
“Contractual Structure and Wealth Accumulation

Detailed Appendix

In what follows, assumptions [α] and [β] are maintained throughout, though they do not
apply to all the lemmas or propositions. The normalization u(0) = 0 is also employed
without comment. Finally, recall that v∗ is the payoff to the agent under the one-shot
P -optimal contract, and V ∗ ≡ (1− δ)−1v∗.

Lemma 1 In any P -equilibrium, if y ≤ y′, then B(y′)−B(y) ≥ u(y′)− u(y).

Proof. Letting c(y) denote A’s optimal consumption at wealth y, we have B(y) =
u(c(y))+ δV (w(y)), while B(y′) ≥ u(c(y)+ y′ − y)+ δV (w(y)), implying B(y′)−B(y) ≥
u(c(y)+ y′ − y)− u(c(y)) ≥ u(y′)− u(y), the last inequality resulting from the concavity
of u and c(y) ≤ y.

Lemma 2 In any P-equilibrium, V (0) > B(0) > 0.

Proof. Suppose that P selects x = 0 and y = y∗(> 0) from the static optimal contract.
In response to this, A will respond with e ≥ e∗, since B(y) − B(0) ≥ u(y) − u(0) for
all y (by Lemma 1). This will generate a profit for P no smaller than that of the static
optimal contract, so assumption [α] implies that there does exist a feasible and profitable
contract at w = 0. But any such contract must yield the agent strictly positive return
(because either x or y or both must be strictly positive). So V (0) > 0.

But B(0) = u(0)+δV (0) = δV (0). Because V (0) > 0, we conclude that V (0) > B(0).

Lemma 3 Consider a (deterministic) Ramsey problem with exit option V ∗.

(i) If
lim
c→∞[u(c)− cu′(c)] > (1− δ)V ∗, (11)

is violated, then the solution is (for all z):

c(z) = z, B∗(z) = u(z) + δV ∗ (12)

(ii) If, on the other hand, (11) is satisfied, the solution is described as follows. Let T (z)
equal the optimal exit time for an agent with initial wealth z, with T (z) = ∞ if the
agent never exits. There exists an infinite sequence {zk}∞

k=0, with 0 = z0 < z1 <
z2 < · · ·, and z∗ ≡ limk→∞ zk < ∞, such that T (z) = k for z ∈ [zk−1, zk] (with
indifference holding for adjacent values of T at the endpoints), and T (z) = ∞ for
all z ≥ z∗. Moreover, under [β], we have R < z1.
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The associated value function in case (ii) is

B∗(z) =
1− δk
1− δ u

(
(1− δ)z
1− δk

)
+ δkV ∗ for all z ∈ [zk−1, zk]

=
1

1− δu ((1− δ)z) for all z ≥ z∗. (13)

Proof. Consider the related problem of selecting a real number x ∈ [1, 1
1−δ ] to maximize

ψ(x; z) ≡ xu( zx) + [1− (1− δ)x]V ∗.
(Here x corresponds to 1−δk

1−δ , where the exit date k is treated as a continuous variable
in [1,∞). Since it is optimal to smooth consumption perfectly until the exit date, A
will consume uptil the exit date at the steady level of c(z) = z(1−δ)

(1−δk) , thereby running
down wealth to 0 at k, and exiting with V ∗. This generates the value function B(z) =
1−δk

1−δ u(
z(1−δ)
1−δk ) + δkV ∗.)

Notice that

ψx = u( zx)− xu′( zx)
z
x2 − (1− δ)V ∗

= u( zx)− z
xu

′( zx)− (1− δ)V ∗

so the concavity of u implies that ψ is concave in x, for any z.
Note, moreover, that if (11) fails with a strict inequality, then ψx(x; z) < 0 for all x,

so then the optimal value of x = 1, i.e., k = 1. Then A consumes all current wealth and
exits at the next date, implying (i). [It is easily checked the same is the case when (11)
holds as an equality.]

If (11) is satisfied, there exists m such that u(m) − mu′(m) = (1 − δ)V ∗. Define
z̄ = m

1−δ . Then z ≥ z̄ implies z
x ≥ z̄(1 − δ) = m for all x ∈ [1, 1

1−δ ]. Hence ψx(x; z) ≥ 0
for all x, so optimal x = 1

1−δ , or k = ∞. Conversely, z < z̄ implies that ψx( 1
1−δ ; z) < 0,

so it is optimal for the agent to exit at some finite date. In particular, z ≤ m implies
that optimal x = 1 (so that k = 1). And z ∈ (m, m

1−δ ) implies that the agent must exit
at some date k > 1.

To calculate the exact exit date, the concavity of ψ implies that it suffices to look
at the two integer solutions for k generating values of z

x closest to m. Every finite k
will therefore be an optimal exit date for some z, and the exact switch points can be
calculated by the condition of indifference between adjacent exit dates.

Finally, note from [β] that for all z ≤ R,
1
δ
[(1 + δ)u

(
z

1 + δ

)
− u(z)] < v∗,

because (1 + δ)u
(

c
1+δ

)
− u(c) is nondecreasing in c. Rearranging this inequality and
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recalling that V ∗ = (1− δ)−1v∗, we see that

u(z) + δV ∗ > (1 + δ)u
(
z

1 + δ

)
+ δ2V ∗,

which means that exit at date 1 is strictly preferred to exit at date 2. By the concavity
of ψ, it follows that exit at date 1 is uniquely optimal, proving that R < z1.

The reader is reminded that in what follows, a continuous P -equilibrium refers to a
P -equilibrium with continuous ex post value function B.

Lemma 4 For any continuous P -equilibrium, wn be a sequence of wealth levels converging
to ŵ, with corresponding contracts (xn, yn, en) converging to (x̂, ŷ, ê). Then (x̂, ŷ, ê) is
an optimal contract for P at ŵ.

Proof. Recalling that B and D are continuous, this follows from a simple application
of the maximum theorem to the principal’s (constrained) optimization problem.

Lemma 5 For a continuous P-equilibrium and wealth w, suppose that a non-null contract
is offered and V (w) = B(w). Then x(w) < w < y(w). Moreover, for any compact
interval [0, w̄], there exists η > 0 such that (a) x(w) < w − η and (ii) y(w) > w + η,
whenever w ∈ [0, w̄] and a non-null contract is offered with V (w) = B(w).

Proof. We are given that B(w) = V (w) = e(w)B(y(w))+(1−e(w))B(x(w))−D(e(w)).
We first claim that e(w) > 0 (and hence y(w) > x(w)). Otherwise e(w) = 0, and P’s
expected profit is w − f − x(w). Moreover, B(w) = B(x(w)), implying x(w) = w. So P
earns a negative expected profit, a contradiction.

Next we claim that y(w) > w. Otherwise x(w) < y(w) ≤ w, implying V (w) =
e(w)B(y(w)) + (1− e(w))B(x(w))−D(e(w)) < B(w), contradicting (APC).

Finally, suppose x(w) ≥ w. Then y(w) > x(w) ≥ w, and A would obtain an expected
present value utility of at least B(w) upon selecting e = 0. Since D(.) is strictly convex
and e(w) > 0, A must end up with a present value utility that strictly exceeds B(w),
contradicting the property that V (w) = B(w).

