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There are an infinite number of generations, one at each date. In each period t a member
of generation receives an income w, which depends on the proportions of the population in
different skill categories, as well as the skill category to which this member belongs. This income
is partly consumed and partly used in educating the offspring of this member. Depending on
the education level of the child, the child receives an income next period, and the entire process
repeats itself.

At each date, a production function f determines the wage to skill categories. Assume
that there are only two skill categories: “high” and “low”. Being low at any date requires no
investment by the parent; being high requires an investment of x, which is denominated in
terms of final output and kept fixed for the purpose of the exercise. If there is a unit mass of
individuals, and a fraction λ of them is high at some date, then the high wage is given by

w̄(λ) ≡ f1(λ, 1 − λ),

while the low wage is given by
w(λ) ≡ f2(λ, 1 − λ).

If f satisfies the usual curvature and end-point conditions, we can conclude that w̄(λ) is de-
creasing and continuous in λ, with w̄(λ) → ∞ as λ → 0. Likewise, w(λ) is increasing and
continuous in λ, with w(λ) → ∞ as λ → 1. We may thus define a threshold λ̃ such that
w̄(λ̃) = w(λ̃).

Imagine, now, that an infinite sequence of wages is given, one of each category of labor.
We may denote this by the path {w̄t, wt}∞

t=0. With such a sequence given, we take it that
generation t maximizes an additive function of the utility from its own consumption, and the
(discounted) utility felt by generation t + 1. As in the Loury model, it is needed to conjecture
what these future utilities might be, and standard dynamic programming arguments will tell us
that there is a unique solution to this problem provided that we consider bounded wage paths.
This unique solution is actually a utility path, which makes it a bit different from the Loury
model, in which the environment is stationary by assumption. This path may be described as
the sequence {V̄t, V t}∞

t=0, and it has the property that for each date t

V̄t = max u(ct) + δVt+1

subject to the conditions that
ct + xt = w̄t,

and

Vt+1 = V̄t+1 if xt ≥ x

= V t+1 if xt < x.
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Likewise,
V t = max u(ct) + δVt+1

subject to the conditions that
ct + xt = wt,

and

Vt+1 = V̄t+1 if xt ≥ x

= V t+1 if xt < x.

Note: we are defining utility on the entire real line, instead of just the nonnegative
numbers. This captures the idea that the borrowing constraint is not total, but that the
investment of x at lower wealth levels carries greater utility losses.

These maximization problems describe how the education levels change from generation
to generation, given the sequence of wage rates. In a general equilibrium setting, the opposite
implication needs to be considered as well: given the skill choices made for generation t + 1
by their parents, wage rates are determined for generation t + 1. Of course, no individual can
internalize this causal relationship, being infinitesimally small relative to the economy.

For given λ0 ∈ (0, 1), a competitive equilibrium is a sequence {w̄t, wtλt}∞
t=0 such that

[i] Given λ0, the path {λt} is generated by the maximization problems just described,
[ii] For each t, w̄t = w̄(λt) and wt = w(λt) if λt < λ̃, and w̄t = wt = w̄(λ̃) = w(λ̃) if λt ≥ λ̃.

Note that the definition of a competitive equilibrium uses the idea that if the “natural
wages” (as given by marginal product) for a skilled worker falls short of that of an unskilled
worker, the former will move intro the sector of the latter so that the two wages will be ex post
equalized. In any case this is not very relevant because of the following trivial observation:

Lemma 1 Along any equilibrium, 0 < λt < λ̃ for all t ≥ 1.

The proof of this lemma should be obvious. That λt > 0 for all t follows from the fact that
the difference between skilled and unskilled wages would be infinitely high otherwise, so that
some educational investment would have taken place prior to that period. On the other hand,
λt cannot exceed λ̃ for any t ≥ 1, for in that case high and low wages are equalized. Who in
the previous generation would have invested in such circumstances?

From now on I will also assume that λ0 ∈ (0, λ̃) as well. There is no big mystery in
making this assumption: it saves having to qualify statements for the initial value of λ.

