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Recent literature in the theory of games addresses the criticism that efficient
outcomes in a dynamic game are often supported by punishment paths that do not
have the same efficiency property. The outcome of this research is the notion of
renegotiation-proof equilibria. In this paper, I analyze the notion of renegotiation-
proof equilibrium sets that satisfy a natural criterion of internal consistency, one
that the earlier notions do not satisfy. I analyze the limit points of such sets as
discounting vanishes. The main result states that such limit sets must either be
singletons or belong to the Pareto frontier of the convex hull of the feasible set of
stage game payoffs. Journal of Economic Literature Classification Number:
026. © 1994 Academic Press. Inc.

1. INTRODUCTION

Recent literature in the theory of games addresses the criticism that
“‘collusive’ or “‘efficient’” outcomes in a dynamic game are often sup-
ported by equilibrium punishments that do not have the same efficiency
property.' This is a lack of consistency: if players negotiate to select an
efficient equilibrium outcome, why should they not renegotiate to do so
in all subgames?

This issue was first addressed by Farrell (1983) and Bernheim and Ray
{1985) in independent work. The consideration of consistency leads to a
refinement of subgame perfect equilibrium by imposing the same ‘‘selec-
tion norms’" (Pareto efficiency in the class of all allowable equilibria) in

I See, for example, Bernheim and Ray (1989), Farrell and Maskin (1989), Pearce (1987),
Asheim (1990), Benoit and Krishna (1990), and van Damme (1989).

162
0899-8256/94 $5.00
Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.



RENEGOTIATION-PROOF EQUILIBRIUM SETS 163

every subgame. The literature has been concerned with repeated games.
For finitely repeated games, an unambiguous definition can be arrived at
through backward induction. However, in infinitely repeated games, there
remain some serious definitional ambiguities, which we shall now quickly
recall.’

The definitional issue in an infinitely repeated game has two parts to it,
one dealing with “‘internal’’ consistency, and the other with “‘external”’
consistency. Consider an infinitely repeated game with discounting. Let
us see how the issue of internal consistency is dealt with. Bernheim and
Ray (1989) and Farrell and Maskin (1989) define a set W of equilibrium
payoffs to be weakly renegotiation-proof (WRP)? if

(a) Each payoff in W is supportable as a subgame perfect equilibrium
by using continuation payoffs drawn from W itself; and
(b) No payoff of W Pareto-dominates some other payoff in W,

Conditions (a) and (b) represent minimal notions of internal consistency.
Of course, in general, many sets of payoffs satisfy these conditions. For
example, the singleton set consisting of the discounted payoff obtained by
repeating any equilibrium of the stage game is always WRP.

In this paper, I argue that a complete notion of internal consistency can
take us further than this. Specifically, I claim that the notion of a WRP set
does not adequately capture the requirement of internal consistency, and
that a somewhat more stringent test must be passed. This will lead to what
I will call an internally renegotiation-proof (IRP) set.*

Recall the definition of W as a WRP payoff set. Criterion (a) above
implies that W is to be considered as a *‘stationary’’ theory of supportable
payofts, valid at every date. Criterion (b) imposes dynamic consistency at
the collective level: players will not be able to “‘renegotiate away’’ from
some payoff in W invoking some other better alternative in W itself.

Let us pause to reconsider the implications of (a): if W is thought of as
the theory at time ¢, so it is at time ¢ + 1. With this in mind, what are the
supportable payoffs at time 1? Clearly, they are the set of all payoffs that
can be supported as equilibria with all continuation payoffs (at 1 + 1)

! See Bernheim and Ray (1989) and Farrell and Maskin (1989) for a discussion of the issues.
[ also note that the work of Pearce (1987) embodies an entirely different way of studying
renegotiation-proofness, one which is not covered by this paper. On this, see Abreu and
Pearce (1989) and Abreu et al. (1989).

I This is the terminology of Farrell and Maskin (1989); I adopt it here.

* After the first draft of this paper was written in 1989, [ noted that van Damme in his book
(van Damme, 1987) briefly considers an alternative notion of renegotiation-proofness which
incorporates both the internal consistency notfion that I will discuss here as well as a strong
external consistency requirement. So IRP is one part of this definition. But the strong
implications of the internal consistency requirement were not investigated by him.
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restricted to lie in W. Call this set 8(W). Internal consistency demands,
then, that the set of renegotiation-proof payoffs at time ¢ must coincide
with the efficient frontier of 6(W).* So this last set must be W itself! But
WRP sets do not, in general, satisfy this property. | postpone further
discussion to Section 2.

