
Dynamic Programming and Dynamic Games

Debraj Ray

Boston University and Instituto de Análisis Económico (CSIC)
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Discounted Dynamic Programming under Certainty

1 The Basic Model

The following ingredients are part of the basic model. I will try to keep the notation as close
as possible to Stokey and Lucas [1989]:

[1] A set of states, to be denoted by X.
[2] A feasibility correspondence that maps the current state into a subset of the state space,
describing what states are attainable “tomorrow” given the state “today”: Γ : X 7→ X.
[3] A one-period return function F defined on the domain A ≡ {(x, y) ∈ X2 : y ∈ Γ(x)}.
[4] A discount factor β ≥ 0 applied to future payoffs.

Let some initial state x be given. A feasible program x from x is a sequence {xt}∞t=0 such
that x0 = x and xt+1 ∈ Γ(xt) for all t ≥ 0. The problem is to find a feasible program x that
attains

∞∑
t=0

βtF (xt, xt+1) (1)

2 Examples

[1] Optimal Growth. Suppose that inputs capital (K) and labor (N) produce a single
good (Y ), which may be used for consumption (C) or for augmenting the capital stock.
Population grows at the rate of n, and there is labor-augmenting technical progress at the
rate of γ. If Gt is the gross production function at time t (including the past capital stock,
possibly depreciated), then

Gt(K, N) = G(K, AtN)

is the production function at time t, where At represents labor-augmenting technical progress.
Assume G is constant returns to scale.

By assumption, At = A0(1 + γ)t for some A0 > 0 and γ > −1, and Nt = N0(1 + n)t for
some N0 > 0 and n > −1.

Now, a feasible program from some initial level of output Y is A sequence {Ct,Kt, Yt}
such that

Y0 = Y

Yt = Ct + Kt for all t ≥ 0
yt+1 = G(Kt, AtNt) (2)

Normalize this by dividing through by effective labor AN . Let c ≡ C
AN , k ≡ K

AN , and x ≡ Y
AN .

Let g(k) ≡ G(k, 1). We thus obtain the system

x0 = x

xt = ct + kt for all t ≥ 0
xt+1 = 1

(1+γ)(1+n)g(kt) (3)
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Now consider a constant-elasticity-of-substitution utility function, defined on individual con-
sumption ĉ ≡ C

N , given by

u(ĉ) ≡ 1
1− σ

[ĉ1−σ − 1]

The term 1
σ may be interpreted as the intertemporal elasticity of substitution. Optimal

(utilitarian) growth requires the maximization of
∞∑

t=0

δtu(ĉ)Nt

where δ is the planner’s discount factor. With the appropriate substitutions made, this can
be shown to be equivalent to the maximization of

∞∑
t=0

βt 1
1− σ

[c1−σ
t − 1] (4)

where β ≡ δ(1 + n)(1 + γ)1−σ. The system (3) and (4) can now be cast in the form of the
general model, by simply factoring out the variables c and k.

[2] Orchards or vintages. Consider a unit plot of land (say, the unit square of IR2) with
trees of various ages planted on it. Each tree lives for periods 0, 1, . . . , T , after which it is
incapable of bearing fruit. The tree yields an amount R(s) in period s, S = 0, 1, . . . , t.

Let X be the nonnegative unit simplex of IRT+1. The interpretation is that x ∈ X is a
vector which describes the fractions of land devoted to trees of different ages.

Given x at time t, it is possible to move to a set of new vectors at time t+1 by eliminating
trees of different vintages and replacing them with trees of age 0. Uncleared trees will advance
in age by one period. Thus,

Γ(x) = {y ∈ X : there exist nonnegative reals (ε(0), . . . , ε(T )) with

y(s + 1) = x(s)− ε(s) for s = 0, . . . , T − 1, ε(T ) = x(T ), and y(0) =
T∑

s=0

ε(s)}

A plot with x yields a harvest of c(x) ≡
∑T

s=0 x(s)R(s). If the utility function is u(c),
then in the context of our general framework, this means that the payoff function takes the
special form on A:

F (x, y) = u(x ·R).

[3] Exhaustible resources. A country has exhaustible oil reserves x which it can sell on
the world market. If the quantity sold at date t is y, then price is determined by an inverse
demand function p(y), so that total profit at date t is given by yp(y).

Clearly, X = IR+, and
Γ(x) = {x′ ≥ 0 : x ≥ x′}.

and
F (x, x′) = (x− x′)p(x− x′).

For other examples, see Stokey and Lucas [1989], Ch. 5.
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3 The functional equation of dynamic programming

The following fundamental assumptions will be maintained throughout. For the sake of
comparison, it should be noted that we are using assumptions that are slightly stronger than
those in Stokey and Lucas.

[A.1] Γ(x) is nonempty for all x ∈ X.
[A.2] (i) For all feasible programs, limT→∞

∑T
t=0 βtF (xt, xt+1) is well-defined and less than

+∞. Moreover, for every x, there exists a feasible program x such that limT→∞
∑T

t=0 βtF (xt, xt+1) >
−∞.1

It is important to understand that the assumption (A.2) is not the same as the postulate
of discounting. We will return to this point below.

For any feasible program x from x, define u(x) to be the infinite discounted sum of returns
generated by this program:

u(x) ≡
∞∑

t=0

βtF (xt, xt+1).

Note that by (A.2), u is well-defined on the space of feasible programs, though it may be
−∞ in places. For each initial x ∈ X, we may now define the supremum function v∗(x) as

v∗(x) ≡ sup
x

u(x) (5)

where the supremum in (5) is taken over all feasible programs x from x.
By Assumptions (A.1) and (A.2), v∗ is well-defined and assumes finite values for each

x ∈ X.
Say that a finite-valued function v satisfies the functional equation if

v(x) = sup
y∈Γ(x)

[F (x, y) + βv(y)] (6)

Our purpose in this section is to analyze the connection between the supremum function
and the function(s) that satisfy the functional equation.

Theorem 1 Suppose that (A.1) and (A.2) are satisfied. Then the supremum function v∗

satisfies the functional equation.

Proof. Fix x ∈ X. Consider, first, any y ∈ Γ(x). Because v∗ is a supremum function, it
follows that for any ε > 0, there is a feasible program x′ from y such that

u(x′) ≥ v∗(y)− ε (7)

Note that x ≡ (x,x′) is a feasible program from x. Moreover,

v∗(x) ≥ u(x) = F (x, y) + βu(x′) ≥ F (x, y) + βv∗(y)− βε,

1This assumption is a bit restrictive mathematically but does not rule out any cases of economic interest.
For a more general treatment, see Stokey and Lucas [1989].
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where the last inequality uses (7). Because this holds for any ε > 0 and any y ∈ Γ(x), it
follows that

v∗(x) ≥ sup
y∈Γ(x)

[F (x, y) + βv∗(y)] (8)

It remains to show that equality must hold in (8). To this end, pick x ∈ X and any ε > 0.
Because v∗ is a supremum function, it follows that there exists a program x such that

v∗(x) ≤ u(x) + ε = F (x, x′) + βu(x′) + ε,

where x′ is the first term following x in the feasible program x, and x′ denotes the feasible
program from x′ induced by x. Noting that u(x′) ≤ v∗(x′), it follows that

v∗(x) ≤ F (x, x′) + βv∗(x′) + ε,

and because ε is arbitrary, it follows that equality must hold in (8).

The converse to Theorem 1 is a deeper issue. There are functions that satisfy the func-
tional equation, but are not supremum functions.

Example 1. Let X = IR+, Γ(x) = {y : 0 ≤ y ≤ λx} for some λ > 1. F (x, y) is defined by
first looking at c ≡ x− y/λ for all (x, y) ∈ A, and then defining u(c) = c

1+c . Finally, let the
discount factor be given by β = 1/λ. Note that (A.1) and (A.2) are satisfied.

By standard arguments (which you should be able to supply), it follows that from every
initial stock, it is best to maintain a constant level of c over time. This policy will give us
the supremum function, and indeed you can see that it is

v∗(x) =
λx

λ + (λ− 1)x

Of course, v∗ will satisfy the functional equation. It may be a good idea to directly verify
this.

However, there is another solution to the functional equation, and this shows that the
converse to Theorem 1 is not going to be straightforward. This solution is v(x) ≡ x. It will
be good practice to check that this indeed satisfies the functional equation.

What is happening in this example? After all, there “should” not be other solutions to
the functional equation. Why can’t we just recursively unravel (6) to get (5)? Indeed, we can,
provided that the tail βtv(xt) of the unravelled series conveniently vanishes, leaving only the
bonafide utility terms behind. If the tail does not vanish, we are in trouble. Re-examining the
spurious solution to the functional equation in Example 1, we see that there are unravellings
for which the tail does not vanish: βtv(xt) = βtxt, and any sequence along which xt grows
at an asymptotic rate of λ = 1/β will create a nonvanishing tail.

Theorem 2 establishes a converse to Theorem 1 by assuming this problem away. Later
on, however, we shall see that when the discounting assumption is made, this is a tight
assumption, in the sense that it will always be satisfied by the supremum function of the
model.
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Theorem 2 Assume (A.1) and (A.2). Let v be a solution to the functional equation satis-
fying the condition

lim
t→∞

βtv(xt) = 0 (9)

for every x ∈ X and every feasible program from x. Then v must be the supremum function.

Proof. Let v satisfy the functional equation (6). We begin by observing that for every x ∈ X
and feasible program x from x,

v(x) ≥ F (x0, x1) + βv(x1)
≥ F (x0, x1) + βF (x1, x2) + β2v(x2)

... ≥
T∑

t=0

βtF (xt, xt+1) + βT+1v(xT+1).

Passing to the limit as T →∞ and invoking (9), we see that

v(x) ≥ u(x) (10)

for each x ∈ X and feasible program x from x.
It remains to prove that (10) must hold with equality. To do this, pick any ε > 0, and

define a strictly positive sequence {εt}∞t=0 such that
∑∞

t=0 βtεt < ε. Because v satisfies the
functional equation, we may define a feasible program x from x such that for each t,

v(xt) ≤ F (xt, xt+1) + βv(xt+1) + εt

Manipulating this set of inequalities up to time T , we see that

v(x) ≤
T∑

t=0

βtF (xt, xt+1) + βT+1v(xT+1) +
T∑

t=0

βtεt, (11)

and passing to the limit in (11) as T →∞, we see that

v(x) ≤ u(x) + ε.

Note that ε was arbitrary, so that (10) must hold with equality, and the proof is complete.

Let us briefly return to an observation made just before the statement of Theorem 2.
I claimed that when the discounting assumption is made, the condition of that theorem
would be automatically satisfied. We will see this presently, but it is important to note that
in general, the condition (9) may be violated by all solutions to the functional equation,
including the supremum function (though this is not the case in Example 1). To see this,
consider a variant of Example 1 with λ = β = 1. Verify that the supremum function now
violates the tail condition of Theorem 2.
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4 Optimal Programs and Policies

A feasible program x∗ from x ∈ X is optimal if v∗(x) = u(x∗). Our first Theorem, which runs
parallel to Theorem 1, shows that optimal programs attain the supremum of the functional
equation (6).

Theorem 3 Suppose that (A.1) and (A.2) are satisfied. Let x∗ from x be an optimal pro-
gram. Then

v∗(x∗t ) = F (x∗t , x
∗
t+1) + βv∗(x∗t+1) (12)

for all t ≥ 0.

Proof. Denote by xt the “tail” of the optimal program from t onwards — with initial stock
x∗t . We claim that each such program is optimal from its corresponding initial stock. For
suppose that this assertion were false for some t. Then there exists a program x′ from xt

such that u(x′) > u(xt). Now consider the program x′′ ≡ (x0, x1, . . . , xt,x′): it is certainly
feasible from x. However

u(x′′) =
t−1∑
s=0

βsF (x∗s, x
∗
s+1) + βtu(x′) >

t−1∑
s=0

βsF (x∗s, x
∗
s+1) + βtu(xt)

= u(x∗)

which contradicts the optimality of x∗. So the claim is true, which means that v∗(x∗t ) = u(xt)
for each t.

We now use the claim twice to complete the proof. Note that for any t,

v∗(x∗t ) = u(xt) = F (x∗t , x
∗
t+1) + βu(xt+1)

= F (x∗t , x
∗
t+1) + βv(x∗t+1),

and we are done.

The converse to this theorem requires not only that (12) be satisfied, but that an addi-
tional boundary condition is met. This is analogous to the tail condition used in Theorem
2.

Theorem 4 Suppose that (A.1) and (A.2) are satisfied. Let x∗ be a feasible program from
x which satisfies (12) using the supremum function, and meets in addition the boundary
condition

lim sup
t→∞

βtv∗(x∗t ) ≤ 0. (13)

Then x∗ is an optimal program from x.

Proof. Suppose that x∗ satisfies (12). Using this repeatedly for T periods, we see that

v∗(x) =
T∑

t=0

βtF (x∗t , x
∗
t+1) + βT+1v∗(x∗T+1).
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Passing to the limit in this expression and applying (13),

v∗(x) ≤ u(x∗).

The reverse equality also holds since v∗ is the supremum function, and we are done.

Note well: while I said that this condition (13) is analogous to the tail condition (9), it is
far from being the same thing. The present condition is applied to the supremum function
itself, in contrast to the tail condition. For this condition to have any bite, then, it must
be the case that the tail condition (9) itself fail to apply to the supremum function. So,
for instance, Example 1, which illustrated well Theorem 2, will not apply in this case. A
modification of that example, however, illustrates the need for (13).

Example 2. Put β = λ = 1 in Example 1, and change the utility function to u(c) = c.
This is just a cake-eating problem with a linear utility function. There are lots of optimal
programs from any initial stock x: essentially, any intertemporal division of the cake will do.
The supremum function turns out to be (not surprisingly) v∗(x) = x for all x ≥ 0. Now
consider a program that is definitely suboptimal: one that puts xt = x for all t (so that
consumption is always zero). The point is that this program satisfies (12), while it fails (13).

So unimprovability does not necessarily imply optimality. Later, however, we shall see
how the assumption of discounting enables to get around this problem.

To finish this section, we define a policy correspondence: this is any correspondence
G : X → X with the property that G(x) ⊆ Γ(x) for all x ∈ X. If G is single-valued it will
be referred to as a policy function. A feasible program x from x is generated by a policy
correspondence G if x0 = x, and xt+1 ∈ Γ(xt) for all t.

The optimal policy correspondence is given by

G∗(x) ≡ {y ∈ Γ(x) : v∗(x) = F (x, y) + βv∗(y)} (14)

Up to now (but not for long), this is a bit of a misnomer. While Theorem 3 shows that every
optimal plan must be generated by G∗, Theorem 4 argues that plans generated by G∗ are
optimal provided they satisfy (13).

In the next section, we will introduce the notion of discounting and show that this takes
away the problems raised in this and the previous section.

5 Insignificant future

Assumption (A.2), with its insistence that utility streams must sum to a number less than
plus infinity, looks like discounting. But it isn’t. You can see this, for instance, by studying
Example 2. There is no discounting in that example. Yet Assumption (A.2) is satisfied.
Discounting requires that the future must look “uniformly” insignificant (relative to the
present), no matter which feasible program one tries out. Along any (nonwasteful) program
in the cake-eating problem, the future looks insignificant compared to the present, because
after all “most” of the cake must be eaten in a finite number of periods. Yet observe that
unless we have discounting, this property does not hold uniformly across all feasible programs.
This is the source of the problems raised by Theorems 2 and 4.

8



I now state the insignificant future assumption. Assume from now on that X is some
nicely behaved topological space, say a metric space.

[D] There is a positive sequence ε(t) → 0 such that for all feasible programs x from x and
all t,

|
∞∑
s=t

βsF (xs, xs+1)| ≤ h(x)ε(t) (15)

where h(x) is a positive continuous function.

Understand this assumption well. It is a joint assumption on the discount factor, on
the payoff function, and the “technology” (captured by Γ). It is not just discounting, even
though we might commonly refer to it as such. It means, more generally, that the discount
factor must be powerful enough to swamp any growth effects that are in the technology.

Exercise. [1] Show that in Example 1, Assumption (D) is satisfied. More generally, show
that if the one-period return function is bounded, then the condition that the discount factor
is less than unity is sufficient for Assumption (D) to hold.

[2] If the payoff function is not bounded, Assumption (D) generally demands more of the
discount factor than just being less than unity. Consider a variant of Example 3 where β and
λ need not equal unity. What does Condition (D) require in this case?

[3] Finally, consider a case where one-period payoffs, technology, and the discount factor
all interact in a nontrivial way to determine the validity of Assumption (D). Take Item [1]
in Section 2 (Examples). Find out a necessary and sufficient condition for (D) to be met
in that model. [Hint: Assume G is differentiable and concave. You will need the variable
m ≡ limk→∞ g′(k) in your characterization.]

The insignificant future condition has two effects on the theorems of the previous section.
First, it tightens Theorems 1 and 2 into a complete characterization:

Theorem 5 Assume (A.1), (A.2), and (D). Then v is a supremum function if and only if
it satisfies the functional equation and condition (9):

lim
t→∞

βtv(xt) = 0

for every x ∈ X and every feasible program from x.

Proof. In the light of Theorems 1 and 2 it suffices to prove that v∗, the supremum function,
must satisfy (9). Take any x ∈ X and feasible program x from x. Because v∗ is a supremum
function, there exists a positive sequence δt with βtδt converging to zero such that for each
t, there is a feasible program xt from xt with

u(xt) ≤ v(xt) ≤ u(xt) + δt.

Consequently, using the condition (D) [see how uniformity is being used in the next manip-
ulation], we see that for each t,

−h(x)ε(t) ≤ βtu(xt) ≤ βtv(xt) ≤ βtu(xt) + βtδt

≤ h(x)ε(t) + βtδt,
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so that βtv(xt) converges to zero by the properties of ε(x, t) and the choice of the sequence
δt.

Note that in the variant of Example 1 discussed at the very end of Section 3, the supremum
function does not satisfy the tail condition (9). It follows, of course, that in that variant (D)
is not satisfied. Check this directly.

Next, we will see that the insignificant future assumption links the pair of theorems 3 and
4 without any need for a tail condition like (13). Now describing G∗ as the optimal policy
correspondence is no longer a misnomer.

Theorem 6 A feasible program x∗ is optimal if and only if (12) is satisfied:

v∗(x∗t ) = F (x∗t , x
∗
t+1) + βv∗(x∗t+1)

Proof. In the light of Theorems 3 and 4, it suffices to prove that (12) is sufficient for
optimality. To this end it will be enough to prove that (13) is satisfied. But this restriction
is implied by Theorem 5.

6 Existence of Optimal Programs

Our next task is to outline conditions under which an optimal program exists. There are
two routes to this problem. One is a direct approach, which I shall first outline. The second
approach establishes existence by studying the existence of value functions. This approach
is really much more suitable for the stochastic case, and I will postpone a discussion of it to
the lectures on uncertainty.

We will need additional assumptions, this time on the transformation correspondence
and the one-period payoff function. Henceforth, Assumptions (A.1) and (A.2) will always be
taken to implicitly hold, and we shall not refer to them anymore.

[TU ] Γ is a compact-valued, upperhemicontinuous (uhc) correspondence.

Remark. A compact-valued correspondence Γ : X → X is uhc at x ∈ X if for all sequences
{xn} converging to x and {yn} with yn ∈ Γ(xn) for all n, there exists a convergent subsequence
{ynk

} with limit y, such that y ∈ Γ(x). Observe that this is a bit different from the standard
definition that you have seen but can easily be reconciled with it.

[F] F is continuous on X ×X.

Theorem 7 Assume (D), (TU ), and (F). From each x ∈ X, an optimal program exists.

Proof. The following lemma will be useful in the proof of this and other results:

Lemma 1 Let xn be a sequence of feasible programs such that for each t,

xn
t → xt

as n →∞. Then x ≡ {xt} is a feasible program from x0, and u(xn) → u(x) as n →∞.
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Proof. Our first task is to establish that x is feasible. This follows directly from the
assumption that Γ is uhc; you can fill in the details.