Now suppose that the uniform bound does not obtain, say, for part (a). Then we
can find a sequence wn in [0, w̄] such that wn − x(wn) → 0. Note that (PPC) implies
{xn = x(wn), yn = y(wn)} must be bounded, since xn ≤ xn+en(yn−xn) ≤ wn−f+R ≤
w̄−f+R, and yn → ∞ would imply en → 1 and hence xn+en(yn−xn) → ∞. Construct
a subsequence along which (xn, yn, en, wn) converges, say, to (x̂, ŷ, ê, ŵ). Then by Lemma
4, the contract (x̂, ŷ, ê) is optimal for P at ŵ, and x̂ = ŵ, contradicting what we have
already established in the first part of this lemma. A similar argument establishes (b).
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Lemma 6 For any continuous P-equilibrium and any compact interval [0, w̄], there is
ε > 0 such that whenever w ∈ [0, w̄] and a non-null contract is offered, we have e(w) ∈
(ε, 1− ε).
Proof. Consider any sequence wn ∈ [0, w̄] with associated contracts {xn, yn, en}. By the
same argument as in the proof of Lemma 5, {xn, yn} must be bounded. Consequently,
we can extract a subsequence (retaining notation) such that wn → w ∈ [0, w̄] and
{xn, yn, en} → {x, y, e}. By Lemma 4, {x, y, e} is P -optimal at w.

We claim that e cannot be zero. For if it were, it follows from (APC) that x ≥ w. But
this means that (PPC) is violated, a contradiction. Morever, since y and x are bounded,
e cannot be 1, given our assumptions on effort disutility D. Thus limit points with e
equal to 0 or 1 are ruled out, establishing the lemma.

Lemma 7 Consider a P -optimal contract for some continuous B. If (APC) is not bind-
ing at some w, so that V (w) > B(w), then the P -optimal contract has x(w) = 0 and
y(w) < R.

Proof. Suppose that V (w) > B(w). We first claim that the principal’s return condi-
tional on success must be higher than his return conditional on failure; that is,

w +R− y(w) > w − x(w). (14)

For suppose this is false; then P can lower y(w) by a small amount to y′. Because
V (w) > B(w) and because B is continuous, the participation constraint for the agent
does not bite after this (small) change. Moreover, e(w) > 0 otherwise (PPC) would be
violated. Hence the change can be made small enough so that the resulting effort e′

satisfies e(w) ≥ e′ > 0. Consequently,

e′[w +R− y′] + (1− e′)[w − x(w)] > e′[w +R− y(w)] + [1− e′][w − x(w)]
≥ e(w)[w +R− y(w)] + [1− e(w)][w − x(w)],

which contradicts the optimality of the contract {x(w), y(w), e(w)} for the principal.
With (14) in hand, we now claim that x(w) = 0. For suppose x(w) > 0. Then lower

x(w) by a small amount to x′. Because V (w) > B(w) and because B is continuous, the
participation constraint for the agent still does not bite after this change. Moreover, e′

— the effort after this change — is no lower but is still less than 1, as y(w) is finite.
Consequently, using (14) and e′ < 1,

e′[w +R− y(w)] + (1− e′)[w − x′] > e′[w +R− y(w)] + [1− e′][w − x(w)]
≥ e(w)[w +R− y(w)] + [1− e(w)][w − x(w)],

a contradiction.
That y(w) < R now follows from another application of (14) and the fact that

x(w) = 0.
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Lemma 8 If w ≥ R, then V (w) = B(w).

Proof. Suppose not; then V (w) > B(w). By Lemma 7, x(w) = 0 and y(w) < R ≤ w.
But then

V (w) = e(w)B(y(w)) + [1− e(w)]B(x(w))−D(e) < B(y(w)) < B(R) ≤ B(w),

a contradiction to (APC).

Lemma 9 If V (w) > B(w), then V (w) ≥ V ∗.

Proof. By Lemma 7, if V (w) > B(w), then x(w) = 0. So {e(w), y(w)} = (e, y) is chosen
to maximize

e(R− y) (15)

subject to
D′(e) = B(y)−B(0) (16)

and (APC). Define g(y) ≡ B(y) − B(0) and g∗(y) ≡ u(y) − u(0), and then h(e) ≡
g−1 (D′(e)) and h∗(e) ≡ g∗−1 (D′(e)). Note that h and h∗ are well-defined, because B
and B∗ are strictly monotone and continuous. Applying Lemma 1:

h(e) ≤ h∗(e) (17)

and
h(e′)− h(e) ≤ h∗(e′)− h∗(e) (18)

for all e < e′. Moreover, the maximization problem (15) above can be rewritten equiva-
lently as

max
e
e[R− h(e)] (19)

subject to (APC): eD′(e)−D(e) ≥ B(w), where it is understood that the corresponding
value of y will be read off from (16), given e. In this context, recall that the one-shot
P -optimal contract can be identified with the unconstrained solution to

max
e
e[R− h∗(e)]. (20)

Denote by e∗ the solution to this problem.
Let e(w) be a solution to (19). We claim that e(w) ≥ e∗.
Suppose this is false and e(w) < e∗. Setting e = e(w) and noting that e∗ > e implies

that e∗ satisfies (APC) (since e does), it follows that e∗ is feasible in P’s problem of
designing an optimal contract for an agent with w. Hence

e[R− h(e)] ≥ e∗[R− h(e∗)].
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At the same time e∗ is the unconstrained maximizer of (20), which is a strictly concave
function of e. Given that e∗ > e it follows that

e∗[R− h∗(e∗)] > e[R− h∗(e)].

Combining these two inequalities, we see that

e∗[h∗(e∗)− h(e∗)] < e[h∗(e)− h(e)]. (21)

Combine (17) and (21) to conclude that

h∗(e∗)− h∗(e) < h(e∗)− h(e),

but this inequality, together with the assumed e < e∗, contradicts (18). So e(w) ≥ e∗, as
asserted.

Now we can solve out for V (w). Notice that

V (w) = e(w)B(y(w)) + [1− e(w)]B(0)−D(e(w))
= B(0) + [e(w)D′(e(w))−D(e(w))]
= δV (0) + [e(w)D′(e(w))−D(e(w))], (22)

where the second equality uses (16) and the last equality follows simply from the defini-
tion of B. Setting w = 0 in (22), using the fact that V (0) > B(0) (Lemma 2) so that
e(0) ≥ e∗ (as claimed and shown above), and noting that eD′(e)−D(e) is increasing in
e, we conclude that

V (0) = (1− δ)−1[e(0)D′(e(0))−D(e(0))] ≥ (1− δ)−1[e∗D′(e∗)−D(e∗)] = V ∗. (23)

Now consider any w such that V (w) > B(w). With (23) in mind and again using
e(w) ≥ e∗, we may conclude that

V (w) = δV (0) + [e(w)D′(e(w))−D(e(w))] ≥ δV ∗ + [e∗D′(e∗)−D(e∗)] = V ∗,

Therefore V (w) ≥ V ∗ for all w with V (w) > B(w), as claimed.

