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The paper develops a concept of equilibrium behaviour and establishes its 
existence in a model of nonpaternalistic intergenerational altruism. Each generation 
derives utility from its own consumption and the utilities of its successors. 
Equilibrium capital stocks are time-monotone and therefore converge to a steady 
state. Finally. when each generation’s utility depends on that of at least two suc- 
cessors, equilibria may be inefftcient. This is shown by an example, where feasible 
programs exist providing greater consumption (compared to the equilibrium path) 
for every generation. Journal of Economic Literature Classification Numbers: 021, 
Ill. ‘( 1987 Academic Press. Inc. 

I. INTRODUCTION 

Many economic issues need to be posed within a framework of 
intergenerational altruism, if they are to be analyzed in a proper way. 
Examples of such issues are numerous and’varied. Rawls [28] postulated 
intergenerational altruism in order to set his theory of justice in an inter- 
temporal context.’ Several models of the evolution of inequality over time 
rest critically on altruism (Becker and Tomes [4, 5 J, Bevan and 
Stiglitz [lo], and Loury [21]). The Ricardian equivalence theorem, as for- 
mulated by Barro [S], leans heavily on an assumption of intergenerational 
altruism, and has well-known macroeconomic implications. 

Studies in the conceptual foundations of the framework are also 
numerous. There is the familiar literature on consistent plans, initiated by 
Strotz [33], with subsequent contributions by Phelps and Pollak [27], 

’ The implications of Rawlsian theory for a “just savings” principle were studied by 
Arrow 123 and Dasgupta [ 131, using a model of intergenerational altruism. 
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Peleg and Yaari [26], Goldman [16], and Bernheim and Ray [8], among 
others. These bear a formal identity to models of intergenerational 
altruism. The latter models have been directly studied by Kohlberg [lS], 
Lane and Mitra [19], Bernheim and Ray [6,7,9], Leininger [20], 
Streufert [32], and others. 

Intergenerational altruism has been modelled in two ways. First, there is 
what one might call the paternalistic model. Here, the utility of each 
generation depends on its own consumption and the consumptions of other 
generations. The term “paternalism” is used to emphasize the fact that 
generations care about what others actually consume, and not the utilities 
they derive from the act of consumption.2 Secondly, there is the nonpater- 
nalistic model, in which each generation derives utility from its own con- 
sumption and the utilities of other generations.3 

There is now a substantial body of work on the paternalistic model. The 
entire literature on consistent plans falls into this category. Many 
applications of the altruism model, such as Arrow [2] and Dasgupta [ 131, 
belong here. Equilibria in this framework (which form the basis for an 
analysis of the properties of the model) have been recently studied in an 
extensive way (see Bernheim and Ray [6, 8, 91, Leininger [20], 
Goldman [ 161, and Harris [ 171). And finally, the positive and normative 
properties of these equilibria have been explored (Kohlberg [18], Lane 
and Mitra [19], and Bernheim and Ray [7]). 

In contrast, there have been very few rigorous studies of nonpaternalistic 
altruism, though this framework appears to be of somewhat greater interest 
in the context of applications (see, e.g., Barro [3] and Loury [21]). This is 
understandable. After all, the position that generations care about others’ 
utilities, and not in the manner these utilities are achieved, has a certain 
persuasiveness.4 

A few studies do explore one aspect of nonpaternalism, and this concerns 
its connections with the paternalistic model. A natural consistency property 
(sometimes also called “nonpaternalism” (Archibald and Donaldson [ 1 ] )) 
allows the representation of some paternalistic utility indicators in a simple 
nonpaternalistic form, where the utility of each generation depends on its 
own consumption and the utility of its immediate successor (this is the 
form explored in Barro [3], for example). Streufert [32] contains a com- 
prehensive study of this consistency property. The representation of non- 
paternalistic functions in paternalistic form has also been the object of 

z Some paternalistic functions may indeed express intergenerational harmony of interests. 
But then they will have nonpaternalistic representations (more on this below). 

’ There is also, of course, a mixed framework with both paternalistic and nonpaternalistic 
components. But I know of no work addressing such a model. 

‘The persuasiveness is not complete though, as a little reflection on the “generation gap” 
will reveal! 
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limited attention; a fairly general treatment of a finite horizon model 
appears in Pearce [25]. But a systematic analysis of the relationship 
between these two frameworks is yet to be written, and appears to be quite 
a challenge, especially for models with an infinite horizon. 

This paper conducts a direct study of the behavioural foundations of the 
nonpaternalistic model. The first line of business is the definition of an 
equilibrium outcome, and a demonstration of its existence in a general set- 
ting. This is one of the main tasks of the present paper. The notion of an 
equilibrium outcome is adapted in an obvious way from the concept of 
subgame perfect Nash equilibria in extensive-form games (the nonpater- 
nalistic structure is not itself a game, though conflicts of interest may well 
be present ).5 

In this paper, I state and prove an existence theorem for a class of 
models that exhibits an extremely general form of nonpaternalistic 
altruism. In particular, each generation’s utility may depend on those of 
any number of future generations. 