We call a set internally renegotiation-proof (IRP) if it satisfies the above
criterion. Note that an IRP set is always WRP.

We have therefore identified a subset of the class of WRP sets, using
the internal consistency requirement alone. However, it remains to be
seen if this definitional issue has any practical ‘‘bite’” in narrowing the set
of outcomes. This is what I turn to now.

Consider, for the moment, all the WRP sets. Do they permit us to narrow
down the possibilities, relative to the set of all subgame perfect payoffs?
The paper by van Damme (1989) suggests that the WRP sets may not be
very effective in doing so. He considers the infinitely repeated version of
the prisoners’ dilemma, and shows that every individually rational, feasi-
ble payoff of the repeated game is a member of some WRP set, provided
that the discount factors of the players are close enough to unity. This
implies, at least in the context of an interesting example, that the WRP
notion does not narrow down the set of equilibrium outcomes as dis-
counting vanishes.®

The behavior of IRP sets is, however, different, and this is the main
result of the paper: the class of limit payoff sets of all sequences of IRP
sets (as discounting vanishes) contains ar most two types of sets, (i)
singletons and (ii) subsets of the Pareto frontier of all feasible payoffs.
This result stands in marked contrast to van Damme’s example for WRP
sets.

In Section 2, I motivate and introduce the concept of an IRP set, and
study an explicit example. The example shows clearly why a WRP set
may not have a natural internal consistency property. On the other hand,
the example also reveals that in attempting to fill this gap, an IRP set may
not always exist. However, existence is trivially guaranteed when the
stage game has a unique Nash equilibrium with the property that it is
undominated by any other Nash equilibrium. 1 also briefly comment on a
nonstationary version of the IRP solution concept.

Section 3 contains the main result of my paper, described above, and
Section 4 proves this result. Section 5 concludes by stating what 1 believe
to be interesting open questions in this area.

I end the Introduction with two remarks on the main result of the paper.

First, the limit behavior of IRP sets bears a strong similarity to a thecrem

3 Or at least, it must be a subset of this frontier. 1 do not consider this alternative here.
% In general, though, seme narrowing is achieved—see Farrell and Maskin (1989).
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of Benoit and Krishna (1990) about renegotiation-proof equilibria in finitely
repeated games. Indeed, my proof is guided by the ingenious arguments
of these two authors. But there are some differences. Benoit and Krishna
consider undiscounted games with the time horizon tending to infinity.
There is no difficulty here in defining, unambiguously, the set of renegotia-
tion-proof equilibria (Bernheim and Ray, 1989). So one considers here,
the limit behavior of a single set, while the inherent ambiguities of an
infinitely repeated game force us to look at a class of sets. In addition,
it turns out that there are somewhat different analytical considerations
involved in taking the discount factor to one, rather than the time horizon
to infinity. However, the overall feature to be stressed is the similarity,
not the difference. My result indicates that a natural extension of the finite
horizon definition involves stronger restrictions than just WRP.

Second, this limit result suggests that the different definitions of external
consistency may all yield the same results if there is sufficiently low
discounting of the future. The problem is that, in general, there may be
cyclical patterns of domination among different WRP (or IRP) sets, so that
a maximal element may fail to exist. The various definitions of external
consistency may be viewed as a way to get around this problem. However,
given the result of this paper, it appears that the different definitions may
all yield the same results in the limit, because all sequences of IRP sets
that are not tending to singletons are tending to the (unrestricted) Pareto
frontier. Cycles of domination will, therefore, disappear as discounting
vanishes.

2. INTERNALLY RENEGOTIATION-PROOF SETS

2.1. Basic Terminology and Assumptions

Let G = (A', A%, 7!, %) be a two-person game in normal form.” The
action set® of player i is A, and his payoff functionis m': A = A' X A*—
K. We assume that

(A.1) Foreachi = 1, 2, A’ is compact and 7' is continuous.

We normalize payoffs so that 7 (a) = (7'(a), m%(a)} = 0 for all « € A. So,

" We consider only two-person repeated games. Additional conceptual issues, such as
renegotiation at the coalitional level, arise with more persons.

