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We study coalition formation in “real time”, a situation in which coalition formation is intertwined
with the ongoing receipt of pay-offs. Agreements are assumed to be permanently binding: They can only
be altered with the full consent of existing signatories. For characteristic function games we prove that
equilibrium processes—whether or not these are history dependent—must converge to efficient absorbing
states. For three-player games with externalities each player has enough veto power that a general effi-
ciency result can be established. However, there exist four-player games in which all Markov equilibria
are inefficient from every initial condition, despite the ability to write permanently binding agreements.

1. INTRODUCTION

In this paper, we study a model of binding agreements in which pay-offs are received concur-
rently with the formation of coalitions and agreements. The model is extremely general, in that
it accommodates a wide variety of proposer protocols, superadditive and non-superadditive pay-
off structures, the ability to constantly make new proposals, and arbitrary history dependence
in strategies. The approach is non-cooperative, but all agreements are binding, in the sense that
their renegotiation requires the consent of all affected parties. This model of “coalition formation
in real time” follows recent work by Konishi and Ray (2003) and Gomes and Jehiel (2005). It
is potentially applicable to a variety of economic situations in which group formation is impor-
tant, agreements can be written, and the process is dynamic and open ended: oligopolies, public
goods provision, lobbies, conflict models, customs unions and free trade agreements, political
party formation, and voting are just a few of many examples.1

The model, with its extremely flexible class of protocols, ongoing negotiation, and no re-
strictions on strategies, is well placed to serve as a formal examination of the Coase Theorem.
This is not to say that that the so-called “Theorem” should be the only motivation for our study,
but it does place our main question in context: Does an equilibrium path of agreements necessar-
ily converge to efficient outcomes, at least in the long run? Existing literature throws mixed light
on this question.

First, as Chatterjee, Dutta, Ray and Sengupta (1993), Bloch (1996), and Ray and Vohra
(1997, 1999) have argued, the inability to renegotiate agreements can generate inefficiency:

1. For oligopolies, see, Bloch (1995) and Ray and Vohra (1999). For public goods, see Ray and Vohra (2001). For
group-based models of conflict, see Esteban and Ray (1999), Esteban and Sákovics (2004), and Bloch, Sánchez-Pagés
and Raphael (2006). For a model of political party formation, see Levy (2004). For models of free trade agreements or
customs unions, see Krishna (1998), Aghion, Antras and Helpman (2004), and Seidmann (2005).
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1126 REVIEW OF ECONOMIC STUDIES

even if binding agreements can be freely negotiated to begin with, coalitional considerations
fundamentally impede the attainment of efficiency if the ability to rewrite those agreements
is missing.

Seidmann and Winter (1998) and Okada (2000) show that (long-run) efficiency may be
reinstated if renegotiation is ongoing and coalitions can only expand. But these papers—
and most others on coalition formation—study Markovian equilibria, which leads to a second
issue.

With history dependence, additional complications appear. For instance, even simple bar-
gaining games with three or more players are known to exhibit multiple equilibria, many of
which are inefficient. The first result along these lines is due to Herrero and Shaked (see Herrero,
1985), in the context of the Rubinstein (1982) bargaining model. The problem is more widespread
though and applies (with three or more players) to every characteristic function game, in which
not only the “grand coalition” of all agents has a well-defined worth, but so does every other
coalition. Chatterjee et al. (1993) state a folk-theorem-like proposition for all such games, not
just n-person bargaining situations. This literature suggests—along the unsatisfactory lines of
the folk theorem—that a plethora of outcomes (including inefficient ones) is possible.

With the exception of Gomes and Jehiel (2005)—to be discussed in more detail—the lit-
erature on ongoing renegotiation restricts itself to characteristic functions.2 In many situations,
externalities across players are fundamental, but the characteristic function effectively rules such
externalities out.3

In this paper, we approach these questions at a fairly general level. We first study environ-
ments with no externalities, but allow for ongoing negotiations using arbitrary history-dependent
strategies.4 Our main result, summarized in Propositions 1 and 2, is that for all games describable
by characteristic functions, as long as the number of possible states is finite, pure strategies are
used, and players satisfy a mild lexicographic “benignness” condition, every equilibrium path of
agreements must converge to an efficient outcome.

This proposition is particularly remarkable in the light of the folk-theorem-like results ob-
tained in Herrero (1985) and Chatterjee et al. (1993). Under repeated negotiation, we assert that
no amount of history dependence in strategies can hold players away from an (ultimately) ef-
ficient outcome. Mainly because we allow for such history dependence, but also because we
include both superadditive and non-superadditive cases, this proposition represents a substantial
extension of Okada (2000) and Seidmann and Winter (1998), who showed that renegotiation
achieves efficiency in superadditive characteristic functions when equilibria are restricted to be
Markovian. We attempt to evaluate the strength and generality of this result in Section 3.4.

The assumption of benignness, in conjunction with the scenario of ongoing negotiations,
plays a fundamental role in the efficiency result. The condition, which may be interpreted either
as a restriction on preferences or as a refinement of equilibrium, states that each player prefers
higher pay-offs for other agents provided she is not made worse off thereby. This lexicographic
restriction entails no sacrifice of player pay-offs and so may be regarded as mild. Indeed, it is

2. Bloch (1996) and Ray and Vohra (1997, 1999) consider more general scenarios with intercoalitional exter-
nalities, but do not consider ongoing negotiation. Seidmann and Winter (1998) and Okada (2000) do study ongoing
negotiation, but restrict themselves to characteristic functions.

3. The implications of ongoing negotiation for environments with externalities are largely unknown. Do external-
ities automatically imply the failure of efficiency? After all, binding agreements are possible: If there is a Pareto-superior
outcome it can always be proposed and players are free to accept it, in which case the outcome is binding thereafter. On
the other hand, such a proposal may open unwanted doors in the case of rejection.

4. It must be noted that there is interesting middle ground between the assumption of irreversible commitments
and ongoing negotiation. For instance, a coalition might be able to decide whether or not to permanently exit the game or
entertain further offers. On this issue, see Bloch and Gomes (2006).
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mild enough that it has no cutting power in the standard folk-theorem-like results. But coupled
with the assumption of ongoing negotiations, it eliminates inefficiency.

We then turn to a study of externalities using the device of partition functions. These are
natural extensions of characteristic functions that allow pay-offs for a coalition to depend on the
entire coalition structure in which it is embedded.5 We provide an example of a three-player part-
nership game in which there is an inefficient absorbing state in every equilibrium (other related
examples are presented in a set of Supplementary Notes available on the journal’s website). This
example shows that there is no hope of replicating Proposition 2 for games with externalities.

However, we do manage to establish a weaker result for all three-player games that satisfy a
mild transferability property: there is always a Markovian equilibrium with at least one efficient
absorbing state (Proposition 4).

For four-person games, however, the preceding result is false. We show that there exists a
four-person game in which every Markovian equilibrium must exhibit inefficiency from every
starting point. This suggests an open question that we do not address: for every game, is there
some history-dependent equilibrium that guarantees efficiency from some starting point?

Our approach is particularly motivated by Konishi and Ray (2003), who introduced a model
of coalition formation in “real time”. In this model, coalitions block proposed allocations with
allocations of their own, but use as pay-off functions the entire value emanating from the inter-
temporal allocation process. This approach studies coalition formation and the generation of
pay-offs as one intertwined process. The great advantage of this viewpoint is that one need not
seek new definitions of farsightedness for games of coalition formation.6 Players have discount
factors and discount factors that approach one approximate farsightedness.

The main difference in this paper is that we adopt an explicitly non-cooperative approach, in
which cooperative game-theoretic constructs such as “blocking coalitions” are eschewed. In our
model, proposals are made, accepted, or rejected by individuals in an explicit strategic setting.
This brings us closer to the bargaining literature, though the setting is more general. (We also
drop the ubiquitous Markov assumption.)

Our results are also related to recent work by Gomes and Jehiel (2005), who study coalitional
games with proposers and responders (as we do) and allow for coalition formation and pay-offs
to occur together. However, they too restrict attention to Markovian equilibrium. But the main
difference between our paper and theirs—which makes the two exercises complementary—is that
they assume that proposers are able to make arbitrarily large upfront transfers to get a coalition
to form. This has very different implications, which we discuss below.

2. A PROPOSAL-BASED MODEL OF COALITION FORMATION

In this section, we introduce a simple, yet general model. First, an informal description: Follow-
ing each history, date t begins under the shadow of a “going state”, in place from the previous
date. Using a proposer protocol given to the model, a player is chosen to make a proposal. The
player proposes a state, possibly different from the one already in place. The proposal must be
made to an “approval committee”—a particular coalition that can implement the proposed state.
(The formalities below ensure that “no change” needs no approval.) If the proposal is unani-
mously approved by the approval committee the state is implemented; otherwise it stays where it
was. This process continues ad infinitum. Each player receives expected pay-offs as described

5. Partition functions were first used by Thrall and Lucas (1963). Ray and Vohra (1997, 1999) discuss why char-
acteristic functions are inadequate to capture many economic situations, and they motivate the use of partition functions.

