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In these notes we provide some supplementary results and discussion not included

in the main text of the paper. In particular, we provide a proof of the existence of

a Markovian equilibrium, the proof of Proposition 3, some examples for three-player

games and further discussion of the efficiency result. We also provide the proof of

the four player inefficiency example and construct an equilibrium with an inefficient

(globally) absorbing state.1 Existen
e of Markovian Equilibrium
Theorem. Suppose that the set of states is finite. Then there exists a stationary Markov

equilibrium.

Proof. For any finite set A let ∆(A) stand for the set of all probability measures on A. For

any state x, let H(x) be the set of all (S, y) pairs such that S ∈ S(x, y). Restrict attention

to states x such that H(x) 6= ∅.1 For any i, let H(x, i) be a subset of H(x) constrained by

the further requirement that i ∈ S for every (S, y) ∈ H(x, i). Define

Σi ≡
∏

x

{∆(H(x)) × [0, 1]|H(x,i)|}

1That is, there is some state y and some approval committee S that can approve a transition from x to
y. For all those x for which H(x) = ∅, there is no need to specify any strategies for the players.
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Then Σi may be viewed as the collection of i’s Markovian strategies (indeed, those for which

i’s response does not depend on the identity of the proposer). So Σ ≡
∏

i Σi is the collection

of all Markovian strategy profiles σ. Clearly, Σ is identifiable with a compact convex subset

of some Euclidean space.

Use the notation Vi(x, σ) instead of V σ
i for value functions. It is easy to see that Vi(x, σ)

is continuous in σ. Now we construct a suitable fixed-point mapping.

Fix some strategy profile σ. For each person i and each state x, define

B(i, x, σ) ≡ argmax
(T,z):T∈S(x,z)

[Λi(x, z, T )Vi(z, σ) + (1 − Λi(x, z, T ))Vi(x, σ)]

where Λi(x, z, T ) =
∏

j∈T\i λj(x, z, T ) is the probability of the proposal being accepted under

the profile σ. Note that ∆(B(i, x, σ)) is the set of “best-response” proposals by i at state x,

given σ. Define

Mi(σ) ≡
∏

x

∆(B(i, x, σ)).

Now for acceptance-rejection decisions. For every state x and (S, y) ∈ H(x, i), collect all

values of λi(x, y, S) such that (a) λi(x, y, S) = 1 if Vi(y, σ) > Vi(x, σ), (b) λi(x, y, S) = 0 if

Vi(y, σ) < Vi(x, σ), and (c) λi(x, y, S) ∈ [0, 1] if Vi(y, σ) = Vi(x, σ). Define Li(σ) to be the

product of these collections as (y, S) goes over all elements of H(x, i) and then as x ranges

over all states. These are the best-response accept-reject decisions by i, given σ.

To complete the construction, define Ri(σ) ≡ Mi(σ)×Li(σ). It is easy to see that for each

σ, Ri(σ) is a nonempty, compact convex subset of Σi, and that it is upperhemicontinuous

in σ. Then the product correspondence R(σ) ≡
∏

i Ri(σ) has all the same properties, and

maps from Σ to Σ. By Kakutani’s fixed point theorem, the correspondence has a fixed point

which can easily be seen to be an equilibrium. ||2 Further Dis
ussion of the Effi
ien
y Theorems2.1 A Compa
t Set of States
Here we prove that our efficiency result extends to the case of a compact set of states, with

the additional restriction that the proposer protocol is deterministic.

Proposition 3. Suppose that every individual is benign, the proposer protocol is determinis-

tic and the set of states is compact. Then in characteristic function games with permanently

binding agreements, every limit payoff of every pure strategy equilibrium is efficient.

Proof. We first provide another proof of Proposition 1. Given the restriction to a determin-

istic protocol and pure strategies, there is no underlying source of randomness. Therefore,
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we may write:

V σ
i (ht) = (1 − δ)ui(xt) + δV σ

i (ht+1)

for all i ∈ N . It is still the case that V σ
i (ht+1) ≥ ui(xt), which again implies that V σ

i (ht) ≥

ui(xt). We also claim that

V σ
i (ht+1) ≥ V σ

i (ht)

for all histories ht, for if not, then for some history V σ
i (ht+1) < V σ

i (ht), which, given the

definition of the value function implies:

V σ
i (ht) < (1 − δ)ui(xt) + δV σ

i (ht)

which cannot be true. Therefore, we know that the equilibrium value function is monotoni-

cally increasing.

