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The Phelps–Koopmans theorem
and potential optimality

Debraj Ray∗

The Phelps–Koopmans theorem states that if every limit point of a path of capital
stocks exceeds the “golden rule,” then that path is inefficient: there is another feasible
path from the same initial stock that provides at least as much consumption at
every date and strictly more consumption at some date. I show that in a model
with nonconvex technologies and preferences, the theorem is false in a strong sense.
Not only can there be efficient paths with capital stocks forever above and bounded
away from a unique golden rule, such paths can also be optimal under the infinite
discounted sum of a one-period utility function. The paper makes clear, moreover,
that this latter criterion is strictly more demanding than the efficiency of a path.
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1 Introduction

In the aggregative growth model, the Phelps–Koopmans theorem provides one of the
most well-known sufficient conditions for inefficiency. Awarding the 2006 Nobel Prize in
Economic Sciences to Edmund Phelps, the Royal Swedish Academy of Sciences observed
that “Phelps . . . showed that all generations may, under certain conditions, gain from
changes in the savings rate.” These “certain conditions” were conjectured by Phelps (1962),
and the verification of these conditions, based on a proof provided by Koopmans, appears
in Phelps (1965). The Phelps–Koopmans theorem may be stated as follows: if every limit
point of a path of capital stocks exceeds the “golden rule,” then that path is inefficient:
there is another feasible path from the same initial stock that provides at least as much
consumption at every date and strictly more consumption at some date.
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Why might such a result be noteworthy? Although efficiency is of intrinsic interest,
one might argue that the real interest is in optimal paths, in which a “sum” of one-period
utilities is maximized. When there is discounting, that sum is indeed well-defined, and it is
already well-known that optimal paths must converge to a “modified” golden rule, which
lies below the golden rule. In light of this result, what does the Phelps–Koopmans theorem
add?

Tapan Mitra (personal communication, 2008), a leading theorist who has made deep
contributions to our understanding of the aggregative growth model, has this to say:

Both Phelps and Koopmans would have known [about convergence to the modified golden
rule] in 1965; yet they were interested in the Phelps–Koopmans theorem. Since Phelps
explicitly brings in the optimality notion, the only way this makes sense to me is that
he had in mind the optimal growth model without discounting, or at least he had not
completely made up his mind about the discounting issue. Koopmans (1960) provided what
is considered to be the definitive axiomatic treatment of discounted utilitarianism, but he
was quite uncomfortable with the result, as his writings in 1964 and 1972 on this issue clearly
show.

[The exercise] can only be justified, from the optimality point of view, if one is willing to
allow undiscounted optimality. Inefficiency is, after all, about spending an infinite amount
of time above the golden rule. It has no interest for discounted optimization theory.

In the above quote Mitra refers, of course, to the convex model of growth, for which the
Phelps–Koopmans theorem is stated, and for which the discounted optimality result was
well-known. The discomfort that he alludes to would have been entirely justified, given the
philosophical objections to discounting raised in the early work of Ramsey (1927). Yet it
does raise the question of whether the same observations are true in a nonconvex model of
growth: Can discounted optimal paths spend an “infinite amount of time above” the golden
rule?

This paper seeks to answer that question. I show in Proposition 1 that if an optimal
path converges, its limit must lie weakly below the minimal golden rule, the lowest capital
stock that globally maximizes net consumption. This result is independent of any curvature
assumptions, either on the production function or on the utility function. Thus far, then,
the intuition of the convex model carries over: convergent paths that are potentially optimal
with respect to some utility function cannot stay above and bounded away from the golden
rule. As an aside, it is of some interest that the same observation is not generally true of
efficient paths: Mitra and Ray (2009) show that an efficient convergent path might converge
to a limit that strictly exceeds the minimal golden rule.1

However, the main result of the paper is Proposition 3. I prove that there are potentially
optimal paths with discounting that have the property that they perennially lie above
(and bounded away from) the minimal golden rule. Indeed, I construct such paths in a

1
Indeed, under some conditions, they provide a near-complete characterization of environments in which this
can happen.
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framework with a unique golden rule. So the word “minimal” can safely be dropped from
the statement of the proposition.2

2 Preliminaries

At every date, capital kt produces output f (kt ), where f : R → R is the production
function. We assume throughout that f satisfies the following restrictions:

[F.1] f is increasing and continuous, with f (0) = 0.
[F.2] There is K ∈ (0, ∞) such that f (x) > x for all x ∈ (0, K ) and f (x) < x for all

x > K .

We refer to K as the maximum sustainable stock. Observe that f is permitted to be noncon-
cave.

A feasible path from κ ≥ 0 is a sequence of capital stocks k ≡ {kt} with

k0 = κ and 0 ≤ kt + 1 ≤ f (kt )

for all t ≥ 0. Associated with the feasible path k from κ is a consumption sequence {ct},
defined by

ct = f (kt − 1) − kt for t ≥ 1.

It is obvious that for every feasible path k from κ , both kt and ct + 1 are bounded above by
max{K , κ}. With no real loss of generality, we presume that κ ∈ [0, K ], so that for every
feasible path k from κ ,

kt ≤ K for t ≥ 0 and ct ≤ K for t ≥ 1.