In what follows, we consider another Ramsey problem with exit, this one more general
than the one described in Lemma 3. Recall that in any equilibrium, we have

B(z) ≡ max
0≤δw≤z

[u(z − δw) + δmax{V (w), B(w)}]. (24)

This induces the following exit problem: for each initial wealth level z, choose an exit
date T (z) ≥ 1 and an exit wealth ι(z) such that after T (z) periods of consumption and
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saving, the agent takes the ‘outside option’ V (ι(z)) > B(ι(z)). If no wealth w with
V (w) > B(w) is ever reached, set T (z) equal to infinity.

Since u is concave and δ = 1
1+r it is optimal to smooth consumption till the exit date.

This means that if T ≤ ∞ denotes the exit date, an optimal sequence of wealths until
exit at wealth w is given by the difference equation

wt+1 = (1/δ)

[
wt − (z − δTw)(1− δ)

1− δT
]
, (25)

where w0 is just z. Note that this is the uniquely optimal policy if u is strictly concave.

Lemma 10 There exists a finite integer M such that for every z ∈ [0, R], exit occurs in
the generalized Ramsey problem at some date T (z) ≤M .

Proof. Consider the special Ramsey problem with exit as described in Lemma 3, with
the exit option set equal to V ∗. Given Lemma 9, it follows that if it is optimal to exit
in the special Ramsey problem, then it will also be optimal to exit in the generalized
Ramsey problem as well (otherwise it is optimal to smooth consumption in perpetuity,
which is dominated by exiting at the next date with a payoff of V ∗). The last statement
in part (ii) of Lemma 3 assures us that under assumption [β], it is optimal to exit in
the special Ramsey problem at date 1, provided z ∈ [0, R]. Hence T (z) < ∞ in the
generalized Ramsey problem.

To obtain a uniform bound, let ε(z) > 0 denote the payoff difference between date
1 exit and indefinite maintenance. Suppose, on the contrary, that T (zk) → ∞ along a
sequence of initial wealths zk ∈ [0, R]. Choose any wealth zk in this sequence with the
property that (defining T = T (zk) and ε = ε(zk)),

δT V̄ < ε,

where V̄ is the (finite) supremum of V over [0, R].1

The agent can always choose an exit time of date 1 by consuming all wealth imme-
diately. This gives a return of u(z) + δV (0). Using Lemma 9,

u(z) + δV (0) ≥ u(z) + δV ∗

≥ Payoff from indefinite maintenance + ε
≥ Payoff from choosing presumed optimal exit date T − δT V̄ + ε
> Payoff from choosing presumed optimal exit date T ,

a contradiction.
1This is finite because whenever V (w) > B(w), we know from (22) that V (w) = δV (0) +

[e(w)D′(e(w)) − D(e(w))] and this is uniformly finite on [0, R]. Whenever V (w) = B(w), it is uniformly
finite on any compact set by the assumed continuity of B.
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Lemma 11 If exit from z ∈ [0, R] occurs in the generalized Ramsey problem at some
wealth ι(z) ≤ z, then exit must occur at date 1.

Proof. Let exit occur at some wealth z′ = ι(z), where z′ ≤ z. It will suffice to prove
that for all T ≥ 2,

δ(1− δT−1)V (z′) >
1− δT
1− δ u

(
(z − δT z′)(1− δ)

1− δT
)

− u(z − δz′), (26)

since it is optimal to hold consumption steady till exit, so that the condition (26) above
is just a sufficient condition for exit at T = 1.

Suppose, on the contrary, that (26) is false. Then

1− δT
1− δ u

(
(z − δT z′)(1− δ)

1− δT
)

− u(z − δz′) ≥ δ(1− δT−1)V (z′). (27)

for some T ≥ 2 at which exit is optimal. Moreover, since the agent could have spent
these T periods running his wealth down to zero and taking V (0) instead, it must be the
case that

1− δT
1− δ u

(
(z − δT z′)(1− δ)

1− δT
)
+ δTV (z′) ≥ 1− δT

1− δ u
(
z(1− δ)
1− δT

)
+ δTV ∗, (28)

where we use Lemma 9 to replace V (0) by V ∗.
We may combine (27) and (28) to eliminate V (z′). Doing so, we see that

1− δT
1− δ u

(
(z − δT z′)(1− δ)

1− δT
)

− u(z − δz′)

−(1− δT )(1− δT−1)
(1− δ)δT−1

[
u

(
z(1− δ)
1− δT

)
− u

(
(z − δT z′)(1− δ)

1− δT
)]

≥ δ(1− δT−1)V ∗. (29)

Differentiation of the LHS of (29) with respect to z′ yields the expression

−δu′
(
(z − δT z′)(1− δ)

1− δT
)
+ δu′(z − δz′),

and this expression is easily checked to be non-positive as long as z′ ≤ z. Thus if we set
z′ = 0 in (29), we may conclude that

1− δT
1− δ u

(
z(1− δ)
1− δT

)
− u(z) ≥ δ(1− δT−1)V ∗.

But this contradicts Assumption [β].
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Lemma 12 If exit from z occurs at some wealth level ι(z) > z in the generalized Ramsey
problem, then for all intervening wealth levels w until exit, both x(w) and y(w) lie in
[0, R] (assuming a non-null contract is offered at those wealths).

Proof. If u is strictly concave, then (25) holds, and it is easy to check from (25) that

If z < z′ ≡ ι(z), then wt < z′ for all 0 < t < T. (30)

A stronger claim — which we make now — is that (30) holds even if u is weakly concave.
To this end, suppose on the contrary that wt+1 ≥ z′ for some date t+1 < T , where T is
the exit date. Because z < z′, we may without loss of generality take t = 0 (simply take
the initial condition to be wt). Then keep in mind that T > 1. Now total payoff in the
Ramsey problem with exit is

U ≡
T−1∑
s=0
δsu(cs) + δTV (z′).

Now consider an alternative wealth policy {w′
s}, in which w′

0 = w0, and w′
s = z′ for

s = 1, . . . , T . This is clearly feasible because w1, which is no less than z′, was feasible
from w0. It is easy to see that the resulting payoff under this policy — call it U ′ —
satisfies

U ′ ≡ u(w0 − δz′) + δ
[
T−1∑
s=1
δs−1u([1− δ]z′) + δT−1V (z′)

]
(31)

which is at least as large as U owing to the smoothing of the intermediate consumption
stream.

However — because T > 1 — the term inside the square brackets of (31) cannot
exceed B(z′). On the other hand, a move to z′ followed by exit in one step is also
feasible, and would yield the payoff

u(w0 − δz′) + δV (z′)

which is strictly higher than U ′ (because V (z′) > B(z′)) and hence also larger than U .
This contradicts the optimality of the original policy.