6. See, among others, Aumann and Myerson (1988), Ray (1989), and Chwe (1994).
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below, where expectations are taken not just over proposer choices, but possibly over the stochas-
tic choice of proposal as well.7

Now for a more formal account.

2.1. General specification

A proposal-based model of coalition formation in real time consists of the following objects:

(1) A finite set N of players.
(2) A compact set X of states, and an infinite set t = 0,1,2 . . . of time periods.
(3) An initial state x−1 given at the start of date 0.
(4) A protocol describing the probabilistic choice of proposers—and order of respondents—at

each date t , possibly depending on the history of events up to that date.
(5) For each state x and proposed new state y, a collection of subsets S(x, y) that can

“approve” the move, with S(x, x) the collection of all subsets of N .8

(6) For each player i , a continuous one-period pay-off function ui defined on X , and a (com-
mon) discount factor δ ∈ (0,1).

2.2. Partition functions

While the above specification is extremely general, our interest in permanently binding agree-
ments calls for more structure.

Let π be a partition of N into coalitions. A partition function assigns to each partition π and
coalition S ∈ π a set of pay-off allocations U (S,π), each efficient for S given π .

Partition functions have been freely used in the literature on coalition formation.9 They
may be interpreted as the outcome of a coalitional game, in which individuals within each
coalition attempt to cooperate, perhaps in a limited way, while interaction across coalitions is
non-cooperative (Ray and Vohra, 1997, 1999). Unlike the device of characteristic functions so
familiar in cooperative game theory, partition functions allow for a rich array of externalities
across coalitions. Of course, a characteristic function—the case of no externalities—is a special
case in which U is independent of π .

It is only fair to note, though, that the conversion of a game into partition function form is
not automatic. The very definition presumes a “product structure” in pay-offs across coalitions,
with each coalition having access to its efficient pay-offs (efficient relative to the structure π , of
course). This strains the conversion if the underlying stage game has multiple equilibria.10 The
conversion works best when the underlying stage game across coalitions has a unique equilibrium
for each coalition structure.11

We suppose that every state x can be expressed as a pair (π,u), where π is a partition or
coalition structure, and uS ∈ U (S,π) for every coalition S ∈ π .12

7. While we have claimed generality, it is only to be noted that our formulation is not the only possible one. For
instance, the very description of a protocol rules out features, such as simultaneous offers, or proposals that can stay on the
table for (endogenously) varying lengths of time. Indeed, the very assumption that proposals are made may be restrictive.
For instance, Konishi and Ray (2003) adopt a “blocking approach”, which has no explicit bargaining structure.

8. This effectively ensures that “no change” needs no approval.
9. Most of the references in the introduction use the concept.

10. In the transferable utility case, for example, each coalition will have to expect its best equilibrium outcome to
prevail.

11. One can think of a variety of economic and political situations, such as those mentioned in the Introduction, in
which the uniqueness example is reasonable: oligopolies, public goods, lobbying, customs unions . . ..

12. The notation uS denotes the projection of the vector u on S.
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An implicit feature of this assumption is that a formed coalition cannot help but play its “best
response” given the ambient coalition structure (see Ray and Vohra, 1997, for more discussion).
In a sense, this is what it means to form a coalition: that “across coalitions”, no cooperation or
commitment is possible. One might formulate a model in which a new coalition precommits to
an action vector. Newly formed coalitions would then be acting as Stackelberg leaders, and such
a model would blend both the ability to form a coalition and the ability to commit to actions
vis-à-vis other coalitions. In some situations this may be a useful formulation, but it is not one
that we follow here.

2.3. Binding agreements

In this paper, we study “binding” agreements. The appropriate way to define the concept is to
place restrictions on the approval committees for each proposed move. Loosely speaking, we
would like to say that agreements are binding if an individual is on the approval committee for
every proposed move that will “affect” an ongoing agreement enjoyed by that individual.

The operative word is “affect”, and we break this into two parts. First, if a player’s coalitional
membership is affected as a consequence of a proposed move, the move must be disrupting some
previous agreement to which that player was a signatory. Existing coalitional membership is, after
all, the product of some past agreement. In this case we assume that the individual in question
must be on the approval committee for the move.

Second, a proposed move might affect the (ongoing) pay-off to a particular agent, without
altering her coalitional membership. Must consent be sought from that agent? The situation
here is more subtle. It may be that the pay-off is affected simply because a fellow member of
a coalition wishes to reallocate the worth of that coalition. In that case—given that the existing
allocation is in force—it is only reasonable that our agent be on the approval committee for the
move. On the other hand, our agent’s pay-off may be affected because of a coalitional change
elsewhere in the system, which then affects our agent’s coalition via an externality. Our agent is
“affected”, but need not be on the approval committee because she was not part of the agreement
“elsewhere” in the first place.13

We may summarize more formally as follows. For any move from x to y, let C(x, y) denote
the set of individuals whose coalitional membership is altered by the move, and P(x, y) the set of
individuals whose one-period pay-offs are altered by the move. Say that agreements are binding
if the following restrictions on approval committees are satisfied:

(B.1) For every state x and proposed move y, C(x, y) is a subset of any approval committee
for the move.

(B.2) Consider a coalition S with membership entirely untouched by a move from state x
to state y. Then, provided either that there has been no change at all in the coalitional
structure or that pay-offs are described by a characteristic function, every member of
S ∩ P(x, y) must belong to any approval committee for the move.

The discussion above indicates that (B.2) is the more subtle of the two restrictions. The
idea behind (B.2) is simply this: fix a coalition and a move that does not alter this coalition. If,
moreover, there is no change in the entire coalition structure, or if the situation is describable
by a characteristic function to begin with, how could the pay-off of a particular agent in the
unchanged coalition possibly change? The answer implicit in (B.2) is that it could only have

13. Notice that we would not insist that our player should not be on that approval committee; it is just that our
definition of binding agreements is silent on the matter.
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changed because there is a deliberate reallocation within that coalition, and then (B.2) demands
that all individuals affected by that reallocation must approve the move.14

Thus (B.1) and (B.2) formalize binding agreements, and we maintain these restrictions
throughout the paper. Sometimes—mainly in the examples—we invoke the sufficiency of these
restrictions. Say that approval committees are minimal if any coalition respecting (B.1) and (B.2)
can serve as approval committee for a proposed move.

We study binding agreements in this paper, but an entirely different theory can, in principle,
be written down when the restrictions (B.1) and (B.2) are not met. Consider two variants.

First, a theory of “temporary agreements” can be constructed by assuming that agreements
only bind for, say, one period. For any move from x to y, any approval committee must contain
all members of at least m − 1 of the m new coalitions that form, and in particular, must include
all new coalitions in y that are not subsets of former coalitions in x .15

As a second variant, allow a coalition to break up or change if some given fraction (say
a majority) of the members in that coalition permit that change. Some political voting games or
legislative bargaining would come under this category. Now any approval committee must consist
of at least a majority from every coalition affected by the move from one state to another.

It is also worth noting that our definition of binding agreements is not the strongest such
definition one can write down. For instance, one might require that a coalition once formed can
never break up again (as in Seidmann and Winter, 1998, or even more strongly, that an agreement
once written can never be renegotiated as in Ray and Vohra, 1999).

2.4. A technical restriction on protocols

A mild technical restriction on proposer protocols will also be maintained throughout the paper.
[P]. For each i , let Hi be the set of histories after which player i is asked to make a proposal

with positive probability. Then this probability is uniformly positive on Hi .
All that P rules out is the rather arcane possibility that some player may be asked to pro-

pose along a sequence of histories with a corresponding sequence of positive probabilities that
converges to 0. P is satisfied for every reasonable protocol that we can think of, including all
deterministic and history-independent random protocols. Indeed, we shall sometimes restrict the
protocol more strongly, asking that it be entirely independent of history, simply assigning a fixed
proposer probability vector to each going state.

2.5. Strategies and equilibrium

At each stage of the proceedings, we keep track of past proposers, proposals, and rejectors (if
any). A history at some stage of the game is a list of such objects up to, but not including, the
events that will occur at that stage. Such stages may be of various kinds: A proposer is about
to be chosen, or a proposal about to be made, or a responder about to respond, or—such mat-
ters concluded—a state about to be implemented. We use obvious nomenclature to distinguish
between the different types: “proposer histories”, “responder histories”, “implementation histo-
ries”, and so on.

14. This restriction would make less sense if there were multiple equilibria across coalitions. For then a changed
pay-off in coalition S could be compatible with no change in the coalition structure if somehow, the selection of across-
coalition equilibria were affected by the move. No “deliberate reallocation” within S is involved.

15. The interpretation is that if a new coalition is formed by taking members from more than one erstwhile group,
then all the members of the new coalition must approve the move. At best one coalition may be left out of the approval
process, and this coalition must be a subset of an ertswhile coalition. It is to be interpreted as a “residual” left by the other
“perpetrating coalitions” (compare with the definition of perpetrators and residuals in Ray and Vohra, 1997).

c© 2007 The Review of Economic Studies Limited
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At proposer or responder histories players have to take deliberate actions. A full listing of
a particular player’s actions for all such histories is a strategy for that player. Notice that we are
being deliberately quite general here by allowing for all history-dependent strategies. We will see
why in the next section.