The existence result asserts the following, in the context of a stationary 
modeL6 There exist an indirect utilit~~ ,function and a savings policy. both 
depending on current endowment, such that each generation finds it 
optimal to adopt that savings policy provided its descendants use the same 
policy and exhibit the given indirect utility. In addition, the indirect utility 
function generated by the generation’s maximization problem is also the 
same as that “announced” by its descendants. 

Such equilibria correspond to Markov subgame-perfect equilibria in 
paternalistic models (Bernheim and Ray [6, 91)’ It is of interest to note 
that the paternalistic models do not turn out to be equally well-behaved 
with respect to existence. While the existence of Markov equilibrium is 
guaranteed in simple paternalistic structures, where each generation’s con- 
cern extends to only the consumption of its immediate successor (Bernheim 
and Ray [6], Leininger [20]), there are counterexamples to the existence 
of Markov equilibria when the utility dependence extends to more than 
one successor (Peleg and Yaari [26]).8 It turns out that the introduction of 

’ Nonpaternalistic models do not represent games, because payoff functions are not 
necessarily well defined on the nctions (consumptions) of all agents. The concept of subgame- 
perfect equilibrium (Selten [29]) must therefore be modified. 

6 Stationary of the model can be dropped at the expense of sacrificing the stationarity of 
equilibria. 

’ More general history-dependent policies may be allowed, but Markov equilibria continue 
to be perfect equilibria. only provided that each generation’s preferences are “ancestor-insen- 
sitive.” 

’ More general history-dependent equilibria continue to exist (see Goldman [ 161 and 
Harris [17]). But the absence of Markov equilibria is troubling (for a discussion, see 
Bernheim and Ray [S]). 
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uncertainty removes these counterexamples and guarantees existence 
(Bernheim and Ray [S, 91). 

It is therefore surprising that nonpaternalistic models yield the existence 
of an equilibrium even in the context of perfect certainty. In fact, the 
introduction of uncertainty (an extension not pursued here) only makes the 
existence proof simpler, and can be easily accommodated with the techni- 
ques developed here. 

Some existence results do appear in the literature, dealing with nonpater- 
nalistic structures where altruism is confined to one’s immediate successor. 
Streufert [32] proves a very general result for a multisectoral model in this 
context, and Loury [21] has an earlier proof for the aggregative model. 
These are certainly of interest. 

The problem, though, with the simple nonpaternalistic structure is that it 
leaves no room for conflicts of interest. Indeed, as I mentioned before, there 
must be perfect harmony of interests between each generation and its 
descendant for this specification of altruism to be operative. Predictably, 
the equilibrium solution to this model is often an optimal one, viewed from 
the vantage point of each generation. This is easily seen in the case where 
the utility function of each generation is additively separable in its own 
consumption and the utility of the next generation (discounted). Here, one 
can use the notion of one-step unimprovability, familiar in dynamic 
programming, to yield the optimality of every equilibrium path.Y There 
also appears to be a general connection between unimprovability and the 
non-additive simple nonpaternalistic structure (Streufert [ 321). 

However, conflicts of interest play a central role in more general forms of 
altruism. This is expected to manifest itself in the lack of some optimality 
properties of the equilibrium solution. A natural candidate is the 
examination of Pareto-optimality. But there are problems with this con- 
cept. unless the nonpaternalistic structure can be shown to have a pater- 
nalistic representation and the examination is carried out in the transfor- 
med model. Such an exercise is not attempted in the present paper. 

However, it can be shown that equilibrium programs may even fail to 
achieve a far weaker efficiency property. Below, I describe a class of cases 
(Sect. TIC) where equilibrium programs are inefficient in the sense that more 
consumption can be feasibly provided at every date (Malinvaud [22]). The 
equilibrium path can therefore display efficiency failures of a drastic sort. In 
the light of the discussion above, such failures are only possible if altruism 
extends to the utilities of descendants other than one’s immediate successor. 

The paper also contains results on the behaviour of equilibrium paths 
(Sect. IIb) in the case where the current generation’s utility is additively 

‘) This is because in the particular context at hand, an unimprovable strategy is easily inter- 
pretable as an equilibrium for the nonpaternalistic structure. 
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separable in its own consumption and some function of the utilities of its 
descendants. Here, equilibrium paths are shown to converge monotonically 
to a steady state from any initial stock (Theorem C). Moreover, equilib- 
rium programs can be conveniently “ordered” in the sense that equilibrium 
stocks from a higher initial endowment must be higher at each date. 

Throughout, I restrict myself to an aggregative framework of intertem- 
poral accumulation, with stationary technology and no uncertainty. An 
initial endowment is given, which is divided by the current generation into 
consumption and investment. Investment yields output via a production 
function, and this forms the endowment of the next generation. The process 
then repeats itself. This model has been widely used in the literature on 
efficient and optimal growth,” and in the particular context of 
intergenerational altruism.” Analysis of the multidimensional case is an 
open question. I2 It should be reiterated, though, that uncertainty only 
makes the analysis simpler, so that the assumption of perfect certainty is 
not restrictive. And finally, identical techniques can be used to establish the 
existence of nonstationary equilibria in a nonstationary model. 

In Section 2, I spell out the model and its assumptions. The main results 
are stated and discussed here. Proofs are relegated to Section 3. 

2. THE MODEL 

The technology is given by a production function f: R +. + R + I shall 
assume 

(F.l) ,f is increasing and continuous, and 

(F.2) there is ?; such that ,f( .v) < .V for all y > j. 