8 The interpretation of A’ that | feel most comfortable with is that of a set of pure strategies,
though formally A’ may be regarded as a set of ebservable mixed strategies. 1 have not
explored the consequences of extending the analysis to the case where mixtures are used,
but only the realized outcomes are observed.
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by (A.1), F = w(A) is a compact subset of R . Let F* be the convex hull
of F. Then F*, too, is compact.

Denote by (G, 8) the infinitely repeated version of G with a common
discount factor & € (0, 1) for the two players. That is, if (a); € A isa
sequence of action vectors, then the normalized payoff to plaveriis (1 —
3) Z,8'm'(a,). Denote by F(3) the set of all normalized payoff vectors in
the game (G, 8) as we range over all possible sequences in A™, It is easy
to see that F(8) € F* for all & € (0, ).

We omit here the standard definitions of strategy and (subgame) perfect
equilibrium for the game (G, §).

An clement p € F(8) is a perfect equilibrium payoff if there exists a
perfect equilibrium of (G, 8) with equilibrium payoff p.

2.2. Internal Consistency

For any nonempty compact subset B of R, define
fiB) = {x € B|thereisnoy € B withy » x}. §))

The set of Pareto-efficient points of B (relative to B) is precisely f(B).°
For any a € A, define

d{a) = max [ (a], a) — w'(a)], i=1,2. (2)

ual€ Al

This represents the maximum value of the deviation for agent / from any
given action vector ¢ € A.

Let p € R* and a nonempty compact B C [’ be given. Say that B
supports p if there exist a € A and p, p', p> € B such that for i = 1, 2,

p; = (1 — 8)ymi(a) + 8p, (3)

and
dfa)=8(1 — 8 '(p; — p)). )
That is, p is constructing by ‘‘rewarding’” the players with a continuation
payoff of p, drawn from B, if none deviate, and by reverting to a ‘‘punish-

ment”’ of p', also drawn from B, should player i unilaterally deviate. Call
the collection (a, g, p', p? the supporter of p. Whenever we write a

® The notation y > x means that y, > x; for i = 1, 2. So we are using the concept of weak
Pareto efficiency here.
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supporter, it will be taken for granted that the first entry is an action
vector, the second a continuation payoff if there is no deviation, the third
a continuation payoff when player 1 unilaterally deviates, and the fourth
a continuation payoff if player 2 deviates.

Define

6 (B) = {p € R?| B supports p} &)
A compact set P C R is internally renegotiation-proof (IRP)!° if
P = f(6(P). (6)

I reiterate that this definition represents a more stringent requirement on
the payoff sets than that implicit in a WRP set. As I have argued in the
Introduction (and this will be made even clearer in Section 2.3), an IRP
set captures the notion of internal consistency to a fuller extent than a
WRP set. For comparison, we note that a WRP set P is characterized by

P = f(B) for some B C 8(P)

It is easy to verify that WRP sets (and therefore all IRP sets) are indeed
sets of perfect equilibrium payoffs, so that definition (6) is a refinement of
the notion of subgame perfection.

Observe, moreover, that definition (6) is the natural extension of the
unambiguous notion of renegotiation-proofness in finite horizon games
(see Bernheim and Ray, 1985, 1989, and Benoit and Krishna, 1990). There,
one simply starts with the Nash payoffs at the last date and works back-
wards recursively using the composed map f(6(-)). So there is nothing
particularly new or novel about the definition of IRP—it is the natural
extension of the corresponding definition in the finite horizon case."

" We are restricting ourselves to the consideration of compact sets of solutions. Given
(A.1), this is hardly a serious limitation.

" However, one must be very careful in linking limits of IRP sets obtained in the finite
horizon case by taking the time horizon to infinity, and the IRP sets that we have directly
defined for the infinitely repeated game. For one thing, it is not surprising that there are IRP
sets in the infinite game that cannot be achieved as limits of finite horizon IRP sets. But this
failure of lower hemicontinuity as one moves from the finite to the infinite horizon is well
known. What is more disturbing, however, is the possibility that the Hausdorff limits of finite
horizon IRP sets may not be infinite-horizon IRP. This is related to the lack of continuity of
the map f(8(-)) in the Hausdorff metric and via this route to the nonexistence problem for
IRP sets—see Section 2.3.
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TABLE 1
A B C
a 10, 10 -K, -K -K, 10 + ¢
b -K, -K -K, -K 1,2*
¢ 10 +6e — K 2,1 -K, - K

2.3. An Example
The following example is designed to make two points:

(1) WRP sets do not, in general, satisfy a natural ‘‘internal consis-
tency’’ property,

(2) IRP sets, which get around the problem in (1), have a different
drawback: such sets do not always exist.