To describe strategies more formally, consider an individual k. For a proposer history h at
which k is meant to propose, she must choose a (possibly new) state y and an approval committee
S for the proposed move. She could employ a behaviour strategy, which would be a probability
distribution over (y, S). Denote by µk(h) the probability distribution that she uses at proposer
history h.16

Likewise, at a responder history h at which k is meant to respond, denote by λk(h) the prob-
ability that k will accept the going proposal under that history. The full collection σ = {µk,λk}
over all players k is a strategy profile.

A strategy profile σ induces value functions for each player. These are defined at all his-
tories of the game, but the only ones that we will need to track are those just prior to the
implementation of a fresh state (or the unaltered continuation of a previous state). Call these
implementation histories. On the space of such histories, every strategy profile σ (in conjunc-
tion with the given proposer protocol) defines a stochastic process Pσ as follows. Begin with
an implementation history. Then a state is indeed “implemented”. Subsequently, a new proposer
is determined. The proposer proposes a state. The state is then accepted or rejected. (The outcome
in each of these last three events may be stochastic.) At this point a new implementation
history h′ is determined. The entire process is summarized by the transition Pσ on implementa-
tion histories.

For each person i and given an implementation history h, the value for i at that date is
given by

V σ
i (h) = (1− δ)ui (x)+ δ

∫
V σ

i (h′)Pσ (h,dh′), (1)

where x is the state implemented at h. Given any transition Pσ , a standard contraction mapping
argument ensures that V σ

i is uniquely defined.
Say that a strategy profile σ is an equilibrium if two conditions are met for each player i :

(a) At every proposer history h for i , µi (h) has support within the set of proposals that max-
imize the expected value Vi (h′) of i , where h′ is the subsequent implementation history
induced by i’s actions and the given responder strategies.

(b) At every responder history for i , λi (h) equals 1 if V σ
i (h′) > V σ

i (h′′), equals 0 if the opposite
inequality holds, and lies in [0,1] if equality holds, where h′ is the implementation history
induced by acceptance, and h′′ the implementation history induced by rejection.

In the case in which the proposer protocol is history independent, say that strategies are
Markovian if h can be replaced by the going state x everywhere in the definitions above. A
Markov equilibrium is an equilibrium involving Markov strategies.

This is a well-defined game of perfect information. Given that X is compact and ui is con-
tinuous for every i , the existence of equilibrium is guaranteed (see, for example, Harris, 1985).
The existence of Markov equilibrium is easy enough to establish this if X is finite or countable
(see the Supplementary Notes).

As discussed in the Introduction and in more detail below, we will sometimes employ a mild
refinement. Say that an individual is benign if she prefers an outcome in which other individuals
are better off, provided that she is not worse off, where the terms “better off” and “no worse

16. Notice that we are allowing any proposer to make a proposal to any committee.
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off” are defined with respect to equilibrium value functions, in just the same way as equilibrium
pay-offs are. Viewed alternatively as an equilibrium refinement, say that an equilibrium strat-
egy profile is benign if for no individual and no history is there a deviation which increases the
pay-offs of some players while leaving all other pay-offs (including that of the deviating player)
unchanged.

2.6. Absorption and efficiency

An equilibrium induces a stochastic process on the space of implementation histories. Consider
the stochastic process of one-period pay-off vectors u(xt ) thus generated. Say that an equilibrium
is absorbing if u(xt ) converges almost surely (a.e.) from every initial history.

A vector of pay-offs u Pareto dominates another vector u′ if u � u′. A pay-off vector ex-
hibits (static) efficiency if it is not Pareto dominated by any pay-off vector associated with some
other state.

We can easily apply this concept to absorbing equilibria with well-defined pay-off limits.
Specifically, say that absorbing equilibria are asymptotically efficient if their pay-off limits are
(static) efficient.

To be sure, we can be more demanding in our efficiency requirement. Say that an equilib-
rium is dynamically efficient from some initial history h if the vector Vσ (h) is not Pareto dom-
inated by the infinite-horizon pay-off arising from some, conceivably stochastic, sequence of
states.

Whether dynamic or static, our notion of efficiency must respect the same constraints that
the players themselves face. In particular, if pay-offs cannot be freely transferred across players
it would be inappropriate to label an equilibrium as inefficient if it fails to maximize, say, the
sum of total surplus. So lack of transferability, for instance, should not be judged as a prima facie
correlate of inefficiency. The efficiency definition itself must be suitably modified.

3. CHARACTERISTIC FUNCTION GAMES

3.1. Preliminaries

Recall that for characteristic functions, the dependence of coalitional worth on the ambient parti-
tion can be dropped, so that the set of feasible pay-off vectors for each coalition S is given simply
by U (S). We will prove that every equilibrium of every game of coalition formation derived from
a characteristic function must be absorbing (Proposition 1). Moreover, the absorbing limit is effi-
cient (Propositions 2 and 3). These findings substantially extend Seidmann and Winter (1998)
and Okada (2000), who prove similar results for Markovian equilibria in transferable-utility
superadditive games in which coalition structures grow ever coarser.

We require neither transferable utility nor superadditivity (though we do not rule such pos-
sibilities out either), nor do we assume that equilibria are Markovian. The possible lack of trans-
ferability means that the limit outcome need not maximize the sum of pay-offs. The possible lack
of superadditivity means that there is no necessity for the grand coalition to form in the limit.
Most important, however, is the lack of restriction to Markovian equilibrium. As already dis-
cussed in the Introduction, it is well known that in bargaining games with three or more players,
there are history-dependent equilibria with inefficient outcomes (part of the pie may be wasted).
Our model includes these scenarios as special cases with the one difference that negotiations—
while binding—can always be reopened. With the help of some other restrictions (see below) it
is this difference that forces static inefficiency to ultimately disappear, whether or not strategies
are conditioned on history.

c© 2007 The Review of Economic Studies Limited
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3.2. Absorption

Proposition 1. Assume [B.1] and [B.2]. In a game of coalition formation derived from a
characteristic function, all equilibria are absorbing.

Proof. Fix any equilibrium strategy profile σ and initial condition x−1, and consider the
stochastic process on histories thus generated. Conditions B.1 and B.2 tell us that for every player
i , and for every history ht with going state xt ,

V σ
i (ht+1) ≥ ui (xt ), (2)

for every equilibrium realization of the state ht+1 conditional on ht . We claim that the induced
stochastic process on V σ

i is a submartingale. To prove this, recall the functional equation

V σ
i (ht ) = (1− δ)ui (xt )+ δ

∫
V σ

i (ht+1)Pσ (ht ,dht+1), (3)

and use (2); it is easy to see that
V σ

i (ht ) ≥ ui (xt ), (4)

as well. Now suppose, contrary to our assertion, that

E[V σ
i (ht+1) | ht ] < V σ

i (ht ),

for some history ht . Then the functional equation (3) implies that

V σ
i (ht ) < (1− δ)ui (xt )+ δV σ

i (ht ),

which directly contradicts (4). This proves the claim.
Because V σ

i is a bounded function on histories, the Martingale Convergence Theorem (see,
for example, Ash, 1972, theorem 7.4.3) implies that the induced sequence of random variables
V σ

i (ht ) converges a.s. to some limit random variable; call it V ∗.
Next, observe that the random variable Z(ht ) ≡ E(V σ

i (ht+1) | ht ) is also a submartingale.17

To see this, recall that Z(ht+1) ≥ V σ
i (ht+1), so that E(Z(ht+1) | ht ) ≥ E(V σ

i (ht+1) | ht ) = Z(ht ).
It follows that E(V σ

i (ht+1) | ht ) converges a.s. to a limit.
Finally, recalling (3) and writing it along any sample path for which both V σ

i (ht ) and
E(V σ

i (ht+1) | ht ) converge, we must conclude immediately that ui (xt ) converges along the very
same sample path. Hence ui (xt ) converges a.s., and the equilibrium is absorbing. ‖

3.3. Efficiency

In this subsection the following restrictions apply: (i) we study pure-strategy equilibria, though
we allow for arbitrary forms of history dependence in the strategies, (ii) we assume that the state
space X is finite, and (iii) we suppose that players are benign in the sense defined in Section
2.5—assuming that they are no worse off, they prefer an outcome path in which no one else is
worse off either, and at least one individual is strictly better off. The main result of this section
states that under the restrictions described above, every limit pay-off of every equilibrium—well
defined by Proposition 1—must be efficient.

Proposition 2. Suppose that the set of states is finite. Then in characteristic function games
with permanently binding agreements, every pure-strategy benign equilibrium is asymptotically
efficient: every limit pay-off is static efficient.

17. To be sure, we employ the regular version of conditional expectations in defining Z here.
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Proof. Consider any equilibrium σ . The proof of Proposition 1 tells us that both V σ
i (ht )

and E(V σ
i (ht+1) | ht ) converge to random variables V ∗ and V̂ ∗ a.s.

