Robustness Checks for Example 2 in Genicot-Ray [2002]

Garance Genicot (UC Irvine) and Debraj Ray (NYU)

Genicot and Ray ${ }^{1}$ study the following example
Example 2. Consider a community of ten individuals with the same functional form for utility as in Example 1 of Genicot and Ray [2002];

$$
u(c)=\frac{1}{1-\rho} c^{1-\rho},
$$

where ρ is the Arrow-Pratt coefficient of relative risk aversion. We also use the same specific parameters as in Example 1: $\delta=0.83, \rho=1.6, p=0.4, \ell=2$, and $h=3$.

We evaluate - for each group size ranging from 1 to 10 - the return to informal insurance. One natural way to do this is to look at the gain over and above autarky, compared to the corresponding per-capita gain that the first-best provides in the community of all ten. If \tilde{v} denotes this latter value and $\hat{v}(n)$ is the i-stable value for a group of size n, then the i-stable gain may be reported as

$$
\frac{\hat{v}(n)-v(1)}{\tilde{v}-v(1)} \times 100
$$

in percentage terms. Similarly, if $v^{*}(n)$ is the stable value for a group of size n, then the stable gain is described as

$$
\frac{v^{*}(n)-v(1)}{\tilde{v}-v(1)} \times 100
$$

again in percentage terms. The results for this example are reported in Table 1.
Much has been written on "social capital" in the past few years. In the insurance context one could measure the return to such capital very much as we have done here. Clearly, recognizing the possibility of coalition deviations dramatically reduces the estimated return on social capital. In Example 2, the highest return a member of a community of 10 could expect is less than half the return we would have evaluated were we not accounting only for coalition formation (38\% instead of 85%).

Computations for several parameter values, given below, reveal both robustness and sensitivity, in the following sense. In general, the "grand community" of all individuals will be destabilized by a smaller-sized community, causing a large fraction of the potential benefits from insurance not to be reaped. [Notice that the phrase "potential benefits" already corrects for the single-person deviation constraint, as in Table 1.]

[^0]| n | Stable? | i-Stable Gain (\%) | Stable Gain (\%) |
| :---: | :---: | :---: | :---: |
| 1 | $\sqrt{ }$ | 0 | 0 |
| 2 | $\sqrt{ }$ | 10 | 10 |
| 3 | $\sqrt{ }$ | 50 | 38 |
| 4 | \times | 61 | \emptyset |
| 5 | \times | 69 | \emptyset |
| 6 | \times | 75 | \emptyset |
| 7 | \times | 78 | \emptyset |
| 8 | \times | 81 | \emptyset |
| 9 | \times | 84 | \emptyset |
| 10 | \times | 85 | \emptyset |

Table 1. Stable Gains are Limited.

However, equilibrium group sizes and the degree of insurance are very sensitive to the parameters. As Coate and Ravallion [1993] observed in their computations, "[o]ne striking feature of the results ... is how sharply the performance varies. Even quite a successful risk-sharing arrangement may vanish with certain seemingly modest perturbations to parameter values, such a small decline in the participants' aversion to risk". These observations are compounded by an order of magnitude in our model. Even an increase in risk (or aversion to it) may destroy previously sucessful insurance arrangements as previously non-viable subgroups now become viable, destroying the viability of the larger community.

In this example, for instance, increasing the need for insurance θ from 0.91 to 1 causes a group of size 3 to become unstable. Several perturbations of θ and p cause the stable gain to fluctuate from 20% (a fifth of the corresponding i-stable gain) to 37% (45% of the corresponding i-stable value). This suggests a great deal of sensitivity in the quantitative magnitudes. However, the results are surprisingly robust in the sense that potential coalition deviations inevitably cause a large fraction of the potential benefits from insurance not to be reaped.

Now for details.

$p \backslash \theta$.75	1	2	3
.2	1	1	1,2	$1,2,3,8,9,10$
.4	1,3	1,2	1,2	$1,2,3,9,10$
.6	1,3	$1,2,5$	1,2	$1,2,7$
.8	$1,3,5$	1,3	$1,2,7$	$1,2,9$

Table 2. Stable Sizes

To build Table 2 we take similar parameters as in Example 2: a population of 10 with constant relative risk aversion $\rho=1.6$, a discount rate of $\delta=0.83$, and a low income of $\ell=2$; but we consider a range of different values for the probability of a high income p and different values for the need for insurance θ. Table 2 reports the stable group sizes for the different values of p and θ.

We now turn to a sensitivity analysis in the neighborhood of Example 2. The results reported in Table 1 are based on a value of $p=0.4$ and $\theta=0.91$ for which groups of 2 and 3 are stable. In Table 3 we can see that for the same value of $p=0.4$ but with a higher need for insurance, only groups of size 2 are stable.