Consider the bimatrix game depicted in Table 1. There are two pure
strategy Nash equilibria in the one-shot game: they are (b, C) and (¢, B)
and are indicated by (*) in Table I. Consider, for a given common discount
factor 8, the set W of payoffs generated by all outcome paths which have
as entries only (b, C) and (¢, B). The set W is WRP. Now suppose both
players hold Wasa *‘theory’’ of the set of achievable present-value payoffs
from each date onward. I claim that this theory lacks internal consistency,
provided & < &°. For if W is believed to be achievable from date ¢ = 1,
the action vector (a, A) is supportable at date ¢+ = 0 using continuation
payoffs in every subgame that come only from W (the condition & < 87 is
sufficient for this). But then the Pareto frontier of the set of achievable
payoffs at date ¢ = 0 is nor W, which is a contradiction.

Internal consistency is, therefore, only achieved when this recursive
calculation yields, *‘today,”” precisely the same set of payoffs that are
anticipated in the future.'? This is the idea behind the definition of an IRP
set.

Unfortunately, IRP sets may not always exist, as the very same game
above demonstrates. | show this by considering only pure strategies and
then indicate how the argument may be extended to mixed strategies.

Choose €, 8, and K such that e > 0, K = 0, ¢ < 8%, and & < 1/(11 +
K). 1 first claim that in any perfect equilibrium, cells apart from (a, A)
and the two one-shot Nash equilibria will never be observed. The one-
shot gain from deviation available to some player in any other cell is at

2 This is only true for time-stationary solution concepts, of which the WRP notion is
certainly one. However, there is no a priori reason why the solution concept must be time-
stationary. See Section 2.4 for a brief discussion.
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least 1. The maximum punishment (discounted to the current date) that
can be inflicted on that player is clearly bounded above by 6(10 + K)/
(1 — 8). Because & < 1/(11 + K), this cannot serve as an adequate
deterrent.

Next I claim that if P is an IRP set, and if for some equilibrium supporting
some payoff in P, the cell (@, A) is ever played, then P = {(10, 10)}.
Suppose that (a, A) is played for some equilibrium supporting some payoff
in P. Consider the continuation payoff p € P which involves the play of
(a, A) in the very first period. Then p = (10, 10)(1 — §). Now suppose that
there is some other ¢° € P which involves a play of, say, (¢, B). Then
there is g € P which involves a play of (c, B) in the very first period. But
then

g = (2, IM1 — &) + &0, 10).

Now it is easy to check, using the above inequalities and the assumption
8 < 1/(11 + K), that g < p. But this contradicts the definition of IRP. So
P = {(10, 10)}. But then P cannot be IRP, for the payoff vector (10, 10)
cannot be supported by £ = {(10, 10)}.

So if P is an IRP set, the only outcome paths corresponding to any
payoff vector p € P must involve combinations of the two Nash equilibria.
It is then easy to see that P must contain afl payoff vectors attainable in
this way, i.e., P = W. But now (a, A) is supportable! (We use the same
argument that we used to demonstrate the inconsistency of W.)

This proves that no IRP set exists for 2 < 8§ < 1/(11 + K).

With mixed strategies, one only needs to take K large. Then all play will
be ‘‘almost’” pure and restricted to the three cells (a, A), (¢, B), and (b,
C) with high probability. From this point on, a minor variant of the above
argument applies.

Note that in this example, an IRP set does exist for & large enough.
Consider pure strategies. One can prove that if § is close enough to 1,
there exists a unique IRP set. This sequence (in 8) of IRP sets converges
to the subset of the Pareto frontier of F* formed by the individually rational
payoffs (i.e., p = (1, ).

Whether this feature is general, i.e., whether there exists, always, an
IRP set for & large enough is an interesting open question.

Note that the existence of an IRP set is trivially guaranteed if the Pareto
frontier of the NE payoffs of the stage game is a singleton.