Of course, since the set of states is compact, equilibrium values must be contained in

a compact set. Moreover, since values are nondecreasing over histories, we know that it

must converge to some limit V ∗
i , but this implies that ui(xt) also converges to u∗

i and the

equilibrium is absorbing. Indeed, it is easy to see that V σ
i (ht), V σ

i (ht+1) → V ∗
i so it must be

that V ∗
i = u∗

i .

We now show that in any equilibrium, convergence must occur in finite time. Notice that

V σ
i (ht) ≥ max{ui(xt), V

σ
i (ht−1)}. Therefore, on the equilibrium path we know that

V σ
i (ht) ≥ max{ui(xt), ui(xt−1), . . . , ui(x0)} (1)

Given (1) and that the set of payoffs within a given coalition is Pareto efficient with

respect to that coalition, we know the following:

(a) If any coalition structure is visited more than once with distinct payoffs for at least two

players, it cannot be absorbing.

(b) Convergence to u∗ must be from below. That is, for all t, u(xt) ≤ u∗.

We now show that convergence must occur in finite time. For each coalition structure

π, let U(π) ⊂ R
N denote the set of feasible payoffs, and let B(u, ǫ) denote an open ball

around u with radius ǫ. First suppose that there exists some ǫ > 0 small enough such that

u∗ ∈ B(u∗, ǫ) ∩ U(π′) 6= φ for a unique coalition structure, π′. In this case, it is a direct

result of (a) that convergence must occur in finite time.

Otherwise, for all ǫ > 0, there is a set of coalition structures Π(ǫ) = {π1, . . . , πK}, with

K > 1, such that u∗ ∈ B(u∗, ǫ)∩
[

∩K
k=1U(πk)

]

6= φ and for all π ∈ Π(ǫ), there exists t ≥ T (ǫ)

such that π(xt) = π.2 Take the largest such set Π(ǫ) (which surely exists since there are only

2That is, along the equilibrium path, the coalition structure π is actually visited, and u(xt) ∈ B(u∗, ǫ).
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a finite number of coalition structures).

By assumption, we have that for all π ∈ Π(ǫ), u∗ ∈ U(π) and that there exists a

state xt along the equilibrium path such that π(xt) = π and u(xt) ≤ u∗. If u(xt) = u∗, then

convergence must have occurred (and in finite time).3 If u(xt) < u∗, it contradicts the Pareto

efficiency of the payoff set within a given coalition structure since u(xt), u∗ ∈ U(π(xt)). Thus

convergence must be in finite time.

To complete the proof, we must show that u∗ is efficient. The proof of this makes use of

the same benignness argument as in the main text of paper and is, therefore, omitted. ||2.2 Observable Behavior Strategies
Proposition 2 fails to hold if behavior strategies are used by the players with publicly ob-

servable randomization devices. Consider the following game with four states.

x1 : u(x1) = (2, 1, 1)

x2 : u(x2) = (2.5, 2, 2)

x3 : u(x3) = (2, 3, 1)

x4 : u(x4) = (2, 1, 3)

We assume that transitions from any state require the consent of all players, and that player

1 proposes whenever the state is x1. We construct a history dependent equilibrium such that

the sample path {x1, x1, . . .} has strictly positive probability.

Clearly, since all players’ consent is required for any transition, x2, x3 and x4 must be

absorbing. Recall that behavior strategies are observable and can be conditioned upon,4

and player 1 proposes with probability 1 from x1. Let p(n) = 1
(n+1)2

and consider a t-period

history of the form: ht = {(x1, p(i))}t
i=1. That is, in each period i, player 1 proposed x2 with

probability p(i) and x1 with probability 1 − p(i), but the realisation was x1. Consider the

following strategies:� Player 1 uses the randomisation device p(t) in each period to make his proposal, as-

suming p(i) has been used for all i < t, otherwise, he proposes x3 or x4 as required

below.� If player 1 uses p(t) as his randomisation device and x2 is realised, then both players

1 and 2 accept the offer. If x1 is realised, they may either accept or reject. However, if

p(t) is not used, player 2 rejects the proposal. If player 2 accepts, then player 3 rejects.

3Once u
∗ is reached, no player would ever accept a transition giving him/her a lower one-period payoff.

This follows because the limit payoff is u
∗ and so the player will never be compensated for accepting such a

transition.
4To be sure, we need to expand the notion of a history for this to make sense.
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transition to xi+1 and the offer is accepted by both players. If it is rejected by j 6= i,

player 1 continues offering xi+1, while if it is rejected by player i, player 1 switches and

offers xj+1.