Lemma 2 Under a competitive equilibrium, there is no date at which a low person creates a
high kid while simultaneously, a high person creates a low kid.

Proof. If a low person creates a high kid, then

u(wt − x) + δV̄t+1 ≥ u(wt) + δV t+1,

or
u(wt) − u(wt − x) ≤ δ[V̄t+1 − V t+1].
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By strict concavity and the fact that λt < λ̃ for all t, we may conclude that

u(w̄t) − u(w̄t − x) < δ[V̄t+1 − V t+1].

But this means that a high person has a strict incentive to create a high kid, and we are done.

A fraction λ is called a steady state if there exists a competitive equilibrium from λ with
λt = λ for all t.

Let w̄ ≡ w̄(λ) and w ≡ w(λ). Note that for the condition above of a steady state to be
satisfied, it is necessary and sufficient that

V̄ = u(w̄ − x) + δV̄ ≥ u(w̄) + δV ,

while
V = u(w) + δV ≥ u(w − x) + δV̄ .

Combining these two expressions, we may conclude that

u(w̄) − u(w̄ − x) ≤ δ(V̄ − V ) ≤ u(w) − u(w − x)

is a necessary and sufficient condition for λ to be a steady state. Combining this expression
for the values of V̄ and V , we see that we have established

Proposition 1 The fraction λ is a steady state if and only if

u(w̄) − u(w̄ − x) ≤ δ

1 − δ
[u(w̄ − x) − u(w)] ≤ u(w) − u(w − x) (1)

Equivalently, the following pair of conditions must hold:

u(w̄) − u(w̄ − x) ≤ δ[u(w̄) − u(w)] (2)

and
u(w) − u(w − x) ≥ δ[u(w̄ − x) − u(w − x)] (3)

What does the set of steady states look like? Note that as λ → λ̃, the middle term of (1)
is negative while the left term is positive. On the other hand, as λ → 0, the middle term goes
to infinity while the left term is bounded above. Because the changes are monotone, there is a
unique λ∗ ∈ (0, λ̃) such that the first inequality in (1) holds with equality. Observe, moreover,
that at λ = λ∗, the second inequality in (1) must hold as well, because of the strict concavity
of the utility function. Thus the set of steady states contains some interval to the left of λ∗,
and must be a subset of (0, λ∗]. But beyond this nothing much more can be said about the set
of steady states. In fact, it need not be connected (why?).

Now we begin the study of non-steady-state dynamics. Our objective will be to prove
that starting from any initial fraction of high people, any equilibrium path must converge to
some steady state. In particular, even if we start from a distribution of income that is equal,
the final distribution of income must involve inequality.

The following simple lemma is crucial to all that follows. It states that at every date, the
lifetime utility of the high (and low) must be equal to the utility they would have received were
their descendants never to switch status. [Note that along the equilibrium path, switching of
status will generally occur, however.]
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Lemma 3 Let {w̄t, wt, λt}∞
t=0 be a competitive equilibrium. Then for each date t,

V̄t =
∞∑

s=t

δs−tu(w̄s − x) (4)

and

V t =
∞∑

s=t

δs−tu(ws). (5)

Proof. It suffices to show that for each t ≥ 0,

V̄t = u(w̄t − x) + δV̄t+1

and
V t = u(wt) + δV t+1.

To prove this, apply Lemmas 1 and 2. By Lemma 1 and our restriction on λ0, λt ∈ (0, λ̃) for
all t ≥ 0. Now using Lemma 2, we may conclude that at all dates, some of the high people
stay high, while some of the low people stay low. This is enough to establish the result.