It follows that every intervening wealth satisfies w < z′ = ι(z) and V (w) = B(w).
Now V (z′) > B(z′), so by the monotonicity of B,

V (z′) > B(z′) ≥ B(w) = V (w). (32)

On the other hand, we know that x(z′) = 0, that y(z′) ≤ R, and that x(w) ≥ 0 (assuming
that a contract is offered at w). So the only way in which (32) can be satisfied is by
having both x(w) and y(w) lie in [0, R].
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In what follows, we focus on the actual evolution of wealths rather than the optimal
saving strategy. Hence we move away from the Ramsey problem, as it does not provide
information concerning the former. Indeed, it is artificial insofar as it refers to planned
wealth levels which may diverge from the actual evolution of wealth in the future owing
to uncertainty in project returns. Every reference to a process of wealths is now (unless
otherwise stated) to the actual wealth evolution of the agent in the P -equilibrium. Notice,
however, that for every end-of-period wealth z, the beginning wealth in the succeeding
period is given exactly by some policy function induced by the artificial Ramsey problem.

Lemma 13 If end-of-period wealth z ∈ [0, R], then the stochastic process of all subsequent
wealths in any continuous P-equilibrium must lie in [0, R] almost surely.

Proof. Consider any z ∈ [0, R]. Let ẑ denote the random variable that describes end-
of-period wealth next period, conditional on z today. Recall that ẑ is determined by the
conjunction of two processes. First, a choice is made for next period’s starting wealth;
call it w1. This is done by following exactly some first-period solution to the artificial
Ramsey problem. Next, a contract may be offered at w1, leading to the random variable
ẑ that describes next period’s end-of-period wealth. If a contract is not offered, then ẑ
is simply equal to w1.

Suppose, first, that exit takes place at date 1. Then V (w1) > B(w1). By Lemma 8,
it must be that w1 < R. Moreover, by Lemma 7, we have x(w1) = 0 and y(w1) < R, so
that ẑ ∈ [0, R] almost surely in this case.

Suppose, next, that exit takes place at some finite time greater than 1 (these are the
only two possibilities: by Lemma 10, finite exit must occur). Then, by Lemma 11, it
must be the case that w1 < ι(z), so that by Lemma 12, both x(w1) and y(w1) lie in [0, R],
if a non-null contract is offered. So ẑ ∈ [0, R] once again. Moreover, since w(z) < R (see
Lemma 8), w1 ∈ [0, R] as well.

Finally, if no contract is offered at w1, then ẑ = w1 and by the same argument as in
the previous paragraph, ẑ ∈ [0, R].

Lemma 14 ¿From any end-of-period wealth z ∈ [0, R], agent wealth must visit 0 infinitely
often (with probability one) in any continuous P-equilibrium.

Proof. For any initial end-of-period wealth z, recall that the policy function (or any
selection from the policy correspondence) of the artificial Ramsey problem gives us next
period’s beginning wealth — say w1 — after which end-of-period wealth ẑ is either w1
(if no contract is offered), or (if a contract is offered) the random variable which takes
values y(w) with probability e(w) and x(w) with probability 1− e(w).

Define S to be the smallest integer greater than M × R/η, where M is given by
Lemma 10 and η is given by Lemma 5. Pick some agent with initial wealth z ∈ [0, R].

10



Consider a sample path in which — over the next S periods — there are successes for
this agent whenever contracts are offered. We claim that the agent’s wealth must visit
some value w for which V (w) > B(w) within these S periods.

Suppose that the claim is false. Then it must be that at any end-of-period wealth zt
along this sample path (0 ≤ t < S), beginning wealth next period must satisfy wt+1 ≥ zt.
[This follows from Lemma 11. If wt+1 < zt, then V (wt+1) > B(wt+1).] It follows that
S cannot contain a subset of more than R/η periods for which a contract is offered. [If
it did, then, by Lemma 5 and the assumption that only successes occur, wealth would
wander beyond [0, R], a contradiction to Lemma 13.] But then, by the definition of S,
it must contain more than a set of M consecutive periods for which the null contract is
optimal.

In this case, wealth simply follows the sequence in the artificial Ramsey problem.
But Lemma 10 assures us that within M periods, a wealth level w will be reached for
which V (w) > B(w). This proves the claim.

Let ι(z) denote the first wealth level for which — following the path described above
for S periods — V (ι(z)) > B(ι(z)). Let C(z) denote the number of times a contract is
offered until the wealth level ι(z) is reached. Consider the event E(z) in which successes
are obtained each time, and the first failure occurs at ι(z). Define q(z) ≡ εC(z)+1, where
ε is given by Lemma 6. Then the probability of the event E(z) is bounded below by
q(z). But E(z) is clearly contained in the event that wealth hits zero starting from z.
We have therefore shown that the probability of this latter event is bounded away from
zero in z (because q(z) ≥ εS).

The lemma follows from this last observation.

Lemma 15 In any continuous P-equilibrium with strictly concave u, w(z1) = z1 for some
z1 > R implies w(z) = z for all z > z1.

Proof. Otherwise there exists z2 > z1 such that exiting at some future date is optimal
at z2, while wealth maintenance is optimal at z1. Hence there exists integer T and z′ ≤ R
such that

B(z2) =
1− δT
1− δ u(

(z2 − δT z′)(1− δ)
1− δT ) + δTV (z′) ≥ u(z2(1− δ))

1− δ (33)

while z′ < R < z1 implies

1− δT
1− δ u(

(z1 − δT z′)(1− δ)
1− δT ) + δTV (z′) ≤ u(z1(1− δ))

1− δ . (34)

This contradicts the fact that 1−δT

1−δ u(
(z−δT z′)(1−δ)

1−δT )− u(z(1−δ))
1−δ is strictly decreasing in z,

by the strict concavity of u.
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Lemma 16 In any continuous P-equilibrium with strictly concave u, w(z) ≤ z for all
z > R.

Proof. We know that either an agent will smooth wealth indefinitely or (by virtue
of Lemma 8) will plan to exit at some wealth not exceeding R. In the latter case,
strict concavity of u implies that (25) holds, and wealth approaches the exit wealth
monotonically over time, so w(z) < z.

Lemma 17 Assume that u is strictly concave and

lim
c→∞[u(c)− cu′(c))] > u(R). (35)

Then, in any continuous P-equilibrium, there exists z∗ ∈ (R,∞) such that z > z∗ implies
w(z) = z and z ∈ [R, z∗) implies w(z) < z.

Proof. The optimality of nonmaintenance of wealth at z > R implies the existence of
T and exit wealth z′ ≤ R such that

1− δT
1− δ u(

(z − δT z′)(1− δ)
1− δT )− u(z(1− δ))

1− δ + δTV (z′) ≥ 0. (36)

Since z′ ≥ 0, this requires

1
1− δ [(1− δT )u(z(1− δ)

1− δT )− u(z(1− δ))] + δTV (z′) ≥ 0. (37)

But the concavity of u implies that

(1− δT )u(z(1− δ)
1− δT )− u(z(1− δ)) ≤ δT [z(1− δ)u′(z(1− δ))− u(z(1− δ)] (38)

Combining (37) and (38), we conclude that

(1− δ)V (z′) ≥ u(z(1− δ))− z(1− δ)u′(z(1− δ)). (39)

Now we know that V (z′) > B(z′) (by the definition of an exit wealth), and for such
wealths w we know that x(w) = 0 and y(w) ≤ R (Lemma 7). Consequently, V (z′)
cannot exceed (1− δ)−1u(R). Using this information in (39), it follows that a necessary
condition for nonmaintenance is

u(R) ≥ u(z(1− δ))− z(1− δ)u′(z(1− δ)).