Initial endowments are taken to lie in the interval [0, j]. So given an 
initial stock y in this interval, a feasible program (x, v, c) is given by 

?‘o=y 

C’,=c,+x,, t>O (1) 

1’,+ I =f(-x,1. t 3 0. 

“‘See, for example. Solow [31]. von Weizsacker [34], Gale and Sutherland 1157, 
Cass [12]. Mitra [23], and Mitra and Ray [24]. 

‘I See, for example, Strotz [33]. Arrow [2]. Dasgupta 1133. Kohlberg [lS]. Leininger 
[20], and Bernheim and Ray [6]. 

IL One possible route is proving the existence of an equilibrium involving history-dependent 
policy and indirect utility functions along the lines developed by Goldman [16] and 
Harris 1171 for the paternalistic case. Streufert [32] does obtain a Markovian equilibrium in 
a multidimensional model. but restricts himself to simple nonpaternalistic altruism. The 
questton of existence of such equilibria in the case of general altruism and a multidimensional 
model is an important, though unresolved issue. 
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Define Y s max( j, F). Note that JJ, d Y for all feasible programs. 

Remarks. ( 1) Technology (and preferences, below) are taken to be 
time-stationary. But as I have mentioned above, this assumption can be 
dropped. 

(2) Assumption (F.2) can be dispensed with at the expense of some 
work, using truncation arguments described in Bernheim and Ray [6]. 

Let v, denote the utility of generation s, and let u’ = (0, + , , u,,~,...). The 
prqferences of each generation are described by a nonpaternatistic, 
ancestor-insensitive utility function U: I&!: + [WY, which maps, for each t, 
(c,, ~1’) into utilities of generation t. I shall assume that for each f, 

(u.1) II is increasing and strictly concave in c,, and non-decreasing in 
I’,. s > 1. 

(~2) II is continuous in the product topology on nonnegative real- 
valued sequences. 

(u.3) I’, and D’ are weak complements in the following sense; for all 
c,. ?,. 1”. ?, with r, > c”, 3 0, v’ 3 6 3 0, 

u((.,, L”) - u(F,, 2)‘) 3 u(c,, 6’) - u(c”,, ?).I4 

(u.4) For each c > 0, there exists M(c) < co such that 
u((‘, M(c), M(c) ,... ) < M(c). 

Remarks. (1) It is assumed that the concern of each generation 
extends to only its descendants. Concern for one’s ancestors can be easily 
incorporated if this is separable with respect to U. If not, the concept of 
equilibrium that I present below must be expanded to include history- 
dependence. However, the method used here is readily applicable to that 
case. 

(2) The assumption of weak complementarity (u.3) is essential for 
the way I establish the existence result. Whether the theorem is true 
without this assumption is an interesting open question.” 

(3) The boundedness assumption (u.4) is really a generalization of 
some notion of time-preference or discounting. Consider for a moment an 
additively separable utility function of the simple form 

u(c,, u’) = M’(C,) + &I,+,, 6 > 0. 
” The assumption that 11 maps into R + is really not a restriction, but only makes the 

notation easier. What is important is assumption (u.2), which rules out unboundedly negative 
utilities at the origin. 

I4 If 11 1s differentiable. this amounts to the nonnegativity of the cross-partial derivatives 
-1 ,T r--u,c’c, cc,. s > f. 

” Below (proof of Theorem A) it will be seen that the assumption allows me to restrict 
attention to spaces of nondecreasing functions, on which I can place a tractable topology that 
works in the present context. 
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A necessary and sufficient condition for u to satisfy (u.4) is clearly 6 < 1. 
For a more general (yet additive) form of altruism, 

u(c,, u’)=w(c,)+ i: PU,+,,, 6>0; 
.$ = 1 

the necessary and sufficient condition is Cf=, 6” < 1. 
Now, some definitions. A (Murkoo) policy is a function 

s: [0, Y] + [0, Y] with 0 <s(y) < y, y E [0, Y]. An indirect utility is a 
function 2): [0, Y] + R. 

We are now ready to define our main concept. Call a pair (v*, s*), where 
Y* is an indirect utility and s* a policy, an equilibrium if for each j’ E [O, Y], 
s*(,r) is the value of X, that solves the problem 

max u(c,, u’) 
0 < Y, < .I 

(2) 

subject to 

and if 

l’, = ?’ 

c., + -y., = y,, s>t 

?‘.t + I =f(s,). s > t 

u, = u*( y,), S3ffi 

x,, = s*(y,), s2t+l, 

(3) 

l~*(Jl)=o~,;~, (u~c,, d), subject to (31i. (4) 

Call the feasible program obtained from some y E [0, Y] by applying the 
equilibrium an equilibrium path. 

Remarks. (1) Clearly, the definition implicitly states that problem (2) 
is well defined for all 4’ E [0, Y]. This requirement is handled below in the 
proof. 

(2) Observe that for special forms of altruism, such as the one-step 
recursion tic,, u,+ ,), the last equalities in (3) involving the function s* are 
redundant in the constraints of problem (2). 

(3) Equilibria may be analogously defined for general history depen- 
dent policies and indirect utilities. It can be checked that the present ver- 
sion continues to be a solution in this more general class of functions. 