A feasible path k from κ is inefficient if there is a feasible path k′ from κ such that

c ′
t ≥ ct for all t ≥ 1,

with strict inequality for some t . It is efficient if it is not inefficient.
Under [F.1] and [F.2] there is z ∈ (0, K ) such that

f (z) − z ≥ f (x) − x for all x ≥ 0.

Then we call z a golden rule stock, or simply a golden rule. Certainly, there can be several
golden rules, all in (0, K ). However, a minimal golden rule, the smallest of all the golden
rule stocks, must exist, which we denote by γ . Golden rule consumption is, of course, the
same for all golden rules; it is denoted by c.

2
Mitra and Ray (2009) provide sufficient conditions for the existence of efficient paths that lie above and
bounded away from a unique golden rule. Proposition 3 represents an extension of this result to potential
optimality.
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For any δ ∈ (0, 1), a feasible path k∗ from κ is potentially δ-optimal if there exists a
strictly increasing and continuous utility function u defined on consumption such that k∗

solves the problem

max
k

∞∑
t = 0

δt u(ct + 1),

where {ct} is the consumption path associated with k. The path is potentially optimal if it
is potentially δ-optimal for some δ ∈ (0, 1).

The following observation is trivial.

Observation 1 If a feasible path is potentially optimal, then it is efficient.

Remark 1 The converse is not true; see below.

3 Potential optimality for convergent paths

The following result shows that all potentially optimal convergent paths must have a limit
that lies below the minimal golden rule.

Proposition 1 Suppose that k∗ is a potentially optimal path with a well-defined limit k∗.
Then k∗ ≤ γ .

PROOF: Suppose that k∗ has limit k∗ > γ . Define c∗ ≡ f (k∗) − k∗. Then associated con-
sumption c∗

t → c∗. Fix any strictly increasing and continuous utility function u and a
discount factor δ. Then there exists ε > 0 and T ′ ≥ 1 such that for all t ≥ T ′,

u
(
c∗

t + k∗
t − γ

) − u
(
c∗

t

) ≥ 2ε. (1)

Choose T ≥ T ′ such that

∞∑
t = T + 1

δt − T
[
u
(
c∗

t

)− u(c∗)
]
< ε. (2)

Define a new path k from the same initial stock by kt = k∗
t for all t ≤ T − 1, and kt = γ

for all t ≥ T . By (1), k∗
T >γ , so k is feasible. Let c ≡ f (γ ) − γ stand for golden rule

consumption. Note that c ≥ c∗. Then the overall payoff generated by k is

v(k) ≡
T − 1∑
t = 1

δt − 1u(c∗
t ) + δT − 1u

(
c∗

T + k∗ − γ
) +

∞∑
t = T + 1

δt − 1u(c)

≥
T − 1∑
t = 1

δt − 1u(c∗
t ) + δT − 1u

(
c∗

T

) + 2δT − 1ε +
∞∑

t = T + 1

δt − 1u(c∗)
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≥
T − 1∑
t = 1

δt − 1u(c∗
t ) + δT − 1u

(
c∗

T

) + 2δT − 1ε +
∞∑

t = T + 1

δt − 1u(c∗
t ) − δT − 1ε

=
∞∑

t = 1

δt − 1u(c∗
t ) + δT − 1ε

> v(k∗),

where the first inequality uses (1) and c ≥ c∗, and the second inequality uses (2).
This proves that k∗ cannot be potentially optimal. �

Remark 2 It is obvious that a potentially optimal path is efficient. This proposition,
combined with part (ii) of proposition 1 in Mitra and Ray (2009), shows that the converse
is generally false. That proposition shows the existence of convergent efficient paths with
limit capital stock above the minimal golden rule. By Proposition 1, such a path cannot be
potentially optimal.

Indeed, when the utility function is strictly concave, Proposition 1 is reinforced:

Proposition 2 If k is an optimal path under some increasing, continuous and strictly concave
u, then it must converge.

The proof may be found in Mitra and Ray (1984) and is omitted here. No matter how
small the degree of concavity in u, or how large the degree of nonconcavity in f , as long
as it admits a golden rule, it never pays to cycle (nor engage in more exotic nonconvergent
behavior).

4 The Phelps–Koopmans theorem and potential optimality

Proposition 1 is well-known for models with convex preferences and technology. This is
why the study of paths that stay above the golden rule for an infinite number of periods
is typically not justified by the optimal growth model with discounting. The purpose of
this section is to show that this observation fails for nonconvex models. By the Phelps–
Koopmans theorem, we will need to consider models with nonconvex technologies, and by
Proposition 2, we will also need to admit nonconvex preferences.

I require throughout that f satisfy [F.1] and [F.2]. I impose an additional restriction in
a deliberate attempt to stay close in spirit to the model with convex technology:

[F.3] f has a unique golden rule γ .

(Note that additional requirements on f make our result below stronger, not weaker.)

Proposition 3 For every δ such that δ2 + δ3 > 1, there exists a technology satisfying [F.1]–
[F.3], an initial stock κ > 0 and a potentially δ-optimal path k∗ from κ , with inf t k∗

t > γ .