Now, suppose that the rest of the assertion in the lemma is false. Then there exists a
subsequence {r} and ε > 0 such that

|u(xr)− u(x)| ≥ ε

for all r. We shall only study the subcase

u(xr) ≥ u(x) + ε; (16)

the other case uses a parallel argument and is omitted.
By assumption (D), there exists some time T such that for all t ≥ T and all r,

h(xr
0)ε(t) < ε/3 and h(x0)ε(t) < ε/3.

[This uses the continuity of h(.).] Using this choice of T and (16),
T∑

t=0

βtF (xr
t , x

r
t+1) ≥ u(xr)− ε/3

≥ u(x) + 2ε/3

=
T∑

t=0

βtF (xt, xt+1) +
∞∑

t=T

βtF (xt, xt+1) + 2ε/3

≥
T∑

t=0

βtF (xt, xt+1) + ε/3

for all r. But this is impossible by (F).

Remark. Appreciate in the proof above the difference between the continuity of a finite
sum of continuous functions, which is trivial, and the infinite sum, which is not.

Exercise. Show that in the cake-eating problem with any increasing, differentiable, utility
function (with positive derivative at zero), and with discount factor equal to one, the assertion
of Lemma 1 fails.

We now return to the main proof of existence. Fix x ∈ X and let M ≡ v∗(x). Because
v∗ is a supremum function, there exists a sequence of feasible programs xn from x such that
u(xn) → M . Consider period 0: xn

1 ∈ Γ(x) for all n. By uhc of Γ, there exists a subsequence
{nk} such that xnk

1 converges to some x∗1 ∈ X. Recursively, suppose that at date t, there is
a sequence {xm

t } converging to some x∗t . Then there is a subsequence {mk} such that xmk
t+1

converges to some x∗t+1 ∈ Γ(x∗t ). The problem is to extract out of all this one subsequence
(call it {r}) such that

xr
t → x∗t

for each t, where (by uhc we already know that) x∗ is a feasible program from x. A diagonal
argument due to Cantor allows us to do just that.

We now claim that x∗ is indeed an optimal program. To see this, just use the lemma,
which claims that u(xr) must converge to u(x∗) as r →∞. But it is also true by construction
that u(xr) → M . It follows that u(x∗) = M , and the proof is complete.
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7 Value functions and policy correspondences

7.1 Continuity of v∗

Once an optimal program exists, we may rename the supremum function as the value function,
the supremum being attained.

A fundamental property of the value function that we hope to obtain in many cases is its
continuity. However, the assumptions made so far do not guarantee this.

Example 3. Suppose that X = IR+, and that the transformation correspondence is given
by

Γ(x) = {y : 0 ≤ y ≤ x} for 0 ≤ x < 1
= {y : 0 ≤ y ≤ 4x} for x ≥ 1

Let the utility function be defined on consumption just as in Example 1: u(c) = c
1+c , and let

the discount factor equal 1/4. Now verify that all the assumptions made so far are satisfied.
Take any initial x ∈ [0, 1). Look at the marginal utility of consumption: it is 1

(1+c)2
which

is bounded above by 1/4. So it is optimal for these initial stocks to consume everything in
the first period. It follows that

v∗(x) =
x

1 + x

for all x ∈ [0, 1). Now consider any initial stock x ≥ 1. Then by the same argument as in
Example 1, it is optimal to maintain constant consumption. From Example 1, it follows that
the value of doing this,

v∗(x) =
4x

4 + 3x

for all x ≥ 1. Clearly, we do not have continuity of the value function at x = 1.

An assumption that guarantees continuity is an additional restriction on the transforma-
tion correspondence:

[TL] Γ is lower hemicontinuous (lhc) on X.

To recall the definition: A nonempty-valued correspondence Γ is lhc at x ∈ X if for every
y ∈ Γ(x) and every sequence xn → x, there exists a sequence {yn} with yn ∈ Γ(xn) for all n,
such that yn → y.

Theorem 8 Suppose that assumptions (D), (F), (TU ), and (TL) are satisfied. Then the
value function v∗ is continuous on X.

Proof. Suppose that xn → x. We may assume wlog that v∗(xn) converges as well (why?).
We wish to show that

lim
n→∞

v∗(xn) = v∗(x).

For each n, pick an optimal program xn from initial stock xn, so that u(xn) = v∗(xn) for all
n. By a diagonal argument similar to that used in the proof of Theorem 7, there exists a
subsequence {r} of {n} such that for each t,

xr
t → xt
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as r →∞, where x = {xt} is some feasible program from x. By Lemma 1,

u(xr) → u(x)

as r →∞. This shows right away that

lim
r→∞

v∗(xr) ≤ v∗(x).

Remark. So far we have showed, without invoking lhc of Γ, that the function v∗ is up-
persemicontinuous (review the definition of an uppersemicontinuous function and see why
we have proved this).

Now suppose that equality failed to hold in the expression above. Then there exists a
feasible program y from x such that

u(x) < u(y) (17)

Using (TL) repeatedly, we may now construct a sequence of feasible programs yr from xr,
such that

yr
t → xt

for each t. So by Lemma 1,
u(yr) → u(y)

while we already know that
u(xr) → u(x).

But these two expressions, together with (17), contradict the assumption that for all r, xr is
an optimal program from xr.

So under the assumptions so far, v∗ is continuous. We already know that

v∗(x) = max
y∈Γ(x)

F (x, y) + βv∗(y). (18)

Recall that for each x ∈ X,

G∗(x) ≡ {y ∈ Γ(x) : v∗(x) = F (x, y) + βv∗(y)}

describes the optimal policy correspondence. Recall, too, by Theorem 6, that G∗ generates
only (and all the) optimal programs from any initial state x. The continuity properties of
G∗ are are summarized in

Theorem 9 Under (F), (D), (TU ), and (TL), G∗ is an uhc correspondence.

The proof of this theorem directly follows from the

Maximum Theorem Consider the problem

max
y∈Γ(x)

D(x, y)

13



where Γ is a nonempty, compact-valued, continuous (uhc and lhc) correspondence and D is
a continuous function. Then G(x), which describes for each x, the set of y-solutions to this
problem, is a nonempty, compact-valued, uhc correspondence.2

Proof. Suppose that {xn} → x and yn ∈ G(xn) for every n. By the uhc of Γ the fact that
G(x) ⊆ Γ(x) for all x, there exists a subsequence {yr} → y ∈ Γ(x). We must show that
y ∈ G(x). Suppose not. Then there exists y′ ∈ Γ(x) such that

D(x, y′) > D(x, y) (19)

Because Γ is lhc, there exists a sequence y′n ∈ Γ(xn) such that y′n → y′. Because D is
continuous, we know that

D(xn, yn) → D(x, y)

and
D(xn, y′n) → D(x, y′).

But these two assertions, along with (19), imply that

D(xn, y′n) > D(xn, yn)

which contradicts the fact that yn ∈ G(xn) for all n.

Exercise. [1] Find an example where all the assumptions of the maximum theorem are
satisfied, except for the lhc of Γ, and where the conclusion of the theorem is false.

[2] Find an example where under the conditions of the maximum theorem, G is not lhc.

7.2 Concavity of v∗

In economics, the assumption of convexity properties typically allow us to establish further
properties of value functions and policies. In what follows, then, we take X to be some metric
vector space.

Two kinds of convexity assumptions are often invoked. One has to do with the transfor-
mation possibilities: if (x, y) and (x′, y′) are both feasible, then so is any convex combination
of them; this is equivalent to the assumption

[T conv] A = {(x, y) : y ∈ Γ(x)} is a convex set.

The other kind of convexity assumption describes the convexity of preferences:

[F conc] F is strictly concave on A.

Exercise. Consider a single-person intertemporal allocation problem, such as the cake-
eating problem, with strictly concave utility function defined on consumption. Prove that
the induced F function on A is strictly concave.

2The Maximum Theorem also asserts the continuity of the maximized function in x, something that can
be proved along the lines of the proof of Theorem 8.
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Theorem 10 Assume (D), (TU ), (TL), (T conv), (F) and (F conc). Then v∗ is a strictly
concave function on X, and the optimal policy correspondence is a continuous function.

Proof. Let x and y be two initial states in X, with x 6= y. Let x and y be optimal programs
from x and y respectively. Fix and λ ∈ (0, 1). Let z be the program formed by defining

zt ≡ λxt + (1− λ)yt

for all t. Using the assumption (T conv), it follows that z thus defined is a feasible program
from z0. Moreover, by the strict concavity of F , we have

F (λxt + (1− λ)yt, λxt+1 + (1− λ)yt+1) ≥ λF (xt, xt+1) + (1− λ)F (yt, yt+1)

for all t, with strict inequality holding whenever (xt, xt+1) 6= (yt, yt+1), which is the case, for
instance, at t = 0. So because v∗(x) =

∑∞
t=0 βtF (xt, xt+1), v∗(y) =

∑∞
t=0 βtF (yt, yt+1) and

v∗(λx + (1− λ)y) ≥
∞∑

t=0

βtF (λxt + (1− λ)yt, λxt+1 + (1− λ)yt+1),

the strict concavity of v∗ is established.
To complete the proof we observe that the optimal policy correspondence G∗ must be a

singleton at each x. This is because the solution to a strictly concave maximization problem
like (18) must be unique. But now we are done, because a single-valued uhc correspondence
must in fact be a continuous function [check this].

7.3 Differentiability of v∗

Under still stronger conditions, one obtains a differentiable value function. This result, as
we shall see, lies at the heart of a classical approach involving Euler equations.

In what follows, we restrict our attention to state spaces X that are convex subsets of
IRn.

[Fdiff] F is differentiable on the interior of A.

Theorem 11 Assume (D), (TU ), (TL), (T conv), (F), (F conc), and (Fdiff). Then, if x ∈
int X and the optimal policy G∗(x) ∈ int Γ(x), then v∗ is differentiable at x, with derivatives

given by
v∗i (x) = F1i(x,G∗(x)) (20)

[The notation v∗i means the partial derivative with respect to the ith component of x,
while for F , the notation Fji stands for the derivative of the ith component of the jth vector
entry in F , for j = 1, 2.]

Proof. The following lemma, which I will not prove, is at the heart of this result.
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Lemma 2 Let X ⊆ IRn be a convex set, let v : X → IR be concave, let x ∈ int X, and let D
be an open neighborhood of x contained in X. If there is a differentiable function w : D → IR
with w(x) = v(x), and w(y) ≤ v(y) for all y ∈ D, then v is differentiable at x, and

vi(x) = wi(x).

The proof is omitted. It uses natural gradient properties of concave functions. See the
diagram in class for an intuitive explanation. See Stokey and Lucas [1989, p.84] for a proof
(they assume the concavity of w but this is not needed).

Now let us return to the main proof, armed with Lemma 2. Since, by assumption,
G∗(x) ∈ int Γ(x) and Γ is a continuous correspondence, G∗(x) continues to lie in Γ(y) for
all y in some open neighborhood D of x [draw a diagram to understand this, then check it
formally]. Define a function w : D → IR by

w(y) ≡ F (y, G∗(x)) + βv∗(G∗(x)).

Because of (Fdiff) it follows that w is differentiable on D. Moreover, because G∗(x) ∈ Γ(y)
for all y ∈ D,

w(y) ≤ max
y′∈Γ(y)

F (y, y′) + βv∗(y′) = v∗(y)

for all y ∈ D. But these properties establish the conditions of Lemma 2, and show that v∗

must be differentiable at x. Moreover, by construction of the function w in this proof and
Lemma 2, (20) must hold.

8 Some Applications

8.1 The Euler-Ramsey Equation for Differentiable Models

In this subsection, we maintain all the assumptions needed to establish the differentiability
theorem (Theorem 11).

Recall the maximization problem implied by the functional equation:

max
y∈Γ(x)

F (x, y) + βv∗(y)

for each x ∈ X.
Suppose that for each x, the (unique) solution y to this problem is interior; i.e., y ∈

int Γ(x). Then the first-order conditions of this maximization problem yield the following
set of necessary conditions:

F2i(x, y) + βv∗i (y) = 0

for each i. Using Theorem 11, we may deduce that

F2i(x, y) + βF1i(y, G∗(y)) = 0
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for each i. This yields the Euler-Ramsey equations along any interior optimal program. If
an optimal program x∗ from x is interior, i.e., if x∗t+1 ∈ int Γ(x∗t ) for all t, then

F2i(x∗t , x
∗
t+1) + βF1i(x∗t+1, x

∗
t+2) = 0 (21)

for each i and every t. This is a second-order difference equation characterizing the necessary
condition for an optimum.

This classical approach gives rise to a line of argument that merits some discussion. Ob-
serve that the difference equation above is pinned down partially by the boundary conditions
defining the initial state, but this is not enough to determine the fate of the equation. The re-
maining restrictions are supplied by the so-called transversality conditions. This is something
that only comes seriously into play when an infinite time horizon is involved. Finite horizon
models where certain terminal states must be achieved supply the transversality condition
in this fashion, by determining initial as well as final conditions. So, for instance, in convex
finite horizon models, every interior optimum must satisfy the Euler-Ramsey equations, and
every interior feasible program satisfying the Euler-Ramsey equations must yield an opti-
mum. This is not true in infinite horizon models. To understand this fully, let us start by
considering an example.

Example 4. Consider the one-person, one-sector optimal growth model. In each period, xt

is to be interpreted as (gross) output, which is divided into consumption ct and new capital
stock kt:

xt = ct + kt.

Utility is achieved from consumption, according to some function u that is increasing, contin-
uous, strictly concave, and differentiable, and satisfying the end-point restrictions u′(0) = ∞
and u′(∞) = 0. Let the discount factor β lie between 0 and 1.

Let g be the production function of fresh output: assume that g is increasing, continu-
ous, strictly concave, and differentiable, satisfying the end-point restrictions g′(0) = ∞ and
g′(∞) = 0. Gross output is the sum of current output and the depreciated past capital stock
(modulo free disposal):

xt+1 ≤ f(kt) ≡ g(kt) + (1− d)kt,

where d is the depreciation rate. It is pretty obvious that for all (x, y) ∈ A,

F (x, y) = u(x− f−1(y)).

Exercise. Verify that all the assumptions made so far hold for this model, and by applying
the Euler Ramsey equations (21), show that a necessary condition for any interior program
{x∗t , k∗t , c∗t } to be optimal is

u′(c∗t ) = βf ′(k∗t )u
′(c∗t+1) (22)

Now we will examine (22) from a particular initial stock, given by the value x∗ ≡ f(k∗),
where k∗ is the unique solution to the equation

f ′(k∗) = 1.

We are going to construct an interior program which satisfies Euler-Ramsey, but is never-
theless suboptimal. To do this, start by choosing k0 ∈ (k∗, x∗), and c0 ≡ x∗ − k0. Then
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f ′(k0) < 1, so that βf ′(k0) < 1 as well. It follows from (22) that in the next period, we must
choose c1 such that u′(c1) > u′(c0), which implies that c1 < c0. Also note that by the choice of
k0, we must have x1 > x0 = x∗ (provided we throw no output away). It follows that k1 > k0,
and we can repeat the same story over and over again. [Note, in particular, that there is no
problem with meeting the Euler-Ramsey equations with equality in every period, given the
end-point conditions (check this).] This construction gives us an interior feasible program
satisfying the Euler-Ramsey equations at all dates. Nevertheless, this program cannot be
optimal, from direct inspection (why?).
Exercise. The argument above also shows that from the initial stock x∗, there is more than
one solution to the difference equation defined by the Euler-Ramsey equations. How would
you prove this?

The problem, as usual, lies in the tail of the difference equation: the way in which it
behaves far enough out on the program. It turns out the intertemporal behavior of the
(implicit) valuation of the capital stock is what drives the appropriate tail or transversality
condition. The resulting theorem is general enough to be stated in terms of the general
model.

Theorem 12 Suppose that X ⊆ IRn
+, and that 0 ∈ X. Suppose, moreover, that F is nonde-

creasing in its first n arguments, and that the discount factor is strictly less than unity. Then
under the assumptions of Theorem 11, an interior feasible program x∗ is optimal if and only
if the Euler-Ramsey conditions (21) hold for all dates, and

lim
t→∞

βtF1(x∗t , x
∗
t+1) · x∗t = 0 (23)

Proof. (Sufficiency) Suppose that an interior program x∗ satisfies (21) and (23). Let x be
any other feasible program from the same initial state.

Note that if a differentiable function H is concave on some finite-dimensional convex
domain Z,

H(z∗)−H(z) ≥ Hz(z∗) · (z∗ − z)

for all z, z∗ in Z with z∗ ∈ intZ. Applying this inequality to the function F and the domain
A,

F (x∗t , x
∗
t+1)− F (xt, xt+1) ≥ F1(x∗t , x

∗
t+1) · (x∗t − xt) + F2(x∗t , x

∗
t+1) · (x∗t+1 − xt+1),

so that

DT ≡
T∑

t=0

βt[F (x∗t , x
∗
t+1)− F (xt, xt+1)]

≥
T∑

t=0

[βtF1(x∗t , x
∗
t+1) · (x∗t − xt) + βtF2(x∗t , x

∗
t+1) · (x∗t+1 − xt+1)]

=
T−1∑
t=0

βt{F2(x∗t , x
∗
t+1) + βF1(x∗t+1, x

∗
t+2)} · (x∗t+1 − xt+1) + βT F2(x∗T , x∗T+1) · (x∗T+1 − xT+1)
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(using the fact that x∗0 − x0 = 0). Applying now the Euler-Ramsey equations (twice in what
follows), and the assumption that X ⊆ IRn

+, we may conclude that

DT ≥ βT F2(x∗T , x∗T+1) · (x∗T+1 − xT+1)
= −βT+1F1(x∗T+1, x

∗
T+2) · (x∗T+1 − xT+1)

≥ −βT+1F1(x∗T+1, x
∗
T+2) · x∗T+1

It follows, using the transversality condition, that limT→∞ DT ≥ 0, and the proof in this
direction is complete.

(Necessity) Recall the value function v∗. By Theorem 10, it is concave, and by Theorem
11, it is differentiable. By the familiar inequality for concave functions that we discussed
above, we see that for any x and x′ with x ∈ int X,

v∗(x)− v∗(x′) ≥ v∗x(x) · (x− x′).

Putting x = x∗t and x′ = 0 in the above inequality, we observe that

v∗(x∗t )− v∗(0) ≥ v∗x(x∗t ) · x∗t
= F1(x∗t , x

∗
t+1) · x∗t ,

using (20). It follows that

βtv∗(x∗t )− βtv∗(0) ≥ βtF1(x∗t , x
∗
t+1) · x∗t ≥ 0, (24)

the last inequality following from the assumption that F is nondecreasing in its first n argu-
ments.

Because β < 1 by assumption, βtv∗(0) → 0 as t →∞, and by Theorem 5, βtv∗(x∗t ) → 0
as t → ∞. It follows from these observations and (24) that the transversality condition is
satisfied.

Exercise. In some situations, the transversality condition is automatically satisfied. In this
exercise, we will consider one such situation. Consider the optimal growth model introduced
in Section 2 of these notes, and suppose that the production function g is linear in k, the
capital stock. Thus g(k) = Ak, where the A term includes all the other terms for population
growth and technical progress.
[1] Write down the condition that is equivalent to (D) in this model.
[2] Show that every optimal program from some x > 0 must be interior, and write down the
Euler-Ramsey equations in this case.
[3] Show that any interior program that satisfies the Euler-Ramsey equations must be optimal.
[4] Use the Euler-Ramsey equations to calculate the policy and value functions of this prob-
lem.
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8.2 Intertemporal Behavior in Aggregative Models

The functional equation approach is also very useful in deriving some intertemporal properties
of the state variable in aggregative models. To see this, we will assume, in this section, that
X ⊂ IR+.

Moreover, we will need to put some order structure on the problem. Specifically, suppose
that

[T I ] Γ is isotone; i.e., if x′ ≥ x and y′ ≤ y, and y ∈ Γ(x), then y′ ∈ Γ(x′).