It is easy to see that these strategies constitute an equilibrium for δ large enough. More-

over, since
∑∞

t=1
1

(t+1)2
< ∞, we have that

∏∞
t=1(1 − p(t)) > 0, which means that the path

{x1, x1, . . .} has strictly positive probability and that along this path, each player’s expected

value converges only in the limit.3 Other Examples For Three-Player Games
In the examples below, if a coalition structure is omitted, it means that either every player

obtains an arbitrarily large negative payoff or there is some legal impediment to the formation

of that coalition structure. In all of the examples of this section, we assume minimal approval

committees; for example, from the singletons, players 1 and 2 can approve a transition to

any state y such that π(y) = π1.3.1 More on Ine�
ien
y
One response to the inefficiency example of Section 4.1.1 in the main text is that the inefficient

state described there will never be reached starting from the singletons. Setting the initial

state to the singletons has special meaning: presumably this is the state from which all

negotiations commence. However, this is wrong on two fronts (at least for Markov equilibria)

as we now show.3.1.1 Coordination Failures
Coordination failures, leading to inefficiency from every initial state, are a distinct possibility,

even in three player games. Consider the following:

x0 : π(x0) = π0, u(x0) = (2, 2, 2)

x1 : π(x1) = π1, u(x1) = (−1, 1, 1)

x2 : π(x2) = π2, u(x2) = (1,−1, 1)

x3 : π(x3) = π3, u(x3) = (1, 1,−1)Result 1. Suppose that everyone proposes with equal probability at every date. Then, for

δ ∈ [3
5
, 1), there is an MPE in which xi is absorbing, and from x0, there is a transition to xi

with probability 1
3

for i = 1, 2, 3.
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e to Ine�
ien
y From The Singletons
Consider the following example, which is a variation on the “failed partnership” example of

Section 4.1.1.
x0 : π(x0) = π0, u(x0) = (5, 5, 5)

x1 : π(x1) = π1, u(x1) = (0, 6, 8)

x2 : π(x2) = π2, u(x2) = (3, 0, 10)

x3 : π(x3) = π3, u(x3) = (4, 4, 0)Result 2. For any history-independent proposer protocol such that at x0 each player has

strictly positive probability of proposing, there exists δ̄ ∈ (0, 1) such that if δ ≥ δ̄, all station-

ary Markovian equilibria involve a transition from x0 to x3 — and full absorption into x3

thereafter — with strictly positive probability.

Proof. Let α = (α1, α2, α3) ∈ int(∆) denote the proposers’ protocol at x0. First notice that

in every equilibrium x1 and x2 must be absorbing. The states x1 and x2 give players 2 and 3,

respectively, their unique maximal payoff. Moreover, at x1 (resp. x2) player 2 (resp. player

3) has veto power over any transition. Second, in every equilibrium, x0 cannot be absorbing.

This follows because players 2 and 3 can always initiate a transition to x1 and earn a higher

payoff.

We now proceed with the rest of the proof. First, we rule out a “cycle” by proving

the following: If there is a positive probability transition from x0 to x3, then x3 must be

absorbing. Indeed, suppose not. Then for i = 1, 2, Vi(x0) = Vi(x3) = 4. But then, from x0,

player 1 will always reject a transition to x2, which means that V2(x0) ≥ 5, a contradiction.

Next suppose that the probability of reaching x3 from the singletons is zero. Observe

that V1(x0) ≤ 3, for if not, x1 is the only absorbing state reachable from x0, implying that

V1(x0) → 0 for δ sufficiently high, a contradiction. Similarly, V3(x0) ≤ 8, for if not, x2 is the

only absorbing state reachable from the singletons. But then for δ sufficiently high, V2(x0) ≤

4, implying that players 1 and 2 would initiate a transition to x3, a contradiction. Finally,

observe that since x3 is not reached with positive probability, it must be that V2(x0) ≥ 4,

since otherwise, 1 would offer x3 and it would be accepted.