The proof of this proposition is long, inelegant, and involves a construction that places
numerous (although mutually consistent) restrictions on several parameters. Therefore, it
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might be a good idea to provide an extremely brief and rough sketch of the main argument.
We begin by choosing a production function that has a unique golden rule; see the formal
definition in (4) below. Yet the production function is nonconcave along a stretch to the
right of the golden rule, so that there is a cyclical path with consumption “large” at alternate
dates and zero at alternate dates, with two accompanying levels of capital stocks, both of
which dominate the golden rule stock. This construction is similar to arguments in Mitra
and Ray (2009), where we show that such a path (and others) can be efficient.

The additional burden here is to prove that such a path could actually be optimal for
some utility function. We already know from Proposition 2 that there is no hope of this for
any utility function that is strictly concave, so our task is to construct a suitably nonconcave
utility function. This construction is the hard part of the exercise, though at the same time
I am not sure whether the difficulties are intrinsic or simply due to an ill-chosen line of
proof.

The details of the accompanying utility function are to be found in (6) below. Briefly,
the utility function has the property that it is highly convex up to c∗, which is the high
level of consumption along the cyclical path described above, spikes at c∗, and then begins
a fresh zone of strict convexity from c∗. (It therefore exhibits a kink at c∗ and is highly
concave locally around that value.) I prove that for such a utility function, and starting at
the initial stock of my cyclical path, it is indeed optimal to follow that cyclical path, rather
than any other path.

I now turn to a formal argument with all its attendant details.

PROOF: We begin by constructing a technology. Fix α ∈ (0.9, 1), β ∈ (0.9, 1) and
θ ∈ (0, 1 − β). Define

ε0 ≡ 1 − β. (3)

For any ε ∈ (0, ε0), define

f ε(k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k + (1 − θ)k1/ε for 0 ≤ k < 1

max

{
θ(k − 1) + (2 − θ), (2 + β) − β

ε
(2 − k)

}
for 1 ≤ k < 2

α(k − 2) + (2 + β) for 2 ≤ k < 2 + β

(αβ +β + 2) + ε [k − (2 + β)] for k ≥ 2 + β.

(4)

It is easy to see that f ε satisfies [F.1] and [F.2] for all ε ∈ (0, ε0). Figure 1 illustrates f ε .
In particular, for ε < ε0, the two affine segments between 1 and 2 do indeed intersect in the
way shown in the diagram.

[F.3] is also satisfied. The only two candidates for a golden rule are k = 1 and
k = 2 (see Figure 1 again). Because we have assumed that θ < 1 − β, we see that
f ε(1) − 1 = 1 − θ > f ε(2) − 2 = β.

Denote by K ε the maximum sustainable capital stock under f ε . It is easy to see that
K ε increases with ε. Denote the largest of these, K ε0 , by M . With initial stock κ ∈ (0, M),
no one-period value of output, capital or consumption can exceed M .

16 International Journal of Economic Theory 6 (2010) 11–28 C© IAET
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k

f (k)

1 2 3 4

1

2

3
2 + β

αβ + β + 2

2–θ

2 + β

Figure 1 The function f ε defined in Equation (4).

Consider the initial stock κ∗ = 2 + β. Define the path k∗ given by k∗
t = 2 + β for t

even, k∗
t = 2 for t odd. It is feasible (independently of the specific value of ε ∈ (0, ε0)). The

consumption sequence associated with this path is given by c∗
t = c∗ ≡ (α + 1)β for t even,

and c∗
t = 0 for t odd. Observe that inf t k∗

t > γ .
We are going to show that k∗ is potentially δ-optimal.
To this end, pick 0 < ε1 ≤ ε0 such that for all ε ∈ (0, ε1),

2ε < − ln δ. (5)

For ε ∈ (0, ε1), define

uε(c) =

⎧⎪⎪⎨
⎪⎪⎩

0 for c = 0

δ(c∗ − c)/εc for 0 < c ≤ c∗

1 + δ(M − c)/(ε[c − c∗]) for c > c∗.

(6)

Claim 1 Provided that ε ∈ (0, ε1), uε is strictly increasing and continuous, and uε ′′(c) > 0
for all c ∈ (0, M] with c �= c∗.

PROOF: It is trivial to verify that uε is increasing and continuous. Differentiate uε at any
c ∈ (0, c∗):

uε ′(c) = − δ(c∗ − c)/εc c∗ ln δ

c 2ε
,

International Journal of Economic Theory 6 (2010) 11–28 C© IAET 17
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and differentiate again to see that

uε ′′(c) = δ(c∗ − c)/εc c∗ ln δ

c 4ε

[
(ln δ)

c∗

ε
+ 2c

]
.

Because ln δ < 0, we see that uε ′′(c) > 0 if

(ln δ)
c∗

ε
+ 2c < 0

but this inequality is assured by (5).
A similar argument verifies that uε ′′(c) > 0 for any c ∈ (c∗, M]. �

Our main argument will rely on showing that paths other than k∗ are not optimal. Such
an argument relies on the presumption that an optimal path always exists, which, given
the continuity of uε , along with δ ∈ (0, 1) as well as [F.1] and [F.2], is an entirely standard
proposition.

