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1 Introduction

In this paper, I study the dynamics of inequality in a model of human capital accu-
mulation with credit constraints. The particular framework I study is possibly the
simplest representation of what might be called an interactive model of wealth
distribution, in which the intertemporal decisions made by individual dynasties
affect macroeconomic variables and so cannot be viewed as isolated dynamic pro-
cesses. Below, I describe the specific setting that I study (Section 3.4 contains
bibliographical references in a broader context).

There are an infinite number of generations, one at each date. In each period t a
member of generation receives an income w, which depends on the proportions of
the population in one of two different skill categories, as well as the skill category
to which this member belongs. This income is partly consumed and partly used in
educating the offspring of this member. Depending on the education level of the
child, the child receives an income next period, and the entire process repeats itself.

Each generation is altruistic – nonpaternalistically so – towards its descendants,
and maximizes the discounted sum of utilities of consumption starting from that
generation onwards.

The following observations are well known. If both skill categories are nec-
essary in production, wages must adjust so as to force separation in educational
choices even if all individuals are ex-ante identical. That is, both skill categories
must be inhabited in every generation. In turn, this necessitates the emergence
of (utility) inequality within generations. There must be individuals in low-pay-
ing professions that involve low training costs, whose parents invested little. And
there must be others in high-paying high-training-cost professions whose parents
invested a lot. In particular, every steady state of this model must exhibit persistent
inequality, not just in current wages, but also in lifetime utilities.

The endogenous emergence of inequality in these models stands in contrast to
an earlier literature on income distribution in which the degree of inequality is a
compromise between the tendency towards convergence – as in any convex model
of intertemporal accumulation – and ongoing stochastic shocks. In the model stud-
ied here, inequality is a necessary outcome even without stochastic shocks. Notice,
too, that a nonconvex model of accumulation, while more conducive to the study
of inequality (initial conditions would determine the subsequent paths), does not
necessitate its emergence. Both the interactive structure (wages determined endog-
enously) as well as the imperfect capital markets assumption are needed to drive
this result.

The arguments above apply to steady states, of which there are many. Indeed,
a continuum of steady states is possible, each fully described by the wage struc-
ture, or at a more primitive level, by the proportion of individuals in the high-skill
category. (All the steady states display inequality.) Which of these are possible
attractors for paths commencing from non-steady-state initial conditions? Do all
such paths converge to some steady state? The purpose of this paper is to address
these questions. In a more general setting than the one here (and I will presently
discuss such settings), these questions must be classified as open. However, the
particular focus of the model allows me to prove that

1. If the economy starts from a steady state skill distribution, it must remain there
in every subsequent period.
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2. If the initial skill proportion is smaller than some steady state skill proportion,
the economy must climb monotonically to the nearest steady state proportion
that exceeds the initial proportion.

3. If the initial skill proportion is larger than every steady state skill proportion,
convergence to a steady state occurs in one period.

Section 2 presents the model, and states and proves the main results. Section 3
discusses generalizations, extensions and open questions. In particular, Section 3.4
provides brief bibliographical notes.

2 The dynamics of inequality

2.1 Preliminaries

Time is discrete, running t = 0, 1, 2 . . . . A dynasty is represented by an infinite
sequence of individuals, each individual living for a single period. There is a contin-
uum of dynasties so that a unit mass of atomless individuals belongs to a generation
at each date.

There are two skill categories, “high" and “low", which are combined via a
production function f to produce a single final output, which we take to be the
numeraire.An individual in the high-skill category (or a “high individual" for short)
earns a wage w̄t at date t . Likewise, a low individual earns wt . Whether or not an
individual is high or low depends on the investment made by her parent. Being low
at any date requires no investment by the parent; being high requires an exogenous
investment of x.

Earned income is partly consumed and partly used in educating the individ-
ual’s offspring. Depending on the education level of the child, the child receives
an income next period, and the entire process repeats itself without end.

Now I turn to the determination of wages. Assume that the production function
f for final output is smooth, CRS in its two inputs, strictly concave in each input
and satisfies the Inada end-point conditions. Given a unit mass of individuals, if a
fraction λ of them is high at some date, then the high wage is given by

w̄(λ) ≡ f1(λ, 1 − λ),

while the low wage is given by

w(λ) ≡ f2(λ, 1 − λ),

where these subscripts represent partial derivatives. We will call these wages the
wages associated with λ.

It is easy to see that w̄(λ) is decreasing and continuous in λ, with w̄(λ) → ∞
as λ → 0. Likewise, w(λ) is increasing and continuous in λ, with w(λ) → ∞ as
λ → 1. These observations imply, in particular, that there exists a threshold λ̃ such
that w̄(λ̃) = w(λ̃).