Using (35) and the fact that u(c)− cu′(c) is increasing in c, define z∗∗ such that equality
holds in the expression above. Then w(z) = z for all z > z∗∗. On the other hand,
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w(z) < z for z in a (right) neighborhood of R, since assumption [β] ensures that exit
is optimal in the Ramsey problem for such a neighborhood of R. Hence there exists
z∗ ∈ (R, z∗∗] defined by inf{z|w(z) = z} such that it is optimal for the agent to maintain
wealth above z∗ and decumulate below, this very last observation being a consequence
of Lemma 15.

Proof of Proposition 1. Part (i) follows from Lemmas 2 and 8. Part (ii) follows from
Lemmas 15, 16 and 17. Part (iii) follows from Lemmas 13 and 14.

Lemma 18 Consider any continuous P-equilibrium and any w̄ < ∞. Then there exists
κ > 0 such that for any initial wealth w0 ∈ [R, w̄) not in W, wt enters [0, R] or the set W
at some date with probability at least κ. In particular, if w0 < z

∗ then, wt enters [0, R]
at some date t with probability at least κ.

Proof. Since w0 is not in W, either a contract is offered at w0, or w0 < z
∗ and a contract

is not offered at w0. Consider the event that a failure results whenever a contract is offered
and the agent’s wealth exceeds R. Note that in such an event the agent’s wealth falls
monotonically (conditional on wealth exceeding R and not entering W), by virtue of the
description of the agent’s saving behavior (if a contract is not offered then wealth must
lie below z∗, in which case the agent’s starting wealth in the next period is smaller) and
given Lemmas 5 and 8 (in case a contract is offered failure implies the agent’s wealth
drops from the beginning to end of the period). Moreover, in this event wealth falls by
at least η every time a contract is offered. If the number of times a contract is offered
exceeds K ≡ w̄−R

η +1, the agent’s wealth must — at some time — fall below R. Note also
that if a contract is not offered at some intervening wealth less than z∗, his wealth falls
deterministically until such time that it either drops below R or arrives at a level where
a contract is offered. Hence with probability at least κ ≡ εK , where ε is the uniform
lower bound on the probability of failure given by Lemma 6, the agent’s wealth must
eventually either fall below R or enter W.

Finally, note that if w0 < z
∗, notice that exactly the same event can be constructed

to yield the second part of the lemma.

Lemma 19 Consider any continuous P-equilibrium and an unbounded sequence of wealth
levels wn → ∞ for each of which a feasible contract exists. Suppose also that u is strictly
concave and z∗ < ∞. Then there exists W̄ > z∗ and a number τ > 0 such that for any
w > W̄ :

(i) x(w) > z∗

(ii) e(w) ≥ e ≡ R
f

13



(iii) e(w)y(w) + [1− e(w)]x(w) ≥ w + τ .

Proof. If (i) is false, we can construct a sequence wn → ∞ such that xn = x(wn) ≤ z∗.
Then yn → ∞, otherwise (APC) will be violated for large enough n. So D′(en) =
B(yn) − B(xn) → ∞, and en → 1. Let zn ≡ enyn + (1 − en)xn. Then for large n,
zn > z∗, and

(1− en)[B(zn)−B(xn)] + en[B(zn)−B(yn)] ≥ (1− en)[B(zn)−B(z∗)] + en[B(zn)−B(yn)]
≥ (1− en)B′(zn)(zn − z∗) + enB′(zn)(zn − yn)
= B′(zn)[(1− en)(zn − z∗) + en(zn − yn)]

the second inequality utilising the fact that the agent maintains wealth above z∗ so B is
concave over this range. Now note that

lim
n
[(1− en)(zn − z∗) + en(zn − yn)] = − lim

n
(1− en)(z∗ − xn) = 0

since en → 1. So

lim
n
(1− en)[B(zn)−B(xn)] + en[B(zn)−B(yn)] ≥ 0.

Since (1− en)B(xn) + en)B(yn) = B(wn) +D(en), it follows that

lim
n
[B(zn)−B(wn)−D(en)] ≥ 0.

Moreover, limnD(en) = ∞, so

lim
n
[B(zn)−B(wn)] = ∞,

implying
lim
n
[zn − wn] = ∞.

Then P’s expected profit which is bounded above by wn − zn − f + enR, must converge
to −∞, a contradiction.

To establish (ii), utilize (i) and the strict concavity of B above z∗ to infer that

B(e(w)y(w) + (1− e(w))x(w)) > e(w)B(y(w)) + (1− e(w))B(x(w))
= B(w) +D(e(w))

≥ B(w)

so that
e(w)y(w) + (1− e(w))x(w) > w.
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Hence e(w) < e implies that P’s profit

w − e(w)y(w)− (1− e(w))x(w)− f + e(w)R < 0.

Finally, (iii) follows from the fact that

B(e(w)y(w) + (1− e(w))x(w)) ≥ B(w) +D(e)
which completes the proof.

Proof of Proposition 2. By the first part of Lemma 18, the probability of entering
either W or the poverty trap is bounded away from zero over any compact interval of
initial wealths of the form [0, w̄]. By the second part of that lemma, the probability of
entering the poverty trap is bounded away from zero if initial wealth is less than z∗.

To complete the proof of the proposition, it suffices to prove that the only remaining
limit event is one in which wealth goes to infinity, and that this has positive probability
whenever initial wealth w exceeds supW.

To this end, we make the following claim: there exists w∗ > 0 and θ > 0 such that if
w ≥ w∗, then Prob(wt → ∞) ≥ θ.

To prove this claim, pick any w ≥ w̄, where w̄ is given by Lemma 19, and consider
the events

Λ(w) ≡ {w0 = w; wt ≥ w̄ for all t}
and

Γ(w) ≡ {w0 = w; wt → ∞}.
Using Lemma 19, it is easy to verify that

Prob[Γ(w)|Λ(w)] = 1 for all w > w̄. (40)

The reason for this is that to the right of w̄, the process is akin to a Markov process in
which, for every w, there are two possible continuation values for end-of-period wealth.
The expected value exceeds w by some amount bounded away from zero (see Lemma 19,
part (iii)). Moreover, the probability of the success wealth is also bounded away from
zero (see part (ii) of that Lemma). Finally, since all wealths lie above z∗ (part (i) of
Lemma 19), next period’s starting wealth equals this period’s ending wealth. Standard
arguments then show that conditional on staying above w̄, the process must converge to
infinity almost surely, which is exactly (40).