For any initial stock κ , denote by V ε(κ) the optimal value of starting from κ (under
the utility function uε). The following claim follows trivially from an inspection of (4) and
(6): there is a function h(ε) with h(ε) → 0 as ε → 0 such that

V ε(2 + β) ≥ V ε(K ε) − h(ε), (7)

where K ε , we recall, is the maximum sustainable capital stock under f ε .
What follows is a list of additional restrictions on ε. For the purposes of readability, it

may be useful to skip ahead to the argument following restriction (17), referring back to
these conditions when needed. First, select η so that

0 < η < α(1 − β). (8)

Next, define

ν ≡ η/4. (9)

Now find a threshold ε2 ∈ (0, ε1) such that for all ε ∈ (0, ε2),

1

1 + δ
> uε(c∗ − η) + δh(ε) + δν/ε , (10)

where h(ε) is the function in (7). Such a threshold can obviously be found because all terms
on the right-hand side of (10) converge to 0 as ε → 0.

Next, choose a positive integer N and a threshold ε3 ∈ (0, ε2) such that for all 0 < ε < ε3,

1

1 − δ2
> (1 + δ + δ2)uε(M) + (δ3 + · · · + δN + 2)uε(c∗ − η) + δN + 3uε(M)

1 − δ
+ δν/ε.

(11)

To see why such thresholds must exist, observe that uε(M) → 1, δν/ε → 0 and
uε(c∗ − η) → 0 as ε → 0, and δN → 0 as N → ∞. Consequently, the required thresholds
are available provided that

18 International Journal of Economic Theory 6 (2010) 11–28 C© IAET
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1

1 − δ2
> 1 + δ + δ2,

but this inequality follows from the given restriction on δ in the statement of the proposition.
Choose ε4 ∈ (0, ε3) such that

f ε (N) (1/2) < c∗ − η (12)

for all ε ∈ (0, ε4), where the superscript (N) denotes N-fold composition, and N has been
chosen above to satisfy (11). Such a threshold ε2 is available because f ε (N)(1/2) → 1/2 as
ε → 0, and because c∗ − η = (α + 1)β − η > 3/2, by (8).3

Using (4), the inequality (12) may be interpreted as follows: starting from an initial
stock no greater than 1/2, it will require more than N periods of pure accumulation to
bring total output up to c∗ − η.

For our next restriction, it will be useful to define ζ (ε) to be the intersection of the two
affine segments that define f ε on the interval [1, 2] (see (4) and Figure 1). Formally, ζ (ε)
is the solution in k to

θ(k − 1) + (2 − θ) = (2 + β) − β

ε
(2 − k). (13)

It is easy to see that ζ (ε) ∈ (1, 2) as long as ε < 1 − β (which we have assumed already), and
that ζ (ε) → 2 as ε → 0. For x > 1, define φ(x) ≡ θ(k − 1) + (2 − θ). Choose ε5 ∈ (0, ε4)
such that

φ(N)
ε (3/2) < ζ (ε) (14)

for all ε ∈ (0, ε5). This threshold is available because ζ (ε) → 2 as ε → 0, while
φ(N)

ε (3/2) < 2.
Using (4), the inequality (14) may be interpreted as follows: starting from an initial

stock no greater than 3/2, even N periods of “pure accumulation” will keep total output
below the value of 2.

Next, pick ε6 ∈ (0, ε5) such that for all ε ∈ (0, ε6),

3ε + 2ε2

αβ − ε
< ν. (15)

Our final restriction on ε will require some preparatory work. For k ∈ [0, K ], define
σ (k) ≡ f ε( f ε(k)) − k.

Claim 2 σ (2) > σ (k) for every k �= 2.

PROOF: It is very easy to see, given our restrictions, that there are only two poten-
tial maximizers of σ (k), and they are k = 1 and k = 2. Direct computation shows that
σ (2) = (α + 1)β = c∗. To compute σ (1), note that

f ε(1) = 2 − θ < f ε(3/2) ≤ φ(3/2) ≤ φ(N)(3/2) < ζ (ε),

3
The last observation follows from the fact that (α + 1)β − η > (α + 1)β −α(1 −β) = 2αβ + β −α. Given
that α, β ∈ (0.9, 1), this exceeds 3/2.
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where the last inequality follows from (14). Therefore, f ε( f ε(1)) < 2. It follows that
σ (1) < 1, but this is smaller than c∗ = σ (2). Therefore, σ (2) > σ (k) for all k �= 2. �

Define ξ(ε) by f ε(ξ(ε)) ≡ 2. It is easy to see that

ζ (ε) < ξ(ε) < 2, (16)

where ζ (ε) is defined by the solution to (13).4

Define S to be the maximum value of σ (k) on [0, ξ(ε)]. By Claim 2, we know that

(α + 1)β = σ (2) > S.