Thus along any competitive equilibrium, no person will ever want to strictly change his
actions, though it may well be the case that he strictly prefers to stay where he is. We may
use Lemma 3 to write this condition as

∞∑

s=t

δs−tu(w̄s − x) ≥ u(w̄t) +
∞∑

s=t+1
δs−tu(ws),

or equivalently, as

u(w̄t) − u(w̄t − x) ≤
∞∑

s=t+1
δs−t[u(w̄s − x) − u(ws)], (6)

with equality holding whenever a switch from “high” to “low” does occur along the equilibrium
path. Likewise, we see that for the currently low,

∞∑

s=t

δs−tu(ws) ≥ u(wt − x) +
∞∑

s=t+1
δs−tu(w̄s − x),

or equivalently,

u(wt) − u(wt − x) ≥
∞∑

s=t+1
δs−t[u(w̄s − x) − u(ws)], (7)

with equality holding whenever a switch from “low” to “high” does occur along the equilibrium
path.

To proceed further, it will be necessary to consider two possible zones in which λ might
lie, when λ is not a steady state. We divide the non-steady state space into two complementary
parts: the first subset, which we denote by A, is the one in which the first inequality of (1),
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or equivalently, (2), fails. The second subset, which we denote by B, is the one in which the
second inequality of (1), or equivalently, (3), fails. Note that A and B are disjoint because
by the strict concavity of u, both these inequalities cannot simultaneously fail. Indeed, using
the construction of the steady state set described earlier, it should be clear that A = (λ∗, λ̃)
(assuming that we restrict attention to λ ∈ (0, λ̃)), and B is some subset of the interval (0, λ∗).

In what follows, we relate the dynamics of λ to membership in one of the sets A and B.

Lemma 4 If λt > λt+1, then λt ∈ A and λt+1 = λt+2.
If λt < λt+1, then λt ∈ B and λt+1 ≤ λt+2.

Warning. Note that the two statements in the lemma are not symmetric. The lack of sym-
metry will become even clearer later.
Proof of Lemma 4. We begin by establishing the first part of the first statement. Because
λt > λt+1, (6) must hold with equality, and we have

u(w̄t) − u(w̄t − x) = δ[u(w̄t+1 − x) − u(wt+1)] + δ2M (8)

where M ≡ ∑∞
s=t+2 δs−(t+2)[u(w̄s − x) − u(ws)]. Using (6) for period t + 1, we see that

u(w̄t+1) − u(w̄t+1 − x) ≤ δM. (9)

Combining (8) and (9), we see that

u(w̄t) − u(w̄t − x) ≥ δ[u(w̄t+1) − u(wt+1)].

Because λt > λt+1, we see that w̄t+1 > w̄t and wt+1 < wt. Therefore

u(w̄t) − u(w̄t − x) > δ[u(w̄t) − u(wt)],

which shows that λt ∈ A.
The proof of the first part of the second statement is completely parallel, but because (as

noted above) there is an asymmetry lurking here it will be useful to simply retrace these steps
and convince ourselves that they indeed go through.

For this part, λt < λt+1, so that (7) must hold with equality, and we have

u(wt) − u(wt − x) = δ[u(w̄t+1 − x) − u(wt+1)] + δ2M (10)

where M is defined just as before. Using (7) for period t + 1, we see that

u(wt+1) − u(wt+1 − x) ≥ δM. (11)

Combining (10) and (11), we see that

u(wt) − u(wt − x) ≤ δ[u(w̄t+1 − x) − u(wt+1 − x)].

Because λt < λt+1, we see that w̄t+1 < w̄t and wt+1 > wt. Therefore

u(wt) − u(wt − x) < δ[u(w̄t − x) − u(wt − x)],
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which shows that λt ∈ B.
Next, we establish the second part of the first statement: that λt+1 = λt+2. Suppose this

is false. Then there are two cases to consider.
Case 1: λt+1 < λt+2. Then at date t + 1, (7) must hold with equality, so that

u(wt+1) − u(wt+1 − x) = δM. (12)

Combining (8) and (12), we see that

u(w̄t) − u(w̄t − x) = δ[u(w̄t+1 − x) − u(wt+1 − x)]. (13)

Because λt > λt+1, we have w̄t > wt > wt+1. Consequently, by the strict concavity of the
utility function,

u(w̄t) − u(w̄t − x) < u(wt) − u(wt − x) < u(wt+1) − u(wt+1 − x). (14)

Combining (13) and (14), we may conclude that

u(wt+1) − u(wt+1 − x) > δ[u(w̄t+1 − x) − u(wt+1 − x)].