The other assumptions that we retain in this section are (D), (F) and (TU ). Under
these assumptions, it will be recalled, an optimal program exists from every initial stock.
It will also be recalled (see the proof of Theorem 8) that under these assumptions, v∗ is
uppersemicontinuous on X.

Exercise. Show that under these conditions, the optimal policy correspondence derived
from solving the functional equation is nonempty-valued.

It will be convenient to start this section with a digression that introduces the idea of
supermodularity.

Consider a function H(x, y) defined on the domain A = {(x, y) : y ∈ Γ(x)}. Say that H
is supermodular if for all pairs (x1, y1) and (x2, y2), such that x1 > x2 and y1 > y2, and such
that (xi, yj) ∈ A for all i and all j, we have

H(x1, y1) + H(x2, y2) > H(x1, y2) + H(x2, y1). (25)

If the opposite inequality holds for all such pairs, we will say that H is submodular.3

Now consider the problem
max

y∈Γ(x)
H(x, y).

Suppose that H is an uppersemicontinuous function. Then, by the same argument as in the
exercise above, the set of solutions G(x) is nonempty for each x ∈ X. We are interested in
establishing the following result:

Theorem 13 Suppose that x1 > x2, and zi ∈ G(xi) for i = 1, 2. Then if H is supermodular,
z1 ≥ z2.

Proof. Suppose that the result is false for some (x1, x2, z1, z2) satisfying the conditions of
the theorem. Then it must be the case that z1 < z2. Define y1 ≡ z2 and y2 ≡ z1. Then
y1 > y2.

Note that y1 ∈ Γ(x1), because y1 = z2 ∈ Γ(x2), and x1 > x2, and assumption (T I) holds.
Moreover, y2 ∈ Γ(x2), because y2 < y1, and y1 ∈ Γ(x2).

Thus supermodularity applies to the collection (x1, y1;x2, y2), and (25) holds.
On the other hand, note that because yi ∈ Γ(xi) and yj is optimal for xi, for each j 6= i

and i = 1, 2,
H(xi, yj) ≥ H(xi, yi).

3Strictly speaking, this would correspond to strict supermodularity (or submodularity) of H.
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Adding the two implied inequalities, we see that

H(x1, y1) + H(x2, y2) ≤ H(x1, y2) + H(x2, y1),

a contradiction to (25).

Because of the value function approach, this result for domains in IR2 can be very easily
applied to optimal policies in an infinite horizon problem. Specifically,

Theorem 14 Consider a dynamic programming problem satisfying the assumptions of this
section, and suppose that the one-period payoff function is supermodular on A. Then every
selection from the optimal policy correspondence must be a nondecreasing function.

Proof. The optimal policy correspondence is the set of the solutions, for each x, to the
problem

max
y∈Γ(x)

F (x, y) + βv∗(y).

Define H(x, y) ≡ F (x, y) + βv∗(y). Because F is continuous and v∗ is uppersemicontinuous,
it follows that H is uppersemicontinuous. Moreover (and this is the simple observation
that drives everything, so check it well), H as defined is supermodular if and only if F is
supermodular (no assumption on v∗ is needed). So Theorem 13 applies, and we are done.

Corollary. Turnpike Theorem for Aggregative Systems. Under the assumptions of
the preceding theorem, optimal programs under any optimal policy are monotone, so that if
X is compact, they must converge to a steady state.

Proof. Left as an exercise.

If the payoff function F is twice continuously differentiable, there is an easy check for the
supermodularity of F .

Theorem 15 Suppose that F is twice continuously differentiable, and that F12(x, y) > 0 for
all (x, y) ∈ A. Then F is supermodular.

Proof. [Tech. Note (ignore if you like) In what follows we use the appropriate directional
derivatives on the boundary of the set A whenever needed. These can be found simply by
taking the unique continuous extensions of the first and second derivatives from the interior
of A to A.]

Pick (x1, y1) and (x2, y2), such that x1 > x2 and y1 > y2, and such that (xi, yj) ∈ A for
all i and all j. It follows from assumption (T I) that for all x ∈ [x1, x2] and all y ∈ [y1, y2],
(x, y) ∈ A (check this). Consequently,∫ x2

x1

∫ y2

y1

F12(x, y)dydx

is well-defined, and

0 <

∫ x2

x1

∫ y2

y1

F12(x, y)dydx =
∫ y2

y1

[F2(x1, y)− F2(x2, y)]dy

=
∫ y2

y1

F2(x1, y)dy −
∫ y2

y1

F2(x2, y)dy

= F (x1, y1)− F (x1, y2)− F (x2, y1) + F (x2, y2),
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which verifies supermodularity.

Look at the optimal growth interpretation again, with utility a function of consumption.
Then

F (x, y) = u(x− f−1(y))

for all (x, y) ∈ A, where u is the utility function and f is a strictly increasing production
function. Assume for the moment that u, f and f−1 are twice continuously differentiable, so
that we are in the realm of Theorem 15. Then

F1(x, y) = u′(x− f−1(y)),

and so
F12(x, y) = −u′′(x− f−1(y))f−1′(y)

which means that if u′′(c) < 0 for all c, the implied function F is supermodular. This means
that we get monotonicity of all policy functions, as well as of the optimal path, without
making any curvature assumptions on the technology.

Exercise. Suppose that u and f are not differentiable, but that u and f are continuous
and strictly increasing. Prove, by a direct argument that sidesteps Theorem 15, that if u is
strictly concave, then the implied function F is supermodular.

We end this section with a remark on submodularity. Let me consider the situation in
the restrictive setting where G∗, the optimal policy, is a continuous function. This is implied
by the following setting:

F satisfies all assumptions, except possibly (Fdiff). Γ satisfies all the assumptions made so
far. Finally, the optimal policy function is interior: G∗(x) ∈ int Γ(x) for all x > 0.

Now begin by considering some point x1 > 0. By assumption, y1 ≡ G∗(x1) ∈ int Γ(x1).
Therefore for x2 < x1 but sufficiently close to it, y1 ∈ int Γ(x2).

Let y2 ∈ G∗(x2). I am going to show that in stark contrast to the supermodularity case,
y2 > y1 if F is submodular.

To see this, define, just as before,

H(x, y) ≡ F (x, y) + βv∗(y)

and suppose on the contrary that y1 ≥ y2. Note that y2 is feasible for x2, so by (T I) it is
feasible for x1. [Or another route: y1 is feasible for x1, so y2 ≤ y1 must be feasible for x1 as
well.]

And by construction, y1 is interior feasible under both x1 and x2. Therefore, there is a
y′1 close to y1 but bigger than it such that y′1 ∈ Γ(x1) and y′1 ∈ Γ(x2). So we are ready to
apply submodularity to {(x1, y

′
1), (x2, y2)}:

H(x1, y
′
1) + H(x2, y2) < H(x1, y2) + H(x2, y

′
1).

Taking an appropriate sequence y′1 → y1 and passing to the limit above,

H(x1, y1) + H(x2, y2) ≤ H(x1, y2) + H(x2, y1).
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But this inequality contradicts the unique optimality conditions H(xi, yi) > H(xi, yj) for all
i and j 6= i.

This finding implies that in submodular cases which admit a steady state, optimal programs
must oscillate. The oscillations can be damped, creating convergence to the steady state, or
might create perpetual cycles. [Draw a diagram to see this.]
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Discounted Dynamic Programming under

Uncertainty

9 Preliminaries

The case of uncertainty runs parallel, in large part, to the case of certainty. In the interests
of keeping technicalities to a manageable minimum, I am going to consider in these notes
only a restricted class of models (the details are, of course, given below).

The main additional feature in the case of uncertainty is the explicit consideration of
a space of actions, which we shall denote by Y . The state will evolve partially randomly,
and partially conditioned by the previous state and the action taken, in a manner to be
described below. Given a state x ∈ X, the set of possible actions is captured by a feasibility
correspondence Γ : X → Y .

Throughout these notes, I will maintain the following assumption on the state space and
the feasibility correspondence.

[B.1] X and Y are subsets of Euclidean space, and for each x ∈ X, Γ(x) is a nonempty,
compact-valued, continuous correspondence.

You will recognize this as an amalgamation of various earlier assumptions. We restrict
ourselves to Euclidean space to avoid serious technical issues; I will point out where the
restriction is needed in our discussions. Similarly, the continuity assumption on Γ can be
dropped, but not free of charge. I will try to point out below where it is “really” needed.

Just as before, we denote by A the graph of Γ:

A ≡ {(x, y) ∈ X × Y : y ∈ Γ(x)}. (26)

A one-period payoff function F is defined on A, and discounting of future payoffs is carried
out by a discount factor β. We will assume

[B.2] F is continuous and bounded on A, and β ∈ (0, 1).

Again, (B.2) is stronger than we need, but it will help us in getting a good introduction
to the problem.

Finally, we need to describe the evolution of states over time. This is captured by the
postulate of a probability measure over the state space. We permit dependence of this
measure on the past action and the state, so that the probability measure is written as a
measure Q(x, y, .) on X, where (x, y) ∈ A.

We can easily reconcile this setup with the certainty model studied earlier. To induce this
model, assume that X = Y , and that for each (x, y) ∈ A, Q(x, y, .) is the degenerate measure
assigning probability one to y. However, for the purpose of easy interpretation, it will be
convenient to change a little bit the interpretation of y in the examples to be discussed.

We now need to discuss feasible (and optimal) programs. It turns out that the sequence
definition used so far is not very useful any more. This is for the obvious reason that we
cannot write down deterministic sequences of states in the stochastic case. We will therefore
introduce policies as our fundamental notion, in contrast to the harmony between sequences
and policies emphasized earlier.
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10 Histories and Policies

Consider any time t. A t-history (sometimes called a partial history when no particular date
is emphasized) is a complete listing of all states and actions taken up to date t− 1, together
with a listing of the state at date t.

Let Ht denote the set of all t-histories. For each ht ∈ Ht, let us keep track of the last
item, the state at date t, by the notation x(ht). A policy π is a sequence of (measurable)
mappings {πt} such that for each t, πt : Ht → Y , and πt(ht) ∈ Γ(x(ht)) for all ht ∈ Ht.

A policy is Markov if there exists a map π : X → Y with π(x) ∈ Γ(x) for all x ∈ X
such that for every t and every ht ∈ Ht, πt(ht) = π(x(ht)). I have purposely used the same
notation for a policy in general and the function that defines a Markov policy: we shall
simply refer to this function, instead of to the cumbersome sequence that is compatible with
it, as the Markov policy.

Begin with some initial state and a policy. It is easy to see that this pair of objects,
via the measure Q, defines a probability measure on the space of sequences {xt, yt} (with
(xt, yt) ∈ A for all t). Thus A∞ is the relevant space of sequences. For each sequence
(x,y) ≡ {xt, yt} ∈ A∞, we may evaluate the infinite sum of discounted payoffs as

w(x,y) ≡
∞∑

t=0

βtF (xt, yt)

Consequently, the expected payoff of following the policy π, and starting from x ∈ X, is
given by

u(π, x) ≡ IEπw(x,y), (27)

where the notation IEπ refers, of course, to the mathematical expectation of the function w
over the probability measure induced on A∞ by the policy π.

In complete analogy to the certainty case, this defines a supremum function v∗ on X as

v∗(x) ≡ sup
π

u(π, x) (28)

for each x ∈ X.

Remark. There is a technical point in the definition of v∗ which merits attention. It is
that we are allowing the policy to vary with x. At the same time, it should be the case that
an optimal policy (if one exists) need not have to vary with the initial state. This point is
related to subtle measurability issues that we bypass for now.

A policy π is optimal if it attains the supremum in (28) for every x ∈ X.
The objective of stochastic dynamic programming is to develop methods of analysis that

will help us to solve the maximization problem implicit in (28).

11 Examples

[1] Another look at optimal growth. Consider the standard optimal growth model,
with uncertainty in the production function. To be concrete, suppose that the production
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function is given by some continuous f(y, z), where y is the capital input in production and
z represents the realization of some i.i.d random variable taking values in some compact
interval. As before, output x is divided every period into consumption and capital input (y),
and there is some continuous utility function defined on consumption, as well as some factor
β ∈ (0, 1). Assume that the family of production functions induced by each z satisfies the
Inada conditions. Then without loss of generality, we may restrict all stocks to lie in some
compact interval, so that the payoff function is bounded. This is both the space X and Y ,
and Γ(x) = {y ∈ Y : 0 ≤ y ≤ x}. Note that any utility function over consumption can be
viewed as a special case of a payoff function defined on X × Y .

It remains to understand the transition probability Q. To see this, observe that each
choice of y leads, effectively to a probabilistic outcome over the space of next period’s x:
this is what is induced by the i.i.d. noise z and the production function f . This, then,
is a case where Q need not depend on x. Thus far, this description incorporates both the
fundamental one-sector growth model under uncertainty (as described by Brock and Mirman
[Journal of Economic Theory (1976)]), as well as the model of income distribution with
bequests studied by Loury [Econometrica (1981)]. These models differ technically in the
assumptions specifying z.4

The dependence of Q on x in this example will be needed if, for instance, the stochastic
process describing z is Markov. In that case, the current output is an insufficient description
of the state space, because we will need separate information regarding the current realization
of the stochastic shock.
Exercise. By suitably redefining the state space in this example, show precisely how the
extension described in the last paragraph can be viewed as a special case of our general
model.

[2] Search. I am looking for a job. In each period, I get a wage offer from a known distribution
G. If I accept an offer w in any particular period, I must keep it for life, obtaining utility
u(w) in each period. If I do not accept the job, I incur a search cost c ≥ 0 and draw again
from the same distribution in the next period. Future returns are discounted by β.

To cast this in the general framework, let X be the set of pairs, where the first entry is
a wage offer, and the second entry is a 0 or 1, where 0 means a current state where search is
ongoing, and 1 denotes a current state where search has ended. Let Y be the two point set
{0, 1}, where 0 means a current decision to keep searching, and where 1 means an acceptance
decision.
Exercise. [1] There is a natural description of the feasibility correspondence Γ. Any wage
offer while received in a state of 0 can be accepted, ending the search, or rejected, continuing
the search. Show that Γ(x) = {0, 1} if x = (w, 0), and Γ(x) = {1} captures this description.

[2] Show that the probability measure described as follows captures the transition pos-
sibilities: Q(x, y, .) assigns probability one to states ending in a 1, using any distribution
function over the first component of the states, provided that either the second component
of x equals 1, or y = 1. Otherwise, the measure Q(x, y, .) assigns probability one to states
ending in a 0, using the distribution function G over the first component of the states.

4Of course, there are substantial conceptual and interpretational differences as well, but that is another
matter.
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[3] Write down the function F on A that captures one-period payoffs. [Hint: One-period
payoffs in the formal description need not really correspond to one-period payoffs in the
model.]

There isn’t a unique answer to [2] and [3] taken together. Any answer that is consistent with the
description of the problem will do.

[3] A Replacement Problem. You have bought a machine. It is either a good machine or
a bad machine, but you can’t observe this directly. A machine produces one widget in any
period. The widget is either okay or a lemon, and this you can observe. You also know that
good machines produce lemons with probability g and bad machines do so with probability
b. Assume 0 < g < b < 1. An okay widget gives you a zero return. A lemon imposes a cost
of c on you.

At each date, you decide, after looking at the quality of the produced item, whether
to scrap the machine or not. If you do so, you buy a new machine at cost P . The prior
probability that a machine is bad is q ∈ (0, 1).
Exercise. Set Example 3 up as a stochastic dynamic program.

12 Continuity of Probability Measures

Let X be a (measurable) space, and let P be a collection of probability measures on X. How
do we understand when one measure is “close” to another?

One can think of all kinds of notions of closeness. Possibly the strongest notion that
one can conjure up is the idea of strong convergence, or convergence in the total variation
norm (to be discussed in more detail later). Say that a sequence Pn of probability measures
converges strongly if

sup
B
|Pn(B)− P (B)|

converges to zero, where the sup is taken over all (measurable) subsets of X. This is like
asking for uniform closeness over the probabilities over all conceivable events. More on this
later. For now, one can think of the usual weakening: drop uniform convergence to just
pointwise convergence over events. It turns out, however, that this by itself is not very
useful, and there is a far more fundamental criticism to worry about.

The easiest way to start thinking about this problem is to imagine that X is a subinterval
of the real line and that P consists of those probability measures which have distribution
functions on X. Now one might desire a notion of convergence that also yields, as a special
case, the obvious notion of convergence in the deterministic case (for {xn} ∈ X converging
to some point x ∈ X). How would we translate such a notion in probabilistic terms? We
can identify xn with the degenerate distribution function Pn that assigns probability one
to xn, and likewise x can be replaced by the degenerate distribution P on X. But now it
should be pretty obvious that the idea “xn → x” is not captured by strong or even pointwise
convergence, none of which is occurring along the sequence Pn, as long as xn 6= x. This poses
a dilemma: if we want to carry the deterministic model as a special case, we need a weaker
notion of convergence.
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This motivates the idea of weak convergence. Basically, what it asks for is to drop any
requirement on limit points in the support of P which are carrying positive probability under
P . For such points no convergence is required. On the rest, ask for pointwise continuity. In
the space of distribution functions, say that Fn converges weakly to F (written Fn ⇒ F ) if
Fn(x) → F (x) at all points of continuity of F (x). It’s called “weak” convergence because
it is a very mild definition of continuity. Notice very carefully that while the definitions of
strong or pointwise convergence do not require any notion of “closeness” of elements of X,
the definition of weak convergence relies heavily on this.

Here is a more formal (though not the standard) definition for probability measures on a
general metric space5 X. For any subset B of X, let ∂B denote its boundary; i.e., the set of
points that are limit points of sequences both in B and in BC . Than say that Pn converges
weakly to P if for every (measurable) set B such that P (∂B) = 0, Pn(B) → P (B).

The following lemma establishes a basic property of weak convergence:

Lemma 3 If Pn ⇒ P , then for every bounded, continuous function f : X → IR,∫
X

f(x)dPn(x) →
∫

X
f(x)dP (x). (29)

Remark. In fact this implication is two-way. The expression (29) is actually used as the
definition of weak convergence in many expositions. We skip the opposite implication here.

Proof. We will need to establish the following

Claim. Let f be a bounded continuous function, taking values between 0 and 1, on some
space X. Let P be a probability measure on that space. Then for each ε > 0, there is an
integer k ≥ 1 and a family of sets B1, B2, . . . , Bk, such that P (∂Bi) = 0 for all i, and

k∑
i=1

i− 1
k

P̂ (Bi) ≤
∫

X
fdP̂ (x) ≤

k∑
i=1

i− 1
k

P̂ (Bi) + ε

for all probability measures P̂ on X.

Proof of the claim. We first note that if for any a and b with a < b, we define B ≡ {x ∈
X : a ≤ f(x) < b}, then ∂B ⊆ Z ≡ {f(x) = a or f(x) = b}, and Z is a closed set.

Exercise. [1] Prove the assertion above. You will have to use the assumption that f is
continuous. Provide an example to illustrate why only the subset relationship, and not the
equality relationship, can be asserted.

[2] Let X = IR, and suppose that for some x∗, f(x) = 1 for all x ≤ x∗, while f(x) = 0 for
all x > x∗. Using this (discontinuous) f , find a and b such that the assertion above is false.
This is the clue to why continuity is needed in proving the lemma. We will return to this
point below.

5Of course, this is also a measure space equipped with the Borel σ-algebra.
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Pick ε > 0, and choose any integer k ≥ 1 and a real number η > 0 such that η + 1
k < ε.

Take the interval [0, 1], and find k equally spaced points a0, a1, . . . , ak such that
[i] a0 = δ ∈ (0, η),
[ii] P (f(x) = ai) = 0 for i = 0, 1, . . . , k, and
[iii] ak − a0 = 1.

The only (relatively) tough part is to establish [ii]. To see this, define the set C(δ) ≡ {x :
f(x) = i

k + δ for some i}. By the exercise above, C(δ) is a closed set, and it is obvious that
for each δ 6= δ′, C(δ) ∩ C(δ′) = ∅. Only a countable number of such sets can be assigned
positive probability, so this allows us to comfortably choose a δ in the interval given by [i],
so that [ii] is satisfied.