By the submartingale property, V̂ ∗ ≥ V ∗ a.s., but indeed equality must hold. To see this,
recall the notation Z(ht ) ≡ E(V σ

i (ht+1) | ht ). Observe that E(V σ
i (ht )) and E(Z(ht−1)) con-

verge to E(V ∗) and E(V̂ ∗), respectively (by the dominated convergence theorem), and that
E(Z(ht−1)) = E[E(V σ

i (ht ) | ht−1)] = E(V σ
i (ht )) for every t ≥ 1. So E(V̂ ∗) = E(V ∗). Because

V̂ ∗ ≥ V ∗ a.s., equality must hold a.s.
Consider, then, any path {ht } for which the above equality holds. Then the associated se-

quence of pay-off vectors u(xt ), values Vσ (ht ), and conditional expectations E(Vσ (ht+1) | ht )
all converge to the same limit u∗. Because there are finitely many states, the limit of one-
period pay-offs is a.s. attained after finitely many dates. We claim that the same is a.s. true for
E(Vσ (ht+1) | ht ) (and trivially for Vσ (ht ) as a consequence).

Suppose that the assertion is false. Then there is a positive measure of sample histories18

such that one-period pay-offs converge in finite time but the same is not true for E(Vσ (ht+1) | ht ).
Indeed, because there are countably many dates, there is an integer S such that a positive measure
of histories exists satisfying all the requirements in the preceding sentence and the additional
requirement that one-shot pay-offs converge by date S. Let � denote this distinguished set of
sample paths, and let �c be its complement. For each path {ht } ∈ � there is an individual i and a
subsequence tk such that for every k,

E(V σ
i (htk+1) | htk ) > ui , (5)

where ui is the particular limit of one-shot pay-offs for i along this path. The strict inequality
in (5) implies that there is a another subsequence sk of dates, with sk > S for all k, such that at
each of those dates, some proposer makes a proposal which yields a higher pay-off to player i
than the normalized value of ui . Because we only study pure strategies, such a proposal must
be made and accepted with probability at least ζ > 0, where ζ is uniform across histories and
individuals and is given by the restriction (P). Now observe that such a proposal, if accepted,
must subsequently lead to paths that are not in �. This is because (i) � contains only those paths
for which one-period pay-offs have already converged by date S, (ii) every sk exceeds S, and
(iii) an accepted proposal must lead to a change in the (by-then) stationary path of one-period
pay-offs. More formally,

Prob(�c | hsk ) ≥ ζ > 0 for all k,

whenever the path {ht } lies in �. It is easy to see that this must imply Prob(�c) = 1, a contradic-
tion. This proves the claim that u(xt ), Vσ (ht ), and E(Vσ (ht+1) | ht ) all converge in finite time to
the same limit u∗, a.s.

We complete the proof by showing that u∗ must be efficient. Suppose not; then there is a
state x such that u(x) > u∗. Suppose a player were to propose x . The offer must be rejected,
otherwise we are not in equilibrium. Consider all the rejectors: all the players who will reject
conditional on all previous responders accepting. Number these players 1, . . . , R in order of their
appearance. For each rejector i , let h′

i denote the history following her acceptance and h′′
i the

history following her rejection. Because the last rejector R rejects, it is easy to see that Vi (h′′
R) ≥

ui (x) > ui (x∗). Moreover, no other player can be worse off compared to u∗: Vi (h′′
R) ≥ ui (x∗)

for all i . In summary,

Vi (h
′′
R) ≥ ui (x

∗) for all i, with strict inequality for some i. (6)

18. To be sure, this positive measure is generated by the protocol as well as equilibrium strategies.
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Now consider player R − 1. She, too, rejects the offer. Therefore the first part of (6) holds
for the history h′′

R−1. In general, no more can be said, but because R −1 is benign and (6) holds
for the history h′′

R , it must hold too for the history h′′
R−1. Continuing recursively in this way, we

see that (6) must holds for the history h′′
1. But now we have a contradiction. By benignness, then,

it is profitable for our proposer to propose x irrespective of whether it is accepted or rejected. ‖

This result is a substantial generalization and extension of other literature, in the main be-
cause it establishes efficiency with no restriction on the degree of history dependence in strate-
gies. In contrast, the existing literature that establishes bargaining efficiency in characteristic
function games restricts attention to Markov-perfect equilibria. Such a restriction is made for
good reason: the results of Herrero (1985) and others show that multiple equilibria—many with
inefficiency—are endemic when the Rubinstein bargaining model is extended to three or more
players. Proposition 2 establishes that under some conditions—which we feel are acceptably
mild—the multiplicity may still continue but all limit inefficiency must disappear.

3.4. Discussion of the efficiency theorem

We briefly discuss the assumptions behind the efficiency proposition and the extent to which they
can be dropped.

3.4.1. Transferable utility and finite state spaces. First, observe that even though our
proposition is stated for finite state spaces, we can approximate arbitrarily high degrees of trans-
ferable utility. It should therefore not be concluded that our efficiency result is somehow linked
to the presence or absence of transferability in pay-offs.

The reader may nevertheless wonder if the proposition goes through if the state space is
allowed to be infinite. We are not sure of the answer to this question in general, though we would
conjecture that it is in the affirmative. For instance, here is a version of Proposition 2 when the
proposer protocol is restricted to be deterministic.

Proposition 3. Suppose that every individual is benign, the proposer protocol is deter-
ministic and the set of states is compact. Then in characteristic function games with permanently
binding agreements, every limit pay-off of every pure-strategy equilibrium is efficient.

The proof is similar to that of Proposition 2 and is made available in the Supplementary
Notes.

3.4.2. Ongoing negotiations and benignness. If negotiations are not permitted to con-
tinue indefinitely, then inefficiency is endemic. For n-person bargaining games, where n ≥ 3,
Herrero and Shaked provide the required analysis. The inefficient equilibria in their construction
cannot be Markovian. For more general n-person characteristic functions, in which intermediate
coalitions have worths, even Markov equilibria can yield inefficiency when ongoing renegotiation
is not possible (Chatterjee et al., 1993).

To illustrate these points (as well as the discussion of benignness below), consider a four-
player characteristic function. Assume that the grand coalition of all players can achieve a total
worth of 1, allocable in any way among the players. Next, suppose that every two-person coalition
has a (transferable) worth of x , where x is a positive number. All other coalitions have zero worth.

Suppose that an initial proposer is chosen at random, and after this the first rejector of a
going proposal (if any) gets to counterpropose. Suppose further once an agreement is made,

c© 2007 The Review of Economic Studies Limited



1136 REVIEW OF ECONOMIC STUDIES

it cannot be further renegotiated. Then, using arguments similar to Herrero (see Osborne and
Rubinstein, 1994, p. 130), and provided that discount factors are close enough to 1, one can
easily construct an equilibrium in which players 1 and 2 divide x , while players 3 and 4 divide
their x , even if x is “small” (less than 1/2, say). This outcome is supported by rewarding a player
for rejecting a deviant offer by receiving the entire unit pie in the next (and, therefore, every
future) period.

This equilibrium is inefficient, and what is more, the imposition of benignness will not get
rid of it. The reason is that a deviant proposer is strictly punished by the above strategies (given
that x is strictly positive).

This illustrates the possible inefficiency of history-dependent equilibria. But Markovian
equilibria may be inefficient as well. Consider a variant of this example in which only those two-
player coalitions that contain player 1 obtain x , and the remaining subcoalitions get 0 (the grand
coalition gets 1 as before). Following the arguments in Chatterjee et al. (1993), it is now possible
to show—for discount factors close to 1—that every Markovian equilibrium of this bargaining
game is inefficient provided that 1/2 < x < 1. Such an equilibrium must involve a two-person
coalition (1 included) approximately splitting x , while the other two players get 0. Moreover,
such equilibria are robust to the imposition of benignness.

In both these examples, an agreement once arrived at shuts down all further negotiations
among the players who agree. It should therefore be clear that the ability to conduct ongoing
negotiations is, generally speaking, necessary for Proposition 2. But on its own, it is not enough. It
is true that the Okada–Seidmann–Winter analysis implies the restoration of asymptotic efficiency
for Markovian equilibria. But there are history-dependent equilibria that continue to display
inefficiency.

In particular, add “ongoing negotiation” to the examples above. Provided that discount fac-
tors are high enough, one can construct equilibria in which every state is absorbing. Such ab-
sorption is obvious for any status-quo state involving the grand coalition. For other states, the
status-quo outcome is supported as an absorbing state as follows: Reward a player for reject-
ing a deviant offer by allowing her to ask for (and receive) the grand coalitional pie in the next
(and, therefore, every future) period, net of what the other players are currently receiving in the
status quo. It continues to be true—as guaranteed by Proposition 1—that we have pay-off ab-
sorption (and in finite time) from every initial condition. However, for some initial conditions,
convergence is to an inefficient state.

It is easy to verify directly that such equilibria are not benign. Indeed, our proposition im-
plies that benignness must restore efficiency.

Is the benignness restriction on player preferences reasonable? Obviously, like every as-
sumption it is open to scrutiny. We only mention that benignness has found support in a number of
different experimental settings (including bargaining); see, for example, Charness and Grosskopf
(2001), Andreoni and Miller (2002), and Charness and Rabin (2002) among others. Indeed, these
studies suggest something stronger than our benignness condition: people are sometimes willing
to sacrifice their own pay-off in order to achieve a socially efficient outcome.