It follows from the defmition of an equilibrium that if generations t + 1, 
t + 2,... all ‘Lannounce” a policy s* and indirect utility u*, then it is optimal 
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for generation t to do so. It is in this sense that an equilibrium can be said 
to depict a form of consistent behaviour. Note again the close analogy 
between this solution concept and that of (Markov) subgame perfect 
equilibrium developed for extensive form games. 

2a. Esistence 

THEOREM A. Under (F. I), (F.2) (u. 1 t(u.4) an equilibrium (v*, s*) 
esists. The equilibrium indirect utility o* must be an increasing function. 
There is an equilibrium policy s* that is nondecreasing. 

Theorem A establishes that the equilibrium concept developed here is 
not vacuous in a wide class of situations. 

The equilibrium indirect utility is increasing in endowment, and this is 
natural, given (u.1). The fact that there is always a non-decreasing 
equilibrium pohcy is of greater interest. The result hinges on (u.1) and 
(u.3), and parallels those obtained in paternalistic models (Kohlberg [IS], 
Bernheim and Ray [6, 91, Leininger [20]). For a discussion of the 
underlying intuition, see Bernheim and Ray [6]. 

2b. Steud\* Stute Properties 

The results here depend upon strengthening the complementarity 
assumption (u.3) to separability: 

(u.5) There is u’: [w, -+I$+ and W: I!%; -+lw+ such that 

u(c,, D’) = w(c,) + W(d). 

We can now establish 

THEOREM B. Under (u. 1) and (US), if (u, s) is an equilibrium, then s must 
he nondecreasing. 

Theorem B parallels, as 1 said, results for paternalistic models. Similar 
results have also been useful in the analysis of aggregative optimal growth 
models with nonconvexities in production (see, e.g., Dechert and 
Nishimura [ 141 and Mitra and Ray [24]). Specifically, it yields in a 
straightforward way the time-monotonicity of equilibrium paths, and in 
particular, their convergence to some steady state. 

To state this, we need some notation and definitions. Call x a fixed point 
qfs (under,f) ifs = s’>f(~). For a correspondence @: [0, Y] 5 [0, Y] call 
I a,fixed point of @ (underf) if x E @ 0 f(x). And for a nondecreasing policy 
s, define G(s): [0, Y] =+ [0, Y] by 
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We then have 

THEOREM C. Under (F. 1 ), (u. 1 ), and (u.5), every equilibrium path of 
(v, s) is monotone in stocks, which converge to a fixed point of Q(s) underf 
Every fixed point of s has the stocks of at least one equilibrium path converg- 
ing to it. Finally, if (x, y, c ) (resp. (x’, y’, c’ ) ) are equilibrium paths from y 
(resp. y’). then y > y’ implies x, > xi, y, 2 y; for all t. 

Theorem C shows that equilibrium programs have a great deal of struc- 
ture and in particular, display steady state properties in a fairly general 
class of situations. Specifically, the result holds for very broad versions of 
nonpaternalistic altruism, extending to an arbitrary number of descendants. 

2c. Normative Properties 

The most obvious normative question that one can ask of these 
equilibria is: Are they Pareto-optimal? But we are on slippery ground here, 
for the lack of Pareto-optimality implies the existence of a feasible program 
with utilities higher for all concerned. However nothing in the model so far 
allows us to define utility levels for each generation, given any feasible 
program. Utilities are defined on equilibrium programs,16 but this is not a 
rich enough set to test for Pareto-optimality with respect to all feasible 
programs, equilibrium or not. One is therefore inexorably led to the follow- 
ing question: What kinds of nonpaternalistic functions have utility 
representations on the set of all consumption programs, or in short, pater- 
nalistic representations? (The reverse link is also important for different 
reasons. ) ” 

This question (and its converse) is the subject of future work. Here, I 
shall use a weaker normative notion, that of consumption-efficiency (see, 
e.g., Malinvaud [22]). This is a relatively mild efficiency concept that 
requires that there be no other feasible program with consumptions higher 
at every date. In this model, Pareto-optimality (given that the represen- 
tation problem is solved) would imply consumption efficiency, but not vice 
versa. It follows, therefore, that a failure of consumption efficiency is indeed 
a failure of a rather drastic kind. 

Here, I provide an example (actually sufficient conditions in a specific 
model) where equilibrium programs are inefficient. Note at the outset that 
altruism extends to more than one descendant in the example. 

” Simply associate the indirect utility of a stock that generates a given equilibrium program 
with the equilibrium program. 

” One reason is that a class of paternalistic utility functions would be exhibited for which 
Markov perfect equilibria are guaranteed to exist. One would have to translate the equilibria 
of the nonpaternalistic model into those of the paternalistic model which it represents. 
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EXAMPLE (Inefficiency of equilibrium programs). Let 

u(c I7 u’) = c”ufi f I+ l”Y+21 6, P, Y > 0, 
and 

f(x)=x”, O<cc<l. 

I now claim the following’*: There exists an equilibrium (v*, s*), provided 
that fl+ y # 1 and 1 - a[fi + ccy] > 0, of the following form: 

u*(y) = byU. 

s*(y) = dy, 

IcAere h, a, d are positive constants determined by the parameters of the 
model. 