Pick ε7 ∈ (0, ε6) such that for all ε ∈ (0, ε7),

ε

[
4

(α + 1)β − S
+ 3

]
< ν. (17)

This completes all our restrictions on ε. In the remainder of the proof, I fix some value
of ε ∈ (0, ε7). To emphasize that ε will remain unchanged for the rest of the argument (and
to simplify notation), I will refer to uε as u and f ε as f , and omit similar superscripts from
other relevant objects (such as value functions or the maximum sustainable capital stock).

I will prove that k∗ is optimal under the utility function u. I proceed in several steps.
We consider below various feasible paths k, from κ∗ as well from other initial stocks.

Denote by Vt the corresponding values generated by k at each date t ≥ 1. The main value
of interest is, of course, V1, which we denote by v(k).

Claim 3 Let k be a feasible path from some initial stock in [0, K ], and suppose that associated
consumption on this path satisfies c1 < c∗ − η. Then v(k) < V(κ∗) − δν/ε .

In particular, no such path can be optimal from κ∗.

PROOF: Associated consumption on the path k satisfies c1 < c∗ − η. Therefore,

v(k) < u(c∗ − η) + δV2

≤ u(c∗ − η) + δV(K )

≤ u(c∗ − η) + δh(ε) + δV(κ∗)

= u(c∗ − η) + δh(ε) − (1 − δ)V(κ∗) + V(κ∗)

≤ u(c∗ − η) + δh(ε) − 1

1 + δ
+ V(κ∗)

< V(κ∗) − δν/ε ,

where the third inequality uses (7), the penultimate inequality employs the fact that
V(κ∗) ≥ 1/(1 − δ2), which is the value generated by k∗ from κ∗, and the very last in-
equality invokes (10).

4
Because f ε(2) > 2, ξ(ε) < 2. Because f ε(ζ (ε)) = θ[ζ (ε) − 1] + (2 − θ) < 2, we have ξ(ε) >ζ (ε).
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Claim 4 Let k be a feasible path from some initial stock in [0, K ], and suppose that associated
consumption on this path satisfies ct ≥ c∗ − η for t = 1, 2. Then

k2 <
3

2
.

PROOF: Because ε < 1 − β (see (10), note first that K ≤ M, where M is the maximum
sustainable capital stock when ε = 1 − β. It is easy to see that

M = α + β + 2, (18)

so that given c1 ≥ c∗ − η, it must be that k1 ≤ (2 + η) + α(1 − β). Hence,

f (k1) ≤ f ([2 + η] + α[1 − β]) ≤ α[η + α(1 − β)] + (2 + β),

so that (remembering c2 ≥ c∗ − η)

k2 ≤ (1 + α)η + α2(1 − β) + (2 − αβ) <
3

2
,

where the second inequality uses (8).5 �

Claim 5 Let k be a feasible path from some initial stock in [0, K ], and suppose that kt < 3/2
for some t = 0, 1, 2. Then v(k) ≤ V(κ∗) − δν/ε .

PROOF: Suppose that kt < 3/2 for some t ≤ 2. Now recall the two remarks of interpretation
following (12) and (14). They jointly imply that at most one round of consumption c∗ − η

or better can be sustained over the next N + 1 periods. It follows that

v(k) ≤ (1 + δ + δ2)u(M) + (δ3 + · · · + δN + 2)u(c∗ − η) + δN + 3u(M)

1 − δ

<
c∗

1 − δ2
− δν/ε = v(k∗) − δν/ε ≤ V(κ∗) − δν/ε. (19)

The first inequality above follows from the fact that consumption in periods 1 and 2
is at most M . Because at most one further period of consumption c∗ − η or better can
be sustained over the next N + 1 periods, I bound total payoff by placing this round
in period 3, following it up with N rounds of consumption c∗ − η or less. Thereafter, I
bound consumption by M again. The second inequality follows from (11), and the very
last inequality is true by definition. �

Claim 6 Let k be a feasible path from some initial stock in [0, K ], and suppose that associated
consumption on this path satisfies ct ≥ c∗ − η for t = 1, 2. Then v(k) < V(κ∗) − δν/ε .

In particular, no such path can be optimal from κ∗.

PROOF: By Claim 4, k2 < 3
2 . Now apply Claim 5. �

5
Given (8), we have (1 +α)η +α2(1 − β) + (2 −αβ) < (1 +α)α(1 −β) +α2(1 − β) + (2 −αβ) ≤
3(1 −β) + (2 − αβ) ≤ 3/2, where the last inequality follows from α, β ∈ (0.9, 1).
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A function F(x) is locally (strictly) convex at x if there exists an interval I with x ∈ int I
such that F is (strictly) convex on I .
Claim 7 For continuous, nondecreasing functions u and g, a discount factor ρ ∈ (0, 1), and
constants y and x, consider the two-period maximization problem:

max
(c1,c2,k) ≥ 0

u(c1) + ρu(c2)

subject to

c1 + k = y and c2 + x = g (k).

Suppose that: (a) (c1, c2, k) � 0, (b) u is locally strictly convex around c1 and c2 and (c) f is
locally convex around k.

Then (c1, c2, k) cannot be a solution to the maximization problem.