Let pi denote the probability of a transition from x0 to xi for i = 0, 1, 2. By assumption,

p3 = 0 and we have just shown that p1, p2 > 0. Given pi, write the equilibrium value

functions and take the limit as δ → 1 to obtain:

v̄1(x0) = 3p2

1−p0

≤ 3

v̄2(x0) = 6p1

1−p0

≥ 4

v̄3(x0) = 8p1+10p2

1−p0

≤ 8

(2)
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From the third equation in (2), we see that p2 = 0, which then implies that the first

equation is satisfied with strict inequality. Therefore, player 1 strictly prefers to propose x2,

and the offer will be accepted by player 3. Hence, p2 > α1 > 0, a contradiction. It then

follows that for δ sufficiently high the same conclusion may be drawn. ||3.2 Cy
li
al Equilibria
Next, equilibrium cycles become a distinct possibility:

x0 : π(x0) = π0, u(x0) = (1, 1, 1)

x1 : π(x1) = π1, u(x1) = (0, 2, 1)

x2 : π(x2) = π2, u(x2) = (1
2
, 4, 1)Result 3. Suppose that everyone proposes with equal probability at every date. Then there is

an equilibrium with the following transitions:

x0 →
2/3

x1 →
1

x2 →
2/3

x0

3.3 Dynami
 Ine�
ien
y In Every Equilibrium
Though we did not formally prove this for characteristic functions, every Markovian equilib-

rium must exhibit full dynamic efficiency from some initial state. This is no longer true for

games with externalities:

x0 : π(x0) = π0, u(x0) = (1, 1, 1)

x1 : π(x1) = π1, u(x1) = (10, 0, 0)

x2 : π(x2) = π2, u(x2) = (0, 10, 0)

x3 : π(x3) = π3, u(x3) = (0, 0, 10)

If xi, i = 1, 2, 3 were absorbing, then for j 6= i, Vj(xi) = 0. However, notice that in every

Markovian equilibrium, for all i = 1, 2, 3, Vi(x0) ≥ 1. Therefore, j must accept a proposal

from xi to x0, hence a profitable deviation exists. Finally, it can be shown that any cyclical

Markovian equilibrium must necessarily spend time at x0. We have therefore proved:Result 4. Suppose that everyone proposes with equal probability at every date. Then every

Markovian equilibrium exhibits dynamic inefficiency from every initial state.
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ien
y in Four Player Games
Consider the following four player game:

x1 : π(x1) = {{1, 2}, {3}, {4}}, u(x1) = (4, 4, 4, 4)

x2 : π(x2) = {{1}, {2}, {3}, {4}}, u(x2) = (5, 5, 5, 5)

x3 : π(x3) = {{1{, {2}, {3, 4}}, u(x3) = (0, 0, 10, 10)

x4 : π(x4) = {{1, 2}, {3, 4}}, u(x4) = (2, 2, 2, 2)

and recall from the main text

Observation 2. For δ sufficiently high, every stationary Markov equilibrium is inefficient

starting from any initial state.

Before proceeding with the proof of Observation 2, we first allay any concerns about ex-

istence (or lack thereof) and provide an example displaying inefficiency. Figure 1 graphically

depicts one such set of equilibrium transitions. In words, x1 is absorbing; from state x2,

Figure 1: An Inefficient Stationary Markov Equilibrium

x1 x2

x3x4

1
2

1
2

1
2

1

players 1 and 2 initiate a transition back to x1, while players 3 and 4 initiate a transition to

x3; from x3 players 1 and 2 implement a transition to x4 when they propose, while players

3 and 4 leave the state unchanged when they propose; finally, from x4, all players propose a

return to x1.

To verify that this description constitutes an equilibrium, begin with state x1. Obviously

players 3 and 4 do not benefit from changing the state to x4, which is all they can unilaterally

do. Players 1 and 2 can (bilaterally) change the state to x2, by the presumed minimality of

approval committees. If they do so, the subsequent trajectory will involves a stochastic path

back to x1.
5 Some fairly obvious but tedious algebra reveals that the Markov value function

5We are arguing in the spirit of the one-shot deviation principle, in which the putative equilibrium
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Vi(x, δ) satisfies

Vi(x2) = 5 − 3δ +
δ2(1 + δ)

2
(

1 − δ
2

)

for i = 1, 2. This value converges (as it must) to that of the absorbing state — 4 — as delta

goes to 1, but the important point is that the convergence occurs “from below”, which means

that Vi(x2, δ) is strictly smaller than Vi(x1, δ) = 4 for all delta close enough to 1.6 Perhaps

more intuitively but certainly less precisely, the move to state x2 starts off a stochastic cycle

through the payoffs 5, 0 and 2 before returning to absorption at 4, which is inferior to being

at 4 throughout. This verifies that players 1 and 2 will relinquish the opportunity at x1 to

switch the state to x2. It also proves that once at state x2, players 1 and 2 will want to

return to the safety of x1 if they get a chance to move.

On the other hand, players 3 and 4 will want to move the state from x2 to x3. Proving

this requires more value-function calculation. A second round of tedious algebra reveals that

Vi(x3, δ) − Vi(x2, δ) = 5 − 6δ + δ2

for i = 3, 4. This difference vanishes (as it must) as δ approaches 1, but once again the

important point is that the difference is strictly positive for all δ close to 1 (indeed, for all

δ), which justifies the move of 3 and 4.