The same argument actually reveals something stronger:that if w is large enough
(and sufficiently larger than w̄), the process will stay above w̄ forever with probability
that is bounded away from zero.2 In other words, there exists w∗ > 0 and ε > 0 such
that for all w ≥ w∗,

Prob[Λ(w)] ≥ ε. (41)
2The formal proof of this result requires a simple coupling argument which we omit.
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Combining (40) and (41), we may conclude that for all w ≥ w∗,

Prob[Γ(w)] ≥ ε. (42)

Next, observe that starting from any wealth w > supW, it is possible to hit a starting
wealth that exceeds w∗ with probability bounded away from zero (take η as given in
Lemma 5, and simply look at the event in which K successes occur, where K is the
smallest integer exceeding [w∗ − supW]/η). It follows (applying (42)) that there exists
ε′ > 0 such that for all w > supW,

Prob[w0 = w; wt → ∞] ≥ ε′.
Combining this observation with the fact that over any compact interval, the probability
of entering W or the poverty trap is bounded away from zero, the proof of the proposition
is complete.

Lemma 20 If [β] holds, then e(0) = e∗ and y(0) = y∗ maximizes e[R − y] subject to
D′(e) = max{B∗(y)−B∗(0), 0} and y ≥ 0, where B∗ denotes the ex post value function
in the Ramsey problem with exit option V ∗.

Proof. Note that we can restrict the range of feasible values of y to [0, R], since any y > R
is strictly dominated by y = R. By Lemma 3, part (ii), it follows that y < z1. That
is, B∗(y) = u(y) + δV (0) = u(y) + B∗(0). So B∗(y) − B∗(0) = u(y), and the problem
reduces to the static optimal contracting problem.

Proof of Proposition 3. Lemma 3 describes the solution B∗ to the Ramsey problem
with exit option V ∗. Assuming for the moment that B∗ will be the ex post value function
under the constructed P -equilibrium, it should be clear — from Lemma 5 itself — that
(ii) and (iii) of the proposition are immediately satisfied.

By definition, B∗ satisfies the functional equation

B∗(z) = max
0≤δw≤z

[u(z) + δmax{V ∗, B∗(w)}].

Thus — if B∗(z) is to be an equilibrium — it must be that the ex ante value function
satisfies

V (w) = max{V ∗, B∗(w)}. (43)

Part (i) of the proposition would follow right away from (43), and part (iv) would only
require the additional assistance of Lemma 7.

So all that remains to be proved is that if the principal does take the value function
B∗ as given to solve his constrained optimization problem, then indeed, the resulting ex
ante value function satisfies (43).
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To this end, define w∗ by B∗(w∗) ≡ V ∗. It is easy to see that w∗ is well-defined and
unique. First, consider w ≤ w∗. We claim that neither (APC) nor (PPC) binds in the
principal’s problem. To see this, drop these two constraints in the maximization problem.
Then the problem reduces to that considered in Lemma 20 with x = 0. Moreover, the
resulting solution automatically satisfies both (APC) and (PPC). This proves the claim.
So invoking Lemma 20 yet again, we see that V (w) = V ∗ for all w ≤ w∗.

Next, consider w > w∗. If there is no feasible non-null contract, then V (w) = B∗(w).
So suppose that there is a feasible non-null contract. We claim that (APC) must bind
in any optimal contract.

Suppose not, so that V (w) > B∗(w) for some w > w∗. Then by Lemma 7, x(w) = 0
and y(w) < R. Moreover, given that (APC) does not bind, this is exactly the problem
described in Lemma 20. But the solution to this will violate the APC, as w > w∗

by hypothesis. Hence it must be the case that V (w) = B∗(w) for all w > w∗. This
establishes the claim, and completes the proof of the proposition.

Lemma 21 In any A-equilibrium, PPC binds at every wealth level w.

Proof. Suppose this is false at w. Then a non-null contract is offered there. If B is
continuous either at y(w) or at x(w), reduce the transfer to P at whichever state happens
to be a continuity point of B. For a sufficiently small transfer, the corresponding effort
change induced will be small, so the breakeven constraint will be preserved. The variation
will increase A’s present value utility, a contradiction.

Next, suppose that B is not continuous at either y or x. Then there are three
possibilities: (a) R > y(w)−x(w), (b) R = y(w)−x(w), and (c) R < y(w)−x(w). If (a)
holds, increase y slightly in a way that preserves the inequality R > y(w) − x(w). The
agent’s effort cannot fall in response, so (PPC) will continue to be respected. Then A’s
present value utility increases, a contradiction. In case (c) the reverse argument works:
the transfer in the unsuccessful state can be reduced slightly to effect an improvement.
In case (b), both y and x can be raised in step, so as to preserve the equality of R with
y−x. Then any change in effort does not affect (PPC), while A is rendered better off.

Lemma 22 In any A-equilibrium V is strictly increasing.

Proof. Obviously V is nondecreasing. Suppose there exist w1, w2 with w2 > w1 such
that V (w2) = V (w1). Then {x(w1), y(w1), e(w1)} is feasible at w2, and hence must also
be optimal at w2. But here (PPC) does not bind, which contradicts Lemma 21.

Proof of Proposition 4. Consider part (i). We divide the proof into three cases: (a)
R > y − x; (b) R < y − x; (c) R = y − x.
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Case (a): Take any positive ε < e[R − (y − x)], where e denotes the effort assigned
at w. Construct a contract (ỹ = y + ε

e , x̃ = x), and let ẽ denote the associated effort
response. Then by construction PPC is satisfied at wealth w + ε by the new contract
(ỹ, x̃), if the agent were to continue to select effort e. Since B is strictly increasing,
the agent’s optimal effort response ẽ ≥ e. Given R > ỹ − x̃, PPC must continue to be
satisfied at ẽ. Hence the new contract is feasible at wealth w + ε. Since the effort e is
still available to the agent,

V (w + ε) ≥ eB(ỹ) + (1− e)B(x̃)−D(e) (44)

Note that B(ỹ)−B(y) ≥ u(cs + ε
e)− u(cs) if cs ≡ c(y) since it is always feasible for the

agent to entirely consume any increment in end-of-period wealth. Hence

V (w + ε)− V (w) ≥ e[u(cs +
ε

e
)− u(cs)]

≥ εu′(cs +
ε

e
)

≥ εu′(max{cs, cf}+ ε
e
) (45)

where (cs, cf ) denotes (c(y), c(x)). The result then follows upon dividing through and
taking limits with respect to ε.

Case (b): Reverse the argument of the preceding case, and distribute a wealth increase
entirely to the unsuccessful rather than successful state to obtain the same conclusion.