PROOF: Suppose that (c1, c2, k) � 0. There exists μ> 0 such that u is strictly convex
on [ci − μ, ci + μ], i = 1, 2, and f is convex on [k − μ, k + μ]. Define (c ′

1, c ′
2, k′) ≥

0 and (c ′′
1 , c ′′

2 , k′′) ≥ 0 by k′ ≡ k −μ, k ≡ k + μ, c ′
1 ≡ c1 + μ, c ′

1 ≡ c1 −μ, c ′
2 =

g (k − μ) − x , and c ′′
2 = g (k +μ) − x . Then, using the local convexity of u and g at their

respective points,

1

2
[u(c ′

1) + ρu(c ′
2)] + 1

2
[u(c ′′

1 ) + ρu(c ′′
2 )] > u

(
c ′

1 + c ′
2

2

)
+ ρu

(
c ′

1 + c ′
2

2

)

= u(c1) + ρu

(
1

2
g (k − μ) + 1

2
g (k + μ) − x

)

≥ u(c1) + ρu(g (k) − x).

However, this means that (c1, c2, k) cannot be a solution to the maximization problem
(either (c ′

1, c ′
2, k′) ≥ 0 or (c ′′

1 , c ′′
2 , k′′) will dominate it). �

Claim 8 Suppose that k is a feasible path from κ > 0, such that for two dates t and s with
t < s , we have 0 < cτ �= c∗ for τ = t, s , and kτ �= 1, 2, 2 + β for all τ = t, . . . , s − 1. Then
k cannot be optimal.

PROOF: Fix a feasible path k and let {cτ } be the associated consumption sequence. For
τ = t, . . . , s − 1, define a function rτ (x) by rτ (x) ≡ max{ f (x) − cτ + 1, 0}. Define a func-
tion g by

g (x) = rs − 1 ◦ · · · ◦ rt (x) (20)

for all x > 0.
Suppose, contrary to our assertion, that k is optimal. Consider the problem

max u(c ′
t ) + δs − t u(c ′

s ) (21)

over all feasible paths k′ that have associated consumption c ′
τ = cτ for τ �= t, s . If our

path k is to solve this problem (as it surely must if k is optimal from κ), then in
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particular (c ′
t , c ′

s ) = (ct , cs ) must solve the maximization problem in Claim 7, with
y = f (kt − 1), x = ks , and ρ = δs − t .

Note that g is continuous and nondecreasing. Consider all the input values implicitly de-
fined by g (kt ), using the functions rτ , up to date s − 1; they coincide exactly with the values
along k. For each such date, f (kτ ) > cτ + 1 (because cs > 0). Therefore,rτ (x) = f (x) − cτ + 1

locally around x = kτ . Because kτ �= 1, 2, 2 + β, each of these functions is also locally con-
vex around kτ . Therefore, g is locally convex at k = kt .

Because 0 < cτ �= c∗ for τ = t, s , Claim 1 tells us that u is locally strictly convex at ct

and cs . Invoking Claim 7, we see that (21) cannot be solved by (ct , cs , kt ). However, this
means that k cannot be optimal, a contradiction. �

Claim 9 Let k be optimal from initial stock κ∗. Then, if c1 �= c∗, c2 = 0.

PROOF: Suppose that c1 �= c∗. Because c1 �= c∗, we know that k1 �= 2. By Claim 3, c1 ≥
c∗ − η, so k1 ≤ 2 + η < 2 + β, by (8).6 By Claim 4, k1 > 3/2 > 1. Finally, by Claim 6, we
know that c2 ≤ c∗ − η.

Therefore, if c2 > 0, we know that c2 ∈ (0, c∗). Now (c1, c2, k1) satisfies all the assump-
tions of Claim 8, so that k cannot be optimal, a contradiction. �

In what follows, remember that σ (k) ≡ f ( f (k)) − k for k ∈ [0, K ], and that ξ(ε) is
defined by f (ξ(ε)) ≡ 2.
Claim 10 For every k < 2,

σ (2) − σ (k) ≥ min

{(
αβ

ε
− 1

)
(2 − k), (α + 1)β − S

}
> 0, (22)

where S is the maximum value of σ (k) on [0, ξ(ε)].

PROOF: Recall from Claim 2 that σ (2) > σ (k) for all k �= 2. In particular,

σ (2) − σ (k) ≥ (α + 1)β − S > 0 (23)

for all k ∈ [0, ξ(ε)]. When k ∈ (ξ(ε), 2), we know from the definition of ξ(ε) that f (k) > 2,
so that

σ (k) = α

[
β − β

ε
(2 − k)

]
+ (2 + β) − k.