Define Bi ≡ {x ∈ X : ai−1 ≤ f(x) < ai}, for each i = 1, . . . , k. Then using the assertion
proved in the exercise and part [ii] above, we see that P (∂Bi) = 0 for each i.

Digression. Now let us see where the continuity of f is needed. Go back to that example in
part [2] of the exercise above. Suppose that we are in a situation where x∗ is always between
two points of the form i−1

k + δ and i
k + δ, no matter what value δ takes in the (cramped)

interval [0, η]. Check that no matter what δ you choose, the set Bi will always be of the form
(−∞, x∗]. It will not “move” as δ moves. Worse still, its boundary, the set {x∗}, will always
be assigned positive probability under P , if P happens to be the distribution that assigns
probability one to x∗!

And indeed, the lemma will fail for such an f . Take P to be the distribution just
described, and take a sequence of point masses Pn centered on xn, where xn ↓ x∗. We know
that Pn ⇒ P . But alas,

∫
X f(x)dPn(x) does not converge to

∫
X f(x)dP (x).

Now let us continue with the proof of the claim. Because ai = i
k + δ for all i, we see that

for any probability measure P̂ on X,∫
X

f(x)dP̂ (x) =
k∑

i=1

∫
Bi

fdP̂ (x) +
∫

X\∪iBi

fdP̂ (x)

≥
k∑

i=1

i− 1
k

P̂ (Bi).

Likewise, ∫
X

f(x)dP̂ (x) =
k∑

i=1

∫
Bi

fdP̂ (x) +
∫

X\∪iBi

fdP̂ (x)

≤
k∑

i=1

i

k
P̂ (Bi) + η

=
k∑

i=1

i− 1
k

P̂ (Bi) +
1
k

k∑
i=1

P̂ (Bi) + η

≤
k∑

i=1

i− 1
k

P̂ (Bi) +
1
k

+ η
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≤
k∑

i=1

i− 1
k

P̂ (Bi) + ε.

This completes the proof of the claim.

Now we return to the proof of the lemma. Fix any ε > 0. let k and the sets B1, . . . , Bk

be given by the claim. We see that for each n,

k∑
i=1

i− 1
k

Pn(Bi) ≤
∫

X
fdPn(x) ≤

k∑
i=1

i− 1
k

Pn(Bi) + ε.

Passing to the limit in the expression above and using weak convergence,

k∑
i=1

i− 1
k

P (Bi) ≤ lim inf
n

∫
X

fdPn(x) ≤ lim sup
n

∫
X

fdPn(x) ≤
k∑

i=1

i− 1
k

(Bi) + ε.

Using the claim and the inequalities above we may conclude that∫
X

fdP (x)− ε ≤ lim inf
n

∫
X

fdPn(x) ≤ lim sup
n

∫
X

fdPn(x) ≤
∫

X
fdP (x) + ε.

But since ε is arbitrary, we may infer that

lim inf
n

∫
X

fdPn(x) = lim sup
n

∫
X

fdPn(x) =
∫

X
fdP (x),

which completes the proof of the lemma.

We shall make the following assumption on the conditional probability Q:

[Q] Suppose that a sequence {xn, yn} in A converges to (x, y) ∈ A. Then Q(xn, yn, .) ⇒
Q(x, y, .).

13 The Functional Equation

The basic functional equation of stochastic dynamic programming is, as you may have
guessed, analogous to the functional equation studied earlier. A function v : X → IR will be
said to satisfy the functional equation if for all x ∈ X,

v(x) = sup
y∈Γ(x)

F (x, y) + β

∫
X

v(x′)Q(x, y, dx′). (30)

Here is the route to be followed. First we show that a bounded continuous solution to the
functional equation must be the supremum function. Second, we show that such a solution
exists. The method of proof for this will show that the solution is unique, though the first
result already tells us that this must be the case.

Technical Remark. We could continue to follow the path set out earlier in the deterministic case.
However, with the assumptions already made, we can move much quicker than that. On the other
hand, without these assumptions we would not, in general, be able to prove that v∗, the supremum
function, is measurable: see Blackwell’s example in Stokey and Lucas [1989, 253–254].
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Theorem 16 Make assumptions (B.1), (B.2) and (Q). Then if v is a bounded, continuous
solution to the functional equation (30), it must be the supremum function v∗.

Moreover, there exists a policy π∗(x) that solves (30) for each x ∈ X, and the Markov
policy corresponding to this must be an optimal policy for the stochastic dynamic programming
problem.

Proof. The proof of this theorem will require some background results from probability
theory, which we shall develop as we go along.

Recall the definition of π and u(π, x) from two sections ago. There is another way of
writing out u(π, x) that will be useful for our present concerns. To do so, we will first derive,
for any plan and any initial state, a sequence of conditional probability measures over partial
histories. Fix a policy π, and meditate on the conditional probability Q(x, π0(x), .). It is
a probability over tomorrow’s states. But a trivial reinterpretation allows us to also think
of this as a probability measure over the set of partial histories H1, where the first term of
the history will be restricted, perforce, to equal x. Let’s call this reinterpretation Q1(x, π, .)
where for any (measurable) set B1 in H1 of the form B1 = {x} × {π0(x)} × B for some
B ⊆ X,

Q1(x, π,B1) =
∫

B
Q(x, π0(x), dx′).

(and Q1(x, π,B1) = 0 for all events not satisfying the above restriction).
Recursively, suppose that we have a probability measure already defined over the set of

partial histories Ht, starting from x. Call this Qt(x, π, .). We can easily define the measure
for the next period by first defining it on “product sets” of the form Bt+1 = Dt × B, where
Dt is a subset of Ht×Y (restricted by the requirements that only x be in the first term, and
that y = πt(ht) for any (ht, y) ∈ Bt), and B is a subset of X. Then

Qt+1(x, π,Bt+1) =
∫

B

∫
Bt

Qt(x, π, dht).Q(x(ht), πt(ht), dx′)

where Bt is the restriction of Dt to Ht, describes the conditional probability on (t + 1)-
histories on these “cylinder” sets. For other cylinder sets Bt+1 where these initial restrictions
are not satisfied, define Qt+1(x, π,Bt+1) = 0. By well-known arguments, we can then extend
this probability uniquely to arbitrary sets in the product space.

Now we can write another representation of u(π, x). It is just the expected utility taken
over all partial histories thus:

u(π, x) = lim
T→∞

T∑
t=0

βt
∫

Ht

F (x(ht), πt(ht))Qt(x, π, dht). (31)

Now we begin our main proof by establishing that for any policy π and for each x ∈ X,

v(x) ≥ u(π, x) (32)

So fix an initial state x0 = x ∈ X and a policy π = {πt}. Because v solves the functional
equation,

v(x) ≥ F (x0, π0(x0)) + β

∫
X

v(x1)Q(x0, π0(x0), dx1)
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= F (x0, π0(x0)) + β

∫
H1

v(x(h1))Q1(x0, π, dh1)

= F (x0, π0(x0)) + β

∫
H1

sup
y∈Γ(x(h1))

[F (x(h1), y) + β

∫
X

v(x2)Q(x(h1), y, dx2)]Q1(x0, π, dh1)

≥ F (x0, π0(x0)) + β

∫
H1

F (x(h1), π1(h1))Q1(x0, π, dh1) + β2
∫

H2

v(x(h2))Q2(x0, π, dh2)
...

≥
T∑

t=0

βt
∫

Ht

F (x(ht), πt(ht))Qt(x0, π, dht) + βT+1
∫

HT+1

v(x(hT+1))QT+1(x0, π, dhT+1),

where the various steps in the derivation above draw heavily on the way the family {Qt}
has been constructed. Passing to the limit in the above expression and using (31) as well as
(B.2), we obtain (32).

To complete the proof it will suffice to exhibit a Markov policy π∗ such that for every
x ∈ X,

v(x) = u(π∗, x) (33)

To prove this we need to use Lemma 3. Look at the function

H(x, y) ≡ F (x, y) + β

∫
X

v(x′)Q(x, y, dx′).

By Lemma 3 and (B.2), H is a continuous function on A. Define

G(x) ≡ {y ∈ Γ(x) : H(x, y) ≥ H(x, y′) for all y′ ∈ Γ(x)}.

By (B.1) and the maximum theorem, it follows that G is a nonempty, compact-valued, uhc
correspondence. Take any selection from this correspondence; call it π∗.

Technical Note. The problem is to guarantee the measurability of π∗. This is where we use the
assumptions that X and Y are Euclidean space. Under these assumptions and given that G is uhc,
there exists a measurable selection from G (see Stokey and Lucas [1989, p.184] for a precise statement
of this result).

Now consider this plan. The choice π∗(x) attains the sup each time in (30), so that we
can go through the same chain of reasoning as above, with equalities everywhere. It follows
that (33) holds, and the proof is complete.

This result is the unimprovability theorem in full force. It was implicit in what we did
earlier for the deterministic case. Let us take a moment to understand the connection.
Recall that in Theorem 6, a feasible program which solved the functional equation under the
supremum function was optimal. But we also know from Theorem 2 that any solution to
the functional equation (satisfying a tail condition) must be the supremum function. In a
sense, the present result is a combination of these two observations for the stochastic case. It
says that any policy which is unimprovable (in one step), not with respect to the supremum
function but with respect to the “value function” which it itself generates, must be the
optimal policy. As a byproduct we also obtain the result that under the conditions of this
theorem, the optimal policy can be taken to be Markov.
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Exercise. How did this theorem manage to get around the problem raised by Example 1
in Section 3?

Our next step complements Theorem 16. We will show that under the maintained as-
sumptions, there is indeed a continuous, bounded solution to the functional equation.

We begin with a digression that explains the contraction mapping theorem, due to Ba-
nach. Let X be a metric space with a distance function ρ. Say that a sequence {xn} is
Cauchy if for every ε > 0, there exists an integer N such that if n, m are at least as great as
N ,

ρ(xn, xm) < ε.

Exercise. [1] Understand that this requirement is stronger than the statement: ρ(xn, xn+1) →
0. Prove that all convergent sequences must be Cauchy.

[2] Give an example of a sequence that satisfies the weaker statement in part (1), and
diverges.

A metric space is complete if every Cauchy sequence converges to some point in that
space.

Examples of spaces that are not complete are the open interval (0, 1), or (more subtly),
the space of bounded continuous functions on [0, 1] when equipped with any metric induced
by pointwise convergence.

All Euclidean spaces are complete.
The following lemma is basic.

Lemma 4 Let X be a metric space with metric d, and let C be the space of all bounded,
continuous, real valued functions on X. Define on C a distance function by

ρ(f, g) ≡ sup
x∈X

|f(x)− g(x)|

for all f , g in C. Then equipped with this metric, C is complete.

Proof. We must show that every Cauchy sequence in C converges to some element of C. To
this end, let fn be a Cauchy sequence in C. Then it should be obvious that for each x ∈ x,
the sequence of numbers {fn(x)} is Cauchy. Since the space of real numbers is complete,
there is a number — call it f(x) — such that fn(x) → f(x). This collection of numbers, one
for each x, defines a function f : X → IR. We must show that f ∈ C, and that fn converges
to f under the metric ρ.

Begin with the second implication. Fix any ε > 0. Then there exists an integer N such
that if n, m are at least as great as N , ρ(fn, fm) < ε/2. Now, for any x ∈ X,

|fn(x)− f(x)| ≤ |fn(x)− fm(x)|+ |fm(x)− f(x)|
≤ ρ(fn, fm) + |fm(x)− f(x)|
≤ ε/2 + |fm(x)− f(x)|.

Now choose m large enough so that |fm(x)− f(x)| < ε/2. Then the above expression shows
that

|fn(x)− f(x)| < ε

33



for all n ≥ N , and note that this is independent of x. Consequently,

ρ(fn, f) → 0,

which establishes the second feature.
It remains to show that f is a continuous, bounded function. Boundedness is obvious

(but why?). To prove continuity, fix any x ∈ X. We must show that for every ε > 0, there
exists δ > 0 such that if d(x, x′) < δ, then |f(x)− f(x′)| < ε.

To establish this, start with any ε > 0. Choose any integer n such that ρ(fn, f) < ε/3,
and choose δ > 0 such that d(x, x′) < δ implies that |fn(x) − fn(x′)| < ε/3 (this last is
possible because by assumption, fn is continuous). Then for any x′ such that d(x, x′) < δ,

|f(x)− f(x′)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(x′)|+ |fn(x′)− f(x′)| < ε,

completing the proof.

Our next job is to introduce the idea of a contraction mapping. Let (Z, δ) and (W,ρ) be
two metric spaces. A function T : Z → W is a contraction if there exists λ ∈ (0, 1) such that

ρ(T (z), T (z′)) ≤ λδ(z, z′)

for all z, z′ in Z. λ is called the modulus of contraction.

Exercise. [1] Note that λ has to be uniform: it cannot depend on z and z′. Give an
example of a function on IR which is strictly flatter than the 450 line throughout, but is not
a contraction.

[2] Prove that a contraction must be continuous.

The following lemma is also basic, and it is the centerpiece of computational arguments
with value functions.

Lemma 5 Banach Fixed Point Theorem. Let (Z, δ) be a complete metric space, and
suppose that T : Z → Z is a contraction. Then there exists a unique point z∗ ∈ Z such that
T (z∗) = z∗. Moreover, starting from any initial z ∈ Z, the iterates T (n)(z) converge to z∗ at
a geometric rate determined by the modulus of contraction.

Proof. Begin with any z ∈ Z, and consider the sequence in Z defined recursively by z0 ≡ z,
and zn+1 ≡ T (zn) for all n ≥ 0. Because T is a contraction (of modulus λ, say),

ρ(zn+2, zn+1) ≤ λρ(zn+1, zn) (34)

which implies, in particular, that the sequence {zn} is Cauchy (prove this). By completeness,
there exists z∗ such that zn → z∗ as n →∞. By part [2] of the exercise above, T is continuous,
which implies that T (z∗) = z∗.

To prove the uniqueness of the fixed point z∗, suppose on the contrary that there is
another fixed point z′ 6= z∗. Then T (z∗) = z∗, and T (z′) = z′. Therefore ρ(T (z∗), T (z′)) =
ρ(z∗, z′) > 0, which contradicts the fact that T is a contraction.
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The expression (34) also reveals the geometric convergence (at rate λ) of the iterates
T (n))(z) to (the same) z∗ from any initial point z. This completes the proof.

We are now in a position to state and prove the second main result of this section.
Together with Theorem 16, this proves that an optimal policy always exists, giving rise to
a bounded, continuous value function, and that the optimum is achieved by following some
Markov policy.

Theorem 17 assume (B.1), (B.2), and (Q). Then there exists a unique bounded and con-
tinuous solution v∗ to the functional equation.

Let C be the space of all bounded continuous functions on X. Define the operator T :
X → X by

Tv(x) ≡ max
y∈Γ(x)

F (x, y) + β

∫
X

v(x′)Q(x, y, dx′) (35)

for all x ∈ X, for each v ∈ C. Then the iterates T (n)(v) converge at a geometric rate (of β)
to v∗ in the sup norm.

Proof. Let T be given by (35). We claim that T is a contraction of modulus β. To see
this, pick x ∈ X and v ∈ C. By Lemma 3, the maximand on the right-hand side of (35) is a
continuous function of y. Let y∗ solve the problem.

Now pick any v̂ ∈ C. Then

Tv(x) = F (x, y∗) + β

∫
X

v(x′)Q(x, y∗, dx′),

while
T v̂(x) ≥ F (x, y∗) + β

∫
X

v̂(x′)Q(x, y∗, dx′).

Combining these two expressions, we see that

Tv(x)− T v̂(x) ≤ β

∫
X
{v(x′)− v̂(x′)}Q(x, y∗, dx′)

≤ βρ(v, v̂).

By similar reasoning,
T v̂(x)− Tv(x) ≤ βρ(v, v̂),

so that
|T v̂(x)− Tv(x)| ≤ βρ(v, v̂).

Because the RHS of the above expression is independent of x, we may conclude that

ρ(Tv, T v̂) ≤ βρ(v, v̂),

which shows that T is a contraction.
A direct application of the Banach fixed point theorem (Lemma 5) completes the proof.
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14 Extension to Unbounded Returns

The results of the previous section can be pretty easily extended to the case of unbounded
returns, under some assumptions. This extension would allow us to handle, for instance,
the theory of optimal growth with an unbounded state space and a utility function that is
constant-elasticity.

To this end, let S(x, y) denote the support of next period’s state, i.e., supp Q(x, y, .).
Now, for any x ∈ X, define S0(x) ≡ {x}, and recursively,

St+1(x) ≡ {x′′ ∈ X : there is x′ ∈ St(x) and y′ ∈ Γ(x′) with x′′ ∈ S(x′, y′)}.

Next, we define a sequence of maximal one-period utilities starting from x by

F t(x) ≡ sup
x′∈St(x), y′∈Γ(x′)

F (x′, y′)

for all t ≥ 0. We will weaken assumption (B.2) to

[B.2′] The payoff function F is continuous and bounded below on A, β ∈ (0, 1), and

M(x) ≡
∞∑

t=0

βtF t(x) < ∞ (36)

for all x ∈ X.

Without loss of generality (why?), let 0 be the lower bound on one-period payoffs assumed
in [B.2′]. Let C be the space of all continuous functions on X, with the property that
0 ≤ v(x) ≤ M(x) for any v ∈ C. Note that this is the appropriate space for finding value
functions, because it must be the case that for any initial state x and any policy π,

u(π, x) ≤ M(x)

(check this). Define a new distance between any two elements of C, ρ(v, v′), by

ρ(v, v′) ≡ 1
max{1,M(x)}

|v(x)− v′(x)|.

Lemma 6 Under assumption [B.2′], (C, ρ) is a complete metric space.

Proof. The first part of the proof is the following step:

Exercise. Show that ρ is indeed a metric on C.

For the rest of the proof, we will need to modify the proof of Lemma 4. This is also left
as an exercise.

Exercise. Take a Cauchy sequence {vn} in C. Note that it must converge pointwise: let v
denote its pointwise limit. Show that (i) convergence to v is also in the metric ρ, and (ii)
that v is a continuous function on X with 0 ≤ v(x) ≤ M(x) for all x. Observe that in your
proof, you nowhere need the continuity of the function M .

These two exercises prove the lemma.
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Theorem 18 Assume [B.1], [B.2′], and [Q]. Then any solution to the functional equation
that comes from the class C is the supremum function, and the associated policy is optimal.
Moreover, there exists a (unique) solution to the functional equation in the class C. This
solution is a fixed point of the operator defined in (35), and the iterates of the operator
starting from any function in C converge geometrically, just as before.

Proof. This theorem is clearly a mixture of Theorems 16 and 7, and the proof runs very
close to the corresponding proofs in the two theorems. Some steps require change, of course.
The first step to change is the last part of the proof of (32). We need to show that for any
initial x and any policy π,

lim
T→∞

βT
∫

HT

v(x(hT ))QT (x, π, dhT ) = 0.

[Earlier, this was trivial given [B.2].] Note that for any x0 and any T -history hT ∈ HT

starting from x,
x(hT ) ∈ ST (x),

so that

v(x(hT )) ≤ M(x(hT )) ≤
∞∑

t=T

βt−T F t(x).

[Question: Why is the second inequality true in the expression above?] Consequently,

βT
∫

HT

v(x(hT ))QT (x, π, dhT ) ≤
∞∑

t=T

βtF t(x)

and the right-hand side of the expression above must converge to zero as T → ∞, given
[B.2′].

This proves the first part of the theorem. To prove the analogue of Theorem 7, it suffices to
show that the operator defined in (35) is a contraction. To do so, follow exactly the argument
in the proof of Theorem 7, taking care to normalize by max{1,M(x)} in the relevant steps.
The details are left as an exercise.

