it follows from the proof of our theorem that if an equilibrium

x* is Pareto dominated by �x, then there must exist a reduced game in
which the player(s) that have been removed get U(x*), the others play
�x, and the reduced game is not coherent. In the current example, this
is the case for the reduced game with player 1’s payoff fixed at u*1 . We

FIG. 4.—More on coherence and subcoherence in example 7 (eq. [42]).
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leave it to the reader to verify that in this example this feature does not
hold for a reduced game in which one of the other players is removed.

F. Coherence: An Afterword

Theorem 1, as well as the subsequent discussion centered on theorem 3,
tells us that a lot is hidden under the coherence rug. By no means do we
suggest that coherence is a universally desirable property. It is desirable
only if we believe that the situation at hand is truly a game with payoff-
based externalities—as in examples 1–3—and that too not always.15What
we can say is that in the wider world, replete with inefficient Nash equilib-
ria, the imposition of coherence on the payoff-based representation may
be inappropriate. In summary, whether coherence is a “good” condition
or not is deeply contextual. If our starting point is that the strategic situ-
ation is genuinely one of payoff-based externalities, coherence can be de-
fended (as Pearce and Bergstrom do). If, on the other hand, the starting
point is a standard normal-form game that has been straitjacketed into a
strategic situation with payoff-based externalities—via theorem 3—then
coherence is a far stronger presumption.

Appendix

A. More on Differentiable Games, Pareto Optima and Equilibria

Section VII.A of the main text records necessary (and under quasi concavity, suf-
ficient) conditions for equilibrium, taking advantage of smoothness and coherence:

∂fi ðxÞ
∂xi

5 0 (43)

for all i.We then considered theproblemof a social planner, who seeks tomaximize

o
j

ljUjðxÞ,

where l ; ðl1, ::: , lnÞ0 is a system of nonnegative weights summing to unity. Un-
der the assumption that the solution is interior, the first-order conditions are de-
scribed as follows. Let bij be a generic entry for the matrix ðI 2 DuÞ21; then

∂fi
∂xi o

n

j51

bijlj

 !
5 0 (44)

for all i. Equation (44) has the flavor of a complementary slackness condition. To
understand it, note that bij can be interpreted as the direct and indirect effects of a
change in player i’s utility on that of player j, with the direct effects (summarized

15 After all, such situations may well have no solution, multiple solutions, or unstable
solutions.
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by ∂fj=∂ui) and all indirect effects (echoing through the “utility matrix”) factored
in. Condition (44) says that as long as this weighted sum of direct and indirect
effects is nonzero—as we change the utility of player i by varying her action—
we should have player i at a stationary point in her own action at the planner op-
timum (∂fi=∂xi 5 0). On the other hand, if the former weighted sum hits a zero
somewhere, the plannermight need to prevent player i frommaximizing her util-
ity through her own choice of action.

Using equation (43), we concluded that the equilibrium conditions are also
solutions to the planner’s first-order conditions (eq. [44]), suggesting that equi-
libria solve necessary conditions for planner optimality. That raises a question.

Question 1. Are the second-order conditions for the planner’s problem sat-
isfied, so that equation (44) characterizes all the (local) optima for the planner’s
problem?

Onemight also ask the reverse question: Are all Pareto optima in a game of love
and hate supportable as equilibria? In terms of first-order conditions, that would
be related to another question.

Question 2. Does equation (44) imply equation (43)?
In general, the answer to both questions could be negative (even assuming co-

herence), as our next example illustrates.
First, the answer to question 1may be negative, because the planner’s objective

may not be concave in every xi even when, for all i, Ui(⋅) is concave in xi. As we see
in example A1 below, for someweights l it may be convex in some xi, whichmeans
that equation (44) may not even describe a local optimum to the planner’s prob-
lem. This illustrates the difficulties of a “differential approach” even when the
primitive functions are well behaved. Because the quasi concavity of the planner’s
objective function is not guaranteed, we cannot use the fact that equation (43)
implies equation (44) to argue that an equilibrium is Pareto optimal.