It follows that

σ (2) − σ (k) = (α + 1)β − α

[
β − β

ε
(2 − k)

]
− (2 + β) + k =

(
αβ

ε
− 1

)
(2 − k). (24)

Observe that αβ/ε > 1, because (α, β) ≥ (0.9, 0.9) and ε < 1 − β.
Combining (23) and (24), we must conclude that (22) holds. �

Claim 11 Suppose that 0 < κ = κ∗ − �, for some �> 0. Then associated consumption along
some feasible path k from κ can coincide with the sequence (c∗, 0, c∗, 0, c∗, . . .), starting from
date 1, for at most T(�) consecutive periods, where

6
Equation (8) informs us that η <α(1 −β) < 0.1, while β > 0.9.

International Journal of Economic Theory 6 (2010) 11–28 C© IAET 23



The Phelps–Koopmans theorem and optimality Debraj Ray

T(�) ≤ R(�, ε) ≡ 4 max

{
ε

(αβ − ε)�
,

1

(α + 1)β − S

}
+ 1. (25)

PROOF: Consider associated consumption along some feasible path k from κ , where
0 < κ = κ∗ − �. Suppose that starting from date 1, it coincides with (c∗, 0, c∗, 0, c∗, . . .)
for T consecutive periods (at this stage T may be infinite). Then for every odd t ≤ T − 2,
it is easy to see that kt < 2, and invoking Claim 10,

kt + 2 ≤ kt − [σ (2) − σ (kt )]

≤ kt − min

{(
αβ

ε
− 1

)
(2 − kt ), (α + 1)β − S

}
,

where, as before, S is the maximum value of σ (k) on [0, ξ(ε)]. By (22), kt + 2 < kt for all
odd t ≤ T − 2, so that

kt + 2 ≤ kt − min

{(
αβ

ε
− 1

)
(2 − k1), (α + 1)β − S

}
.

However, as long as T ≥ 2, we know that 2 − k1 = κ∗ − κ = �, so that for every odd
3 ≤ t ≤ T ,

0 ≤ kt ≤ 2 − t − 1

2
min

{(
αβ

ε
− 1

)
�, (α + 1)β − S

}
.

Consequently,

T(�) ≤ 4 max

{
ε

(αβ − ε)�
,

1

(α + 1)β − S

}
+ 1.

�

Claim 12 Let k be optimal from κ∗. Then c1 ≥ c∗.

PROOF: Suppose not. Then (using Claim 3) we know that 0 < c1 < c∗. By Claim 9, c2 = 0.
I now assert that:

ct = c∗ when t is odd, and ct = 0 when t is even. (26)

for all t ≥ 3. Suppose this is false; consider the first odd date t ≥ 3 for which either
ct �= c∗ or ct + 1 �= 0. Consider the continuation path from date t with initial stock kt − 1.
Because c1 < c∗, and (cs , cs + 1) = (c∗, 0) for all 3 ≤ s < t (with s odd), it must be the case
that kt − 1 > κ∗. Moreover, the continuation path of k is optimal from kt − 1. It follows from
Claims 3 and 6 that ct ≥ c∗ − η and ct + 1 < c∗ − η.

Therefore, if ct �= c∗, ct must be strictly positive, whereas if ct + 1 > 0, it must be that
ct + 1 �= c∗. Thus, in either case, at the first date s in which our assertion fails (t or t + 1),
0 < cs �= c∗.

It is easy to check that for all 1 ≤ τ ≥ s , 2 + β > kτ > 2 for τ odd and kτ > 2 + β for
τ even. Therefore, all the conditions of Claim 8 are satisfied, so that k must be suboptimal,
a contradiction. Hence, (26) is true.
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We have shown that the consumption sequence associated with k satisfies c1 < c∗
1 , and

ct = c∗
t for all t ≥ 2, where {c∗

t } is the consumption sequence associated with k∗. Once
again, this contradicts the optimality of k, simply because k∗ is feasible from κ∗. �

We now complete the proof of the proposition. It will suffice to show that if k is an
optimal path from κ∗, then

c1 = c∗ and c2 = 0. (27)

By Claim 12, we know that c1 ≥ c∗. Moreover, Claim 9 tells us that if c1 > c∗, then
c2 = 0. Therefore, if (27) is false, we have

c1 ≥ c∗ and c2 ≥ 0, with exactly one strict inequality. (28)

Let � ≡ max{c1 − c∗, c2}. In what follows, we explore the properties of the continua-
tion path from κ = k2. By (28), we have κ∗ − κ = �> 0.

By Claim 11, we know that the continuation consumption sequence (starting from date
2) can coincide with (c∗, 0, c∗, 0, . . . ) for at most T(�) periods, where T(�) satisfies (25).
Let τ be the very first date (starting from 3) at which the coincidence ends. Then

τ ≤ T(�) + 2 ≤ R(�, ε) + 3. (29)

We first consider two cases (they do not exhaust all the possibilities).

Case 1 cτ − 1 = 0 and cτ < c∗ − η. Consider the continuation path from kτ − 1 and apply
Claim 3. It is immediate that

Vτ ≤ V(κ∗) − δν/ε. (30)

Case 2 cτ − 1 = c∗ and cτ ≥ c∗ − η. Consider the continuation path from kτ − 2 and apply
Claim 6. It is immediate that

Vτ − 1 ≤ V(κ∗) − δν/ε. (31)

We will deal with both these cases together. Let T be a time index that stands for either
τ or τ − 1, depending on whether we are in Case 1 or Case 2.