Case (c): For arbitrary positive ε, construct the new contract (ỹ = y + ε, x̃ = x+ ε),
which will be feasible at wealth w+ ε if the agent continues to select e. It will be feasible
even if he were to change his effort, since R = y − x. Using similar reasoning to that
used in case (a) above:

V (w + ε)− V (w) ≥ [e{u(cs + ε)− u(cs)}+ (1− e){u(cf + ε)− u(cf )
≥ ε[eu′(cs + ε) + (1− e)u′(cf + ε)]
≥ εu′(max{cs, cf}+ ε). (46)

Now turn to part (ii). By assumption,

V (w) = eB(y) + (1− e)B(x)−D(e) (47)

where B is right-continuous at y = y(w) and x = x(w), with e denoting e(w). Then for
small enough ε > 0, there exist positive incremental payments ∆y(ε),∆x(ε) that solve
the following two equations:

e∆y + (1− e)∆x = ε

B(y +∆y)−B(y) = B(x+∆x)−B(x)
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Moreover, ∆y(ε) and ∆x(ε) both tend to 0 as ε→ 0+, and so does ψ(ε) ≡ B(y+∆y(ε))−
B(y). By construction, the contract y+∆y(ε), x+∆x(ε) elicits the same effort response
e as the previous contract; hence it is feasible at wealth w + ε. Therefore:

V (w + ε)− V (w) ≥ ψ(ε). (48)

Since B(z +∆)−B(z) ≥ u(c(z) + ∆)− u(c(z)), it follows that for z = y, x:

lim
ε→0+

[ψ(ε)−∆z(ε)u′(c(z))] ≥ 0. (49)

Weighting inequality (49) by the probability of the corresponding outcomes and adding
across the two states, it follows that

lim
ε→0+

[ψ(ε)− θ−1ε] ≥ 0 (50)

where θ denotes [e 1
u′(c(y(w(z)))) + (1 − e) 1

u′(c(x(w(z)))) ]. The first inequality in part (ii) of
the proposition then follows from combining (48) and (50).

Finally to establish the second inequality in (ii), note that if this result is false at
some z, c(z) must be positive, so it is feasible for the agent to consume a little bit (ε > 0)
less. This would cause wealth at the following date to be w(z) + ε

δ instead of w(z). It
must therefore be the case that for every small ε > 0:

u(c(z))− u(c(z)− ε) ≥ δ[V (w(z) + ε
δ
)− V (w(z))] (51)

Taking limits with respect to ε, and using the first inequality in (ii) (which we have
already established), we obtain a contradiction.

Proof of Proposition 5. Suppose there is an equilibrium with a strict poverty trap,
which requires that w(y(0)) = 0 = w(x(0)). If u is strictly concave, a standard revealed
preference argument implies that w(.) must be nondecreasing. We also know that y∗ ≡
y(0) > x∗ ≡ x(0) is necessary for the agent to exert effort and thus satisfy PPC. Hence
w(z) = 0 and B(z) = u(z) + δV (0) for all z ∈ [0, y∗]. So B is differentiable at x∗.

If B is right-differentiable at y∗, then using u′(y∗) to denote the right-derivative at
y∗, (10) of Proposition 4 implies that 1

u′(y∗) ≤ [e(0) 1
u′(y∗) + (1 − e(0)) 1

u′(x∗) ] upon using
the hypothesis that c(y∗)− y∗ = c(x∗)−x∗ = 0. Since 1

u′ is strictly increasing, and e less
than 1 (otherwise (PPC) will be violated), this inequality contradicts y∗ > x∗.

If B is not right-differentiable at y∗, then note that the rate of increase of B at y∗

is bounded below by u′(y∗), since it is feasible for the agent to entirely consume all
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incremental wealth. Now modify the proof of Proposition 4 to infer that the inequality
in (10) must be strict at y∗, which will again generate a contradiction.3

Lemma 23 In any A-equilibrium, let Ω denote the set of wealth levels for which a non-
null contract is offered. Then

(i) if either Ω is bounded or u′(∞) > 0, infw∈Ω e(w) > 0.

(ii) if Ω is bounded, supw∈Ω e(w) < 1.

Proof. Suppose that (i) is false. Then there is a sequence wn and corresponding nonnull
contracts (xn, yn, en) with en → 0. First we claim that yn − xn → 0. To see this, use the
(EIC) to obtain

D′(en) = B(yn)−B(xn) ≥ u(yn)− u(xn) ≥ u′(yn)(yn − xn),

and now observe that in either of the hypotheses underlying (i) of the lemma, infn u′(yn) >
0. The claim now follows from the fact that D′(e) → 0 as e→ 0.

Now, (PPC) tells us that for all n, wn−xn ≥ f+en(yn−xn−R). Because yn−xn → 0,
it follows that there exists θ > 0 such that for all n sufficiently large, wn − xn ≥ θ > 0.
Once again using the fact that yn − xn → 0, we may conclude that wn − yn > 0 for all
n sufficiently large. That is, both xn and yn are strictly less than wn for n large, which
must violate (APC).

If (ii) is false we can find a sequence of wealths wn → w and corresponding feasible
contracts (yn, xn, en) in which PPC binds at every n, with en → 1, so D′(en) = B(yn)−
B(xn) → ∞, which requires limn yn = ∞. Since PPC binds for each n (Lemma 21), we
have wn−f+en[R−yn]−(1−en)xn = 0. This implies that limnwn ≥ f−R+limn yn = ∞,
contradicting the boundedness of Ω.

Proof of Proposition 6. Since u′(∞) > 0, Proposition 4 implies that 1
u′(ct) forms a

submartingale in any right-continuous A-equilibrium, where ct denotes the consumption
of the agent at date t. Hence 1

u′(ct) converges almost surely. Since u is strictly concave,
this implies that ct converges almost surely to a (possibly infinite valued) random variable
c̃.

3If R ≤ y∗ − x∗ then note that the reasoning employed in the proof of Proposition 4 implies that the
rate of increase of V at zero wealth is strictly greater than u′(x∗), since at least part of the incremental
wealth can be distributed to the agent in the unsuccessful state. And if R > y∗ − x∗, the incremental
distributions ∆y, ∆x constructed in the proof of part (ii) of Proposition 4 on the assumption that B
is right-continuous at y∗ with a slope bounded below by u′(y∗), will be feasible even if B is not right-
continuous at y∗. The reason is that the rate of increase of B is then even higher, so in case it is optimal
for the agent to change his effort, he would increase it. Since R > y∗ − x∗ the increased effort cannot
jeopardize (PPC).
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We claim that almost surely c̃ = ∞, implying that zt → ∞, and hence that wt → ∞.4

Because u′(∞) > 0 by assumption, part (i) of Lemma 23 applies. Define m ≡
D′(infw∈Ω e(w)). Then m > 0. Pick any Z < ∞ and integer T > 1

m [B(Z) − B(0)] − 1.
Also select any nonnegative integer q. Define the event

Bq(Z) ≡ {c̃ ∈ [q, q + 1) and zt < Z for all t}

Note that zt−1 < Z implies that wt < W ≡ Z
δ . Applying both parts of Lemma 23, there

are bounds e, ē ∈ (0, 1) for effort levels arising in any contract corresponding to wealth
in [0,W ].

Next, select η ∈ (0, (1−δ)m). Note that since u(0) = 0, continuity and concavity of u
imply that u is uniformly continuous. Hence we can find ε > 0 such that |u(c)−u(c′)| < η
whenever |c− c′| < ε.

Conditional on wealth w at the beginning of date 0, define for any positive integer T
the T -step ahead possible realizations of z, c and w under the given A-equilibrium in the
following manner. Let nt ∈ {s, f} denote the outcome of the project t dates ahead, and
let nt denote the history of project outcomes (nt, nt−1, . . . , n0) between dates 0 and t. The
contract itself specifies z0(n0, w) = y(w) if n0 = s and x(w) otherwise. Using the equilib-
rium consumption strategy this enables us to work out c0(n0, w) = c(z0(n0, w)), and the
wealth at the beginning of next date: w1(n0, w) = δ−1[z0(n0, w)−c0(n0, w)]. Proceeding
in this fashion we can find the T -step-ahead-realizations as functions of the history of
the outcomes of the project between 0 and T : zT (nT , w), cT (nT , w), wT (nT−1, w).