To complete the description of the model, we presume that each generation
t maximizes an additive function of the one-period utility ut from its own con-
sumption, and the lifetime utility (Vt+1) felt by generation t + 1, discounted by
δ ∈ (0, 1). The utility function u will be assumed to be increasing, smooth and
strictly concave in consumption, and defined at least on [−x, ∞). This last require-
ment is innocuous but serves to simplify notation and exposition. Moreover, the
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idea that consumption can go negative captures the idea that the borrowing con-
straint is never absolute, but that the investment of x at lower wealth levels entails
ever greater utility losses (by strict concavity of u).

2.2 Equilibrium

Suppose, now, that an infinite sequence of wages is given, one for each skill cat-
egory. We may denote this by the path {w̄t , wt }∞t=0. With such a sequence given,
consider the maximization problem of generation t . Denote by V̄t the lifetime util-
ity for a high member of that generation, and by V t the corresponding lifetime
utility for a low member. Standard arguments tell us that the sequence {V̄t , V t }∞t=0
is connected over time in the following way: for each date t ,

V̄t = max u(ct ) + δVt+1 (1)

subject to the conditions that

ct + xt = w̄t , (2)

and

Vt+1 = V̄t+1 if xt ≥ x

= V t+1 if xt < x. (3)

In exactly the same way, V t = max u(ct )+ δVt+1, subject to the analogous budget
constraint ct + xt = wt and equation (3).

These maximization problems describe how education levels change from gen-
eration to generation, given some sequence of wage rates. To complete the equi-
librium setting, we remind ourselves that the wages are endogenous; in particular,
they will depend on the proportion of high individuals at each date.

Formally, for given λ0 ∈ (0, 1), a competitive equilibrium is a sequence
{w̄t , wt , λt }∞t=0 such that

1. Given λ0, the path {λt } is generated by the maximization problems described
above.

2. For each t , w̄t and wt are the wages associated with λt .

Standard fixed-point arguments suffice to show that a competitive equilibrium
exists, but we will not pursue such matters here.

Notice that our definition of competitive equilibrium assigns wages on the pre-
sumption that skilled labor must carry out skilled tasks. Alternatively, we could
restate the definition so that if the “natural wages” (as given by marginal product)
for a skilled worker falls short of that of an unskilled worker, the former will move
into the sector of the latter so that the two wages will be ex post equalized. None of
this matters much anyway because of the following easy observation, which holds
no matter what definition we use:

Observation 1 Recalling that λ̃ solves w̄(λ̃) = w(λ̃), 0 < λt < λ̃ for all t ≥ 1
along any competitive equilibrium.
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The formalities of the (obvious) proof are omitted.1 From now on I shall also
presume that λ0 ∈ (0, λ̃) as well. There is no great mystery in this: it saves the
expositional trouble of having to qualify several arguments for the initial value of λ.

For later use, I also record a familiar single-crossing observation.

Observation 2 Under a competitive equilibrium, there is no date at which a low
person creates a high child while simultaneously, a high person creates a low child.

Proof If a low person creates a high child, then

u(wt − x) + δV̄t+1 ≥ u(wt) + δV t+1,

or

u(wt) − u(wt − x) ≤ δ[V̄t+1 − V t+1].

By strict concavity and the fact that λt < λ̃ for all t , we may conclude that

u(w̄t ) − u(w̄t − x) < δ[V̄t+1 − V t+1].

But this means that a high person has a strict incentive to create a high child, and
we are done. ��

2.3 Steady states

A fraction λ is called a steady state if there exists a competitive equilibrium
{w̄t , wt , λt }∞t=0 from λ with (w̄t , wt , λt ) = (w̄, w, λ) for all t , where w̄ and w
are the wages associated with λ.

The single-crossing property in the previous section yields a simple character-
ization of steady states. Let w̄ ≡ w̄(λ) and w ≡ w(λ) be the associated wages,
and let V̄ and V be the lifetime utilities associated with being (initially) high and
low, respectively. By Observation 2, the following two conditions are necessary
and sufficient for λ to be a steady state:

V̄ = u(w̄ − x) + δV̄ ≥ u(w̄) + δV ,

while

V = u(w) + δV ≥ u(w − x) + δV̄ .