2.4. IRP Solutions

I mention here, in passing, a weakening of the concept of an IRP set that
may merit further investigation. The implicit assumption that underlies the
notion of WRP and IRP sets is that the theory of equilibrium payoffs is
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invariant with respect to time. There is no reason why this should be the
case, even though the underlying repeated game is fully stationary.

Let (P)<, be a sequence of subsets of R%. Say that (P)X, is an IRP
solution if for all ¢,

P: = f(G(PHl))

Note that the definition is internally consistent and yet allows for a time-
dependent theory. In particular, if players commonly adhere to the belief
that P, | is the set of finite horizon payoffs available from time ¢ + 1, then
the twin requirements of supportability and no Pareto dominance yield
exactly the set P, at time ¢.

An IRP set, as defined before, is then any set that corresponds to a time-
stationary IRP solution.

IRP solutions may be of interest in studying cyclical behavior, e.g., the
periodic breakdown of *‘cooperation,’” especially in cases where IRP sets
do not exist. But a detailed examination of such solutions will take us far
afield of my main objective, to which I now turn.

3. A LiMit THEOREM FOR IRP SETS

For the game (G, 8), denote by %P(8) the collection of all IRP sets. We
are interested in the members of the following collection:

% = {all limit points of sequences in 2(5), as & — 1},

(A sequence P* of compact subsets of R* will be said to converge to
some set P if the Hausdorff distance (relative to Euclidean distance)
between P* and P tends to zero as k — =)

So @ is the collection of all possible sets to which sequences of IRP sets
can converge as discounting vanishes. It turns out that % has the following
property:

THEOREM . Each element of P is either a singleton or a subset of
S(F*), the efficient frontier of F*.

This is the analogue of the “‘folk theorem’ for internally renegotiation-
proof equilibrium sets. We reiterate two points already made in the Intro-
duction. First, this result stands in sharp contrast to the wide range of
limiting behavior that WRP sets appear to predict, at least in examples
(van Damme, 1989). Second, our result complements the Benoit—Krishna
theorem for undiscounted finitely repeated games (Benoit and Krishna,
1990). Of course, the setting is different from that of the latter paper. For
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instance, if G has a unique Pareto-undominated stage equilibrium, the
unigque renegotiation-proof equilibrium set in finite repetitions of the game
1s obtained by simply repeating the stage equilibrium. Nevertheless, in the
infinitely repeated game, there may still be more than one IRP set.

In this context, I should note that both possibilities allowed for in
Theorem 1 may actually occur in the same game. An example is the
prisoners’ dilemma. There, it is possible to show that there are swo limit
IRP sets. One is formed by the payoff vector yielded by the one-shot Nash
equilibrium. This is not on the Pareto frontier, and it is a singleton. The
other is precisely the entire individually rational Pareto frontier of F*.

4. PROOF OF THE THEOREM

Foreachi = 1,2, define p' € F* by first maximizing p, over p € F* and
then minimizing p; over the set of maximizers. Observe that p’ is unique,
and in fact that p' € F.

Also, define D = max,., , {maxdi(a)}. Clearly, 0 = D < «,

Pick any P € P. Suppose for some pair p’, p" € P and for some i €
{1, 2}, we have p; < p!. Define the following subset of R*:

LG, p', py={p|ILE0, I] ;
st.p = —Np/ + \p", j#iand p, > p!} ™

LEMMA L. For each p € L(i, p', p"). there exists g € F* such that
g=pand g € P.

Proof. Without loss of generality take i = 1. Pick any p € L(1, p’, p").
Then there is A € {0, 1] such that

p=00-Np*+ rp” (8)

pL>pr+28 for some 3 > 0. 9)

There exists a sequence & — | and P(5%) € P(8*%) such that P(§*) — P.
For convenience, drop the “°k’’: P(8) — P as 8 — 1. By a property of
convergence in the Hausdorff metric, there exist p'(8), p"(8) € P(8) with
p'(8) — p' and p"(§) — p"(8) —» p"as 6 — 1.

Recall that p? {defined above) is an element of F. So there is @ € A such
that 7 (@) = p>. For each 8 in the sequence, pick some nonnegative integer
T(8), and define p(8) by

7(®)

p(®) = (1 — ) ZO d'm (@) + 87" 'p"(3). (10)
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We can (and will) choose the sequence T(5) so that p(8) - pasd— 1. To
see that we can do this, note that

p®) = (1 — 8T Hp? + 5T 1p"() (1D

and also that p"”(8) — p” as 8 — 1. So it suffices to choose T(8) for each &
such that §”®*! — X as § — 1. This is easy to do.