But this means that λt+1 satisfies (3), or equivalently, that λt+1 
∈ B. On the other hand, we
have λt+1 < λt+2, and this contradicts the first part of the second statement of the lemma,
which we have already proved.
Case 2: λt+1 > λt+2. Then at date t + 1, (6) must hold with equality, so that

u(w̄t+1) − u(w̄t+1 − x) = δM. (15)

Combining (8) and (15), we see that

u(w̄t) − u(w̄t − x) = δ[u(w̄t+1) − u(wt+1)]. (16)

Because λt > λt+1, we have w̄t < w̄t+1. Consequently, by the strict concavity of the utility
function,

u(w̄t) − u(w̄t − x) > u(w̄t+1) − u(w̄t+1 − x). (17)

Combining (16) and (17), we may conclude that

u(w̄t+1) − u(w̄t+1 − x) < δ[u(w̄t+1) − u(wt+1)].

But this means that λt+1 satisfies (2), or equivalently, that λt+1 
∈ A. On the other hand, we
have λt+1 > λt+2, and this contradicts the first part of the first statement of the lemma, which
we have already proved.

Finally, we prove the second part of the second statement: that λt+1 ≤ λt+2. Suppose
this is false. Then λt+1 > λt+2. Thus at date t + 1, (6) must hold with equality, so that

u(w̄t+1) − u(w̄t+1 − x) = δM. (18)

6



Combining (10) and (18), we see that

u(wt) − u(wt − x) = δ[u(w̄t+1) − u(wt+1)]. (19)

Because λt < λt+1, we have wt < wt+1 ≤ w̄t+1. Consequently, by the strict concavity of the
utility function,

u(wt) − u(wt − x) > u(wt+1) − u(wt+1 − x) ≥ u(w̄t+1) − u(w̄t+1 − x). (20)

Combining (19) and (20), we may conclude that

u(w̄t+1) − u(w̄t+1 − x) < δ[u(w̄t+1) − u(wt+1)].

But this means that λt+1 satisfies (2), or equivalently, that λt+1 
∈ A. On the other hand, we
have λt+1 > λt+2, and this contradicts the first part of the first statement of the lemma, which
we have already proved.

Lemma 5 If λ is a steady state, then there is a unique competitive equilibrium from λ0 = λ,
given by λt = λ for all t.

Proof. Immediate from Lemma 4. For if the competitive equilibrium is nonstationary, then it
must be the case that either λ ∈ A or λ ∈ B (simply examine the first date that λt 
= λt+1 and
apply Lemma 4). In either of these cases, λ cannot be a steady state.

A converse to this result is the subject of the next lemma.

Lemma 6 If at any date t along a competitive equilibrium we have λt = λt+1, then λ ≡ λt =
λt+1 is a steady state, and in particular λs = λt for all s ≥ t.

Proof. Suppose not. Then by Lemma 5, it must be the case that either λ ∈ A or λ ∈ B.

Case 1: λ ∈ A. In this case, renumbering time periods if necessary, we must have λt = λt+1 >
λt+2 (using Lemma 4). Thus (6) must hold with equality at date t + 1, so that

u(w̄t+1) − u(w̄t+1 − x) = δM, (21)

while at date t
u(w̄t) − u(w̄t − x) ≤ δ[u(w̄t+1 − x) − u(wt+1)] + δ2M (22)

Combining (21) and (22), we see that

u(w̄t) − u(w̄t − x) ≤ δ[u(w̄t+1) − u(wt+1)]
= δ[u(w̄t) − u(wt)].

But this means that λ 
∈ A, which is a contradiction.