In summary, our overall view is that asymptotic efficiency appears to be broadly guaranteed
when both negotiations are forever ongoing (in principle) and all agents are benign, in that they do
not grudge others a pay-off improvement provided that they do not personally lose in the process.
The result holds whether or not pay-offs are transferable. At the same time, these two conditions
are critical. Without them, counterexamples to asymptotic efficiency can easily be constructed.

It is true that other assumptions have been made to prove the proposition. But we believe
that these are essentially technicalities. For instance, Proposition 3 establishes a variant of the ef-
ficiency result when finiteness of the state space is dropped. The Supplementary Notes comment
on another assumption: the restriction to pure strategies.
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4. GAMES WITH EXTERNALITIES

The ubiquitous absorption and efficiency results reported for characteristic functions break down
when there are externalities across players. Equilibrium pay-offs may cycle, and even if they do
not do so, inefficiencies occur. Such outcomes are not driven by the self-fulfilling contortions of
history dependence. They occur even for Markovian equilibria.

Let us sidestep a common pitfall right away. It is tempting to think of inefficiencies as
entirely “natural” equilibrium outcomes when externalities exist. Such an observation is true, of
course, for games in which there are no binding agreements. When agreements can be costlessly
written, however, no such presumption can or should be entertained. These are models of binding
agreements, a world in which the so-called “Coase Theorem” is relevant. For instance, in all that
we have done so far, two-player games invariably yield efficiency, quite irrespective of whether
there are externalities across the two players. This is not to say that the “usual intuition” has no
role to play. It must, because the process of negotiation is itself modelled as a non-cooperative
game. But that is a very different object from the “stage game” over which agreements are sought
to be written. Indeed, while positive results are possible for three-player games (see Proposition
4 below), we are generally in murky waters as soon as the number of players exceeds two.

4.1. Three-player games

Three-player games represent an interesting special case. Even when externalities are allowed
for, such games share a central feature with their characteristic function counterparts: each player
possesses, in effect, a high degree of veto power in all changes which alter her pay-off. This will
allow us to prove an efficiency result even for the restricted class of Markovian equilibria. To
be sure, the veto power is not absolute, which blocks off the possibility of obtaining stronger
efficiency results.

In passing, we note that three-player situations have been the focus of study in several
applied models of coalition formation (see, for example, Krishna, 1998; Aghion et al., 2004;
Kalandrakis, 2004; and Seidmann, 2005).

4.1.1. The failed partnership. This example attempts to capture the following situation.
There are three agents, any two of whom can become “partners”. For instance, two of three coun-
tries could form a customs union, or a production cartel, or an R&D coalition with a commitment
to share ideas. A three-player partnership is assumed not to be feasible (or has very low pay-offs),
but see the remarks on superadditivity below.

As partners two players earn a pay-off, while the outsider is reduced to a relatively low
pay-off. In the example below, the failed partner is player 1. Partnerships between him and any
other agent are dominated—both for the partners themselves and certainly for the outsider—by
all three standing alone. In contrast, the partnership between agents 2 and 3 is rewarding (for
those agents).

In the example below and those to follow, we simply record those states with non-trivial pay-
off vectors and omit any mention of the remaining states, with the presumption that the pay-offs
in those states are zero to all concerned. We shall also be somewhat cavalier in our description of
equilibrium and ignore these trivial states: equilibrium transitions from those states are implicitly
defined in obvious ways.

x0 : π0 = {{1},{2},{3}}, u(x0) = (6,6,6)

x1 : π1 = {1,{23}}, u(x1) = (0,10,10)

x2 : π2 = {2,{13}}, u(x2) = (5,0,5)

x3 : π3 = {{12},3}, u(x3) = (5,5,0).
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Observation 1. For δ sufficiently close to 1, inefficient outcomes x2 and x3 must be ab-
sorbing states in every equilibrium.

We omit a formal proof of this simple observation; the discussion to follow makes the argu-
ment clear. Despite the fact that x2 (or x3) is Pareto dominated by x0, player 1 will not accept a
transition to x0. If she did, players 2 and 3 would surely initiate a further transition to x1. Player
1 might accept such a transition if she is very myopic and prefers the short-term pay-off offered
by x0, but if she is patient enough she will surely see ahead to the infinite phase of “outsidership”
that will surely follow the short-term gain. In that situation it will be impossible to negotiate one’s
way out of x2 or x3. This inefficiency persists in all equilibria, history dependent or otherwise.

Notice that x2 or x3 would not be reached starting from any other state. This is why the
interpretation, the “failed partnership”, is useful. The example makes sense in a situation in
which players 2 or 3 have been locked in with 1 on a past deal, on expectations which have failed
since. To be sure, this interpretation is unnecessary for the formal demonstration of persistent
inefficiency from some initial state.

Why can players not negotiate themselves out of, say, x2? They could, if players 2 and 3
could agree never to write an agreement while at x0. Are such contracts reasonable? In theory
they certainly are possible. However, it may be difficult to imagine that from a legal point of
view, player 1, who has voluntarily relinquished all other contractual agreements between 2 and
3, could actually hold 2 and 3 to such a meta-agreement.

This raises a delicate issue to which we return below. Does one interpret the stand-alone
option (x0) as an agreement from which further deviations require universal permission? Or does
“stand-alone” mean freedom from all formal agreement, in which case further bilateral deals only
need the consent of the two parties involved? This example takes the latter view.

4.1.2. Transfers. How does the ability to make transfers affect the example? It is im-
portant to distinguish between two kinds of transfers. Coalitional or partnership worth could be
freely transferred between the players in a coalition. Additionally, players might be able to make
large upfront payments in order to induce certain coalitions to form. In all cases, of course, the
definition of efficiency should match the transfer environment.19

As we have noted earlier, our model allows for any degree of within-coalition transferability.
Indeed, it is very easy to verify that if we allowed for transfers within coalitions, then nothing
changes in the failed partnership example.

Upfront transfers across coalitions are not allowed in the framework we consider. This is
what distinguishes the exercise of this section from Gomes and Jehiel (2005)—GJ hereafter. GJ
consider transferable-utility coalitional bargaining games in which any player may make (large)
upfront transfers to any set of players. Whether such transfers are reasonable is a question that
requires a contextual answer. While in some situations that involve a long time horizon and
substantial liquidity constraints, the assumption may be problematic, we do not want to take an
explicit position on it. The two exercises are complementary. But a discussion of this issue will
clarify the differences between GJ and this section of the paper.

If unlimited upfront transfers are introduced into the failed partnership example of Section
4.1.1, efficient outcomes result from every initial state. Players 2 and 3 could make an upfront
payment to 1 to have 1’s partner released. But it is easy to write down a variant of the example in
which inefficiency persists. For instance, suppose that

19. For instance, if transfers are not permitted, it would be inappropriate to demand efficiency in the sense of
aggregate surplus maximization. If a non-transferable utility game displays inefficiency in the sense that “aggregate
surplus” is not maximized, this is of little interest: aggregate surplus is simply the wrong criterion.
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x0 : π(x0) = {{1},{2},{3}}, u(x0) = (6,6,1)

x1 : π(x1) = {1,{2,3}}, u(x1) = (0,7,2)

x3 : π(x3) = {{1,2},3}, u(x3) = (5,5,0),

and all other states yield zero pay-offs.
This variant retains the essential features of the previous example, though it is asymmetric.

Players 1 and 2 still form a “failed partnership” at x3. At that state player 1 continues to cling
to player 2. They would prefer to move to state x1, but player 1 rationally fears the subsequent
switch to x2.

But the introduction of upfront transfers in this example has a perverse effect. Instead of
taking the inefficiency away (as it does in the previous example), it generates inefficiency from
every initial condition. Notice that with transfers, we must use aggregate surplus as our defining
feature of efficiency, so that only the state x0 is efficient. An equilibrium displaying asymptotic
efficiency can stay away from x0 for a finite number of dates at best. However, players 2 and 3
invariably have the incentive to move away from x0 to x1. Of course, the fact that x1 is itself inef-
ficient will cause further movement across states as upfront transfers continue to be made along
an infinite subsequence of time periods. The precise computation of such transfers is delicate, but
the assertion that efficiency cannot be attained should be clear.

Thus the presumption that unlimited transfers act to restore or maintain efficiency is wrong,
and GJ show this explictly in their analysis.20

Without upfront transfers (but irrespective of whether or not there are transfers within coali-
tions), we obtain a different result for three-player games, and to this we now turn.

4.1.3. An efficiency result for three-person games. The failed partnership or its later
variant is not the only form of inefficiency that can arise. The Supplementary Notes record three
other forms of inefficiency, including one which can even arise from the stand-alone starting
point of no agreements: the structure of singletons. In the light of these several examples, it is
perhaps of interest that a positive efficiency result holds for every three-person game satisfying
a “minimal transferability” restriction. To state this restriction, let ū(i,π) be the maximum one-
period pay-off to player i over all states with the same coalition structure π .

[T] If two players i and j both belong to the same coalition in coalition structure π , then
ū(i,π) and ū( j,π) are achieved at different states.

Proposition 4. Consider a three-person game with a finite number of states and satisfying
condition (T), with history-independent proposer protocols and minimal approval committees.
Then for all δ close enough to 1, there exists an initial state and a stationary Markov equilibrium
with efficient absorbing pay-off limit from that state.