Second, and now moving in the reverse direction, even if equation (44) holds
at a Pareto optimum, it may not imply equation (43), because it is possible that
on

j51bijlj 5 0 for some i. Given our assumption that Ui(⋅) is quasi-concave in xi for
all i, this implies that the Pareto optimum in question is not an equilibrium. In
this situation, the optimal xi imposes a zero marginal effect on the planner’s pay-
off, which could lead to a possible suppression of the best response of agent i.

Example A1 (A game of love and hate with Pareto optima that are not equi-
libria). Consider a two-person strategic situation in which X1 5 X2 5 ½0, 1�
and each player’s payoff is strictly concave in her own action and decreasing in
the other player’s payoff.

f1ðx1, u2Þ 5 1:5 2 1:5ð0:5 2 x1Þ2 2 0:5u2,

f2ðx2, u1Þ 5 1:5 2 1:5ð0:5 2 x2Þ2 2 0:5u1:

This situation is coherent (and trivially subcoherent). For each x ∈ X1 � X2,

U1ðxÞ 5 1 2 2ð0:5 2 x1Þ2 1 ð0:5 2 x2Þ2,
U2ðxÞ 5 1 2 2ð0:5 2 x2Þ2 1 ð0:5 2 x1Þ2:

The unique equilibrium is x* 5 ð0:5, 0:5Þ, with payoff profile u* 5 ð1, 1Þ. The
planner’s problem, given l 5 ðl1, l2Þ, where li ∈ ½0, 1� and l1 1 l2 5 1, is
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max
x∈�X1��X2

l1U1ðxÞ 1 l2U2ðxÞ:

Substituting for Ui(x), the planner’s objective function is

l1½1 2 2ð0:5 2 x1Þ2 1 ð0:5 2 x2Þ2� 1 l2½1 2 2ð0:5 2 x1Þ2 1 ð0:5 2 x2Þ2�,
which can be rewritten as

1 1 ðl2 2 2l1Þð0:5 2 x1Þ2 1 ðl1 2 2l2Þð0:5 2 x2Þ2: (45)

If l ∈ ð1=3, 2=3Þ, the coefficients for ð0:5 2 x1Þ2 and ð0:5 2 x2Þ2 are both negative,
function (45) is strictly concave in x, and the unique solution tomaximizing func-
tion (45) is x* 5 ð0:5, 0:5Þ. For l in this range, the answer to both question 1 and
question 2 is in the affirmative. If l1 5 1=3, the planner’s welfare is independent
of x1, and optimality is consistent with any x1 ∈ ½0, 1�, while x2 5 0:5. This corre-
sponds to b11l1 1 b12l2 5 0 in equation (44), and the answer to question 2 is neg-
ative: equation (44) does not imply equation (43).16 Of course, the players’ util-
ities do depend on x1. The case l1 5 2=3 is symmetric.

If l1 < 1=3, the planner’s objective function, (45), becomes convex in x1. If
l > 2=3, it becomes convex in x2. In either case, equation (44) is not consistent
with the maximization of the planner’s objective, (45). Of course, x* continues
to satisfy these conditions but is not a solution to the planner’s problem for
l1 ∉ ½1=3, 2=3�.

The utility possibility frontier can be shown to have the form

u2 5
1:5 2 0:5u1 if  u1 ⩽ 1,

3 2 2u1 otherwise,

(

and is depicted in figure 5. There is only one utility profile on the Pareto frontier,
u*, that matches the equilibrium utility profile U ðx*Þ 5 ð1, 1Þ. It is a solution to
the planner’s problem for l ∈ ½1=3, 2=3�. For l not in this range, equation (44)
does not describe a solution to the planner’s problem. Moreover, every solution
to the planner’s problem requires that one of the players must be made to
choose an action that is suboptimal.