15 Applications

15.1 Optimal Search

Reconsider example [2] in Section 10. Let G be the i.i.d. distribution of wage offers. Assume
that it is continuous. Recall our definition of a state: it is (w, 0) if search is ongoing and
(w, 1) if search has been completed. There is a nontrivial action only in the former type of
state: y = 1 for “accept offer” and y = 0 for “continue searching”. From the exercise in that
section (and recalling that the acceptance of a wage offer is assumed to be binding for life),
we may write one-period payoffs as

F ((w, 1), y) = 0 for all (w, y) (search is over)
F ((w, 0), 0) = −c for all w (search continues)

F ((w, 0), 1) =
w

1− β
for all (w) (accepts offer)
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Let v∗ be the value function. Assumptions (B.1), (B.2) and (Q) are all satisfied, so v∗ is the
unique (bounded and continuous) solution to the functional equation. Given the specification,
we only need to worry about the value function on states of the form (w, 0):

v∗(w, 0) = max{−c + β

∫
v∗(w′, 0)dG(w′),

w

1− β
}.

It is immediate from the above expression that an optimal policy must take the form of a
cut-off: define w∗ by the equality

w∗

1− β
≡ −c + β

∫
v∗(w′, 0)dG(w′), (37)

and accept any offer with wage at least w∗ (or strictly greater: it doesn’t matter in this case).
Note that we are still far from describing the optimal policy in terms of the parameters

of the system (v∗ itself appears in the expression above). So let us keep going. It should be
clear that

v∗(w, 0) =
w

1− β

for any w ≥ w∗. For w < w∗, v∗(w, 0) is clearly independent of the offer w: call the value a.
But then a must solve the equation

a = −c + β[1−G(w∗)]
IE(w|w ≥ w∗)

1− β
+ βG(w∗)a.

which solves for a as

a =
β[1−G(w∗)] IE(w|w≥w∗)

1−β − c

1− βG(w∗)
(38)

Now, it’s obvious that the right-hand side of (37) is a, so that combining equations (37) and
(38),

w∗

1− β
=

β[1−G(w∗)] IE(w|w≥w∗)
1−β − c

1− βG(w∗)
.

the solutions to which correspond to the optimal policies.

15.2 Replacement

This example is taken from Rust [1995]. Suppose that a durable good is bought, then used
for some time, then replaced. The problem is to determine the optimal replacement time.
Let xt be a number at time t which represents the accumulated use of the durable up to time
t (such as the odometer reading on a car). At each date, Y consists of two options {0, 1}
where 0 means “keep the good”, and 1 means “throw away the good and buy another at
price p > 0”.

Suppose that in each period, the level of utilization of the good has an exponential distri-
bution (with parameter λ), given exogenously. Then we may write the transition probability
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Q as

Q(x, y, dx′) = 1− exp{−λd(xt+1 − xt)} if yt = 0 and xt+1 ≥ xt

= 1− exp{−λdxt+1} if yt = 1 and xt+1 ≥ 0
= 0 otherwise.

Assume that the per-period cost of using the durable good in state x is given by an increasing,
differentiable, continuous function c(x), with c(0) = 0. We may then define the payoff
function by

F (x, y) = −c(x) if y = 0
= −p− c(0) if y = 1.

It is obvious that if at any date, the state of the good is such that c(x) > p + c(0), it pays
to immediately scrap the good. Therefore, we may truncate all costs above this value by a
constant, so that [B.1] and [B.2] are automatically seen to be satisfied.

Exercise. Verify that [Q] is satisfied.

Using the density implied by the transition probability, the functional equation solving
for v takes the form

v(x) = max{−c(x) + β

∫ ∞

x
v(x′)λe−λ(x′−x)dx′,−p− c(0) + β

∫ ∞

x
v(x′)λe−λx′dx′}.

By Theorems 16 and 17, the solution describing the optimal value v is bounded and con-
tinuous. Also note that it must be nonincreasing in x (check this). Let’s see what kind of
extra information the functional equation gives us. Of the two terms on the RHS, the second
is evidently a constant (once v is known), while the first changes with the state x. A little
inspection will convince you that the first term must steadily decline in x, starting (when
x = 0) at a value higher than the second term, and ultimately (for large x) declining below
the value of the second term (c(x) > p+ c(0) is sufficient). There must be some unique value
x∗ such that the two terms are equal, and the optimal policy (modulo indifference) is given
by: replace as soon as the state crosses x∗.

It remains to compute x∗ and the value function. To do so, let us differentiate the
functional equation in the region [0, x∗]:

v′(x) = −c′(x)− βλv(x) + λβ

∫ ∞

x
v(x′)λe−λ(x′−x)dx′

= −c′(x) + λ(1− β)v(x) + λc(x).

The boundary condition determining this differential equation is determined as follows. Note
that the value v(x) must flatten out once the state x crosses x∗: i.e., v(x) = v(x∗) for all
x ≥ x∗. Consequently, using the functional equation at the point x∗, we see that

v(x∗) = −c(x∗) + β

∫ ∞

x∗
v(x′)λe−λ(x′−x∗)dx′

= −c(x∗) + βv(x∗),
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so that
v(x∗) = − c(x∗)

1− β
. (39)

Using the boundary condition (39), we may solve the differential equation. Simple integration
shows that

v(x) = max{−c(x∗)
1− β

,
−c(x∗)
1− β

+
∫ x∗

x

c′(z)
1− β

[1− βe−λ(1−β)(z−x)]dz}. (40)

It remains to solve out for the value of x∗ in terms of the parameters of the model. Note
also that at the point x∗, we are indifferent between continuing, and scrapping and starting
again, so that

−p + v(0) = −c(x∗) + βv(x∗) =
−c(x∗)
1− β

,

so that, using the formula for v(0) implied by (40),∫ x∗

0

c′(z)
1− β

[1− βe−λ(1−β)z]dz = p

which uniquely solves for the value x∗.

15.3 Optimal Growth Under Uncertainty

Consider the one-person optimal growth problem with utility function of the form u(c) =
c1−σ, for σ ∈ (0, 1), and discount factor β ∈ (0, 1). Let x represent output and y the choice
of capital for the next period, so that

x = y + c.

Suppose that the production function at any date is linear, and subject to multiplicative
uncertainty, so that

xt+1 = ztyt,

where {zt} is a sequence of positive, i.i.d. random variables on some compact support [a, b],
with 0 < a < b < ∞.

Check again that [B.1] and [B.2] are satisfied, but note that [B.2] is not. We are now
going to impose conditions on the model that ensure that [B.2′] is satisfied instead, and I’d
like you to note that this is analogous to the generalized notions of discounting pursued in
the deterministic case.

Recall the definition of {F t} before the statement of [B.2′]. For any x, note that F t(x)
is simply the utility value of the largest income that can be generated in t periods from x,
which is just btx. So

F t(x) = bt(1−σ)x1−σ

for all x ≥ 0. It follows that

M(x) =
∞∑

t=0

βtbt(1−σ)x1−σ
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so that M(x) < ∞ for all x if and only if βb1−σ < 1. The similarity between this and the
discounting conditions explored earlier should now be clear.

Let us proceed to analyze the model under this condition. Write down the functional
equation that might describe the true value function, if an appropriate solution can be found
to it:

v(x) = max
0≤y≤x

(y − x)1−σ + β

∫ b

a
v(zy)dH(z),

where H is the measure describing z. Now we have to guess at a solution; needless to say,
the method doesn’t always work! The point is that when it does work, our theorems tell us
that we have found the true value function.

Let us try a solution of the form v(x) = Dx1−σ, for some D > 0. Then, if this is correct,
it must be the case that

Dx1−σ = max
0≤y≤x

(y − x)1−σ + βD

∫ b

a
z1−σy1−σdH(z).

Let k ≡
∫ b
a z1−σdH(z). Substituting this in the above expression and maximizing, we obtain

the necessary and sufficient first-order condition

y

x
=

(Dβk)1/σ

(Dβk)1/σ + 1
.

Substituting this into the functional equation and simplifying, we see that

Dx1−σ = { 1
(Dβk)1/σ + 1

}1−σx1−σ + (Aβk)
(Aβk)

1−σ
σ

{(Dβk)1/σ + 1}1−σ
x1−σ

and solving this out for D, we obtain

D = { 1
1− (βk)1/σ

}σ.

This solution only makes sense if (βk)1/σ < 1. But k =
∫ b
a z1−σdH(z) ≤ b1−σ, and condition

[B.2′] guarantees that βb1−σ < 1.
To complete the proof that we have found the true value function, one more step is

required.

Exercise. Show that v(x) = Dx1−σ belongs to the space C; i.e., that Dx1−σ ≤ M(x), where
M(x) has been described above.
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16 Markov Processes

The dynamic programming problem discussed in the previous sections gives rise to a Markov
process on the state space. This comes about very naturally. Consider an optimal Markov
policy π. This defines a process on X by some initial conditions, and the transition probability

P (x, .) ≡ Q(x, π(x), .) (41)

In many problems, it is of interest to examine the process so generated. To study this, it will
be useful to begin with some mathematical background on Markov processes, and this is the
subject of the section.

16.1 Markov processes on a finite state space

It will be convenient to begin our study by considering situations where the state space X
is finite. A transition probability can then be simply thought of as a matrix of nonnegative
elements, with each row sum equal to unity (such a matrix is also referred to as a stochastic
matrix ). Labelling the states as {1, 2, . . . , n}, the ijth element is

πij ≡ P (i, {j})

and represents the probability that starting from state i, the system moves to state j in a
one-period transition. It follows that if we are given some probability µt = {µt(1), . . . , µt(n)}
on X, representing the distribution over the states “today”, then the situation “tomorrow”
is expressed by a probability measure µt+1, where for every j ∈ X,

µt+1(j) =
n∑

i+1

µt(i)πij ,

or putting this more compactly in matrix notation,

µt+1 = µtΠ, (42)

where Π is the stochastic matrix of transition probabilities.
Iterating (42) from any initial distribution µ0 on X, we see that

µt = µ0Πt. (43)

So to understand the long-run behavior of µt, we must study the properties of the sequence
{Πt}. Note in particular that if we start with a deterministic distribution placing all the
weight on state i, the probability distribution on X generated after t periods is just the ith
row of Πt (why?). Therefore, our interest in convergence leads us to questions of the form:
[1] Does each row of Πt converge as t →∞?
[2] If the answer to [1] is “yes”, then does each row converge to the same vector?

Observe that if µt converges to µ from some initial condition, then

µ = µΠ. (44)

A distribution that satisfies (44) will be called invariant.
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Theorem 19 An invariant distribution exists. The set of invariant distributions is compact
and convex.

Proof. Let M be the set of all probability distributions on X. Then it is obvious that M
is a nonempty, compact, convex subset of IRn. Define a function f : M→M by

f(µ) = µΠ.

Then f is continuous. By Brouwer’s fixed point theorem, there exists µ∗ such that f(µ∗) = µ∗,
which is just saying that µ∗ is an invariant distribution. The compactness and convexity of
the set of invariant distributions follows immediately from the observation that (44) defines
a compact, convex set of solutions.

There are several examples in Stokey and Lucas [1989, Chapter 11] which are worth
studying before proceeding further with these notes. They illustrate the various patterns
that Markov processes on a finite state space might display, and they set the stage for the
results to follow below.

A subset S of X is nice if P (i, S) = 1 for every i ∈ S. A subset E of X is ergodic if it is
nice and there isn’t a subset of E which is nice.

Now some definitions for states. Call j a successor of i if π
(n)
ji > 0 for some n ≥ 1. Say

that i is recurrent if it is a successor of every state j that is a successor of i. Finally, a state
i ∈ X is transient if there is a positive probability of leaving that state and never coming
back: i.e., if i has a successor j such that π

(n)
ji = 0 for all n.

Theorem 20 Let X be a finite set of the form {1, 2, . . . , n} and Π be a transition probability.
Then

1. X can be partitioned into M ≥ 1 ergodic sets and a (possibly empty) set of transient
states.

2. The sequence 1
T+1

∑T
t=0 Πt converges to a stochastic matrix Q. In other words, for any

initial µ0 on X,
1

T + 1

T∑
t=0

µt → µ0Q.

3. The set of invariant distributions is given by the convex hull of Q.In particular, the
entries in Q under each of the columns corresponding to the transient states must be
zero.

Proof. We begin by showing that X possesses at least one recurrent state. Suppose not.
Then because state one is transient, there is another state (call it 2) such that π

(N)
12 > 0 for

some N but with π
(m)
21 = 0 for all m. Because state 2 is transient as well, there is a state

(call it 3) such that π
(N ′)
23 > 0 for some N ′ but with π

(m)
32 = 0 for all m. Indeed, it must also

be the case that π
(m)
31 = 0 for all m (why?). Continuing in this vein, we see that πnn < 1 and

πni = 0 for all i 6= n, which contradicts the fact that Π is a transition probability.

43



So there exists a recurrent state. Next we create an equivalence relation using succession
and recurrence. Note that if i is recurrent and j is a successor of i, then j must be recurrent
and i must be a successor of j. To see this observe that if i is recurrent and j is a successor,
then π

(m)
ji > 0 for some i, which means that i is a successor of j. To show that j is recurrent

as well, let k be any successor of j. Then, of course, k must be a successor of i. Because i is
recurrent, it follows that π

(m)
ki > 0 for some m. Also, because j is a successor of i, π

(m′)
ij > 0

for some m′. Consequently, π
(m+m′)
kj ≥ π

(m)
ki π

(m′)
ij > 0, so j is also a successor of i.

Hence the set X can be partitioned as follows. Let T be the set of all transient states.
Create ergodic sets E1, . . . , EM by assigning two recurrent states to the same set Ei if and
only if they are successors of each other. By our earlier argument that there exists at least
one recurrent state, M ≥ 1. Note that once the state enters some Ei, it stays there forever.

Now we show convergence of A(T ) ≡ 1
T+1

∑T
t=0 Πt. Note that A(T ) is itself a stochastic

matrix for all T , being an average of stochastic matrices. Clearly, there is a subsequence Ts

of T for which A(Ts) converges; call this limit Q. In other words,

lim
s→∞

1
Ts + 1

Ts∑
t=0

Πt = Q.

Pre- and post-multiplying by Π, we see that

lim
s→∞

1
Ts + 1

Ts+1∑
t=1

Πt = ΠQ = QΠ.

But observe that

1
Ts + 1

Ts+1∑
t=1

Πt − 1
Ts + 1

Ts∑
t=0

Πt =
1

Ts + 1
[ΠTs+1 −Π0] → 0

as s →∞. using this information in the two expressions that precede it,

Q = QΠ = ΠQ, (45)

so that in particular,
Q = QΠt = ΠtQ (46)

for all t. Now let A be some other limit point of the sequence A(T ). Then, using (46), we see
that Q = QA = AQ, and with the roles of A and Q reversed, we have that A = AQ = QA.
Consequently, A = Q, which establishes convergence.

Now for the last part. That each row of Q is an invariant distribution follows right away
from (45) (why?). Conversely, if µ is an invariant distribution, then

µ = µΠt

for all t, so that taking combinations with equal weight of the above equation for t =
0, 1, . . . , T ,

µ = µ
1

T + 1

T∑
t=0

Πt.
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Passing to the limit in the above expression, we see that µ = µQ, which means that for each
j,

µ(j) =
n∑

i=1

µiqij ,

so that µ is a convex combination of the rows of Q.

Theorem 20 provides us with an interesting way of rewriting the state space, and in this
way we can connect the first part of the theorem with the second and third parts. Partition
X into the sets (T ;E1, . . . , EM ), where as above, T is the set of all transient states and Ei,
for each i, is an ergodic set. By Theorem 20, this is indeed a partition.

Now write the transition probability in the following way:

Π =

T E1 E2 . . . EM

T R00 R01 R02 . . . R0M

E1 0 R11 0 . . . 0
E2 0 0 R22 . . . 0
...

...
...

...
. . .

...
EM 0 0 0 . . . RMM

where Rii, i ≥ 1, is a stochastic matrix but R00 is not; i.e., some row sum of R00 must be
strictly less than unity. As before, let Q = limT→∞

1
T

∑T−1
i=1 Πt. Then Q must have the form

Q =

T E1 E2 . . . EM

T 0 A1 A2 . . . AM

E1 0 Q1 0 . . . 0
E2 0 0 Q2 . . . 0
...

...
...

...
. . .

...
EM 0 0 0 . . . QM

where for each i ≥ 1, Qi ≡ limT→∞
1
T

∑T−1
i=1 Rt

ii, and where {Aj} will be described presently.
The important observation is

Theorem 21 For each ergodic set Ei, the limit matrix Qi has the property that all its rows
are the same.

Proof. Consider two states j and k, and let aj and ak be the limit of the time-averaged
probability of being in some given state, say m, starting from j and k respectively.

Let Ψ(t) denote the probability that starting from the state j, the system hits k for the
first time at date t. Because j and k belong to the same ergodic class,

∑∞
t=1 Ψ(t) = 1. Denote

by µj
s(m/t) the probability of the system being in state m at date s, starting from state j,

conditional on the event that k is reached for the first time at date t. Note that if t ≤ s,
µj

s(m/t) is simply equal to µk
s−t(m), the probability of being in state m starting from k after

s− t dates. Using this information, we see that

aj =
∞∑

t=1

Ψ(t) lim
N→∞

{
∑t−1

s=0 µj
s(m/t)

N
+

1
N

N∑
s=t

µj
s(m/t)}
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=
∞∑

t=1

Ψ(t) lim
N→∞

{
∑t−1

s=0 µj
s(m/t)

N
+

N − t

N

1
N − t

N−t∑
s=0

µk
s(m)}

=
∞∑

t=1

ak = ak.

this establishes that each row of Qi must be the same (why?), or equivalently, that each
ergodic class can have at most one invariant distribution.

To complete the description of Q, it will be useful to describe the matrices Aj . Each row i
of Aj must be a scalar multiple wij of the invariant distribution corresponding to the ergodic
class Ej , i.e., of the unique row of Qj . The term wij thus reflects the eventual probability of
moving from the transient state i to the ergodic class Ej . Of course, for each i,

∑M
j=1 wij = 1.

The ideas in the preceding theorem quickly lead to

Theorem 22 The Markov process (X, Π) possesses a unique ergodic set if and only if there
exists a state i such that for each j ∈ X, π

(m)
ji > 0 for some m ≥ 1. In such a case, Π has a

unique invariant distribution µ∗. Equivalently, each row of Q equals µ∗.

Proof. By virtue of the previous argument it suffices to prove the first part of this theorem.
Suppose, first, that there exists i with the property in the statement of the theorem. This
means that i is a successor of every j ∈ X, so that i must belong to the intersection of all the
ergodic sets. Since ergodic sets are disjoint (Theorem 20), there can be only one such set.

Conversely, suppose that (X, Π) has a unique ergodic set E. Pick any i ∈ E. Then for
each j ∈ E, i is a successor of j, so that π

(m)
ji > 0 for some m for each such j. Now take

j 6∈ E. Then because j is transient, there exists k ∈ E such that for some m1, π
(m1)
jk > 0.

Also, π
(m2)
ki > 0 for some m2. So π

(m1+m2)
ji ≥ π

(m1)
jk π

(m2)
ki > 0, and we are done.

The uniqueness of the ergodic set still does not guarantee convergence of the distributions
µt from any initial condition (why?). Our last theorem provides necessary and sufficient
conditions for such convergence to occur.

Some notation will be useful. For each m and j, let ε
(m)
j ≡ mini π

(m)
ij , and let ε(m) ≡∑

j ε
(m)
j . Define, too, a distance between probability measures on X by ||µ, µ′|| ≡

∑
i |µ(i)−

µ′(i)|.

Theorem 23 (X, Π) has a unique ergodic set with no cyclically moving subsets if and only
if ε(m) > 0 for some m ≥ 1. In this case, starting from any µ0 on X, µt = µ0Πt converges
to a unique limit µ∗, and ||µt, µ

∗|| → 0 at a geometric rate that is independent of µ0.

Proof. First we assume that ε ≡ ε(m) > 0 for some m ≥ 1. Consider the m-step Markov
process on X with transition probability given by R ≡ Πm. Let rij be a typical element of
R. Let M be the set of all probability measures on X.