If /3 + zy d 1, all equilibrium programs qf (o*, s*) are efficient. But ij 
p + ccy > 1, all C$ them are inefficient. 

Consider this for a moment in the context of a paternalistic model. 
There, limited altruism is actually a form of myopia, relative to, say, a 
planner who would consider the entire stream of consumptions. However, 
in a large class of models, this myopia, while it does cause Pareto- 
inoptimality, does not do away with consumption-efficiency (the 
equilibrium program underaccumulates stocks, if anything (see Bernheim 
and Ray [7])). In the nonpaternalistic case, only the simple one-step 
altruistic formulation (u(c,, 21’) = li( c,, u, + 1 )) can guarantee optimality 
properties (see, e.g., Streufert [32]). But caring for any further descendants 
through their utilities results in a tendency to overaccumulate stocks.” This 
is the source of the inefficiency. 

3. PROOFS 

I start with some notation. First take some Y > Y, and define A4 = M( Y), 
by assumption (u.4). We will deal with functions on [0, Y] rather than on 
[0, Y] to avoid technical difficulties at the upper value of the domain.*’ 

Ix One point regarding the example: my assumptions as stated do not cover this case, By 
(u. I ). u must be increasing in c. but this is not satisfied in the example when U, + , = U, + 2 = 0. 
So a fixed-point argument (the one used in the proof of Theorem A) cannot rule out trivial 
equilibria of the form a*( ?;) = 0 in these cases. These equilibria are inefficient but I do not 
push them as serious cases of efficiency failure. The claim below holds for nontrivial equilibria 
which are explicitly computed. 

” Specifically, in this example, when the conditions for inefficiency are met, the resulting 
equilibrium program results in limit stocks that exceed the “golden rule.” 

“These concern the convergence arguments made in the crucial continuity lemma 
(Lemma 6). The present construction sidesteps these difficulties. 
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These functions will be given preassigned values of Y at Y (see below); in 
Lemma 1, particular restrictions of these to [0, Y] are shown to yield an 
equilibrium. 

Let S” be the space of al1 functions s: [0, Y] + [0, 81 with 0 d s( -)I) 6 JJ 
and s( Y) = I? Let S = {s E So/s is uppersemicontinuous (USC) and non- 
decreasing). Let K” be the space of all functions u: [0, Y] + [w with 
[I( Y) = M, and K = (u E K”/u is USC, nondecreasing with 0 d I)( J’) d M}. Let 
z” (resp. Z) be the product K” x S” (resp. K x S); a typical element : is thus 
of the form (0, s). 

For any = = (u, s) E Z” and x E [0, Y], define 

and 

P(x)= (&.(x))~=,. (6) 

Say that z* = (II*, s*) E Z” solves -7 = (24 s) E Z” if, constructing V(x) as in 
(6) for each y E [0, Y) the problem 

(7) 

can be solved to yield 

and 

LEMMA 1. Consider z E Z” such thut z solves z. Let Z = (L?, S) be the 
restriction ofz to [0, Y] x [0, Y]. Then (fi, S) is an equilibrium. 

Proof: Observe that the maximization of (7) for y E [0, Y] is equivalent 
to the problem in (2). Also, as y E [0, Y] implies f(y) <f( Y) < Y, the 
behavior of u and s outside [0, Y] is irrelevant when (7) is solved for 
y E [0, Y]. But this yields an equilibrium. Q.E.D. 

By Lemma 1, we are done if we exhibit a 17 E Z” that solves itself. This 
will occupy the rest of the proof. 

Our next lemma establishes that if the policy and indirect utility 
employed by succeeding generations are USC and nondecreasing, then the 
best response of the current generation can be chosen to have the same 
properties. 
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LEMMA 2. Let z E Z. Then there is a unique z* E Z such that z* solves z. 

Proojl Given : = (~1, s)EZ, pk(.) as defined by (5) is USC for each k. 
Hence the objective function in (7) is USC on a compact set [0, y] (for each 
YE [IO, p)), so a maximum exists. Define v*(y) by (8) for YE [0, P), and 
D*( p) = M. Clearly, L’* E K“; we will show that u* E K. 

Note that because DE K and by (u.4), v*(v) 6 M, YE [0, P]. Also by 
(u.1 ), v*(.) is clearly nondecreasing (in fact, strictly increasing). Finally, to 
show that D* is USC, fix y E [0, f) and take a sequence I”’ + y. Let Y be a 
sequence of maximizers for (7), for each .V, and without loss of generality 
(w.1.o.g.) let I” -+ X. Then 

L’*(?‘,,)=u(.Y,l--y,, f?.G)). 

Taking limits and using the fact that 3 is USC, 

lim o*( y,) < u( y - s, P(X)) 
,I - % 

The claim that c’* E K is established. 
Define for each y E [lo, f), 

@(.v)=(a;y~rjxu(y-x, P(x))). 
. 1.’ 

We now prove that if y, > y, , x,E@(~,), and x,E@(Y~), then x,>,K~. 
Suppose this is not the case for some y, > y2, X, E @( ~1~) and x2 E @( yz). 
Observe that by definition of @, 

u(.r, --XI, P(-q)m&j -.x2, @x2)) 

and 

U(l’,-S,, ~(x~))3u(.Y-x,, P(x,)). 