Combining these two expressions, we may conclude that

u(w̄) − u(w̄ − x) ≤ δ(V̄ − V ) ≤ u(w) − u(w − x)

is a necessary and sufficient condition for λ to be a steady state. Combining this
expression for the values of V̄ and V , we have established

1 That λt > 0 for all t follows from the fact that the difference between skilled and unskilled
wages would be infinitely high otherwise, so that some educational investment would have taken
place prior to that period. (Here we use the assumption that u is defined on [−x, ∞).) On the
other hand, λt cannot exceed λ̃ for any t ≥ 1, for in that case high and low wages are equalized,
and no one in the previous generation would then have invested in high skills.
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Fig. 1. The set of steady states

Theorem 1 The fraction λ (with associated wages (w̄, w)) is a steady state if and
only if

u(w̄) − u(w̄ − x) ≤ δ

1 − δ
[u(w̄ − x) − u(w)] ≤ u(w) − u(w − x). (4)

Figure 1 plots the three terms in equation (4) as a function of λ. The left hand
side, denoted by κ̄ , is just the utility cost to a high parent of acquiring skills for
her child. This lies below the right hand side, denoted by κ , which tracks the same
utility cost to a low parent. Finally, the middle term, denoted by B, is the present
value of benefits to being high rather than low. Of course, the κ̄ and κ lines meet
at λ̃, because wages are equalized there.

Note, moreover, that as λ → λ̃, B turns negative while κ̄ is positive. On the
other hand, as λ → 0, B grows unboundedly large while κ̄ is bounded above.
Because the changes are monotone, there is a unique λ∗ ∈ (0, λ̃) such that the first
inequality in equation (4) holds with equality. Observe, moreover, that at λ = λ∗,
the second inequality in equation (4) must hold as well, because of the strict con-
cavity of the utility function. Thus the set of steady states contains some interval
to the left of λ∗, and must be a subset of (0, λ∗].

Beyond this last observation, the set of steady states may be complicated. In
particular, the set need not be connected. For instance, in Fig. 1, the set of steady
states is the union of the two intervals [λ3, λ2] and [λ1, λ

∗].
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2.4 Dynamics

Recall from the previous section that λ∗ is a steady state, and it is the largest possible
steady state. We now state and prove the following.

Theorem 2 If λ0 > λ∗, then there exists a unique competitive equilibrium from
λ0. It goes to a steady state in one period: λ0 > λ1 = λt for all t ≥ 1.

If λ0 < λ∗, then along a competitive equilibrium λt converges monotonically
to the smallest steady state no less than λ. Convergence is never attained in finite
time unless λ happens to be a steady state to start with, in which case λt = λ0 for
all subsequent t .

A discussion of the theorem is postponed to Section 3.1, but the reader uninter-
ested in the proof (to which the remainder of this section is devoted) can go there
right away.

Define κ̄(λ) ≡ u(w̄(λ)) − u(w̄(λ) − x); this is the utility cost of acquiring
education when the parent is high. Define a similar utility cost for the low parent:
κ(λ) ≡ u(w(λ)) − u(w(λ) − x). Let b(λ) ≡ u(w̄ − x) − u(w) be the one-period
gain to being high (assuming that the high parent also invests in her child and the
low parent does not), and define B(λ) ≡ (1 − δ)−1b(λ).

Finally, for any sequence {λs} and for any date t , define

Bt ≡
∞∑

s=t

δs−t b(λs).

This is the lifetime gain between a currently high and a currently low dynasty
(starting from any date t), assuming that dynasties never switch their skill status.

The reason why Bt acquires salience is given by the following simple observa-
tion, which states that at every date, the equilibrium lifetime utility of the high (and
low) must be equal to the utility they would have received were their descendants
never to switch status. (To be sure, along the equilibrium path, switching of status
will generally occur nevertheless.)

Lemma 1 If {w̄t , wt , λt }∞t=0 is a competitive equilibrium, then for each date t ,

V̄t =
∞∑

s=t

δs−tu(w̄s − x) (5)

and

V t =
∞∑

s=t

δs−tu(ws), (6)

so that in particular,

V̄t − V t = Bt for all t. (7)
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Proof It suffices to show that for each t ≥ 0,

V̄t = u(w̄t − x) + δV̄t+1

and

V t = u(wt) + δV t+1.

To prove this, apply Observations 1 and 2. By Observation 1 and our restriction on
λ0, λt ∈ (0, λ̃) for all t ≥ 0. Now using Observation 2, we may conclude that at all
dates, some of the high people stay high, while some of the low people stay low.
This is enough to establish the result. ��

Thus along any competitive equilibrium, no dynasty will strictly prefer to switch
skills, though it may well be the case that it strictly prefers to stay where it is. Lemma
1 yields, in turn

Lemma 2 If {w̄t , wt , λt }∞t=0 is a competitive equilibrium, then for every t , (w̄t , wt )
are the wages associated with λt , and

κ̄(λt ) ≤ δBt+1 ≤ κ(λt ), (8)

with

λt+1 > λt only if δBt+1 = κ(λt ) (9)

and

λt+1 < λt only if δBt+1 = κ̄(λt ). (10)