Claim. The map g : M→M given by g(µ) = µR is a contraction of modulus 1− ε.
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To prove this claim, pick µ and µ′ in M. Then

||µR, µ′R|| =
n∑

j=1

|
n∑

i=1

µ(i)rij −
n∑

i=1

µ′(i)rij |

=
n∑

j=1

|
n∑

i=1

(µ(i)− µ′(i))rij |

=
n∑

j=1

|
n∑

i=1

(µ(i)− µ′(i))(rij − ε
(m)
j ) +

n∑
i=1

(µ(i)− µ′(i))ε(m)
j |

≤
n∑

j=1

{
n∑

i=1

|µ(i)− µ′(i)|(rij − ε
(m)
j ) + |

n∑
i=1

(µ(i)− µ′(i))|ε(m)
j }

=
n∑

j=1

n∑
i=1

|µ(i)− µ′(i)|(rij − ε
(m)
j ) + |

n∑
i=1

(µ(i)− µ′(i))|
n∑

j=1

ε
(m)
j

=
n∑

i=1

|µ(i)− µ′(i)|
n∑

j=1

(rij − ε
(m)
j ) + 0

= (1− ε)||µ, µ′||.

With this claim in hand, we may appeal to the contraction mapping theorem to assert
that g has a unique fixed point µ∗, and moreover, that (geometric) convergence of the iterates
g(t)(µ0) is assured from any initial µ0. But this is only for the m-step problem. To complete
the proof we must show that this is the case for the original problem as well. To do this,
take any µ0 and consider the m subsequences, of m steps each, starting off from the initial
conditions (µ0, µ1, . . . µm−1). With the result already established, we know that each of the
subsequences converge geometrically to µ∗. The fact that testing the convergence of each of
these subsequences is sufficient for establishing the convergence of the entire sequence is left
as an exercise.

To complete the proof, we prove the converse. Suppose that there is indeed a unique µ∗

such that for all µ0 ∈M, µ0Πt → µ∗. Then we know that Πt converges to the matrix Q with
every row given by µ∗. Take any j such that µ∗j > 0. Then π

(m)
ij → µ∗j as m →∞ for each i,

so that ε
(m)
j = mini π

(m)
ij > 0 for large m. Consequently, ε(m) > 0.

16.2 Markov processes on an infinite state space

Now return to the case of an arbitrary state space X, not necessarily finite. We will restrict
ourselves in this section to a result on the strong convergence of the process to a unique
ergodic distribution. As one can imagine, there are other results that can be proved under
weaker conditions. For instance, in line with what transpired in the previous section, we
might be interested in the question of convergence of the time averages of the distributions,
instead of the distributions themselves. Or we may be interested in studying the more delicate
conditions for weak convergence.

We begin by reviewing the basic definitions of a Markov process for the case of an infi-
nite state space. The fundamental ingredient is a transition probability P (x, .), which is a
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probability measure on the state space X for each x ∈ X. The interpretation is that P (x,A)
represents the probability of the system being in the subset A “tomorrow”, given that it is
in the state x today.6

In addition to the transition probability, we need a description of initial conditions to get
the system started. This initial description may be a deterministic or stochastic. Saying that
there is an initial probability measure µ0 on X maintains full generality.

We may now iterate the process to get a sequence of probability measures on X. Specif-
ically, if µt denotes the probability measure on X at date t, then at date t + 1

µt+1(A) =
∫

X
P (x, A)µt(dx)

for every event A. Convince yourself that this integral representation faithfully mimics the
sum in the case of a finite state space.

With this iteration in place and given µ0, the Markov process generates an infinite se-
quence of probability measures {µt}∞t=0. We are interested in the special question:

Do the µt’s converge strongly to some limit distribution µ∗ as t →∞?

Why is the question special? This is because such a specification cannot hope to capture
the notion of convergence in the deterministic case, as we have already seen. Indeed, as we
shall see, this notion applies well to transition probabilities that admit densities. While this
representation is not general enough to retain the deterministic model as a special case, it is
nevertheless general enough to encompass several models of economic interest.

We begin by defining strong convergence precisely. Let M be the space of all probability
measures on X. Define a metric on M by

||µ, µ′|| ≡ sup
A
|µ(A)− µ′(A)|.

for every µ and µ′ in M.

Remark. This metric is sometimes referred to as (one generated by) the total variation
norm. The reason is that the metric as defined above is a scalar multiple of the total
variation metric, defined as

||µ, µ′||TV ≡ sup
N∑

i=1

|µ(Si)− µ′(Si)|,

where the sup above is taken over all finite partitions of S into (S1, . . . , SN ). In fact you can
check that ||µ, µ′||TV = 2||µ, µ′||.

Exercise [1] By playing with different scenarios where sequences of continuous density func-
tions converge pointwise to a continuous density function, try and relate strong convergence
of probability measures to the pointwise convergence of continuous density functions.

[2] Is the space of all distributions on an infinite (but compact) state space compact in
the total variation norm?

6The definition of a transition probability also includes other technical restrictions, notably the measura-
bility of P (x, A) in x for each fixed A.
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It will be useful to have notation for the m-step transition probability generated by the
transition probability P . This is, intuitively, the probability of the system being in the subset
A after m periods, starting from some given state x “today”. Clearly, this is given precisely
by the measure µm, starting from the case where µ0 assigns probability one to x. This
measure we will denote in transition probability form as Pm(x,A).

The fundamental condition to be investigated in these notes is

Condition M (Stokey and Lucas [1989]) There exist ε > 0 and an integer M ≥ 1 such that
for any event A, either (i) PM (x,A) ≥ ε for all x ∈ X, or (ii) PM (x,AC) ≥ ε for all x ∈ X.

To appreciate condition M, let’s look at a case when it is not satisfied. This is our familiar
two-state Markov process where πij = 1 if and only if i 6= j, for i, j = 1, 2. Pick a set A = {1}.
Then for any positive integer M , PM (x,A) = 1 either if M is even and x = 1, or if M is odd
and x = 2. Otherwise, PM (x,A) = 0. This means that condition M fails. We see therefore,
that the real bite of condition M is in the postulated uniformity with which all states hit
particular events.

Exercise. Prove that condition M is equivalent to the condition: ε(m) > 0 for some m ≥ 1,
in the statement of Theorem 23, provided that the underlying state space is finite.

The main theorem of this section is

Theorem 24 Under condition M, there exists a unique invariant probability measure µ∗ ∈
M such that for any initial µ0 on X, the generated sequence {µt} converges strongly to µ∗.

Proof. We will follow the finite horizon case exactly. That is, we will show that

1. M equipped with the total variation metric is a complete metric space.

2. The operator TM : M→M given by

TM (µ)(A) ≡
∫

X
PM (x,A)µ(dx),

for all A, is a contraction.

3. Thus TM has a unique fixed point µ∗ and the M -step iterates of any initial probability
measure must converge to µ∗.

4. The convergence of the entire sequence of measures, and not just this particular sub-
sequence, can then be established by a subsequence argument identical to that used in
the finite horizon case.

All the new stuff is in the first two items. To these we now proceed.
First we establish the completeness of M. To this end, suppose that {µn} is a Cauchy

sequence in M. then from the definition of the total variation metric, it follows that for each
event A, µn(A) is a Cauchy sequence of numbers. By the completeness of the real line, µn(A)
converges to some µ(A) for each A. We will show that µ is a probability measure and that
µn converges strongly to µ.
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It is obvious that µ(A) ∈ [0, 1] for all A, that µ(X) = 1, and that µ(∅) = 0. It remains to
prove countable additivity to establish that µ is indeed a probability measure. To this end,
let {Ai} be a countable collection of disjoint events in X. Then

µ(∪∞i=1Ai) = lim
n→∞

µn(∪∞i=1Ai) = lim
n→∞

∞∑
i=1

µn(Ai) =
∞∑
i=1

lim
n→∞

µn(Ai) = sum∞
i=1µ(Ai)

where the second-last equality follows from the dominated convergence theorem. This proves
that µ is indeed a bonafide probability measure. What’s left to do is to show that ||µn, µ|| → 0
as n →∞. Note that because {µn} is Cauchy, for all ε > 0, there is N such that if n, m ≥ N ,

|µn(A)− µm(A)| ≤ ε

for all sets A. Taking limits in m, it follows that

|µn(A)− µ(A)| ≤ ε

for all n ≥ N , and for all A, which implies that ||µn, µ|| → 0 as n →∞.
This establishes the completeness of M.
Our next task is to show that TM is a contraction of modulus 1− ε. To this end, pick µ

and µ′ in M. Then there is a “common” part γ and “idiosyncratic” parts µ1 and µ2, so that
µ = µ1 + γ, µ′ = µ2 + γ, and µ1 and µ2 have disjoint support.

Digression. The technical details of this assertion rely on the Radon-Nikodym Theorem (see
Stokey and Lucas [1989, Lemma 7.12]). But one can informally illustrate how the common
part is obtained in the case where µ and µ′ have densities f and f ′ on the real line. In this
case, simply define g(x) ≡ min{f(x), f ′(x)} for each x ∈ IR, and integrate this as you would
to get a cdf, to arrive at the common part of the measure γ. This measure γ is, of course, not
a probability measure. The idiosyncratic residuals µ1 and µ2 are then defined by inserting
the rest of the probability, event by event, to bring total probability up to µ and µ′. In this
way you see that the measures µ1 and µ2 are not probability measures either. Now study the
values µ1(X) and µ2(X), which are the values assumed by the measures on the entire state
space. Note, first, that these must be equal to each other. Note, also, that their common
value must be equal to the supremum difference between the probability measures µ and µ′

over any event. To see this, note that for any event A

|µ(A)− µ′(A)| = |µ1(A)− µ2(A)|
≤ max{µ1(A), µ2(A)}
≤ max{µ1(X), µ2(X)}.

This ends our digression.

Returning to the main argument, we see that

||TMµ, TMµ′|| = sup
A
|
∫

PM (x,A)µ(dx)−
∫

PM (x,A)µ′(dx)|

= sup
A
|
∫

PM (x,A)µ1(dx)−
∫

PM (x,A)µ2(dx)|.
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Now consider any event A and its complement AC . Without loss of generality suppose that
PM (x,A) ≥ ε for all x ∈ X. If K denotes the common value of µ1(X) and µ2(X) (see
digression above), then it must be the case that

|
∫

PM (x,A)µ1(dx)−
∫

PM (x,A)µ2(dx)| ≤ (1− ε)K.

Combining these last two observations, and the observation in the digression, we see that

||TMµ, TMµ′|| ≤ (1− ε)||µ, µ′||,

which completes the proof that TM is a contraction.

Dynamic Games

17 Discounted Repeated Games Under Certainty

17.1 Preliminaries

A one-shot or stage game is denoted by G = ({Ai}n
i=1, {fi}n

i=1), where N ≡ {1, 2, . . . , n} is
the set of players, and for each player i, Ai is a set of pure actions7 and fiAi → IR a bounded
payoff function (where A ≡

∏
i∈N Ai.

Let β be a discount factor common to all players. Denote by G∞ the game obtained by
repeating G infinitely many times, and evaluating overall payoffs by the sum of one-period
payoffs, discounted using β.

A path (or punishment ) is given by a sequence a ≡ {a(t)}∞t=0, where a(t) ∈ A for all t.
Along a path a, the payoff to player i is given by

Fi(a) ≡
∞∑

t=0

βtfi(a(t)).

For t ≥ 1, a t-history is a complete specification of all that has transpired up to and including
date t−1. Thus a t-history is a vector h(t) ≡ (a(0), a(1), . . . , a(t− 1)) of all the actions taken
by all the players up to date t− 1. Clearly, At is the set of all t-histories.

A strategy (or policy ) for player i is a specification of an action at date 0, and thereafter
an action conditioned on every t-history. Formally, a strategy is given by the sequence of
functions σii ≡ {σi(t)}∞t=0, where σi(0) ∈ Ai, and σi(t) : At → Ai for all t ≥ 1. A strategy
profile is a collection σ of strategies, one for each player. In the obvious way, a strategy profile
generates a path a(σ), as well as a path a(σ, h(t)) conditional on every t-history. Observe
that as defined, the path contains the given t-history in its first t terms.

We will subscript a vector using the notation −i to denote the same vector but with its
ith component removed.

7There is formally no loss in interpreting Ai to be a set of mixed strategies. But there are conceptual
problems with this, as it requires that the strategies themselves (and not their realizations) be observed by
all players.
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A strategy profile σ is a Nash equilibrium if for every player i and every strategy σ′i,

Fi(a(σ)) ≥ Fi(a(σ−i, σ
′
i)).

In class, we discussed with the help of an example that a Nash equilibrium may be too broad
a concept in the context of a dynamic game. Specifically, we may want σ to induce a Nash
equilibrium following every t-history. Formally, σ is a subgame perfect Nash equilibrium (to
be written SGPE) if it is a Nash equilibrium, and for every t-history h(t), every player i, and
every alternative strategy σ′i,

Fi(a(σ, h(t))) ≥ Fi(a(σ−i, σ
′
i, h(t))).

Exercise. [1] Formalize the notion (you will need new notation) that SGPE means that σ
should “induce a Nash equilibrium following every t-history”, by defining what the phrase in
quotes means, and showing equivalence with the definition here.

[2] For a game that is repeated just once, provide an example of a Nash equilibrium that
is not subgame perfect.

[3] Prove that if a stage game has a unique Nash equilibrium, then every finite repetition
of that game has a unique SGPE.

[4] Is (2) true if the stage game possesses more than one Nash equilibrium?

Note that in principle, subgame perfection may be a difficult notion to check as there are
an infinite variety of possible histories, and all sorts of different paths may emanate from them.
The contribution here is that using the techniques of discounted dynamic programming, we
can characterize quite easily those paths which are “supportable as SGPE” (see below for a
formal definition).

17.2 Strategies and Paths

By retaining the connections between feasible programs and policies in dynamic programming
(under certainty), we can think about strategies in terms of the paths that they induce
following every history. Informally, these paths may be pieced back together to form a
strategy, provided that their description satisfies some minimal consistency requirements.

Thus think of a strategy as specifying (i) an “initial path” a, and (ii) paths a′ following
each t-history. We may think of the initial path as the “desired” outcome of the game, and
all of all other (noninitial) paths as “punishments”.

Example. A discrete Cournot game (Abreu [1988]). Consider the following 3×3 game where
L, M , and H may be interpreted as choices of low, medium, and high output respectively,
in a Cournot duopoly. The payoff matrix is described as

L M H

L 10, 10 3, 15 0, 7
M 15, 3 7, 7∗ −4, 5
H 7, 0 5,−4 −15,−15
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Consider the following description. Begin by playing the path given by a1 ≡ {(L,L), (L,L), . . .}.
For any t-history of the form h(t) = {(L,L), (L,L), . . . (L,L)}, continue to play this path.
For any other t-history, start up the path a2 ≡ {(M,M), (M,M), . . .}. It is obvious that the
paths a1 and a2, and the attendant rules that describe when to play which path, have an
equivalent description in terms of strategies. In this case, it would be the strategy σ common
to all players: σ(0) = L, and for each t ≥ 1, σ(t)[h(t)] = L if h(t) = {(L,L), (L,L), . . . (L,L)},
and σ(t)[h(t)] = M otherwise.

Exercise. [1] Prove that in any repeated game, the strategy given by the play of a a given
one-shot Nash equilibrium of the stage game is SGPE.

[2] Using [1], prove that the strategy described in the example above is SGPE if β ≥ 5
8 .

17.3 Simple Strategy Profiles

Consider strategy profiles that have the good fortune to be completely described by an (n+1)-
vector of paths (a0,a1, . . . ,an), and a simple rule that describes when each path is to be in
effect. Think of a0 as the initial or “desired” path and of ai as the punishment for player i.
That is, any unilateral deviation of player i from any path will be followed by starting up
the path ai. Formally: the simple strategy profile σ(a0,a1, . . . ,an) specifies (i) the play of
a0 until some player deviates unilaterally from this path, (ii) for any i ∈ N , the play of the
path ai if the ith player deviates unilaterally from the path aj , j = 0, 1, . . . , n, which is the
ongoing path, (iii) the continuation of any ongoing path if no deviations occur or if two or
more deviations occur simultaneously.

Exercise. Using an inductive argument on time periods, or otherwise, prove that the above
description pins down a unique strategy profile.

We will introduce one more piece of notation to describe the utility received from the tail
of a path. Thus let Fi(a, t) ≡

∑∞
s=0 βsfi(a(t + s)) for all paths a, all t, and all i.

Theorem 25 The simple strategy profile σ(a0,a1, . . . ,an) is a SGPE if and only if

fi(a′i, a
j
−i(t))− fi(aj(t)) ≤ β

[
Fi(aj , t + 1)− Fi(ai)

]
(47)

for all j = 0, 1, . . . , n, i = 1, 2, . . . , n, t = 0, 1, 2, . . ., and a′i ∈ Ai.

Proof. [Sufficiency.] Look at the problem faced by an arbitrary player i, assuming that
all other players are sticking to the strategy suggested by the simple strategy profile. Now
construct the following stochastic dynamic programming problem.

Collect as elements of the state space X all pairs of the following kind: the first element
of the pair is one of the paths, and the second element of the pair is a date, signifying at
which stage of that path we are in. Thus

X = {aj , t}j=0,1,...,n;t=0,1,2,...

This is a deterministic dynamic programming problem and we are going to allow player i to
choose next period’s state, subject to feasibility. If the state is (aj , t), the player can choose
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to “continue” by choosing (aj , t+1) (the interpretation is that he has played his piece of the
required vector, aj

i (t)), or he can “deviate” by choosing the tomorrow’s state to be (ai, 0)
(the implication being that he has not played his part of the required action vector). These
are the only two choices, and this defines the feasibility correspondence for all states.

Let w(x) be the value function obtained by the policy: choose the next state to be
(aj , t + 1) whenever the state is (aj , t). This function is certainly bounded. Consider the
problem:

max
x′∈Γ(x)

f((aj , t), x′) + βw(x′).

Note that w satisfies all the conditions of theorem 2. It follows that w is the supremum
function. By Theorem 4, the policy that generates w is an optimal strategy.

Necessity is trivial.

To proceed further, the following definitions will be useful. Say that a path a is a perfect
equilibrium path (or is supportable as a SGPE ) if there exists a SGPE σ such that a = a(σ).
A payoff vector v is a perfect equilibrium payoff vector if vi = Fi(a(σ)) for all i, for some
SGPE σ. Let V be the set of all perfect equilibrium payoff vectors.

Assumption (G.1) There exists a subgame perfect equilibrium of the game G∞.

Exercise. By a previous exercise, (G.1) is satisfied if the stage game admits a one-shot Nash
equilibrium. Construct an example to show that (G.1) may be satisfied even if the one-shot
game has no Nash equilibrium. you may want to return to this problem after finishing the
study of the main theorems.

Under (G.1), V is nonempty. Define for each i the infimum payoff within the set V . That
is,

vi ≡ inf{vi|v ∈ V }.

Lemma 7 If a is a perfect equilibrium path, then for all t ≥ 0 and all i,

fi(a′i, a−i(t))− fi(a(t)) ≤ β[Fi(a, t + 1)− vi] (48)

Proof. Let σ support the path a. Then it must be true that along the path, no deviation is
possible. Because σ is a SGPE, it cannot prescribe payoffs following the deviation that fall
short of vi. Therefore (48) must hold (make this precise).

Assumption (G.1) A is compact, and fi : A → IR is continuous for all i.

Theorem 26 There are paths (ãi)i∈N such that for each i,

Fi(ãi) = vi.

Moreover, for each j, the simple strategy profile generated by (ãj ; ã1, . . . , ãn) is a SGPE.

54



Proof. Give A∞ the topology of pointwise convergence. Because fi is bounded on A and
β ∈ (0, 1), the function Fi(a) is continuous on A∞ in this topology (Lemma 1).

Now for each i, because vi ≡ inf{vi|v ∈ V }, there exists a sequence of paths a(k) such
that

Fi(a(k)) → vi (49)

as k →∞. Because A is compact, we can use a diagonal argument to establish the existence
of a subsequence m of k such that a(m)(t) → ãi(t) for each t ≥ 0. This gives us, in particular,
a path ãi corresponding to each infimum value vi. Using (49) and the continuity of Fi, it
follows that Fi(ãi) = vi for each i, as desired.