The proof of Proposition 4 exhaustively studies different cases and is therefore relegated to
the appendix.21 But we can provide some broad intuition for the result. Pick any player i and
consider her maximum pay-off over all conceivable states. If this maximum is attained at a state
x∗ in which i belongs to a coalition with two or more players, then observe that i’s consent must
be given for the state to change. (This step is not true when there are four or more players, and
invalidates the proposition, as we shall see later.) Because the pay-off in question is i’s maximum,
it is easy enough to construct an equilibrium in which x∗ is an absorbing state.

20. Inefficiency in this example (at least for discount factors close to 1) is also a corollary of GJ, proposition 7.
21. It should be noted that in most cases the result is stronger in that it does not insist upon δ → 1; in only one case

do we rely on δ → 1.
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It therefore remains to consider games in which for every player, the maximum pay-off is
attained at states in which that player stands alone. If no such state is absorbing in an equilibrium,
one can establish the existence of a cyclical equilibrium path, the equilibrium pay-offs along
which are uniquely pinned down by the pay-offs at the state in which all players stand alone. With
the transferability condition T, one can now find pay-off vectors for other coalitions (doubletons
or more) such that some player in those coalitions prefer these pay-offs to the cyclical equilibrium
pay-offs. The associated states then become absorbing, and a simple additional step establishes
their efficiency.

We conjecture that neither the minimality of approval committees nor the history indepen-
dence of proposer protocols is needed for this result, but do not have a proof.

4.2. Four or more players

Section 4.1.1 shows that with externalities, we cannot expect every absorbing state to be Pareto
efficient. At the same time, in three-player games, asymptotic efficiency from some initial state
holds in at least one equilibrium. However, the same conclusion does not apply when there are
four or more players. We now present an example that displays the most severe form of ineffi-
ciency: every absorbing state in every equilibrium is static inefficient, and every non-convergent
equilibrium path in every equilibrium is dynamically inefficient.

Consider the following four player game with minimal approval committees, in which a
proposer is chosen with uniform probability at every stage.

x1 : π(x1) = {{1,2},{3},{4}}, u(x1) = (4,4,4,4)

x2 : π(x2) = {{1},{2},{3},{4}}, u(x2) = (5,5,5,5)

x3 : π(x3) = {{1},{2},{3,4}}, u(x3) = (0,0,10,10)

x4 : π(x4) = {{1,2},{3,4}}, u(x4) = (2,2,2,2).

Observation 2. For δ sufficiently close to 1, every stationary Markov equilibrium is inef-
ficient starting from any initial state.

A formal proof of this result is relegated to the Supplementary Notes, but some discussion
may be useful. In part, a logic similar to the failed partnership is at work here. Consider state x1,
in which players 1 and 2 are partners and 3 and 4 are outsiders. If the {12}-partnership disbands,
the state moves to x2, which is better for all concerned. But once at x2, we see other latent,
beneficial aspects of the erstwhile partnership between 1 and 2: if players 3 and 4 now form a
coalition, they can exploit 1 and 2 for their own gain; this is the state x3.

So far, the story is not too different from that of the failed partnership. But the similarity
ends as we take up the story from the point at which 3 and 4 “counterdeviate” to x3. Their gains
can be reversed if players 1 and 2 form (or depending on the dynamics, re-form) a coalition.
Balance is now restored; this is the state x4. Finally, in this context, the partnership between 3
and 4 is more a hindrance than a help (just as {12} was in the state x1), and they have an incentive
to disband. We are then “back” to x1. This line of reasoning helps to prove that all equilibria must
be inefficient.

Despite the apparent circularity of the argument above, equilibria do exist that are absorbing
from every initial condition. The Supplementary Notes show that there is an equilibrium that
converges to the state x1 regardless of the starting point. There is also another equilibrium with
no absorbing states, which displays (dynamic) inefficiency from every initial condition, because
it must spend non-negligible time at the inefficient states x1 and x4.
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Three final remarks are in order regarding this example. First, the strong form of inefficiency
is robust to (at least) a small amount of transferability in pay-offs. The reason is simple: Regard-
less of transferability, the state x3 (respectively x4) cannot be absorbing since players 1 and 2
(respectively 3 and 4) can guarantee themselves a higher pay-off by initiating a transition to x4
(respectively x1).

Second, if players can commit to irreversible exit in the spirit of Bloch and Gomes (2006),
an efficient equilibrium exists in this example. At x1, players 3 and 4 could exit and so commit
not to be opportunistic at x2. Players 1 and 2 can now confidently transit to x2 without fear
of exploitation. (To be sure, once irreversible exit options enter the picture, other instances of
inefficiency can easily be constructed.)

Finally, inefficiency in this example can also be overcome by history-dependent strategies.
Indeed, x2 can be supported as an absorbing state provided that deviations from x2 are punished
by a return to the inefficient stationary equilibrium in which x1 is absorbing.

This last remark creates an interesting contrast between models based on characteristic func-
tions and those based on partition functions. In the former class of models, Seidmann and Winter
(1998) and Okada (2000) assure us that ongoing negotiations lead to efficiency under Marko-
vian equilibrium. It is the possibility of history dependence that creates the inefficiency problem,
albeit one that we successfully resolved with the help of the benignness condition. In contrast,
partition functions are prone to inefficiency under Markovian equilibrium, while history depen-
dence might help to alleviate this problem (it does in this example, though not in the failed
partnership).

5. SUPERADDITIVE GAMES

An important feature of the examples in Section 4.2 is that they employ a subadditive pay-
off structure. One can make further progress under the assumption of grand coalition super-
additivity:

[GCS] For every state x = (u,π), there is x ′ = (u′,{N }) such that u′ ≥ u.
It is worth recording that GCS restores (Markovian) efficiency, at least if the existence of an

absorbing limit pay-off is assumed:

Proposition 5. Under GCS, every absorbing pay-off limit of every Markovian equilibrium
must be static efficient.

The proof follows a much simpler version of the argument for Proposition 2 and we
omit it.22

Is GCS a reasonable assumption? If we view the merger of two coalitions in a literal way,
so that the two erstwhile groups now attempt to cooperate as one, there are many interesting
and important problems in which GCS might fail. Factors as varied as antitrust laws, ideology,
ancient hatreds, geography, or the competitive spirit may conspire against cooperation in such
mergers. For instance, the entire doctrine of healthy competition is based on the failure of physical
superadditivity, at least after a point.23

22. Note that GCS does not guarantee long-run efficiency in all situations. The example of Section 4.2 can be modi-
fied so that GCS holds, but there is an inefficient cycle over non-grand coalition states. In order to guarantee that even this
form of inefficiency does not persist in the long run, one needs a sufficient amount of transferability in the grand coalition.
Indeed, it can be proved that under GCS and the additional assumption that the pay-off frontier for the grand coalition
is continuous and concave, every Markov equilibrium must be absorbing—and therefore asymptotically efficient.

23. As another example, the “grand coalition” may not include all players; there could always be some exogenous
set of agents that cannot form coalitions with our players, but always interact non-cooperatively with them. For this reason
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Some game theorists might argue that such a literal merging of coalitions is not entailed
by superadditivity at all. They have in mind a different notion of GCS, which is summarized in
the notion of the superadditive cover. After all, the grand coalition—by cooperatively breaking
up—can replicate the pay-offs obtainable in some other coalition structure.24 But we would have
to be careful about applying Proposition 5 in such a situation, for that would presume, in effect,
that future changes in the strategy of one of the subgroups must require the consent of all players.
For instance, in the example of the failed partnership, it would debar individuals 2 and 3 from
cooperating without the express permission of 1.25 In many cases, it is hard to see how such a
requirement can be legally feasible, at least in the long term.

6. CONCLUSIONS

Our study of coalitional bargaining problems in “real time” yields a number of implications. For
characteristic function form games, a very general result for all pure-strategy equilibria (whether
history dependent or not) can be established: every equilibrium path of states must eventually
converge to some absorbing state, and this absorbing state must be static efficient. Perhaps this
the strongest formal vindication of Coase’s “theorem”, at least for characteristic functions.

In contrast, in games with externalities, matters are more complicated. It is possible to find
a three-person example in which there is persistent inefficiency from some initial state, whether
or not equilibria are allowed to be history dependent. At the same time, in every three-person
game, there is some Markovian equilibrium, which yields asymptotic efficiency from some initial
condition.

Yet, even this limited efficiency result is not to be had in four-person games. Section 4.2
demonstrates the existence of games in which every recurrent class in every Markovian equi-
librium exhibits static inefficiency. The ability to make unlimited upfront transfers may worsen
matters, as Gomes and Jehiel (2005) have shown, and we discuss this issue. We also discuss the
implications of imposing superadditivity, at least at the level of the grand coalition, and show that
some efficiency properties are restored.

The main open question for games with externalities is whether there always exists some
history-dependent equilibrium, which permits the attainment of asymptotic efficiency from some
initial state (that there is no hope in obtaining efficiency from every initial state is made clear
in Section 4.1.1). We are convinced that the answer should be in the affirmative: assuming—by
way of contradiction—that equilibria are inefficient from every initial state, one should be able to
employ such equilibria as continuation punishments in the construction of some efficient strategy
profile. Such a result would be intuitive: after all, one role of history-dependent strategies is to
restore efficiency when simpler strategy profiles fail to do so.