We know from section VII.C that this conventional shape of the utility possibil-
ity frontier is not possible in the case of positive externalities. To see this, modify
example A1 as follows:

f1ðx1, u2Þ 5 1:5 2 1:5ð0:5 2 x1Þ2 1 0:5u2,

f2ðx2, u1Þ 5 1:5 2 1:5ð0:5 2 x2Þ2 1 0:5u1,

which yields

U1ðxÞ 5 3 2 2ð0:5 2 x1Þ2 2 ð0:5 2 x2Þ2,
U2ðxÞ 5 3 2 2ð0:5 2 x2Þ2 2 ð0:5 2 x1Þ2,

16 It can be shown that ðb11, b12Þ 5 ð4=3,22=3Þ.
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Now, whatever the weights l1 and l2, there is a unique solution to the planner’s
problem, namely, x 5 ð0:5, 0:5Þ, and only one point on the utility possibility
frontier, u 5 ð3, 3Þ, confirming the general point made in section VII.C.

We return to a discussion of the connections between the welfare theorems of
general equilibrium and our results. This time our focus is on the second welfare
theorem. That second theorem is related to question 2. With differentiability, it
can be phrased as a comparison of two first-order conditions: “does equation (44)
imply equation (43)?” As we saw in example A1, in general the answer is negative,
though not so if all agents are nonmalevolent, as we know from section VII.C. Re-
latedly, Winter (1969) shows that if no consumer is malevolent, then the second
welfare theoremholds:17 every Pareto-optimal allocation is sustainable as a compet-
itive equilibrium with redistribution.18 It is therefore possible that the second wel-
fare theorem exhibits a closer parallel across games and competitive equilibrium,
though this paper is not about the second welfare theorem or its analogue in game
theory.

B. Proof of Theorem 3

For each player i and action xi, define compact U2i and fi(xi, ⋅) on U2i as in the
main text. Let um

2i be a sequence of utility profiles in U2i converging to some

17 See also Rader (1980) and Parks (1991).
18 In passing, take note of the tension between the conditions for each welfare theorem.

While nonmalevolence restores the second welfare theorem, it is nonbenevolence that ap-
pears to help with the first welfare theorem. Asking for both these conditions to hold is to
rule out externalities altogether; see remark 8 in Parks (1991).

FIG. 5.—Pareto frontier for example A1.
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u2i ∈ U2i . Let xm
2i be some corresponding sequence of action profiles. By com-

pactness, all the limit points of xm
2i are bona fide action profiles, and by regularity,

Uiðxi , x2iÞ 5 Uiðxi , x 0
2iÞ for any possible pair of limit points ðx2i ,  x 0

2iÞ. It follows
that fi ðxi , um

2iÞ→ fi ðxi , u2iÞ, so fi(xi, ⋅) is continuous on U2i . By the Tietze extension
theorem (see, e.g., 1970, 99), fi(xi, ⋅) can be extended to a bounded continuous
function on Rn21. QED

C. Missing Details for Claim 2 in Example 7

The only detail for example 7 that we need to supply is from claim 2. This is the
demonstration that U(x) is unique when x 5 ðx*1 , �x2Þ. As we show in the main
text, this requires us to show that there is a unique solution to

u2

1 1 u2

1 0:4 1 0:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2u1 2 u2

1

p� �212u1

2 u2 5 0:

According to equation (36), substituting for u1 in this equation gives us three
distinct possibilities:

u2

1 1 u2

1 0:4 1 0:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:9 2 0:952

p� �3:9

2 u2 5 0, (46)

with u2 ⩽ 0:6,

u2

1 1 u2

1 0:41 0:1
ffiffiffiffiffi
95

p
ðu2 2 0:7Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2 95ðu2 2 0:7Þ2

q� �21190ðu220:7Þ2

2u2 5 0, (47)

with 0:6 < u2 < 0:7, or

u2

1 1 u2

1 0:4

� �2

2 u2 5 0, (48)

with u2 ⩾ 0:7.
Only the graph of the left-hand side of equation (46) is shown in the main

text. Figure A1 plots all three equations. Clearly, only equation (46) has a solu-
tion. This shows that f(x, ⋅) has a unique fixed point and completes the proof of
claim 2.
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FIG. A1.—Verifying coherence at the strategy profile �x in example 7 (eqq. [46]–[48]).
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