That 1 and 2 must want to move away as quickly as possible from state x3, and 3 and 4

not at all, is self-evident. That leaves x4. At this state players 3 and 4 receive their worst

payoffs, and will surely want to move to x1, and indeed, players 1 and 2 will want that as

well.7 Our verification is complete.

With the issue of existence of an inefficient equilibrium now dispelled, we now turn our

attention to Observation 2, the proof of which proceeds in a number of steps.

Step 1: x3 and x4 are not absorbing.

It is easy to see that Vi(x4) ≥ 2 for i = 1, 2. Moreover, since players 1 and 2 can initiate

a transition from x3 to x4, x3 is easily seen to be not absorbing. Similarly, Vj(x1) ≥ 4 for

j = 3, 4; therefore, since players 3 and 4 can achieve x1 from x4, x1 is not absorbing.

Step 2: x2 absorbing implies x2 is globally absorbing.

strategies are subsequently followed. Even though the one-shot deviation principle needs to be applied with
care when coalitions are involved, there are no such dangers here as all coalitional members have common
payoffs.

6We verify this by differentiating Vi(x2, δ) with respect to δ and evaluating the derivative at δ = 1.
7Because we’ve developed the state space model at some degree of abstraction, we’ve allowed any player

to make a proposal to any coalition, whether or not she is a member of that coalition. This is why players
1 and 2 ask 3 and 4 to move along. Nothing of qualitative import hinges on allowing or disallowing this
feature. The transition from x4 back to x1 would still happen, but more slowly.
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Suppose that x2 is absorbing. Then clearly from x1, players 1 and 2 would induce x2.

Moreover, since x3 and x4 are not absorbing, if x2 is not reached, then x1 must be reached

infinitely often. But then 1 or 2 would get a chance to propose with probability 1 and would

then take the state to x2, a contradiction.

Step 3: x2 cannot be globally absorbing.

If x2 is globally absorbing then, from x2, players 3 and 4 can get a payoff of 10 for some

period of time, by initiating a transition to x3, followed by, at worst, 2 for one period and

4 for another period, before returning to x2, where it will get 5 forever thereafter.8 This

sequence of events is clearly better for players 3 and 4 than remaining at x2.

Step 4: x1 absorbing implies x1 globally absorbing.

Steps 2 and 3 imply that x2 cannot be absorbing. Moreover, Step 1 tells us that neither

x3 nor x4 can be absorbing. In particular, from x2 players 3 and 4 initiate a transition to

x3, from x3 players 1 and 2 initiate a transition to x4 and (at least) players 3 and 4 initiate

a transition back to x1. Therefore, if x1 is absorbing, it is globally absorbing.

Step 5: Every equilibrium is inefficient.

First suppose that we had an equilibrium in which x1 is not absorbing. Then from the

above analysis, nothing is absorbing. Now consider x2. If players 1 and 2 always accept an

offer of a transition from x1 to x2, then 3 and 4 will strictly prefer to initiate a transition

from x2 to x3: in so doing, they can achieve an average payoff of at least 10+2+4
3

= 16
3

> 5.

However, it is easily seen that players 1 and 2 earn an average payoff strictly less than 4 in

this case. Therefore, players 1 and 2 would rather keep the state at x1, contradicting the

presumption that x1 was not absorbing.

The only remaining possibility is one in which players 1 and 2 are indifferent between

a x1 and x2 and players 3 and 4 are indifferent between x2 and x3. If such an equilibrium

were to exist, it must be that Vi(x1) = Vi(x2) = 4 for i = 1, 2, and Vj(x2) = Vj(x3) = 5 for

j = 3, 4. Therefore, if such an equilibrium were to exist, it would also be inefficient since

players spend a non-negligible amount of time at the inefficient states x1 and x4.

Thus either x1 is the unique absorbing state or there is a sequence of inefficient cyclical

equilibria depending on δn ր 1 such that players 1 and 2 are indifferent between x1 and x2

and players 3 and 4 are indifferent between x2 and x3. ||

8Surely, players 1 and 2 must initiate a transition to x4 with some positive probability; otherwise, x3

would be absorbing (which Step 1 shows to be impossible). However, once at x4, under the assumption
that any player can propose to move to any state, and the fact that (by Step 2) from x1 there would be an
immediate transition to x2, there is no need to even pass through the intermediate state x1.