Case 2: λ ∈ B. In this case, renumbering time periods if necessary, we must have λt = λt+1 <
λt+2 (using Lemma 4). Thus (7) must hold with equality at date t + 1, so that

u(wt+1) − u(wt+1 − x) = δM, (23)
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while at date t
u(wt) − u(wt − x) ≥ δ[u(w̄t+1 − x) − u(wt+1)] + δ2M (24)

Combining (23) and (24), we see that

u(wt) − u(wt − x) ≥ δ[u(w̄t+1 − x) − u(wt+1 − x)]
= δ[u(w̄t − x) − u(wt − x)].

But this means that λ 
∈ B, which is a contradiction.

So neither Case 1 nor Case 2 is possible. This means that λ is a steady state. Applying
Lemma 5, we see that there is a unique stationary equilibrium, and we are done.

We may use these lemmas to arrive at our main theorem.

Proposition 2 If λ ∈ A, then there exists a unique competitive equilibrium from λ which goes
to the steady state in one period: λ = λ0 > λ1 = λt for all t ≥ 1.
If λ ∈ B, then there exists a unique competitive equilibrium in which the proportion of high
people increases strictly in every period, and converges to some steady state: λt < λt+1 for all
t ≥ 0.
If λ is a steady state, then there is a unique competitive equilibrium from λ0 = λ, given by
λt = λ for all t.

Proof. To prove the first part of the proposition, note that if there is a competitive equilib-
rium, then by Lemmas 4 and 6, it must have the property discussed in the statement of the
proposition. To check existence and uniqueness, define λ1 by

u(w̄(λ)) − u(w̄(λ) − x) ≡ δ(1 − δ)−1[u(w̄(λ1) − x) − u(w(λ1))].

It is easy to see that λ1 is well-defined and unique, and that λ1 < λ. Now check that this
gives us a competitive equilibrium, and that there is no other way of constructing an path that
satisfies both (6) and (7).

To prove the second part of the proposition, we first need to strengthen the implication
of Lemma 4 in this case. It will be enough to strengthen the second part of the statement of
that lemma to: If λt < λt+1, then λt ∈ B and λt+1 < λt+2.

All of this is proved except for the stronger implication: λt+1 < λt+2. To establish
this, suppose that the assertion is false. Then, using Lemma 4, it must be the case that
λt < λt+1 = λt+2. By Lemma 6, we have λt+1 = λs for all s ≥ t + 1. Also, (7) must hold with
equality at date t. Combining these two pieces of information, we see that

u(wt) − u(wt − x) = δ(1 − δ)−1[u(w̄t+1 − x) − u(wt+1)].

Now λt < λt+1, so that wt < wt+1. By the strict concavity of u and the equality above,

u(wt+1) − u(wt+1 − x) < δ(1 − δ)−1[u(w̄t+1 − x) − u(wt+1)].

But this means that λt+1 ∈ B as well. But then by Lemma 6, it cannot be the case that
λt+1 = λt+2.

8



To prove existence and uniqueness from this initial condition, define recursively for each
λt, the value of λt+1 that solves the equation

u(wt) − u(wt − x) ≡ δ[u(w̄t+1 − x) − u(wt+1 − x)], (25)

where w̄t+1 and wt+1 are to be interpreted as the wages corresponding to λt+1.
To see that this is uniquely defined, note that

u(w0) − u(w0 − x) < δ[u(w̄0 − x) − u(w0 − x)],

because λ0 ∈ B. So there is a unique λ1 that solves (25) for t = 0. Note that λ1 must exceed
λ0. And this will be so whenever λt ∈ B. So it only remains to show that if λt ∈ B, then
λt+1 ∈ B as well. To see thus simply use the fact that λt+1 > λt, which implies that wt+1 > wt.
Using this information in (25) along with the strict concavity of u, we are done.

The trick to understanding that this is the only way to construct a competitive equilib-
rium from this initial condition, because (7) will have to hold with equality.

Finally, part 3 of the proposition is already established.
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