Because p, > pjand pi > pj, itis possible to choose § € (0, 1) such
that for all § = §,

min{p(8) — pi(8); p\(8) — p|(®)} =B > 0. (12)
Define, foreacht =1, ..., T(6) + 1,
P&, n=(1 -8+ 8'p"(®). (13)

Note that (8, T(8) + 1) = p(8). I claim that if 8 = §, then
P&, —pidy=p forallr=1,...,7T(3) + 1. (14)

To establish this claim, note that by combining (13) and (11) we have, for
t=1,..., TG) + 1,

18 -8 ],
D, 1) = mmp(a) + |1 - !_—WT p"(8). (15
Observing that 1 — & = 1 — §7®*! we see from (15) that

P8, 0 — pi(8) = min {p,(8) — p(8); pi(8) — p}(8)}

and using (12), (14) is established.
Finally, pick 8§ € (8,1) such that

D<B-8"' fors=3. (16)

We now complete the proof by showing that for each § = §, there exists
q(8) > p(d) such that g(8) € P(8). If this is true, then we are done. For
pick any limit point g of ¢(8). Then g € P, because P(5) — P. Moreover,
q = p, as desired.

Pick any = §. Observe that P(8) supports p(8, 1), using the supporter
(a, p"(8), p’(8), p"(8)). One can easily verify that this is indeed a supporter,
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using (12), (16), and the fact that @ maximizes 2’s one-period payoff. So
there is §(5, 1) = p(8, 1) such that §(8, 1} € P(8). Recursively, for ¢ =
1,...,7T() + 1, suppose that for some ¢ we have defined 4(8§, r) = 5(8,
1) with §(8, 1) € P(8). Fort + 1, define

g6, t+ 1)= (1 - 8)m@ + 6q(s,1). a7

It is easy to check that P(8) supports g'(8, ¢t + 1) via the supporter (a, (3,
1, p'(8), (8, 1), by using (14), (16), the definition of a, and the fact that
g(8, 1y = p(8, 1). So there exists §(8, ¢t + 1) € P(8) with §(8,t + 1) = ¢q'(8,
t + 1) = p(8, ¢t + 1) (to check the last inequality simply use (13), (17), and
G(s, 1) = p(8, 1). This completes the recursive definition. Finally, defining
q(8) = ¢(8, T(8) + 1), the proof is complete. =

To proceed further, define for i = 1, 2, p’ € P by minimizing p, over p
€ P, and then maximizing p;, j # i over the set of minimizers. Because P
is the Hausdorff limit of compact sets in an ambient compact space (F*),
P is compact too and so p' is well (and uniquely) defined for each i.

LEMMA 2. Suppose that P is not a singleton and that P is not a subset
of f(F*). Then there exist p € P, q € F* such that q > p and for i =
1, 2,

pi>pi (18)

Proof. Suppose the conditions of the lemma hold; then for some p €
P and g € F*, we have ¢ > p. Of course, p, = pifori = 1, 2. First, we
claim that

p.>pi (19)

for i = 1, 2. Suppose not. Then, for some i, equality holds. But then for
all p € P, we have p, = p'. But this would mean that P C f(F*), a
contradiction.

Now, if p = p satisfies (18), we are done. Otherwise, p; = p! for some
i. In this case we claim that in fact, j = p'. Suppose not; then by the
definition of p’, we have p; < piforj # i. Now consider any p € L (j, p,
p). Using (19) and the definition of L, p > p. By Lemma 1, there is g =
p with ¢ € P. But then g > p, contradicting our supposition that p € P.

So, if (18) fails then § = p’ for some i. Say p = p’. Now consider some
p € L(1, p', p?. Because P is not a singleton and because (19) holds for
i = 2, we have (18) holding for each such p. Moreover, p can be chosen
arbitrarily close to p?, so that ¢ > p. This p satisfies all the requirements
of the lemma, and the proof is complete. =
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Now we prove the theorem. Suppose, on the contrary, that P is not a
singleton but that P is not a subset of f(¥*). Then, by Lemma 2, there
exist ¢’ € F* and p € P such that ¢’ > p and

min {p, — p}; p, — p3}

B= 5 > 0. (20)
Because ¢’ € convex hull (F), there exists g € F* (‘“‘close to’’ q) so that
g > p and there are a finite number of action vectors a,, . . . , ay with
| M
]E'n'(a,):q. 2n
=0