Proof Let {w̄t , wt , λt } be a competitive equilibrium. Then by definition, (w̄t , wt )
must be the wages associated with λt for every t . Using equation (5) and utility
maximization, we see that

V̄t =
∞∑

s=t

δs−tu(w̄s − x) ≥ u(w̄t ) + δV t+1,

so that (using equation (5) again)

u(w̄t ) − u(w̄t − x) ≤ δ[V̄t+1 − V t+1]

with equality holding whenever a switch from “high” to “low” does occur along
the equilibrium path. Invoking equation (7) of Lemma 1, we get half of equation
(8) as well as equation (10). The same argument applied to a currently low dynasty
gets us the other half of equations 8 and 9. ��
The next step is central:

Lemma 3 If {w̄t , wt , λt }∞t=0 is a competitive equilibrium, then for every t ,

max{B(λt ),
1

δ
κ̄(λt )} ≥ Bt+1 ≥ min{B(λt ),

1

δ
κ(λt )}. (11)
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Proof It suffices to prove the result for t = 0. I first show that

max{B(λ0),
1

δ
κ̄(λ0)} ≥ B1. (12)

Suppose this assertion is false. Then I claim that there exists a first date T ≥ 0
such that λ0 = · · · = λT and

BT +1 ≥ 1

δ
κ(λT ). (13)

Of course, if B1 ≥ (1/δ)κ(λ0), the claim is automatically true; otherwise B1 <
(1/δ)κ(λ0). We also have (by virtue of the presumption that equation (12) does not
hold) that B1 > (1/δ)κ̄(λ0), so that

1

δ
κ̄(λ0) < B1 <

1

δ
κ(λ0)

which – by Lemma 2 – implies that λ0 = λ1. Moreover, B1 = b(λ1) + δB2 =
b(λ0) + δB2, while B(λ0) = b(λ0) + δB(λ0), so that

B2 − B(λ0) = 1

δ
[B1 − B(λ0)],

and simple manipulation of this equality shows that

B2 = B1 + 1 − δ

δ
ε, (14)

where ε ≡ B1 − B(λ0) > 0 (again, by the failure of equation (12)).
Following the same reasoning leading up to equation (14), as long as Bt+1 <

(1/δ)κ(λt ) – and as long as this is also true of all dates before t – we have λ0 =
· · · = λt = λt+1, and

Bt+1 = Bt + 1 − δ

δ
ε, (15)

It follows that there must be a first date T such that λ0 = · · · = λT , and equation
(13) holds, as claimed.

On the other hand, equation (13) cannot hold with strict inequality, as this would
surely violate equation (8) of Lemma 2, so it must be that

BT +1 = 1

δ
κ(λT ). (16)

In turn, this means that λT +1 ≥ λT (see equation (10)). Moreover, δBT +2 =
BT +1 − b(λT +1), so that

δBT +2 − κ(λT +1) = BT +1 − b(λT +1) − κ(λT +1)

≥ BT +1 − b(λT ) − κ(λT )

= BT +1 − b(λT ) − δBT +1

= BT +1 − BT > 0, (17)

which contradicts equation (8) at date T + 1. This establishes equation (12).
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Now we prove that

B1 ≥ min

{
B(λ0),

1

δ
κ(λ0)

}
. (18)

The argument runs closely parallel to the previous one. Suppose equation (18) is
false. Then I claim that there exists a first date T ≥ 0 such that λ0 = · · · = λT and

BT +1 ≤ 1

δ
κ̄(λT ). (19)

The steps are very similar to those used to establish equation (13), and are omitted.
Continuing the parallel argument, equation (19) cannot hold with strict inequal-

ity, so we have

BT +1 = 1

δ
κ̄(λT ). (20)

In turn, this means that λT +1 ≤ λT . These two observations establish, however,
that

δBT +2 − κ̄(λT +1) < 0,

(following steps parallel to those establishing equation (17)), which contradicts
equation (8) and completes the proof of the lemma. ��

The following observation is a simple consequence of Lemma 3:

Lemma 4 Along any equilibrium, if B(λt ) ≤ (1/δ)κ̄(λt ), then Bt+1 = (1/δ)κ̄(λt ).
Similarly, if B(λt ) ≥ (1/δ)κ(λt ), then Bt+1 = (1/δ)κ(λt ).