Define C(w, T ) = {c|c = ct(nt, w), t ≤ T}, the set of possible realizations of consump-
tions T -steps ahead.

Then define the event

A(Z) ≡ {et ∈ (e, ē) for all t and lim
t→∞diam C(wt, T ) = 0}

Lemma 24 For any Z and any integer q:

Prob[A(Z)|Bq(Z)] = 1. (52)

Proof. Define the eventA1(Z) ≡ {et ∈ (e, ē) for all t}. Note that Prob[A1(Z)|Bq(Z)] =
1, implying that Prob[A(Z)|Bq(Z)] = Prob[A(Z)|A1(Z) ∩ Bq(Z)]. We claim that this
latter probability equals one.

If this is false then the event E defined by the following conditions (i) - (iv) has positive
probability: (i) diam C(wt, T ) does not converge to 0 as t→ ∞; (ii) et ∈ (e, ē) for all t;
(iii) zt and wt are bounded above by Z and W respectively; and (iv) c̃ ∈ [q, q + 1).

4It is readily verified that zt is bounded if and only if wt is bounded.
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Now (i) implies that there exists ζ > 0 and dates tk, k = 1, 2, . . . such that diam C(wtk , T ) >
ζ for all k. Take any integer κ > max{3

ζ , 1}, and define θ = 1
κ . Then partition [q, q + 1)

into intervals Ip ≡ [q + pθ, q + (p + 1)θ), for p = 0, 1, 2, . . . , κ − 1. Define Ep to be the
event where (i)-(iv) holds, and in addition c̃ ∈ Ip.

The proof is completed by showing that for every p, the event Ep has zero prob-
ability. Condition (i) implies that for any k there exists integer l(k, i) ≤ T and out-
comes nl(k,i)i , i = 1, 2 for the next l(k, i)-steps such that the corresponding consump-
tions ci ≡ cl(k,i)(nl(k,i)i , wtk), i = 1, 2 are at least ζ apart. This implies in turn that
infx∈Ip |ci − x| ≥ ζ

3 for at least one i, since θ < ζ
3 . Since et is bounded away from zero

and one by (ii), every T -step-ahead-outcome sequence has probability bounded away
from zero. Hence conditional on event Ep, almost surely there will be an infinite number
of values of k for which ctk+l(k,i) will equal ci which is at least ζ

3 distant from Ip. This
implies that the event Ep has zero probability.

Lemma 25 For any Z and any q:

Prob[A(Z) ∩ Bq(Z)] = 0. (53)

Proof. The proof rests on the following claim.
Claim. Let st (resp. f t) denote t-step-ahead histories in which the project results in a
success (resp. failure) in every period. Then for any Z and any q:

Prob[B(zT (sT , wt))−B(zT (fT , wt)) > m(T+1) for all t > t∗ for some t∗|A(Z)∩Bq(Z)] = 1
(54)

To prove this claim, consider any path in A(Z) ∩ Bq(Z), and select t∗ such that
diam C(wt, T ) < ε

2 for all t > t∗. Note that along any such path, et > e at all t; hence
the effort incentive constraint implies B(z0(s0, w))−B(z0(f0, w)) > m for all w. So the
inequality

B(zT̃ (sT̃ , wt))−B(zT̃ (f T̃ , wt)) > m(T̃ + 1) (55)

holds for T̃ = 0 for all t. We shall show that if it holds for T̃ − 1 it holds for T̃ as well.
Use zS and zSS to denote zT̃−1(sT̃−1, wt), zT̃ (sT̃ , wt) respectively. Similarly use zF

and zFF to denote zT̃−1(f T̃−1, wt), zT̃ (f T̃ , wt) respectively. And use zFS , zSF to denote
zT̃ (f, sT̃−1, wt) and zT̃ (s, f T̃−1, wt) respectively.

Next note that

V (w(zS))− V (w(zF )) = 1
δ
[B(zS)−B(zF )]− 1

δ
[u(c(zS))− u(c(zF ))]
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By the induction hypothesis B(zS) − B(zF ) > T̃m. Moreover, since t > t∗, we have
ensured by construction that 1

δ [u(c(z
S))−u(c(zF ))] < 1

δη. Since η < (1− δ)m, it follows
that V (w(zS))− V (w(zF )) ≥ 1

δ [T̃m− η] > T̃m. Since

V (w(zS)) = max
e
[eB(zSS) + (1− e)B(zFS)−D(e)]

V (w(zF )) = max
e
[eB(zSF ) + (1− e)B(zFF )−D(e)]

it is evident that V (w(zS))−V (w(zF )) > T̃m implies that max{B(zSS)−B(zSF ), B(zFS)−
B(zFF )} > T̃m. Since B(zSS)−B(zFS) ≥ m and B(zSF )−B(zFF ) ≥ m, it then follows
that B(zSS)−B(zFF ) > (T̃ + 1)m, establishing the Claim.

We are now in a position to prove Lemma 25. Consider the event Bq(Z). Since
zt is bounded above by Z, B(zt) is bounded above by B(Z). Recall that we selected
T > 1

m [B(Z)−B(0)]− 1. The Claim above implies then that

B(zT (sT , wt)) > m(T + 1) +B(zT (fT , wt)) ≥ m(T + 1) +B(0) > B(Z)

i.e., that zT (sT , wt) exceeds the upper bound Z for all t > t∗. Since given event A(Z),
a string of T successive successes will almost surely occur infinitely often, it follows that
the event A(Z) ∩ Bq(Z) has zero probability, and Lemma 25 follows.

Combining the results of Lemmas 24 and 25 it follows that Prob[Bq(Z)] = 0 for any
Z and q. If we define the event Bq ≡ ∪∞

k=1Bq(k) = limk Bq(k) that zt is bounded while
c̃ lies in [q, q + 1), this implies that Prob[Bq] = 0. Hence if consumption converges to a
limit in [q, q + 1), almost surely zt → ∞; i.e., wt → ∞. But in this event Proposition
4 implies that the asymptotic rate of increase of V will be bounded below by u′(q + 1).
On the other hand V is bounded above by the value function Ṽ corresponding to the
case where effort disutility function is identically zero, whose asymptotic rate of increase
equals u′(∞) < u′(q + 1), and we obtain a contradiction. Hence consumption converges
to a limit between q and q + 1 with zero probability. Since this is true for all integers q,
it follows that almost surely consumption will converge to ∞.

Proof of Proposition 7. Proceed in a manner analogous to that in the proof of the
previous proposition. If the result is false, then wealth and consumption is bounded with
probability one, which ensures that 1

u′(ct) again forms a submartingale, so ct converges
almost surely. Lemma 23 ensures that effort is bounded away from zero and one, so all
finite step histories will occur infinitely often with probability one. If the agent receives
a contract at all dates, then the agents wealth must be unbounded with probability one
in order to provide necessary effort incentives at all dates, and we obtain a contradiction.
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