Because g > p, there is a scalar a > 1 such that

g > ap. (22)
By the definition of P, there is a sequence 8 — 1 and corresponding P(8)
€ P(8) such that P(8) — P. So there are sequences p(8), p'(8), p*(8) € P(8)

converging, as & — 1, to p, p', and p?, respectively.
We claim that there exists 8, € (0, 1) such that for all § = §,,

M
q"(8) = (1 —8) 2 ‘r(a) + 6M 'p(8) > p(d). (23)

To see this, note that p(§) — p as § — 1, so, using (22}, there exists § €
(0, 1) and «' > 1 such that for all 8 = §,

M
> () > e pl®) (24)
10

For all such &, we have, remembering that 7 (a) = 0 by normalization,

M
§8) = (1 + M)(1 — 8)M E{,“(“') + &M 1p(8)

=

M+1 (25)

> [(1+ M) —8)8Ma’ + 87" p(8).

Observe that there exists 8, € (8, 1) such that for all 8 = §,, g(8) = (1 +
M1 — 88" o’ + Y7 > 1. To see this, note that g(8) is differentiable
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and that g(1) = 1. Moreover the derivative of g(-) evaluated at I is
g =W + 1) — a'(M + 1) > 0. So we have established (23).
Next, pick 8, € (8,, 1) such that for all = &,, the collection

M
q'@) =1 -3 Y 7(a)+8""p(®) (26)

fors = 0, ..., M has the property that

min {g}(8) - pl(8); g¥(8) — p(&)} > B Q27

and
min {p,(8) — p}(8); p-(8) ~ pi(d)} > B. (28)

This is possible because g'(8) — p as 8§ — 1 (for each s), p'(8) — p',
pA(8) — p?, and (20} hoids.
Finally, choose § € (5, 1) such that for all = §,

D<B(1-38) " (29)

Consider any § in [ 8, 1). We are going to show that there exists r = g%8)
such that r € P(8). This will yield a contradiction, because by (23),
q"(8) = p(8) and p(d) € P(8).

We proceed recursively. Consider, first, g™(8). It is easy to check, using
(28) and (29), that P(5) supports g™(d) via the supporter (@, p(8), p'(3),
pU8)). So there is r¥ (8) € F* such that rM(8) = gM(8), and r™(8) € P(5).
Recursively, suppose that for some s + 1 (s =0, .. ., M — 1Y, we have
defined ~*'(8) € P(5) with r**'(8) = ¢**'(8). Define

F©®) = (1 — &)y (a,) + 8r:*'(3). (30)

Then, using (27), (29), and r'*'(d) = ¢**!(8), we see that §*(8) €
# (P(8))—use the supporter (a,, r**'(8), p'(8), p(5)).

Therefore, there exists r°(8) = §g*(8) with r*(8) € P(8). Also, recalling
that r**'(8) = g** '(8), we have, combining (26) and (30), that ¢*(8) = ¢*(8).
So r*(8) = ¢*(8), and the recursion is complete.

Finally, observe that /(8) € P(8) and /(8) > g°&) = p(8), so that we
have a contradiction as desired.
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5. FURTHER DIRECTIONS

This paper leaves a number of issues unresolved.

(1) First, there is the question of the existence of an IRP set. Of
course, existence is a trivial issue if the stage game has a Nash equilibrium
that is the unique one which is not Pareto-dominated by any other Nash
equilibrium. Otherwise, it is problematic. I conjecture that IRP sets always
exist if the discount factor is close enough to unity.

(2) Next, there is the question of characterizing the class of games
that admit a limit IRP set on the Pareto frontier of F*. Evans and Maskin
(1989) proved that for generic finite action games, there is always some
payoff on the frontier that is supportable as a WRP equilibrium. Is a
corresponding result true for IRP sets?

(3) Farrell and Maskin (1989, Theorem 3) describe the subset of points
of the Pareto frontier of F* (again, for finite action games) that can be
supported as WRP equilibria. It is easy to see that alimit IRP set, whenever
it exists, must be a subset of this set. But does it coincide with this set?
Ongoing research suggests that the answer is, in general, no, but more
work is needed to conclusively settle the question.
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