Proof We prove the first part; the second part uses a completely analogous argu-
ment. If B(λt ) ≤ (1/δ)κ̄(λt ), then max{B(λt ), (1/δ)κ̄(λt )} = (1/δ)κ̄(λt ), so that
by equation (11), (1/δ)κ̄(λt ) ≥ Bt+1. On the other hand, Lemma 2 tells us that
(1/δ)κ̄(λt ) ≤ Bt+1, and the proof is complete. ��

With these steps in hand, we may complete the proof of the theorem. There are
three possibilities to consider (each a restriction on the initial value λ0):

I. (1/δ)κ̄(λ0) < B(λ0) < (1/δ)κ(λ0). Then by (11), B(λ0) = B1. In particular,

(1/δ)κ̄(λ0) < B1 < (1/δ)κ(λ0)

so that by Lemma 2, λ0 = λ1. Continuing the argument recursively, we see that
λt = λ0 for all t .

II. B(λ0) ≤ (1/δ)κ̄(λ0). Then by Lemma 4, B1 = (1/δ)κ̄(λ0) and so by Lemma
2, λ1 ≤ λ0. Suppose, in fact, that strict inequality holds. Then (1/δ)κ̄(λ1) <
(1/δ)κ̄(λ0) and (1/δ)κ(λ1) > (1/δ)κ(λ0), so that

(1/δ)κ(λ1) > B1 > (1/δ)κ̄(λ1). (21)

Now I claim that in fact,

(1/δ)κ(λ1) > B(λ1) > (1/δ)κ̄(λ1). (22)
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Suppose not. First suppose that B(λ1) ≤ (1/δ)κ̄(λ1). Then by Lemma 4, B2 ≤
(1/δ)κ̄(λ1), so that B1 = (1 − δ)B(λ1) + δB2 ≤ (1/δ)κ̄(λ1), which contradicts
equation (21). In exactly the same way, one can rule out the possibility that B(λ1) ≥
(1/δ)κ(λ1), so equation (22) is established.

Now we are in Case I, and λ must remain constant thereafter. So in Case II, we
move to a steady state in at most one step.

III. B(λ0) ≥ (1/δ)κ(λ0). Then by Lemma 4, B1 = (1/δ)κ(λ0) and so by Lemma
2, λ1 ≥ λ0.

To bring out the contrast with Case II, I claim that B(λ1) ≥ (1/δ)κ(λ1), with
strict inequality if the corresponding inequality at date 0 also holds strictly.

Suppose on the contrary that B(λ1) < (1/δ)κ(λ1). Then

B1 = (1/δ)κ(λ0) ≥ (1/δ)κ(λ1) > B(λ1), (23)

while it is also true that

B1 = (1/δ)κ(λ0) ≥ (1/δ)κ(λ1) ≥ B2. (24)

But equations (23) and (24) together contradict the fact that B1 = (1 − δ)B(λ1) +
δB2.

If strict inequality holds at date 0 – B(λ0) > (1/δ)κ(λ0) – then we can arrive
at a contradiction simply under the weaker condition B(λ1) ≤ (1/δ)κ(λ1). For
then λ1 
= λ0 and therefore (because λ1 ≥ λ0) it must be that λ1 > λ0. There-
fore the weak inequality in equation (23) holds strictly, and we obtain the same
contradiction.

So the claim is established and we can apply Case III repeatedly to argue that
λt+1 ≥ λt for all t in this case.

Moreover, if B(λ0) > (1/δ)κ(λ0), then B(λt ) > (1/δ)κ(λt ) for all t subse-
quently, so convergence cannot ever occur in finite time, in contrast to the “one-
step" property of Case II.

Finally, observe that in the case B(λ0) > (1/δ)κ(λ0), in which λt+1 > λt for
all t , there is no t and no λ ∈ [λt , λt+1] which is a steady state. For suppose there
were; then in particular, κ(λ) ≥ B(λ), so that

κ(λt ) ≥ κ(λ) ≥ B(λ) ≥ B(λt+1) > Bt+1, (25)

where the very last inequality follows from the fact that λs < λs+1 for all s. But
equation (25) contradicts the equilibrium condition equation (8). This proves that
in Case III, convergence occurs to the smallest steady state to the right of λ0.

3 Discussion

3.1 Theorem 2

The theorem provides a full account of the behavior of skill proportions over time,
starting from any initial condition. If that initial condition happens to be a steady
state, the theorem rules out any equilibrium path other than the steady state path
itself. More interesting is the asymmetry of equilibrium behavior under the two
remaining kinds of initial conditions. When λ0 is larger than the largest conceiv-
able steady state, convergence to a steady state occurs in a single unit of time.
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When λ0 is such that there are steady states “above" it, convergence is gradual
in that the process is never completed in finite time. This asymmetry may have
interesting implications for unanticipated technical changes which, once realized,
are expected to stay in place thereafter. Changes that call for a reduction in steady
state skill proportions take place quickly and dramatically, whereas a climb to a
higher steady state is more gradual and drawn out.