It remains to prove that for each j, the simple strategy profile generated by (ãj ; ã1, . . . , ãn)
is a SGPE. Suppose not. Then by Theorem 25, there exist t, a player i, and k ∈ {1, . . . , n}
such that for some a′i ∈ Ai,

fi(a′i, ã
k
−i(t))− fi(ãk(t)) > β[Fi(ãk, t + 1)− Fi(ãi)]

= β[Fi(ãk, t + 1)− vi],

using the definition of vi. Now recall a sequence of perfect equilibrium paths a(m) that
converged pointwise to the limit path ãk. It follows from the above inequality that for m
large enough,

fi(a′i, a
(m)
−i (t))− fi(a(m)(t)) > β[Fi(a(m), t + 1)− vi],

which contradicts Lemma 7 applied to the perfect equilibrium path a(m).

The characterization above leads easily to the following fundamental theorem for dis-
counted repeated games.

Theorem 27 (Abreu [1988]). A path a is supportable as a SGPE if and only if the simple
strategy profile generated by (a; ã1, . . . , ãn) is a SGPE.

Proof. The “if” direction is trivial. To establish necessity, suppose on the contrary that
σ(a; ã1, . . . , ãn) is not a SGPE. For ease in writing, let a ≡ ã0. Then by Theorem 25, there
exist t, i and a′i ∈ Ai such that for some path ãj , j = 0, 1, . . . , n,

fi(a′i, ã
j
−i(t))− fi(ãj(t)) > β[Fi(ãj , t + 1)− Fi(ãi)]

= β[Fi(ãj , t + 1)− vi].

But using Lemma 7, this contradicts the supposition that ãj is a perfect equilibrium path
for every j = 0, 1, . . . , n.

The collection (ã1, . . . , ãn) is called an optimal penal code, or sometimes Abreu punish-
ments. The insight underlying an optimal penal code is that unless there is some extraneous
reason to make the punishment fit the crime, a discounted repeated game sees no reason to
use such tailored punishments.8 It should be mentioned, however, that while these punish-
ments appear to be “simple” in principle, they may be hard to compute in actual applications.

8Be warned: this result is not true of undiscounted repeated games.
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Later on we shall specialize to symmetric games to obtain some additional insight into how
these punishments work.

For now, let’s return to the example introduced earlier to see how optimal penal codes
may be found under some circumstances, and to reiterate some special features of these
punishments. Recall the discrete Cournot game:

L M H

L 10, 10 3, 15 0, 7
M 15, 3 7, 7∗ −4, 5
H 7, 0 5,−4 −15,−15

Suppose that δ = 4
7 < 5

8 . Consider the two paths given by

ã1 ≡ {(M,H); (L,M), (L,M), (L,M), . . .}

and
ã2 ≡ {(H,M); (M,L), (M,L), (M,L), . . .}.

Begging the question for the moment of whether these generate a SGPE, observe that these
punishments do lead to lower payoffs than Cournot-Nash reversion. With δ = 4

7 , player 1,
for instance receives

−4 +
4
7

3
1− 4

7

= 0

if the punishment is first imposed on him. But a payoff of zero is special in this case. To see
this, define the security level for a player as the lowest payoff that the player can conceivably
be pushed to, if he is permitted to play a best response to the strategy vector followed by
the others (the others are not necessarily playing a best response).

Exercise. Verify that the security level of each player in this example is zero.

Observation 1. Because the punishments push down the player to his security level, we
know that we have found an optimal penal code (provided that the equilibrium properties
are satisfied). This is a general principle which is of use in many applications.

Now let us check that these punishments indeed form an optimal penal code. To do so:

Exercise. Check that player 1 has no incentive to deviate from the first path, and nor does
player 2, under the usual rules. Symmetry then takes care of the second path. This exercise
leads to the following general observations:

Observation 2. A player may need to cooperate in his own punishment.

Observation 3. A player may need to cooperate in the punishment of another player.

Exercise. Let (ã1, . . . , ãn) be an optimal penal code for a game. Prove that

Fi(ãi, 1) ≥ vi

with strict inequality holding whenever the collection of actions {ãi
j(0)} is not a one-shot

Nash equilibrium.
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17.4 Symmetric Games: A Special Case

Finding individual-specific punishments may be a very complicated exercise in actual appli-
cations. See Abreu [1986] for just how difficult this exercise can get, even in the context of a
simple game such as Cournot oligopoly. The purpose of this section is to identify the worst
punishments in a subclass of cases when we restrict strategies to be symmetric in a strong
sense.

A game G is symmetric if Ai = Aj for all players i and j, and the payoff functions are
symmetric in the sense that for every permutation p of the set of players {1, . . . , n},

fi(a) = fp(i)(ap)

for all i and action vectors a, where ap denotes the action vector obtained by permuting the
indices of a according to the permutation p.

A strategy profile σ is strongly symmetric if σi(0) = σj(0) for all i and j, and if for every
t ≥ 1 and t-history h(t), σi(t)[h(t)] = σj(t)[h(t)] for all i and j. Note that the symmetry
is “strong” in the sense that players take the same actions after all histories, including
asymmetric ones.

Now for some special assumptions. We will suppose that each Ai is the (same) interval
of real numbers, unbounded above. Assume that payoffs are continuous and bounded above,
and

Condition 1. The payoff to symmetric action vectors (captured by the scalar a), denoted
f(a), is quasiconcave, with f(a) → −∞ as a →∞.
Condition 2. The best payoff to any player when all other players take the symmetric
action a, denoted by d(a), is nonincreasing in a, but bounded below.

It will be convenient in what follows, and in later sections, to normalize all payoffs using
the discount factor. Thus for an action path a, we will write the payoff function to any player
i as

(1− β)
∞∑

t=0

βtfi(a(t)).

In this way, we can think of any infinite-horizon payoff as a convex combination of one-shot
payoffs. This interpretation will also be useful when we do comparative statics by varying
the discount factor.

Exercise. As you can tell, Conditions 1 and 2 are set up to handle something like the case
of Cournot oligopoly. Even though the action sets do not satisfy the compactness assumption
(G.2), the equilibrium payoff set is nevertheless compact. How do we prove this?
[1] First note that a one-shot equilibrium exists. To prove this, use Condition 1 and Kaku-
tani’s fixed point theorem.
[2] This means that the set of perfect equilibrium payoffs V is nonempty. Now, look at the
worst perfect equilibrium payoff. Show that it is bounded below, using Condition 2. Using
Condition 1, show that the best perfect equilibrium payoff is bounded above.
[3] Now show that the paths supporting infimum punishments indeed are well-defined, and
together they form a simple strategy profile which is a SGPE. To show this, you will have
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to prove that the action vectors along any perfect equilibrium path lie in a bounded set, so
that the diagonal argument of Theorem 26 works. Prove this.
[4] Finally, prove the compactness of V by using part [3].

With the above exercise worked out, we can claim that there exists best and worst sym-
metric payoffs v∗ and v∗ respectively, in the class of all strongly symmetric SGPE. The
following theorem then applies to these payoffs.

Theorem 28 Consider a symmetric game satisfying Conditions 1 and 2. Let v∗ and v∗
denote the highest and lowest payoff respectively in the class of all strongly symmetric SGPE.
Then
[a] The payoff v∗ can be supported as a SGPE in the following way: Begin in phase I, where
all players take an action a∗ such that

(1− β)f(a∗) + βv∗ = v∗.

If there are any defections, start up phase I again. Otherwise, switch to a perfect equilibrium
with payoffs v∗.
[b] The payoff v∗ can be supported as a SGPE using strategies that play a constant action a∗

as long as there are no deviations, and by switching to phase 1 (with attendant payoffs v∗) if
there are any deviations.

Proof. Part [a]. Fix some strongly symmetric equilibrium σ̂ with payoff v∗. Because the
continuation payoff can be no more than v∗, the first period action along this equilibrium
must satisfy

f(a) ≥ −βv∗ + v∗
1− β

.

Using Condition 1, it is easy to see that there exists a∗ such that f(a∗) = −βv∗+v∗
1−β . By

Condition 2, it follows that d(a∗) ≤ d(a). Now, because σ̂ is an equilibrium, it must be the
case that

v∗ ≥ (1− β)d(a) + βv∗ ≥ 1− β)d(a∗) + βv∗,

so that the proposed strategy is immune to deviation in Phase I. If there are no deviations, we
apply some SGPE creating v∗, so it follows that this entire strategy as described constitutes
a SGPE.

Part [b]. Let σ̃ be a strongly symmetric equilibrium which attains the equilibrium payoff
v∗. Let a ≡ a(σ̃) be the path generated. Then a has symmetric actions a(t) at each date,
and

v∗ = (1− β)
∞∑

t=0

βtf(at).

Clearly, for the above equality to hold, there must exist some date T such that f(aT ) ≥ v∗.
Using Condition 1, pick a∗ ≥ aT such that f(a∗) = v∗. By Condition 2, d(a∗) ≤ d(aT ). Now
consider the strategy profile that dictates the play of a∗ forever, switching to Phase I if there
are any deviations. Because σ̃ is an equilibrium, because v∗ is the worst strongly symmetric
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continuation payoff, and because v∗ is the largest continuation payoff along the equilibrium
path at any date, we know that

v∗ ≥ (1− β)d(aT ) + βv∗.

Because d(aT ) ≥ d(a∗),
v∗ ≥ (1− β)d(a∗) + βv∗

as well, and we are done.

The problem of finding the best strongly symmetric equilibrium therefore reduces, in this
case, to that of finding two numbers, representing the actions to be taken in two phases.

Something more can be said about the punishment phase, under the assumptions made
here.

Theorem 29 Consider a symmetric game satisfying Conditions 1 and 2, and let (a∗, a∗) be
the actions constructed to support v∗ and v∗ (see statement of Theorem 28). Then

d(a∗) = v∗

Proof. We know that in the punishment phase,

v∗ ≥ (1− β)d(a∗) + βv∗, (50)

while along the equilibrium path,

v∗ = (1− β)f(a∗) + βv∗. (51)

Suppose that strict inequality were to hold in (50), so that there exists a number v < v∗ such
that

v ≥ (1− β)d(a∗) + βv. (52)

Using Condition 1, pick a ≥ a∗ such that

v = (1− β)f(a) + βv∗. (53)

[To see that this is possible, use Condition 1, (51), and the fact that v < v∗.] Note that
d(a) ≤ d(a∗), by Condition 2. Using this information in (52), we may conclude that

v ≥ (1− β)d(a) + βv. (54)

Combining (53) and (54), we see from standard arguments (check) that v must be a strongly
symmetric equilibrium payoff, which contradicts the definition of v∗.
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17.5 The Set of Equilibrium Payoffs of a Repeated Game

The set of equilibrium payoffs of a repeated game is often a simpler object to deal with than
the strategies themselves. There are also interesting properties of this set that are related to
the functional equation of dynamic programming.

The set of feasible payoff vectors of G is given by the set

F ≡ {p ∈ IRn|f(a) = p for some a ∈ A}.

Let F ∗ be the convex hull of the set of feasible payoffs. It should be clear that any normalized
payoff in the repeated game must lie in this set. Define the class of sets F by collecting all
nonempty subsets of F ∗. Formally,

F ≡ {E|E 6= ∅ and E ⊆ F ∗}.

Pick any E ∈ F and p ∈ F ∗. Say that p is supported by E if there exist n + 1 vectors (not
necessarily distinct) (p′, p1, . . . , pn) ∈ E and an action vector a ∈ A such that

p = (1− β)f(a) + βp′, (55)

and for each i and action a′i ∈ Ai,

p ≥ (1− β)f(a′i, a−i) + βpi
i. (56)

We may think of a as the supporting action of p, of p′ as the supporting continuation payoff
of p, and so on. Observe that part 2 of the definition already incorporates the idea that
punishments are chosen independently of the crime. Under our assumptions (G.1) and (G.2),
this will be all that we will need.

Now define a map φ : F → F by

φ(E) ≡ {p ∈ F ∗|p is supported by E}.

We will study several properties of this map. Begin with a fundamental notion: a set W ∈ F
is self-generating (Abreu, Pearce and Stacchetti [1990]) if W ⊆ φ(W ).

Theorem 30 If W is self-generating, then W ⊆ V , where V is the set of all normalized
perfect equilibrium payoffs.

Proof. Pick p ∈ W . To show that p is a perfect equilibrium payoff, we must find a SGPE
that supports it. We will define such a strategy profile σ by induction on the length of all
t-histories. At t = 0 let h(0) be an arbitrary singleton that stands for the only 0-history.
Let σ(0)[h(0)] = a(h(0)), where a(h(0)) is the supporting action of p. Also, use the notation
p(h(0)) to denote p.

Recursively, suppose that we have defined an action a(h(s)) as well as an equilibrium
payoff vector p(h(s)) for every s-history h(s) and all 0 ≤ s ≤ t. Now consider a t + 1 history
ht+1, which we can write in the obvious way as ht+1 = (h(t), a(t)) for some t-history h(t)
and some action vector a(t) ∈ A.
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Let a be a supporting action for p(h(t)). If a = a(t), or if a differs from a(t) in at least
two components, define p(h(t + 1)) to be p′, where p′ is the supporting continuation payoff
for p(ht), and define a(h(t + 1)) to be the action that supports p(h(t + 1)). If a 6= a(t) in
precisely one component i, then define p(h(t + 1)) to be the ith supporting punishment for
p(h(t)), and a(h(t + 1)) to be the supporting action for p(h(t + 1)).

Having completed this recursion, define a strategy profile by σ(t)[h(t)] = a(h(t)) for every
t and every t-history. We must check that this profile indeed constitutes a Nash equilibrium.

To show this we proceed along lines similar to those in the proof of Theorem 25. Look
at the problem faced by an arbitrary player i, assuming that all other players are sticking to
the strategy suggested by the simple strategy profile. Now construct the following stochastic
dynamic programming problem.

Collect as elements of the state space X t-histories, for t ≥ 0 (remember that we con-
structed an artificial singleton 0-history). Thus if Ht is the space of all t-histories,

X = ∪∞t=0H
t

This is a deterministic problem, so we allow player i to choose next period’s state, subject
to feasibility. If the state is h(t), the player can choose any t + 1 history which is consistent
with the other players sticking to the strategy profile σ. The feasibility correspondence is
therefore given by

Γ(h(t)) = {h(t + 1)|h(t + 1) = (h(t), a(t)) for some a(t) ∈ A(t) with a−i(t) = σ−i(t)[h(t)]}.

Finally, the one-period payoff, call it πi(h(t), h(t + 1)), is given simply by the action vector
a(t) implied by h(t) and h(t + 1).

Let w(x) be the value function obtained by the policy: choose the next state to be
(h(t), σ(t)[h(t)]) whenever the state is h(t). This function is certainly bounded. Consider the
problem:

max
h(t+1)∈Γ(h(t))

πi(h(t), h(t + 1)) + βw(h(t + 1))

= max
ai∈Ai

fi(ai, σ−i(t)[h(t)]) + βw((h(t), ai, σ−i(t)[h(t)]).

Note that w satisfies all the conditions of Theorem 2. It follows that w is the supremum
function.

Using the definitions of a supporter (see (55) and (56), it follows that this functional equa-
tion is solved at all histories by picking precisely the action chosen by σi, namely, σi(t)[h(t)]
for every t and h(t). By Theorem 4, the policy that generates w is an optimal strategy.

Exercise. Establish the following properties of the mapping φ.
[1] φ is isotone in the sense that if E ⊆ E′, then φ(E) ⊆ φ(E′).
[2] Under assumptions (G.1) and (G.2), φ maps compact sets to compact sets: that is, if E
is a compact subset of F ∗, then φ(E) is compact as well.

Our next theorem is an old result: the set of perfect equilibrium payoffs is compact. But
the proof is new.
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Theorem 31 Under assumptions (G.1) and (G.2), the set of perfect equilibrium payoffs V
is compact.

Proof. We begin by showing that V ⊆ φ(cl V ), where cl V denotes the closure of V . To this
end, take any perfect equilibrium payoff p. Then there is a SGPE supporting p. Consider the
action a vector prescribed in the first date of this equilibrium, as well as the prescribed paths
and payoff vectors following every 1-history. These may be partitioned in the following way:
(i) the payoff p′ assigned to the continuation of the initial path, (ii) for each i, a function that
assigns a payoff vector pi(a′i) following each choice of a′i at time period zero, assuming that
others are sticking to the prescription of a, and (iii) payoff vectors that follow upon multiple
simultaneous deviations of players from the prescribed initial action vector i.

Ignore (iii) in what follows.
Consider (ii). Note that pi(a′i) ∈ V for all a′i, and that by the notion of SGPE,

pi ≥ (1− β)fi(a′i, a−i) + βpi
i(a

′
i)

for all choices a′i ∈ Ai. Replacing each pi(a′i) by a payoff vector pi in cl V that minimizes i’s
payoff (why is this possible?), we see that

pi ≥ (1− β)fi(a′i, a−i) + βpi
i

for every action a′i. Do this for every i, and combine with (i) to conclude that (a, p′, p1, . . . , pn)
is a supporter of p. This proves that p ∈ φ(cl V ), so that V ⊆ φ(cl V ).

Next, observe that because V is bounded, cl V is compact. Consequently, by (2) of the
exercise above, φ(cl V ) is compact as well. It follows from this and the claim of the previous
paragraph that cl V ⊆ φ(cl V ). But then by Theorem 30, cl V ⊆ V . This means that V is
closed (why?). Since V is bounded, V is compact.

These results permit the following characterization of V (note the analogy with the func-
tional equation of dynamic programming).

Theorem 32 Under assumptions (G.1) and (G.2), V is the largest fixed point of φ.

Proof. First we show that V is indeed a fixed point of φ. Since V ⊆ φ(cl V ) (see proof
of Theorem 31) and since V is compact, it follows that V ⊆ φ(V ). Let W ≡ φ(V ), then
V ⊆ W . By the exercise (1) above, it follows that W = φ(V ) ⊆ φ(W ). Therefore W is
self-generating, and so by Theorem 30, W ⊆ V . Combining, we see that W = V , which just
means that V is a fixed point of φ.

To complete the proof, let W be any other fixed point of φ. Then W is self-generating.
By Theorem 30, W ⊆ V , and we are done.

62



18 The Folk Theorem

This section of the notes relies on Fudenberg and Maskin [1986], and may be seen as another
application of the concept of simple strategy profiles. The folk theorem reaches a negative
conclusion regarding repeated games. Repeated games came into being as a way of reconciling
the observation of collusive (non-Nash) behavior with some notion of individual rationality.
The folk theorem tells us that in “explaining” such behavior, we run into a dilemma: we end
up explaining too much. Roughly speaking, every individually rational payoff is supportable
as a SGPE, provided that the discount factor is sufficiently close to unity.

As a preliminary definition, define the security level of each player i by the value

v̂i ≡ min
a∈A

di(a).

Let âi be an action vector such that v̂i is exactly attained. Let v̂i
j be the payoff to j when

this is happening. In other words, v̂i = v̂i
i. Normalize the security level to equal zero for each

player.
For each β, denote by V (β) the set of all (normalized) perfect equilibrium payoffs.
Finally , define Mi ≡ maxa∈A |fi(a)|, and M ≡ maxi∈N Mi.

Exercise. Prove that for each i, there exists an action vector that attains i’s security level,
provided that (G.2) is satisfied.

Theorem 33 Define F ∗ to be the set of all individually rational feasible payoffs, i.e.,

F ∗ ≡ F ∩ {v ∈ IRn|v ≥ 0 for all i},

and assume that F ∗ is n-dimensional. Then for each p̃ in F ∗ and each ε > 0, there exists
a payoff vector p in F ∗ and also in the ε-neighborhood of p̃ such that p ∈ V (β) for all β
sufficiently close to unity.

Proof. For simplicity we shall assume in this proof that any point in F , the convex hull of
the set of feasible payoffs, can be attained by some pure strategy combination. Later, we
indicate how the proof can be extended when this is not the case.