Adding both sides of (10) and (11) and transposing, 

u(y,-s,, v(xI))-u(y~-xl, P(.K,)) 

(11) 

3 u( y, - x2, P(.K,)) - u( y, - x2, Jqx,)). (12) 

By (u.3), the premise that X, < .Y~, and the fact that ~,Jx) is nondecreasing 
(inspect (5)), 
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Combining ( 12) and (13), 

u(,v-x,, P(xz))-u(y2-x,, P(&)) 

>u(y, --.x2, t(x*))-u(y~-x2, qxJ). (14) 

But (14) contradicts the strict concavity of u in r, because 
y-x, >Jz-.Kz. 

Next, let ~1, be a sequence in [0, Y) with JJ~ -+ ~1, t’,, 2 I’; all n. Let 
x,~ E @( ~1,). Then if x is a limit point of s,,, I claim that ,i E @( 4~). To show 
this, assume w.1.o.g. that x,, +.x and proceed by contradiction. Then there 
is X* E [0, +r] with 

u( y - x*, P(x*)) > u( y - .K, P(x)). (15) 

By our earlier results, because y,, 1 y, it must be that x,, 1 x. So, given that 
fk(.) is USC, nondecreasing, and therefore rightcontinuous, 

4 ?-‘,z - .K,I > P(x,,)) -+ u( J’- x, V(x),. (16) 

Note that because y,, 1 JI, I* E [O, J*,~]. But this, together with (15) and 
(16) is a contradiction to the fact that s,, E @( >I,,), all n, for with large n, 

4 I’,, - x*, I+* )) > u( y,, - x,,, P(x,,)). (17) 

This argument establishes in particular that @(J;) is compact for each J’. 
Define s*(y) = max @(J’), ~2 E [0, Y), and s*(Y) = Y. By our result on @, s* 
must be nondecreasing. It remains to show that s* is USC. To do so, let 
~3,~ + .r, suppose, w.l.o.g., that lim,, s*( y,,) exists, and assume, contrary to 
the claim, that 

lim s*( j*,,) > s*(y). (18) II 

Then it must be the case that for all large n, .r,, > .r (otherwise non- 
decreasingness of s*(.) is violated). But in this case, by the argument above, 
lim,, s*( y,,) E Q(y), and so (18) violates the construction of s*(.). 

It remains to show that s*(.) is the only USC selection from @(.). Suppose 
there is some other J? E S such that s (̂ y) E Q(y), ,r E [0, 8). Then for some 
FE [0, Y), s*( i,) >9( J;). Let ~“4 I;; since by assumption, .I: is USC, 
s (̂ j) 2 lim sup, s^(y”). Thus, there exists N such that s*( +$) > s (̂ y”) while 
yN > I^,. But this contradicts the monotonicity property of @ established 
earlier. 

We have therefore established that s* E S, and earlier that v* E K. And by 
construction, it is clear that z* = (o*, s*) E Z solves z = (0, s). Q.E.D. 
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Thus, for all z E 2, we can find a unique z* E 2 that solves z. So we have 
a mapping H: Z -+ Z, which yields, for every z E Z, a “best response” H(z) 
for the current generation. 

Endow the space S and K with the topology of weak convergence (see 
Billingsley [ 11, p. 221) and Z with the product topology. 

LEMMA 3. Eoery continuous rnapping,frorn Z into itself has a fixed point. 

Proof: S and K are compact by Helly’s selection theorem (see 
Billingsley [ 11, p. 2271) therefore so is Z. Endowed with the weak 
topology, these are also convex subsets of a locally convex vector space, so 
Z also has this property. Thus by the Schauder--Tychonoff theorem (Smart 
[ 30, p. 15]), Z has the fixed point property. Q.E.D. 

Before proceeding to the main continuity result (Lemma 6) we establish 

LEMMA 4. Suppose that 5’ = (u”, s”) --+ I = (I), s) E Z. Define 6 b-v (5)for 
(v’!, s”), and P, by (~1, s),for each k. Then R(.Y) -+ vk(x) at all points ofcon- 
tinuitjq of PA. 

Proof Take any point s such that ch(.v) is continuous at X. Then it 
must be that s is continuous at all points of the form [,f s]“‘~,,f(-u), 
/II= 0 . . . . . k - 2. Suppose not. Let TV be an integer in 0 ,..., k - 2 such that s is 
discontinuous at [f ,s]” j’(r). Then, givenf’and s are USC and nondecreas- 
ing, if x,, t .Y, \I’,, = s [,f‘,,s]” ,f(s,,), then lim,, it’,, < II’ = s r’ [,f’- s]” I ,f‘(s). 

So lim,, i’,(r,)=lim,, I’S’ [,f‘ s]” ‘I ’ ,f(~‘,)<r- [,f‘~~~s]/‘ ” Y(K’)= PA(x), 
using here the fact that ,f is strictly increasing. This contradicts our sup- 
position. 

Given this, it is also easy to show that D must be continuous at 
[,f’- s]” ’ ‘.f(.Y). 

The weak convergence of pk(.) now follows directly. Q.E.D. 