Moreover, in the case that convergence is “up" to a steady state, the theorem
asserts that it will occur to the nearest steady state to the right of the initial con-
ditions. Put another way, only the left-most steady state in each interval of steady
states can be an attractor for initial conditions that are distinct from that steady
state, and the basin of attraction is precisely the set of initial conditions that lie
between it and the next lower interval of steady states (if any). Thus, despite the
multiplicity of steady states, final outcomes can be tagged to initial conditions in
a unique way, allowing us in principle to perform comparative dynamics. Tanaka
(2003), which I discuss in more detail below, uses Theorem 2 in exactly this way.

To provide some intuition for these results, first study a non-steady-state value
of λ that is smaller than λ∗. Why is this not a steady state? Surely, the “no-devia-
tion" condition for the skilled (the first inequality in equation (4)) is satisfied; after
all, it was satisfied at λ∗, and now at the smaller value of λ, both the wage differ-
ential is higher and the utility cost of education is lower for the skilled. So, the
reason why λ fails to be a steady state is that the “no-deviation" condition for the
unskilled – the second inequality in equation (4) – is violated; their utility cost of
education is high, but not as high as the wage differential. To maintain equilibrium
incentives, then, the economy-wide skill ratio must rise, compressing the sequence
of wage differentials until the unskilled are exactly indifferent between acquiring
and not acquiring skills. (We have already seen in Lemma 1 that this compression
to indifference is a necessary feature of non-steady-state equilibrium, otherwise no
one would stay unskilled.)

Now here is the main point: the skill ratio achieved in the very next period
cannot be a steady state. For if it were, then the no-deviation condition of the
unskilled must be satisfied here, so that the new implied wage differential gener-
ates no incentive for them to acquire skills. But the very same wage differential
created indifference at date 0, when the utility cost of acquiring education was
higher for the unskilled! This is a contradiction. By an obvious recursive argu-
ment, it follows that the upward movement in the skill ratio must be gradual and
perennial.

Exactly the opposite is true for non-steady-state values of λ that exceed λ∗.
For such values, the “no-deviation" condition for the skilled surely fails; the wage
differential is too small relative to the utility cost of maintaining skills. So in equi-
librium, λ falls. This fall along the equilibrium path raises wage differentials so
that the skilled are now indifferent between maintaining and relinquishing skills.

We claim that the new skill ratio one period later must be a steady state. Sup-
pose the claim is false. Then the new skill ratio is not a steady state, and this can
happen for one of two reasons. First, the no-deviation condition for the unskilled
fails – the wage differential at date 1 is too attractive. In that case, we already
know that the remaining sequence of wage differentials (counting from date two
on) must render the unskilled indifferent at date 1. But this means that the sequence
of wage differentials counting from date one on is still attractive for the unskilled,
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and would have been a fortiori attractive relative to the skill-acquisition cost for the
unskilled at the higher skill ratio prevailing at date 0. But this, in turn, exceeds the
cost of skill maintenance for the skilled, which contradicts the fact that the equi-
librium creates indifference for the skilled at date 0 (see last sentence of preceding
paragraph).

The second reason why the new skill ratio may fail to be a steady state is that
the no-deviation condition for the skilled fails again (just as it did at date 0). This
means that the skill ratio must fall even further in succeeding periods to create
indifference for the skilled at date 1. However, because the wage differential at
date 1 is not attractive enough, this means that the entire sequence of wage differ-
entials, counting the one at date 1, would not have been attractive enough for the
very same skilled individuals, had they been located at date 0, but with the utility
costs they possess at date 1. This would be a fortiori true if we were to replace
the utility costs with the true utility costs of maintaining skills at date 0, which are
higher. But now we have a contradiction again (see the last sentence two paragraphs
above). This completes our intuitive description.

Notice that the observations above are in “sequence space"; i.e., they pertain
to the infinite sequence {λt } that makes up a competitive equilibrium. One might
equivalently conduct the analysis in terms of the mapping that takes current values
of λ to next period’s equilibrium value of λ. More formally, define a correspondence
G by

G(λ) ≡ {λ′| There is an equilibrium with λ0 = λ and λ1 = λ′}.
Our main theorem implies thatG coincides with the 45◦ line wheneverλ is restricted
to be a steady state, lies strictly above the 45◦ line whenever λ is not a steady state
but is nevertheless smaller than the largest steady state, and lies below the 45◦
line when λ exceeds the largest steady state. In this last case, there are additional
restrictions: the image of G must be a subset of the set of steady states.