Pick any p̃ ∈ F ∗, and ε > 0. Because F ∗ has full dimension, it is possible to find p in the
ε-neighborhood of p̃ such that p ∈ int F ∗. now pick n payoff vectors {p̄i}i∈N (each in F ∗)
“around” p as follows:

p̄i
i = pi,

p̄i
j = pj + γ for j 6= i,

for some γ > 0. These vectors will be fixed throughout the proof. By our simplifying
assumption, there are action vectors a, ā1, . . . , ān such that f(a) = p and f(āi) = p̄i for each
i = 1, . . . , n.

The first of these action vectors is, of course, going to support the desired payoff, and
the latter are going to serve as “rewards” to people who carry out punishments that may
not be in their own short-term interests. The punishments, in turn, are going to be derived
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from the actions {âi} that minimax particular players and drive them down to their security
levels. Now for a precise statement. For each i = 0, 1, . . . , n, consider the paths

a0 ≡ (a, a, a, . . .),

ai = (âi, . . . âi) for T periods,
= (āi, āi, . . .) thereafter,

where T is soon going to be cunningly chosen (see below).
Consider the simple strategy profile σ ≡ σ(a0,a1, . . . ,an). We claim that there exists an

integer T and a β∗ ∈ (0, 1) such that for all β ∈ (β∗, 1), σ is a perfect equilibrium.
For convenience, let is record the normalized payoff to palyer i along each of the paths.

Note that
Fi(a0, β) = pi

for all i, and that for all 0 ≤ t ≤ T ,

Fi(aj , β, t) = v̂j
i (1− βT+1−t + βT+1−tpj

i (γ),

where pj
i (γ) = pi + γ if i 6= j, and pj

i (γ) = pi if i = j. Of course, for all t ≥ T + 1,

Fi(aj , β, t) = pj
i (γ).

We must check the no-deviation constraints from each path. By Theorem 27, this is necessary
and sufficient to check that σ is indeed a perfect equilibrium.

Deviations from a0. Suppose that player i were to deviate from the path a0. Then he
gets minimaxed for T + 1 periods, with 0 return, after which he gets pi again forever. The
best deviation along the path is bounded above by M , so that the no-deviation condition is
surely satisfied if

pi ≥ (1− β)M + βT+1pi.

This inequality holds if
1− βT+1

1− β
≥ M

pi
. (57)

[Note that pi > 0 (why?) so that this inequality makes perfect sense.] Now look at (57). As
β → 1, the LHS goes to T + 1 (why?). So if we take

T ≥ max
i

M

pi
, (58)

then (57) is automatically satisfied for all β sufficiently close to unity.

Deviations from aj. First check player j’s deviation. If (57) is satisfied (for i = j), the
player j will never deviate from the second phase of his own punishment, because he just
goes back to getting pj . The deviations may be different, of course, but we have bounded
these above by M anyway to arrive at (57). In the first phase, note that by construction,
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player j is playing a one-shot best response. So there is no point in deviating, as there is no
short-term gain and it will be followed by restarting his punishment.

It remains to check player i’s deviation from the path aj when i 6= j. By the same
argument as in the previous paragraph, a deviation in the second phase is not worthwhile,
provided that (57) is satisfied. We need to check, then, that player i will cooperate with j’s
punishment in the first phase. He will do so if for each integer t that records the number of
periods left in the first phase,

(1− βt)v̂j
i + βt(pi + γ) ≥ (1− β)M + βT+1pi.

Replace v̂j
i by −M on the LHS. On the RHS, replace (1 − β)M by (1 − βT )M and βT+1pi

by βT pi. Then noting that M and pi are both positive, it is clear that the above inequality
holds if

−(1− βt)M + βt(pi + γ) ≥ (1− βT )M + βT pi,

or if
βT

1− βT
≥ 2M

γ
. (59)

Now it should be clear that for any T satisfying (58), both conditions (57) and (59) are
satisfied for all β sufficiently close to unity. So we are done.

It remains to remark on the case where the payoffs p and its ‘constructed” neighbors are
not exactly generated by pure action vectors. The proof then has to be slightly modified.
First we perturb p a tiny bit if necessary and the choose β close enough to unity so that in a
sufficiently large number of finite periods, we can get p as the convex combination of payoffs
from various pure actions (where the convexification is being carried out intertemporally).
Then all we have to do is to use a nonstationary path (with a finite periodicity) to generate
p. We do the same for each of the payoff vectors p̄i as well. The proof then goes through
just the same way as before. The restrictions created by the choice of β go “in the same
direction” anyway.

The full-dimensionality of F ∗ is needed in general (though not for two-player games). See
Fudenberg and Maskin [1986] for more details.
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18.1 Renegotiation-Proof Equilibrium

The Folk Theorem raises a conceptual puzzle. If, in searching for a theory of how collusive
or cooperative outcomes are sustainable in an essentially noncooperative setting, we end up
with a theory that “explains” not only such outcomes but many others besides, what are we
to make of such a theory? One way to deal with this problem is that despite multiplicity, we
take the “most collusive” outcomes permitted by such multiplicity as our solution concept.
Put another way, agents seek a point on the Pareto frontier of the set of perfect equilibrium
payoffs.

But this procedure leads naturally to an accusation of asymmetry. If we are so concerned
that agents seek to find the Pareto frontier of whatever is supportable in the original game,
why do they not act this way in subgames? At the very least, it is worth exploring the
implications of the hypothesis that if agents can negotiate “at the beginning” to collude,
they can renegotiate again in all subgames. This is the objective of the current section,
which is based on Bernheim and Ray [1989] and Farrell and Maskin [1989].

We begin with finitely repeated games, where the definition is reasonably free of difficult
conceptual problems. As a motivating example, consider the following 3× 3 game:

4, 4 0, 5 0, 0
5, 0 3, 3∗ 0, 0
0, 0 0, 0 1, 1∗

This game has two stage equilibria, which are the cells marked by an asterisk above. Repeat
this game once without disccounting. In this two-period formulation, observe that the payoff
vector (4, 4) can be sustained in the first period by the promise of playing the “good” stage
equilibrium (3, 3) if there are no deviations, and the threat of playing the “bad” equilibrium
(1, 1) if there are any deviations.

Note that this equilibrium, though subgame perfect, looks problematic if agents are al-
lowed to communicate, not just in the first period when they chose the collusive strategy, but
also in the second period. If the latter is also true, then it seems possible that the two players
would let “bygones be bygones” and play the “good” stage equilibrium (3, 3) regardless of
past history. But, of course, if it is commonly known that this is going to happen in period
2, no collusion is possible in period 1.

This example motivates the following definition for renegotiation-proof equilibrium in
finitely repeated games. We shall use the familiar device of supporting payoffs to define the
concept; it can easily be translated into a definition using strategies (see Bernheim and Ray
[1989] for such a definition). We will also restrict ourselves to two-player games from this
point on: while the definition of renegotiation proof equilibrium applies, without alterations,
to n-player situations, issues of coalitional deviations also become important in such contexts.

To prepare for the definition, denote by V T the set of all subgame perfect payoffs in a game
that is repeated T times, i.e., played T + 1 times. Use the notation ω(A) to denote the weak
Pareto frontier of some set A: i.e., ω(A) ≡ {p ∈ A| there is no p′ ∈ A such that p′ � p}.

Begin with V 0: this is just the set of stage payoffs, and let R0 ≡ ω(V 0). This is the set of
renegotiation-proof payoffs in the one-shot game. There isn’t much action here: simply pick
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the weak Pareto-frontier.9

Inductively, suppose that we have defined the set Rt as the set of renegotiation-proof
payoffs in the t-repeated game. To figure out the Rt+1, first consider the set of all payoffs
St+1 that can be supported with Rt,

St+1 ≡ φ(Rt),

and then define the set of renegotiation-proof payoffs for the (t + 1)-repeated game as

Rt+1 ≡ ω(St+1).

This completes the recursive definition.
The structure of the sets {Rt} can be quite interesting, as the following example demon-

strates.

Example. Consider a lender and borrower. The lender lends to the borrower at some fixed
rate of interest r > 0. There are two projects A and B that the borrower can invest in,
yielding net rates of return to the borrower of α > β > 0. These projects are a matter
of complete indifference to the lender, but in any case the lender can dictate the choice of
project. At any date, there is a fixed exogenous penalty π for a default of any size on an
ongoing loan. Finally, assume that there is an upper bound on the “bad” project B, given
by a loan size of L̄. On project A, assume no such bound (or a sufficiently larger bound, as
the computations below will make clear).

Begin with the stage game. It is clear that there are only two equilibria. To find them,
define

`0 ≡
π

1 + r
.

Now observe that all loan sizes below `0 will be repaid by the borrower in the stage game.
Consequently,

V 0 = {(r`0, α`0), (r`0, β`0)},

and
R0 = ω(V 0) = V 0.

Now turn to the set of all payoffs that can be supported in the game repeated once. Let the
discount factor be β. It should then be clear that apart from `0, an extra amount of loan can
be sustained without fear of default, simply by the lender (credibly) threatening to revert
to the bad project in the last period in the case of default in the first period. The (present
value) loss to the borrower in that case is given by (α− β)`0, so that the maximum loan size
in the first period of the two-period game is given by

`1 ≡ `0 +
(α− β)`0

1 + r
.

Exercise. If `1 ≤ L̄, carefully find the value of V 1, and then show that

R1 = {(r`1, α`1), (r`1, β`1)}.
9We use the weak Pareto frontier as our criterion in keeping with the idea that every player must strictly

wish to renegotiate. This point is brought out clearly in the example below.
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Recursively, as long as `t ≤ L̄, we may define in exactly the same way,

`t+1 ≡ `t +
(α− β)`t

1 + r
,

and then deduce that
Rt+1 = {(r`t+1, α`t+1), (r`t+1, β`t+1)},

provided that `t+1 ≤ L̄. This recursion continues until we reach first date T (as we certainly
must) such that

`T > L̄.

At this date, check that RT must be the singleton set given by

RT = {(r`T , α`T )}.

If the finite-horizon game has a horizon longer than this, the entire process must build up
again from this point! The idea is that in the game repeated T periods, there is exactly one
renegotiation proof payoff. Consequently, in the game repeated T + 1 times, all that can be
sustained at the initial date is the original loan size `0! For longer games, the cyclical path
builds itself up again, just as outlined above.

It is therefore possible for renegotiation-proof equilibria to exhibit “periodic breakdowns”
of cooperation on the equilibrium path, and indeed, to select such paths as the unique
outcome. This illustrates well the consequences of applying the same selection criteria (in
this case, Pareto-optimality) to all subgames as well as on the initial equilibrium path.

Now we turn to a definition of the concept for infintely repeated games. Say that a
strategy profile σ is weakly renegotiation proof (WRP) if it is a SGPE and for all pairs of
histories (ht, h

′
s) (where s = t is allowed), the payoff vectors F (a(σ, ht)) and F (a(σ, h′s)) are

mutually Pareto-incomparable.
This is easily seen to imply the following feature. Let P (σ) be the set of all payoff vectors

generated by σ, following all histories. Then P (σ) is self-generating, and ω(P (σ)) = P (σ).
The following observations are relevant.
[1] We could alternatively have taken the feature in the paragraph above to be the defining
feature of a WRP set. A WRP set need not be associated with a single equilibrium: it is
more like a set of payoffs that has a self-referential consistency property.
[2] This self-referentiality leads to conceptual problems. Observe that the singleton set con-
sisting of the payoff vector generated by any Nash equilibrium of the stage game is WRP.
WRP sets are by no means unique.

Exercise. Consider the Prisoner’s Dilemma given by

2, 2 0, 3
3, 0 1, 1∗

Observe that (as discussed) {(1, 1)} is a WRP set. Find another equilibrium that is WRP,
and nowhere makes use of the mutual defection cell. Describe precisely the WRP set that it
generates.
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[3] Thus there is a tension in the “choice” of WRP sets: what is the appropriate theory
of the game that players should adopt? One obvious answer is to choose the “best” WRP
set: one that is not Pareto-dominated by any other point on any other WRP set. This is a
requirement of external consistency, as you can tell. The WRP set itself is not just the only
criterion that is being used, but a comparison across WRP sets is being made.

Unfortunately, the external consistency requirement is not ingeneral met in such a straight-
forward way. There may not exist any WRP set with the required property described in the
preceding paragraph. The issue of external consistency then becomes problematic. This is
as far as we need to go in this course: see Bernheim and Ray [1989] for a detailed discussion
of this and related points.
[4] However, even on the grounds of internal consistency alone, WRP sets are suspect. To
see this, consider the following example:

8, 8 0, 0 0, 0
0, 0 0, 0 1, 2∗

0, 0 2, 1∗ 0, 0

Consider the set of payoffs W ≡ {(1, 2), (2, 1)}. Check that this is indeed WRP.
Now suppose that players indeed hold to W as a theory of how the game will be played

from “tomorrow” onwards. In that case, observe that W supports more than W itself: in
stages, we see that it covers all the combinations in which (1, 2) and (2, 1) can be played, at
the very least. This covers the line segment joining (1, 2) to (2, 1); at least, all the rational
convex combinations (weighted by the discount factor) of the two. Thus points approximately
halfway between the two extremes become available. But now observe that with such a set,
it is possible to sustain the collusive payoff (8, 8) in the first period. This gets us into trouble,
because such payoffs Pareto-dominate segments of W , which will be eliminated as we finally
apply the map ω. Thus a truly internally consistent renegotiation-proof set may lie pretty
far away from W . For more on these issues, see Ray [1994].

With these qualifications in mind, let us return to the study of WRP equilibria. First,a
definition. Say that a payoff vector v can be sustained as a WRP payoff if there is some
WRP equilibrium σ such that v ∈ P (σ).

Following Farrell and Maskin [1989], it is possible to obtain a characterization of WRP
payoffs, under some assumptions. Let F ∗∗ be the convex hull of the set of all feasible, strictly
individually rational payoffs; i.e.,

F ∗∗ ≡ {v ∈ F |v � 0}.

In what follows, we shall assume that for every v ∈ F ∗∗, there is an action vector a ∈ A such
that f(a) = v. Recall that for the folk theorem, we also made an assumption like this at
the beginning, and then argued after the theorem that such an assumption can be dropped
costlessly. This assumption cannot be dropped with equal facility. I will return to this point
below.

Theorem 34 Assume (G.2) and the assumption in the previous paragraph. Let v ∈ F ∗∗.
Suppose that there are action vectors ai ∈ A, for i = 1, 2 such that

di(ai) < vi for i = 1, 2,
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fj(ai) ≥ vj for j 6= i. (60)

Then v is a WRP payoff for all β sufficiently close to unity.
Moreover, if v ∈ F ∗∗ is a WRP payoff for any β, then there exist ai ∈ A, for i = 1, 2

such that

di(ai) ≤ vi for i = 1, 2,

fj(ai) ≥ vj for j 6= i. (61)

Proof. Sufficiency. Let a be an action vector that attains the payoff v. This is going to be
the initial path, while the action vectors a1 and a2 are going to serve as punishments.

Begin by observing that there exists β1 ∈ (0, 1) such that if β ∈ (β1, 1),

(1− β)M + βdi(ai) < vi, (62)

for i = 1, 2, where M , it will be recalled, is the value of the maximum absolute payoff in the
stage game. Because (62) is strict, there exists a vector p such that for each i,

pi > di(ai) (63)

and
(1− β)M + βpi < vi (64)

for all β ∈ (β1, 1).
The idea, now, will be to replicate the value of pi by playing ai T times (where T is an

integer to be determined), and then go back to the normal phase of playing a. Thus what
we want is

pi = (1− βT )fi(ai) + βT vi (65)

for some integer T .
To go about this, let us substitute the RHS of (65) into the inequalities (62) and (63),

and see what we need. Note that once we settle on a T , (63) is not going to be a problem
for β close enough to unity, because vi > di(ai) by assumption. For inequality (64) to hold,
it must be the case that

(1− β)M + β[(1− βT )fi(ai) + βT vi] < vi

must hold for all β close enough to unity. Note that the LHS of the expression above equals
vi at β = 1. So for the desired result, we need the derivative of the LHS with respect to β to
be positive, evaluated at β = 1. Taking the derivative, we obtain the expression

M + fi(ai)[1− (T + 1)βT ] + (T + 1)βT vi,

and evaluating this at β = 1, we get

−M − fi(ai)T + (T + 1)vi
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so that the required condition is

(T + 1)vi > fi(ai)T + M. (66)

This can be guaranteed for large T , because vi > di(ai) ≥ fi(ai). Choose T satisfying (66).
Then there is some β∗ ∈ (β1, 1) such that if β ∈ (β∗, 1), conditions (63), (64) and (65) all
hold.

Now define three paths as follows:

a0 ≡ (a, a, a, . . .), and

ai = (ai, ai, . . . , ai) T times
= (a, a, a, . . .) thereafter,

for i = 1, 2.
We claim that σ(a0,a1,a2) is a WRP equilibrium. To establish this, first let’s check for

subgame perfection.
Deviations from a0. If i deviates from a0, he gets at most

(1− β)M + βpi,

by construction. By (64), this is less than vi.
Deviations from ai. Suppose, first, that i deviates. The most tempting deviation is in the
first period, by the construction of the punishment path. In this case, the total payoff is

(1− β)di(ai) + βpi.

Using (63), this is less than pi, so that deviations by i from ai are not profitable.
Likewise, j will not deviate from ai, because by the assumption that fj(ai) ≥ vj and the

nature of the path ai, (64) applies right away to prevent deviations (check this).
To complete the proof of sufficiency, all we have to do is check that no two payoff vectors

generated by σ(a0,a1,a2) ever Pareto-dominate each other. This follows directly from the
properties of a1 and a2 relative to the payoff vector v.
Remark on the assumption. As in the folk theorem, we can relax the assumption that
the payoff vector v is achieved by a pure action. The problem that we now have is to make
sure that the various actions which we shall use to intertemporally simulate v do not end up
Pareto-dominating each other, or indeed, Pareto-dominating the payoffs. This is not trivial.
For an indication of how this task is accomplished in the case where mixed strategies can be
observed, see Farrell and Maskin [1989].

Necessity. Suppose that v ∈ F ∗∗ is a WRP payoff; i.e., v ∈ P (σ) for some WRP equilibrium
σ. We will prove that an action pair a1 satisfying the required conditions (61) exists. [The
proof for a2 is completely analogous.]

Exercise. Assume (G.2). Prove that if v can be supported as a WRP equilibrium, then
there exists a WRP σ such that P (σ) is compact. [The idea is, as usual, to use a sequential
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compactness argument. In case you have problems, look at Farrell and Maskin [1989], Lemma 2,
356–357.]

By the exercise, we may assume without loss of generality that σ has a worst continuation
equilibrium for player 1. Choose, among these, the best for player 2. Let a1 be the first period
action vector on this worst equilibrium path, and let σ1 denote the continuation equilibrium
starting the period after a1. Finally, let v∗ be the payoff vector when the worst punishment
begins.

We will show that a1 satisfies all the needed conditions.
Clearly, v∗1 ≤ v1. We claim that v∗2 ≥ v2. Suppose not. Then v∗2 < v2. If v∗1 < v1 as

well, we have a contradiction to WRP. So this must mean that v∗1 = v1. But in this case we
contradict the choice of the worst equilibrium (it has to maximize player 2’s payoff in the
class of all equilibria that are worst for player 1). So v∗2 ≥ v2, as claimed.

Our next claim is that f2(a1) ≥ v∗2. Suppose not. Then f2(a1) < v∗2. But then F2(σ1) >
v∗2, because σ1 is the continuation equilibrium. By the WRP requirement, it follows that
F1(σ1) ≤ v∗1. But this contradicts, again, our choice of v∗.

We complete the proof by showing that d1(a1) ≤ v∗1 ≤ v1. As noted, v∗1 ≤ v1 by con-
struction. To see that d1(a1) ≤ v∗1, observe that if this were not the case, player 1 could
deviate from his punishment by getting d1(a1) in the first period, followed by no less than
v∗1. Therefore d1(a1) ≤ v∗1 ≤ v1, and we are done.
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