Finally, the general set-up in Section 2 may be worthy of study, with or without binding
agreements. For instance, the general set-up nests games in which agreements are only temporar-
ily binding, or in which unanimity is not required in the implementation of a proposal. We believe
that there is merit in exploring these applications in future work.

alone, GCS may fail. To be sure, all failures of GCS must be based on some non-contractible factor, such as the creativity
or productivity created by the competitive urge, or the presence of agents with whom contracts cannot be written.

24. For instance, companies might spin off certain divisions, or organizations might set up competing R&D groups,
but they might do so “cooperatively”. In a word, the grand coalition can agree not to cooperate, if need be.

25. As a possible example, consider no-compete contract clauses that typically debar an executive from working
for a competitor firm for a number of years.
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APPENDIX

Proof of Proposition 4.
In what follows, we denote by π0 a singleton coalition structure, by πi a coalition structure of the form {{i},{j,k}},

and by πG the structure consisting of the grand coalition alone. Use the notation π(x) for the coalition structure at state
x and Si (x) for the coalition to which i belongs at x . Subscripts will also be attached to states (e.g. xi ) to indicate the
coalition structure associated with them (e.g. π(xi ) = πi ).

For each i , let X∗
i = argmax{ui (x) | x ∈ X}, with x∗

i a generic element. Finally, we will refer to π(x∗
i ) = π as a

maximizing (coalition) structure (for i).
Case 1: There exists i = 1,2,3 and x∗

i ∈ X∗
i such that |Si (x∗

i )| ≥ 2.
Pick x∗

i ∈ X∗
i as described and consider the following “pseudo-game”. From x∗

i , there does not exist an approval
committee capable of initiating a transition to any other state. Notice that a Markovian equilibrium exists for this pseudo-
game (see the Supplementary Notes for the general existence proof) and that x∗

i is absorbing. Denote by σ∗ the equi-
librium strategies for the pseudo-game. Return now to the actual game and suppose that players use the strategies σ∗;
suppose also from x∗

i , that player i always proposes x∗
i and rejects any other transition. For other players j �= i , any

proposal and response strategies may be specified. Denote this new strategy profile σ ′. Notice that σ∗ and σ ′ specify the
same transitions for the pseudo-game and actual game and no player has a profitable deviation from x∗

i . Therefore, σ ′
constitutes an equilibrium of the actual game. This equilibrium has an efficient absorbing state, x∗

i .
Case 2: For all i and for all x∗

i ∈ X∗
i , |Si (x∗

i )| = 1. A number of sub-cases emerge:

(a) π(x∗
1 ) = π(x∗

2 ) = π(x∗
3 ) = π0 for some (x∗

1 , x∗
2 , x∗

3 ), but the maximizing structures are not necessarily unique.
(b) π(x∗

1 ) = π(x∗
2 ) = π0 and π(x∗

3 ) = π3, and while the maximizing structures are not necessarily unique, Case 2(a)
does not apply.

(c) For all players i = 1,2,3, πi is the unique maximizing structure.
(d) π(x∗

1 ) = π0, π(x∗
j ) = π j , j = 2,3 and each maximizing structure is unique.

We now prove the proposition for each of these cases.
Case (a). Here x0, the unique state corresponding to π0, is weakly Pareto dominant and we construct an equilibrium

as follows. From any state x , every player proposes a transition to x0 and every player accepts this proposal. A deviant
proposal y is accepted if Vi (y) ≥ Vi (x) = (1 − δ)ui (x)+ δui (x0). This is clearly an equilibrium with x0 efficient and
absorbing.

Case (b). The proof is similar to Case 1. Consider a pseudo-game in which there is no approval committee that can
initiate a transition away from x0. Again, we are assured of a Markovian equilibrium for the pseudo-game; denote the
equilibrium strategies by σ∗ and notice that x0 is absorbing. In the actual game, suppose that all players use the strategies
given by σ∗, and suppose that, at x0, players 1 and 2 always propose x0 and reject any transition from x0. Call these
strategies σ ′.

As in Case 1, notice that σ∗ and σ ′ specify the same transitions for the pseudo-game and the actual game, and no
player has a profitable deviation from x0. Therefore, σ ′ constitutes an equilibrium of the actual game.

The following preliminary result will be useful for cases (c) and (d):

Lemma 1. Suppose that player i’s maximizing structure π̂ is unique, and that π̂ ∈ {π0,πi }. Let Y = {y | π(y) ∈
{π0,πi } \ π̂}. Then in any equilibrium such that x ∈ X∗

i is not absorbing, Vi (x) > Vi (y) for all y ∈ Y .

Proof. We prove the case for which π̂ = πi . The proof of the case for which π̂ = π0 is identical. Let x ∈ X∗
i . Note

that Y = {x0}. Suppose on the contrary that Vi (x0) ≥ Vi (x). We know that

Vi (x) = (1− δ)ūi + δ

∫

X

Vi (z)P(x,dz).

Now, there could be—with probability µ—a transition to the singletons, which player i need not approve. All other
transitions must be approved by i , and she must do weakly better after such transitions. Using Vi (x0) ≥ Vi (x), it follows
that

Vi (x) ≥ (1− δ)ūi + δ[µVi (x0)+ (1−µ)Vi (x)] ≥ (1− δ)ūi + δVi (x),

so that Vi (x) ≥ ūi . Strict inequality is impossible since ūi is i’s maximal pay-off. So Vi (x) = ūi , but this means that x is
absorbing. ‖

The next two lemmas prepare the ground for the case (c).
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Lemma 2. Assume Case 2(c). Let y be not absorbing, and π(y) = π j . Then y transits one-step to x0 with positive
probability.

Proof. Suppose not. Then player j is on the approval committee for every equilibrium transition from y. Therefore

Vj (y) ≥ u j (y).

At the same time, y is not absorbing by assumption. But then the above inequality is impossible, since u j (y) is the
uniquely defined maximal pay-off for j across all coalition structures. ‖

Lemma 3. Assume Case 2(c). Suppose that a state xi , with coalition structure πi , is part of a non-degenerate
recurrence class (starting from xi ). Then Vj (x0) = Vj (x

i ) for all j �= i .

Proof. First, since xi is not absorbing, by Lemma 2, xi transits one-step to x0 (with positive probability) and both
players j �= i must approve this transition. Therefore

Vj (x0) ≥ Vj (x
i ). (7)

Next, consider a path that starts at x0 and passes through xi (there must be one because xi is recurrent). Assume
without loss of generality that it does not pass through x0 again. If both individuals j �= i must approve every transition
between x0 and xi , we see that Vj (x0) ≤ Vj (x

i ), and combining this with (7), the proof is complete.
Otherwise, some k �= i does not need to approve some transition. This can only be a transition from x0 to a state xk

with coalition structure πk , with subsequent movement to xi without reentering x0. So Vk (xi ) ≥ Vk (xk ). But xk itself
is not absorbing and so by Lemma 2 transits one-step to x0 (with positive probability). By Lemma 1, Vk (xk ) > Vk (x0).
Combining these two ineqalities, Vk (xi ) > Vk (x0), but this contradicts (7). ‖

Case (c). We divide up the argument into two parts. In the first part, we assume that for some i , some state xi (with
coalition structure πi ) is part of a non-degenerate recurrence class. Suppose that no efficient pay-off limit exists. We first
claim that

Vj (x0) = Vj (x
i ) = u j (x

i ) for all j �= i. (8)

To prove this, consider an equilibrium path from xi . If this path never passes through x0, then it is easy to see that
all three players must have their value functions monotonically improving throughout, so one-period pay-offs converge.
Moreover, the limit pay-off for player i must be at the maximum, so this limit is efficient. Given our presumption that
there is no efficient limit, the path does pass through x0, so consider these alternatives:

(i) For some j �= i , the path passes a state y j (with structure π j ) before it hits x0. Moreover, y j is not absorbing, and
so by Lemma 2 it must transit one-step to x0 with positive probability. However, player i must approve all these
moves; so Vi (x0) ≥ Vi (y j ) ≥ Vi (x

i ). But this contradicts Lemma 1. So this alternative is ruled out.
(ii) Otherwise, the path either transits one-step to x0, or passes through a sequence of moves, all of which must be

approved by both players j �= i . So for any one-step transition from xi to a state y, we have

Vj (x0) ≥ Vj (y) ≥ Vj (x
i ),

for j �= i . But by Lemma 3, Vj (x0) equals V j (x
i ) for j �= i . It follows that for every one-step transit y,

Vj (y) = Vj (x
i ),

for j �= i . Consequently, for each such j ,

Vj (x
i ) = (1− δ)u j (x

i )+ δ

∫
Vj (y)P(xi ,dy) = (1− δ)u j (x

i )+ δVj (x
i ).

Using this, and Vj (x0) = Vj (x
i ) for j �= i , the claim is proved.