LEMMA 5. Let (a;, h$) he a double sequence of real-valued, USC, non- 
decreasingfirnctions on [0, Y] such that for each k, a; -+ ak, b;f 4 bk weak$l, 
where aI, h, are also em and nondecreasing, k > 1. Let .Y*, y* E [0, Y), 
s* < JS*, he given. Then there is a sequence (x,,, y,)‘;l’ with X, 1 x*, .v, 1 Y*, 

0 6 .\-‘, d c’<, , and a subsequence ny of n such that, as q -+ X, 

a%y(sq) + a,(x*), k> 1. (19) 

b?d .vy I+ b,A Y* ), k> 1. (20) 

ProoJ By the assumptions of the lemma, each a,, b, has at most coun- 
tably many discontinuities. So the a,‘s together have at most countably 
many discontinuities on [0, 81 and so have the b,‘s. We can therefore pick 
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a sequence from the continuity points of the ak’s, xy, with xy I x*. Likewise, 
pick a sequence .ry J .r*, on the continuity points of the h,‘s, taking care 
that .ry 3 xy, all q. 

Perform a recursive construction as follows. Define ~(0, q) = n(k, 0) = 1 
for all (k. q) ~0. For (li, q) 3 1, suppose that n(s, t) is defined for all 
s = 0 ,..., k - 1 and t =0 ,..., q- 1. Then define n(k, q) with n(k, q) > 
n(X- - 1, q) and n(k, q) > n(k, q - 1) so that for all n 2 n(k, q), 

I 
la;‘(-u,)-u,(.u,)l G-3 

q 

and 

1 
(21) 

Define nq = n(q, q). Then II, = n(q, q) > n(q, q - 1) > n(q - 1, q - 1) = 
n,-, , so that ?zy is a well-defined subsequence of n. Now fix k. Then for 
large q, n,, = n(q, q) > n(li, q). So, by the construction of n(k, q), 

1 
~a~(.u~,)-uk(xy)l 6--O as q+cn. (22) 

4 

Now, 

luyqsy) - aJ.u*)l d la;lo(.y/) - u,(x,)l + la/&) - uJX*)l. 

It is easy to check that Us is right-continuous, given the assumptions of 
the lemma. Using this and (22), the RHS of the inequality above tends to 0 
as q + a. A similar argument holds for the h,‘s, so we are done. Q.E.D. 

It remains to establish the continuity of H with respect to the topology 
on Z. This is done in 

LEMMA 6. H: Z -+ Z is continuous. 

Ptmj: Let z” -+ ,- in Z. W.l.o.g., let 2” G H(z”) + t in Z. We are to show 
that P = H(z). Using (5) and (6), define p; and p by the sequence z”, and 
pk, v by z. Let f = (t;, s^); first, we show that s (̂ 4’) solves (7) for all 
J* e [0, F), given z. 

Let s* be the unique policy in S that solves (7), given z. It clearly suffices 
to show that s*( ~1) =s (̂ y) at all points of continuity of the former, given 
that s* and .? are both USC and nondecreasing. Suppose there is some 
y* E [0, P) such that s*( JI*) # s (̂ y*). Then, letting x* = s*( y*), 
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the strict inequality in (19) following from the fact that if s* is continuous 
at y*, @(J’*) must be a singleton, otherwise the monotonicity property of 
@ established in the proof of Lemma 2 will be violated. 

Now regard @ as the sequence a; in Lemma 5 with limit P, = ak. 
Similarly, identify (,?‘, fi0.Y) with the sequence 6;, and their limits with 
the b,‘s. Given x*, ,r*, and Lemma 4, all the conditions of Lemma 5 are 
satisfied. So there is a sequence (X y, j,,) 1 (.x*, y*) and a subsequence ny 
such that 

li>(xy) 4 P,(.u*), k3 1, (24) 
^,Z vkqPq I’,)) + P,(S( )a*)), h-3 1. (25) 

and 

P( J’<,) + s (̂ .1‘* ). (26) 

Combining (23))(26) and using the continuity of u, we have, for large q, 

u( yy - xy, Pyx,)) > u( ?‘,, - s”y y,), Pq.?y yy))), l-27) 

but (27) contradicts the fact that .9 solves (7) for each J’ E [0, 8), given 
z”q = (u”“, .+). This establishes that s’= s*. 

Finally, we must prove that ri is the indirect utility arising from the 
maximization of (7), given (u, s). 

As a first step, I claim that if x,, 4 .Y in [0, ?), then for each k, 

lim sup P;(.:(-u,,) 6 Vk(.y). 
,I 

(28) 

Suppose that this is not true for some k, .Y, and x,, -+ s. W.l.o.g., let 
@(.Y,,) converge; then there is N and 6 > 0 such that 

P;(x,J - P&v) > 6, II 3 N. (29) 

Using the right continuity of c,, pick X’ > .Y such that .Y’ is a point of 
continuity of 1’,, and 

P,( x’) - P,(x) < 6/2. (30) 

Now pick m >, N such that X, < .Y’ and 

@(x’ ) - 3,(Y) < 6/2. (31) 

Combining (29 )-(31), we have 

@(Y) - $(x*) = (e(x)) - P#)) + ( QxJ, - P,(x)) 

+(P,(.+ ~~(l,,))<S/2+~/2-b=0, 

which contradicts the fact that pr is nondecreasing. So (28) must be true. 
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Denote by o* the indirect utility from (8) given (u, s). It suffices to show 
that v* = ti at all points of continuity of the former. 