3.2 Generalizations

Our main result asserts convergence from every initial condition to some steady
state. Moreover, the particular steady state to which convergence occurs can be
identified, and this is of interest because there are multiple steady states.

How general are these results; in particular, do they extend to the case of sev-
eral occupations? The simple answer is that I do not know. Certainly the methods
I use rely heavily on the assumption that there are only two skill levels. One can
perhaps go further with the dynamics if one is willing to assume generational
utility functions that are somewhat more shortsighted. For instance, one might
assume (though in my opinion this is an unsatisfactory approach) that utility is a
“warm-glow" function of consumption and educational bequests. Less drastically,
one might presume that utility is a function of current consumption and descen-
dants’ wealth.2 But perhaps the most satisfactory formulation is the current one,
based entirely on nonpaternalistic altruism. Apart from its conceptual attractive-
ness, such a formulation is also closely related to the literature on optimal growth

2 The reason this is less drastic is that the relationship between bequest and descendant wealth
is endogenous.
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theory. Unfortunately, as far as the study of dynamics goes, the most satisfactory
formulation also appears to be the hardest. It is true that versions of the turnpike the-
orem formulated for competitive economies are available (see Bewley 1982; Coles
1985; orYano 1984) but these theorems do not apply here, as the arguments rely on
the equivalence between competitive equilibria and full Pareto-optimality. (Such
equivalence does not obtain in our setting because the credit market is missing.)

At the same time, as Mookherjee and Ray (2002, 2003) have shown, the basic
setting of persistent inequality is very general. With endogenous price determina-
tion and imperfect credit markets, steady-state inequality among ex-ante identical
agents is inevitable under broad conditions. It would, therefore, be of great interest
to see if the dynamic counterparts of the results in this paper also carry over.

3.3 Extensions

3.3.1 Financial bequests

A major research question concerns an extension to the case in which financial
bequests can supplement human capital investments. Formally, it is possible to
view this as a special case of the model with multiple occupations and no financial
bequests, because each different monetary value of the bequest can be treated as
a separate occupation. However, as Mookherjee and Ray (2002) argue, the condi-
tions required for the emergence of persistent inequality in steady state are now
stronger. If those conditions are met, all steady states will display inequality as
before, but if they are not, then perfect equality and inequality will co-exist.

Now the burden on the dynamics is a weightier one, for the dynamic model
acts as a selection device for steady states. Which initial conditions are conducive
to the (ultimate) emergence of perfect equality, and which are not? The need for
a dynamic analysis is even stronger here. (Again, an analysis based on “simple"
bequest motives is more likely to be tractable.)

3.3.2 Technical progess

Rigolini (2004) extends the general version of this model (as described in Mookher-
jee and Ray 2003) to analyze incentives to acquire skills under technological pro-
gress. In his setup, the costs of acquiring various skills also drift with technical
progress, so that he is able to describe steady state balanced growth path. In his
model, higher rates of technical progress decrease inequality in steady state; that
is, in the “long run". yet we know that the “short-run" effects of technical progress
can be quite the opposite; indeed, a substantial recent literature lays the blame for
increasing wage differentials in OECD countries at the door of technical change.
It is impossible to reconcile these two findings without a thorough understanding
of the (non steady-state) dynamics of the model.

3.3.3 Trade

The model developed here can also bear on issues in trade and trade policy. Tanaka
(2003) provides another extension of this framework in which the dynamics de-
scribed here are put to an interesting application. Consider two copies of this model
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running side by side, with each skill producing a different commodity. View these
as two countries under autarky. Then initial steady-state conditions determine com-
parative advantage in the two commodities (with the more unequal country having
relative advantage in the “unskilled commodity"). A trade opening will then drive
the “world economy" to a steady state, but this permits predictions to be made
regarding inequality across countries. Tanaka uses the dynamic analysis presented
here to show that the size of the long-run income gap between the two countries
depends on the difference in domestic income inequality when they open up to
trade. Based on these results, he also analyzes the effects of redistributive policy
within a country, showing that redistribution in one country may increase the in-
come of its trading partner if it is undertaken in steady state, while the opposite is
true if the policy is undertaken during transition.

One may also use the model somewhat differently to understand the effects of
economic integration on inequality across countries, by interpreting each family
to represent a different country. For instance, one could view “occupational" setup
costs as infrastructural investments made by the planners to facilitate a particular
mix of economic activities in each country (e.g., a country may decide to subsidize
agriculture, promote exports, or invest in high technology production capabilities).
Then – in the absence of a perfect international capital market to finance these
investments – global inequality must emerge, with historical events determining
the subsequent fate of individual countries.