We now show that there is an efficient absorbing state, contrary to our initial presumption. Consider a state xi

(with structure πi ) to which the claim just established applies. By condition (T), there is some other state x∗, also
with coalition structure πi , such that for some j �= i , u j (x

∗) > u j (x
i ). Because j must approve every transition from x∗,

Vj (x
∗) ≥ u j (x

∗) > u j (x
i ) = Vj (x0), where this last equality uses the claim. So x∗ cannot have an equilibrium transition

to x0, but then i must approve every equilibrium transition. However, since πi gives player i his unique maximal pay-off,
he will reject every transition to a different coalition structure. Therefore, x∗ is both absorbing and efficient.
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For the second part of case (c), suppose now that all recurrence classes are singletons. Assume by way of contradic-
tion that all these are inefficient. This immediately rules out all absorbing states xi with π(xi ) = πi for some i , and it
also rules out x0.26

Now consider any state xi with π(xi ) = πi . Since it is not absorbing, Vj (x
i ) ≥ u j (x

i ) for j �= i . Also Lemma 2
tells us that xi transits one-step to x0 with positive probability, so Vj (x0) ≥ Vj (x

i ) ≥ u j (x
i ). In particular, Vj (x0) ≥

max{ū( j,πi ), i �= j} for all j = 1,2,3. Moreover, because π j is maximal for j and j must approve all other transi-
tions from x0 (as well as to all states from the structure π j except for x0), we have Vj (x0) ≥ u j (x0), so Vj (x0) ≥
max{u j (x0), ū( j,πi ), i �= j} for all j = 1,2,3. Since x0 and xi are transient, there must be a path from x0 to an absorb-
ing state xG, but this implies that any such absorbing state must satisfy u j (xG) ≥ max{u j (x0), ū( j,πi ), i �= j} for all
j = 1,2,3. Therefore, xG is efficient, contradicting our initial supposition.

Case (d). Proceed again by way of contradiction; assume there is no Markov equilibrium with efficient absorbing
pay-off limit. It is immediate, then, that any state x such that π(x) ∈ {π0,π2,π3} is not absorbing. It also gives us the
following preliminary result:

Lemma 4. If any state x1 with π(x1) = π1 is absorbing, then x1 is not dominated by any state y with π(y) ∈
{π0,πG}.

Proof. Suppose this is false for some x1. It is trivial that x1 cannot be dominated by any grand coalition state;
otherwise x1 would not be absorbing. So x0 dominates x1. Consider any player j �= 1. From x0, there may be a transition
to z j with π(z j ) = π j , which j need not approve. She must approve all other transitions from x0. Thus, along the lines
of Lemma 1, we see that Vj (x0) ≥ u j (x0) > u j (x

1) = Vj (x
1) for j = 2,3, but this contradicts the presumption that x1

is absorbing (given the minimality of approval committees, 2 and 3 will jointly deviate). ‖

As in case (c), divide the analysis into two parts.

(i) All recurrence classes are singletons.
Since all absorbing states are assumed inefficient, it is clear that all absorbing states must either have coalition
structure π1 or πG (since all states with coalition structures π0, π2, and π3 are efficient). Consider x0; it is
transient. Let x̂ be an absorbing state reached from x0. By Lemma 2, we know that there must be a transition from
any state with coalition structure π2 or π3 to x0, and—because π0 is maximal for player 1—from x0 to some
state with coalition structure π1 with strictly positive probability. Therefore, we may conclude that

V1(x0) ≥ max{ū(1,π2), ū(1,π3)}
V2(x̂) ≥ V2(x0) ≥ max{ū(2,π3),u2(x0)}
V3(x̂) ≥ V3(x0) ≥ max{ū(3,π2),u3(x0)}.

(9)

This implies that x̂ is not Pareto dominated by π0, π2, or π3.
Now, if π(x̂) = π1, then Lemma 4, the fact that π0, π2, and π3 are not absorbing, and (9) allow us to conclude
that x̂ must be efficient, a contradiction. So suppose that π(x̂) = πG. Note that x̂ cannot be dominated by a state
y such that π(y) = π1. For Vi (y) ≥ ui (y) for i = 2,3. Moreover, an argument along the same lines as Lemma
1 easily shows that V1(y) ≥ u1(y). Therefore, if x̂ were dominated by y, there would be a profitable move from
x̂ , contradicting the presumption that it is absorbing. Therefore, x̂ must be efficient, but this contradicts our
assumption that no absorbing state is efficient.

(ii) There is some non-degenerate recurrence class (and all other states are either transient or inefficient).
Observe that analogues to Lemmas 2 and 3, and the first part of case 2(c) can be established for case (d). However,
whereas in case 2(c), we were able to pin down the equilibrium pay-off of two players along some non-degenerate
recurrence class, now we can only pin down the equilibrium pay-off of one player; that is, for a recurrent class
that transits from x0 to xi , i �= 1, we have: Vj (x0) = Vj (xi ) and Vj (x0) = u j (xi ) for j �= 1, i .

Observe that if, for the player j whose pay-offs we have pinned down, u j (xi ) equals ū( j,πi ) and for the other
player k who is part of the doubleton coalition with j , Vi (x0) ≥ ū(k,πi ), the argument based on condition (T) will not
go through.27 That is, we cannot find another efficient state which one player (whose consent would be required for any
transition) prefers to x0. In this case, we must construct an equilibrium with some efficient absorbing state, and this is
our remaining task.

26. If x0 is absorbing and inefficient, then it is dominated either by a state for the grand coalition or by a state with
coalition structure πi for some i . Either way, by minimality of approval committees, x0 will fail to be absorbing.

27. Of course, if these conditions are not satisfied, the same argument as in case 2(c) implies the existence of an
efficient absorbing state.
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First suppose that there does not exist a state x such that ui (x) > ui (x0) for i = 2,3 and for all y such that π(y) = π1,
u1(x) ≥ u1(y).28 In the construction of the equilibrium, the following sets of states, will be important: x0 and

Su
2 = {x | π(x) = π2, u3(x) > u3(x0)}

Sd
2 = {x | π(x) = π2, u3(x0) ≥ u3(x)}

Su
3 = {x | π(x) = π3, u2(x) > u2(x0)}

Sd
3 = {x | π(x) = π3, u2(x0) ≥ u2(x)}

Su = {x | π(x) ∈ {π1,πG}, x efficient}

SD
1 = {x | π(x) ∈ {π1,πG}, ∃z ∈ {Sd

2 , Sd
3 } : u(z) > u(x),∃ j ∈ {2,3} : u j (x0) < u j (x)} \ SD

2

SD
2 = {x | π(x) ∈ {π1,πG},∃z ∈ {Su

2 , Su
3 , Su , x0} : ∀i,u(z) > u(x)}.

(10)

Consider the following description of strategies:

(i) For all players i = 1,2,3, from x0 all players offer x0 and accept a transition to another state y only if Vi (y) >

Vi (x0).
(ii) From all states x ∈ Sd

2 ∪ Sd
3 , players i such that |Si (x) = 2| propose and accept x0, while player i such that

|Si (x)| = 1 proposes the status quo. An arbitrary player k accepts a transition to another state y only if Vk (y) >

Vk (x).
(iii) From all states x ∈ Su

2 ∪ Su
3 ∪ Su , all players propose the status quo and an arbitrary player k accepts a transition

to another state y only if Vk (y) > Vk (x).
(iv) From all states x ∈ SD

1 , all players propose the status quo and an arbitrary player k accepts a transition to another
state y only if Vk (y) > Vk (x).

(v) From all states x ∈ SD
2 , all players propose a state z(x) ∈ Su

2 ∪ Su
3 ∪ Su ∪ x0 and an arbitrary player k accepts a

transition to another state y only if Vk (y) > Vk (x). If x is dominated by x0, we require z(x) = x0.

It is easy to see that these strategies constitute an equilibrium in which the singletons are absorbing. Moreover, every
other state is either absorbing itself or transits (one-step with positive probability) to some absorbing state. Note that the
states in SD

1 are absorbing for δ high enough and are inefficient. The reason they are absorbing is clear: if a transition
to a dominating state were allowed, there would eventually be a transition to the singletons, which, by assumption, hurts
one of the players whose original consent is needed. That the strategies defined in (v) above constitute an equilibrium for
δ high enough follows from arguments similar to van Damme, Selten and Winter (1990): with a finite number of states
and sufficiently patient players any such absorbing state could be implemented; one player will always prefer to reject
any other offer.

Now suppose that there exists a state x such that ui (x) > ui (x0) for i = 2,3 and for some y such that π(y) = π1,
u1(x) ≥ u1(y). In this case, the singletons clearly cannot be absorbing for δ high enough. However, with a finite number
of states one can easily construct an equilibrium with a positive probability path from x0 to some efficient absorbing state
for δ high enough. In particular, from x0, there is a positive probability transition to a state y ∈ π1; from y there is a
probability 1 transition to some efficient state y′ which dominates y (if such a state exists; if not, y is absorbing).29 ‖
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28. That is, there is no state that players 2 and 3 prefer to the singletons, which they can achieve, either directly or
indirectly (by initiating a preliminary transition to the coalition structure π1).

29. From x0, there may also be a positive probability transition to some other state z. However, if π(z) ∈ {π2,π3}
it is clearly efficient since at these states players 2 and 3 obtain their unique maximum. Moreover, for δ high enough, it
cannot be that π(z) = πG, since then this would imply that z Pareto dominates y′.
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