Consider an alternative path k′ in which c ′
1 is reduced from c1 to c∗, c ′

2 is reduced
from c2 to 0 (only one strict reduction is involved, by (28)) and which coincides with
{c∗, 0, c∗, 0, . . .} up to and including date T − 1. Notice that k′

T − 1 = κ∗. From date T
onwards, let k′ coincide with an optimal path from κ∗.

Discounting all payoffs to period 1, and letting L stand for the utility loss in periods 1
or 2 (in moving from k to k′), it is easy to see that

v(k′) − v(k) = δT − 1 [V(κ∗) − VT ] − L

≥ δT − 1δν/ε − L

≥ δR(�,ε) + 2δν/ε − L , (32)

where the first of the inequalities uses (30) and (31), and the second uses (29).
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Now we estimate L. If the reduction occurs in period 1,

L = δ(M − c∗ − �)/ε� ≤ δα(1 −β)/ε� ≤ δη/ε�,

where the first inequality follows from the fact that � ≤ 2,7 and M = α + β + 2 (see (18)),
and the second inequality follows from (8).

If the reduction occurs in period 2,

L = δ(c∗ − �)/ε� ≤ δη/ε�,

where the inequality follows from the fact that c2 ≤ c∗ − η (by Claims 3 and 6), so that
c∗ − �= c∗ − c2 ≥ η. Therefore, in either case,

L ≤ δη/ε�, (33)

where

0 < � ≤ 2. (34)

(The last inequality follows from the fact that c∗ − η = (α + 1)β − η < 2.)
Combining (32) and (33), we see that

v(k′) − v(k) ≥ δR(�,ε) + 2δν/ε − δη/ε�. (35)

I claim that for all �∈ (0, 2],

ν

ε
+ R(�, ε) + 2 <

η

ε�
. (36)

We recall the definition of R(�, ε) from (25) and accordingly break up the proof of (36)
into two steps. First suppose that

R(�, ε) = 4ε

(αβ − ε)�
+ 1.

Then, after slight manipulation, we see that (36) is true if

ν + 3ε <
1

�

[
η − 4ε2

αβ − ε

]
. (37)

Equation (9) and (15) tell us that the right-hand side of (37) is certainly positive. So,
invoking (34), a sufficient condition for (37) to hold is

ν + 3ε <
1

2

[
η − 4ε2

αβ − ε

]
.

Rearranging terms and using (9), this is equivalent to the inequality

3ε + 2ε2

αβ − ε
<

η

2
− ν = ν,

which is guaranteed by (15).
7

Available output is (α + 1)β + 2, while c∗ = (α + 1)β.

26 International Journal of Economic Theory 6 (2010) 11–28 C© IAET



Debraj Ray The Phelps–Koopmans theorem and optimality

Second, suppose that

R(�, ε) = 4

(α + 1)β − S
+ 1.

Then (36) is once again true if

ν

ε
+ 4

(α + 1)β − S
+ 3 <

η

ε�
. (38)

To establish (38), it is sufficient to verify that

ε

[
4

(α + 1)β − S
+ 3

]
<

η

c∗ − η
− ν = ν,

where the equality invokes (9). This is guaranteed by (17).
This establishes (36). However, combining (35) and (36), we are forced to conclude

that v(k′) > v(k), but this contradicts the presumed optimality of k. Therefore, (27) must
indeed be true in both Cases 1 and 2.

That leaves only

Case 3 0 < c T �= c∗, with the additional proviso that

c T ≥ c∗ − η if c T − 1 = 0. (39)

Recall that (28) holds. Therefore, we have either c1 > c∗ or c2 > 0 (but not both). We
also know from Claims 3 and 6 that c2 ≤ c∗ − η. Therefore, we have a date t (equal to 1 or
2) and another date s (equal to T > 2) at which 0 < cτ �= c∗. Moreover, for any τ strictly
between these two dates the consumption path has cτ = c∗ for τ odd, and cτ = 0 for τ even.

Now we make the following observations about the path of capital stocks:

(i) At no date t between 1 and T can kt be less than 3/2. For if this were true, then by
Claim 5, we see that (30) must hold for some τ ≤ T(�) + 2, and exactly the same
argument for Cases 1 and 2 applies to obtain a contradiction. In particular, kt �= 1 for
all such dates.

(ii) For τ odd, we have kτ < 2.
(iii) For τ even, we have kτ < 2 +β. Moreover, for τ even, kτ �= 2. To see this, note that

because τ is even, cτ = 0. By (39), we see that cτ + 1 ≥ c∗ − η whether T >τ + 1 or
T = τ + 1. Therefore, kτ + 1 ≤ f (kτ ) − c∗ + η = 2 +β − (α + 1)β + η < 3/2, using
(8).8 However, this contradicts (i). Hence, kτ �= 2 for τ even.

Combining (a)–(c), we see that for all τ = t, . . . , s − 1, kτ �= 1, 2, 2 + β. Now all
the conditions of Claim 8 are satisfied, which means that k cannot be optimal. This
contradiction completes the proof of the proposition. �

8
By (8), 2 +β − (α + 1)β + η < 2 +β − (α + 1)β +α(1 − β) = 2 + α − 2αβ < 3/2, because α, β ∈ (0.9, 1).
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