3.4 Bibliographical notes

Champernowne (1953), Becker and Tomes (1979), and Loury (1981) were among
the first to study the evolution of inequality in a dynamic model. These models
are noninteractive, in that it is sufficient to trace the stochastic behavior of a single
dynasty without studying interactions across dynasties. They are also based on an
underlying model of convergence (equivalently, the technology set in these models
is convex). The theory of growth with nonconvex technologies, as described, for
instance, in Clark (1971), Dechert and Nishimura (1983), and Majumdar and Mitra
(1982, 1983) remains largely unexplored for the study of endogenous inequality,
though see the first part of Galor and Zeira (1993). Aghion and Bolton (1997),
Banerjee and Newman (1993), Freeman (1996), Galor and Zeira (1993), Ghatak
and Jiang (2002), Matsuyama (2000), Ljungqvist (1993), Mani (2001), Mookherjee
and Ray (2002, 2003), Piketty (1997), Ray (1990), and Ray and Streufert (1993)
(among others) study the interactive model from different points of view and at var-
ious levels of generality. However, to my knowledge, there is no systematic study
of the dynamics of this framework away from steady state when each generation
has standard nonpaternalistic preferences. The present paper takes a step in that
direction.

References

Aghion, P., Bolton, P.: A theory of trickle-down growth and development. Rev Econ Stud 64,
151–172 (1997)

Bandyopadhyay, D.: Distribution of human capital, income inequality and rate of growth, PhD
thesis, University of Minnesota (1993)



D. Ray

Banerjee, A., Newman, A.: Occupational choice and the process of development. J Political Econ
101, 274–298 (1993)

Becker, G., Tomes, N.: An equilibrium theory of the distribution of income and intergenerational
mobility. J Political Econ 87, 1153-1189 (1979)

Bewley, T.: An integration of equilibrium theory and turnpike theory. J Math Econ 10, 233–267
(1982)

Champernowne, D.: A model of income distribution. Econ J 63, 318–351 (1953)
Clark, C.: Economically optimal policies for the utilization of biologically renewable resources.

Math Biosci 12, 245–260 (1971)
Coles, J.: Equilibrium turnpike theory with constant returns to scale and possibly heterogeneous

discount factors. Int Econ Rev 26, 671–679 (1985)
Dechert, W.D., Nishimura, K.: A complete characterization of optimal growth paths in an aggre-

gated model with a non-concave production function. J Econ Theory 31, 332–354 (1983)
Freeman, S.: Equilibrium income inequality among identical agents. J Political Econ 104(5),

1047–1064 (1996)
Galor, O., Zeira, J.: Income distribution and macroeconomics. Rev Econ Stud 60(1), 35–52 (1993)
Ghatak, M., Jiang, N.: A simple model of inequality, occupational choice and development. J Dev

Econ 69, 205–226 (2002)
Ljungqvist, L.: Economic underdevelopment: the case of missing market for human capital. J Dev

Econ 40, 219–239 (1993)
Loury, G.C.: Intergenerational transfers and the distribution of earnings. Econometrica 49, 843–

867 (1981)
Majumdar, M., Mitra, T.: Intertemporal allocation with a non-convex technology: the aggregative

framework. J Econ Theory 27, 101–136 (1982)
Majumdar, M., Mitra, T.: Dynamic optimization with a non-convex technology: the case of a

linear objective function. Rev Econ Stud 50, 143–151 (1983)
Mani, A.: Income distribution and the demand constraint. J Econ Growth 6, 107–133 (2001)
Matsuyama, K.: Endogenous inequality. Review of Economic Studies 67, 743–759; Constraint.

J Econ Growth 6, 107–133 (2000)
Mookherjee, D., Ray, D.: Is equality stable? Am Econ Rev 92, 253–259 (2002)
Mookherjee, D., Ray, D.: Persistent inequality. Rev Econ Stud 70, 369–393 (2003)
Piketty, T.: The dynamics of the wealth distribution and the interest rate with credit rationing.

Rev Econ Stud 64, 173–189 (1997)
Ray, D.: Income distribution and macroeconomic behavior. Mimeo, New York University,
http://www.econ.nyu.edu/user/debraj/DevEcon/Notes/incdist.pdf
(1990)

Ray, D., Streufert, P.: Dynamic equilibria with unemployment due to undernourishment. Econ
Theory 3, 61–85 (1993)

Rigolini, J.: Educational technologies, wages, and technological progress. J Dev Econ 75, 55–77
(2004)

Tanaka, R.: Timing of trade liberalization. Mimeo, Department of Economics, New York
University (2003)

Yano, M.: The turnpike of dynamic general equilibrium paths and its insensitivity to initial
conditions. J Math Econ 13, 235–254 (1984)