Observe lirst that for any .V E [0, Y), using (28), 

lim sup ti”( y) = lim sup u( y- x,,, c(x”)) 
,I’ x II 

6 u( y -x, P(x)) 

6 u*( .v), (32) 

where the x,,‘s solve (7) for 5, given )‘. 
Let ,v* be a continuity point of t;. W.1.o.g. let u”( +v*) converge. Suppose 

C( ~a*) = lim C”( JJ*) < u*( y*). (33) II + 7. 

Let Y* = .f( .r*). By Lemma 5, there is a sequence yy 1 .v*, xy 1 s*, x, d JJ(,, 
and a subsequence tzy of n such that 

P;ly(xJ + PJx*), x-31 (34) 

Pq y,,) -+ li( y*). (35) 

So, using (34), 

U(.Vq-Sy, PyK,)) -+ u*( y*). 

But then for large ~7, using (33), (35) and (36) 

UC .vy - -Ku 3 Fyx,)) > zP( y,), 

(36) 

(37) 

which contradicts the definition of ti”. Q.E.D. 

Proqf‘qf Theoretn A. By Lemmas 3 and 6, there is (z)*, s*) E Z such that 
(zl*, s*) = H(v*, s*); i.e., such that (u*, s*) solves itself. Denote by (6, s”) the 
restriction of (u*, s*) to [0, Y] x [0, Y]. Then by Lemma 1, (6, S) is an 
equilibrium. And (6, S) clearly meets the other requirements of Theorem A. 

Q.E.D. 

Proqf’of Theorem B. Let (u, s) be an equilibrium. We show that s must 
be nondecreasing. Pick y, , ?‘I in [0, Y] withy,>y>. For i=l,2,j#i, 

u'(.V-ss(I'i))+ w(~(s(1’,)))3w(~,-s(l’j))+ w(pts(Yj))). (38) 

Summing the two inequalities in (38) and rearranging, 

U~(J’,-.~(~,))-M’(?(2-S(y,))3W(I’I-S(~~))--W(y,--s(1’2)). (39) 

Given J’, > yz and 1~ strictly concave, (39) is satisfied only if s( y,) > s( vz). 
Q.E.D. 
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Proof of Theorem C. Let (u, s) be an equilibrium. Fix y E [0, Y]. The 
sequence of outputs then generated is given by 

.\‘(I = Y (40) 

.I’,+, =f~4)‘,), t 20. (41) 

We claim that either rr 6 J’,+, , all t, or J,> yl+ r, all t. Suppose y, < yl. 
Then by Theorem B, s( yO) < s( y, ). So using (41) and (F.l ), y, < y2. 
Extend this argument for all t. A similar line of reasoning applies if -yO > y,. 

So (J*,) is a monotone bounded sequence. Consequently (x,) is a 
monotone bounded sequence, converging to s*, say. We have 

x 1+1 =.s,~j’(s,), t 3 0. (42 1 

Passing to the limit in (42) easily yields that s* is a fixed point of @p(s) 
under j: 

Now let i- be a fixed point of s under ,f: Take y E .~~‘(.<). The resulting 
equilibrium program trivially converges to .i-. 

Finally, let (s, ~1, c) (resp. (x’. ~a’, c’ ) be an equilibrium path from y 
(resp. y’), and let y b y’. Then the fact that s is nondecreasing can be easily 
shown to imply s, 3 s:, J’, 3 ~1: for all t. Q.E.D. 

Proqf’ of‘ the Claim in Section 11~. Suppose that all succeeding 
generations employ (II. s), where 

and 

h, a > 0, 

.H y) = dy, 1 >d>O, 

for all y E [0, Y]. The current generation then solves problem (2). This can 
be simply written, for each J’ E [0, Y], as 

max (J - .~)“(h.~‘“)“ih(d-~“)““)’ 
0s \-<I, (43) 

which is equivalent to 

max (~1 - x)~ s”, where 
O<,C I 

r) = aa( b + cxy ). (44) 

First-order conditions for (44) are clearly necessary and sufficient. These 
are 

6( y-x)“-‘.x?=q( y- u)V- l , _ ’ 
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s -=L,J. 
?’ ?I + 6 

So the optimal savings policy for the current 
with 2 given by (45). 

(45) 

generation is s*(y) = 2): 

Now we calculate z)*(y), the indirect utility that results from (43). This is 
easily computed to be 

TO compute the equilibrium, we set (o*, s*) = (u, s); i.e., 

d = 2, h = 6, and a = ii. (47 1 

These yield 

v d=- 
‘1 + s (48 1 

(49) 

and 

u=iI+s=uCr[~+cq’]+s. (501 

Equation (49) has a solution for h provided p + 3 # 1. For (50) to yield a 
solution with a > 0, it must be that z[/I + ry] < 1. These are both given in 
the statement of the claim. 

Using (50), we obtain from (48) that 

d= a[/3 + q]. (51) 

It is now easily seen, either by direct computation, or by applying the 
Cass criterion for efficiency of a feasible program (Cass [ 12]), that the 
equilibrium program is inefficient if and only if /J + cry > 1. 
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