$p \backslash \theta$	0.9	0.91	0.9136	1	1.1
.39	$1,2,3$	$1,2,3$	$1,2,3$	1,2	1,2
.4	$1,2,3$	$1,2,3$	$1,2,3$	1,2	1,2
.41	$1,2,3$	$1,2,3$	$1,2,3$	1,2	1,2

Table 3. Local Sensitivity Analysis

The following tables report the i-stable and stable gain for the above values.

n	Stable?	i-Stable Gain (\%)	Stable Gain (\%)
1	$\sqrt{ }$	0	0
2	$\sqrt{ }$	9	9
3	$\sqrt{ }$	50	41
4	\times	62	\emptyset
5	\times	70	\emptyset
6	\times	75	\emptyset
7	\times	79	\emptyset
8	\times	82	\emptyset
9	\times	84	\emptyset
10	\times	86	\emptyset

Table 4. example 2bis - $\theta=.9, p=0.41$

n	Stable?	i-Stable Gain (\%)	Stable Gain (\%)
1	$\sqrt{ }$	0	0
2	$\sqrt{ }$	11	11
3	$\sqrt{ }$	51	38
4	\times	62	\emptyset
5	\times	70	\emptyset
6	\times	76	\emptyset
7	\times	79	\emptyset
8	\times	82	\emptyset
9	\times	85	\emptyset
10	\times	87	\emptyset

TABLE 5. example 2bis $-\theta=.91, p=0.41$

n	Stable?	i-Stable Gain (\%)	Stable Gain (\%)
1	$\sqrt{ }$	0	0
2	$\sqrt{ }$	11	11
3	$\sqrt{ }$	51	37
4	\times	62	\emptyset
5	\times	71	\emptyset
6	\times	76	\emptyset
7	\times	80	\emptyset
8	\times	83	\emptyset
9	\times	85	\emptyset
10	\times	87	\emptyset

TABLE 6. example 2bis $-\theta=.9136, p=0.41$

n	Stable?	i-Stable Gain (\%)	Stable Gain (\%)
1	$\sqrt{ }$	0	0
2	$\sqrt{ }$	22	22
3	\times	56	\emptyset
4	\times	67	\emptyset
5	\times	75	\emptyset
6	\times	80	\emptyset
7	\times	84	\emptyset
8	\times	87	\emptyset
9	\times	89	\emptyset
10	\times	91	\emptyset

TABLE 7. example 2bis $-\theta=1, p=0.41$

n	Stable?	i-Stable Gain (\%)	Stable Gain (\%)
1	$\sqrt{ }$	0	0
2	$\sqrt{ }$	31	31
3	\times	60	\emptyset
4	\times	71	\emptyset
5	\times	79	\emptyset
6	\times	84	\emptyset
7	\times	87	\emptyset
8	\times	90	\emptyset
9	\times	92	\emptyset
10	\times	94	\emptyset

TABLE 8. example 2bis $-\theta=1.1, p=0.41$

n	Stable?	i-Stable Gain (\%)	Stable Gain (\%)
1	$\sqrt{ }$	0	0
2	$\sqrt{ }$	8	8
3	$\sqrt{ }$	49	41
4	\times	61	\emptyset
5	\times	68	\emptyset
6	\times	74	\emptyset
7	\times	77	\emptyset
8	\times	80	\emptyset
9	\times	83	\emptyset
10	\times	85	\emptyset

TABLE 9. example 2bis $-\theta=.9, p=0.4$

n	Stable?	i-Stable Gain (\%)	Stable Gain (\%)
1	$\sqrt{ }$	0	0
2	$\sqrt{ }$	10	10
3	$\sqrt{ }$	45	39
4	\times	61	\emptyset
5	\times	69	\emptyset
6	\times	74	\emptyset
7	\times	78	\emptyset
8	\times	81	\emptyset
9	\times	83	\emptyset
10	\times	85	\emptyset

Table 10. example 2bis $-\theta=.91, p=0.4$

n	Stable?	i-Stable Gain (\%)	Stable Gain (\%)
1	$\sqrt{ }$	0	0
2	$\sqrt{ }$	21	21
3	\times	55	\emptyset
4	\times	61	\emptyset
5	\times	66	\emptyset
6	\times	74	\emptyset
7	\times	79	\emptyset
8	\times	86	\emptyset
9	\times	88	\emptyset
10	\times	90	\emptyset

TABLE 11. example 2bis $-\theta=1, p=0.4$

n	Stable?	i-Stable Gain (\%)	Stable Gain (\%)
1	$\sqrt{ }$	0	0
2	$\sqrt{ }$	30	30
3	\times	59	\emptyset
4	\times	70	\emptyset
5	\times	78	\emptyset
6	\times	83	\emptyset
7	\times	86	\emptyset
8	\times	89	\emptyset
9	\times	91	\emptyset
10	\times	93	\emptyset

Table 12. example 2bis $-\theta=1.1, p=0.4$

n	Stable?	i-Stable Gain (\%)	Stable Gain (\%)
1	$\sqrt{ }$	0	0
2	$\sqrt{ }$	7	7
3	$\sqrt{ }$	48	41
4	\times	59	\emptyset
5	\times	67	\emptyset
6	\times	72	\emptyset
7	\times	76	\emptyset
8	\times	79	\emptyset
9	\times	81	\emptyset
10	\times	83	\emptyset

Table 13. example 2bis $-\theta=.9, p=.39$

n	Stable?	i-Stable Gain (\%)	Stable Gain (\%)
1	$\sqrt{ }$	0	0
2	$\sqrt{ }$	8	8
3	$\sqrt{ }$	48	40
4	\times	60	\emptyset
5	\times	68	\emptyset
6	\times	73	\emptyset
7	\times	77	\emptyset
8	\times	80	\emptyset
9	\times	82	\emptyset
10	\times	84	\emptyset

Table 14. example 2bis $-\theta=.91, p=.39$

n	Stable?	i-Stable Gain (\%)	Stable Gain (\%)
1	$\sqrt{ }$	0	0
2	$\sqrt{ }$	9	9
3	$\sqrt{ }$	49	39
4	\times	60	\emptyset
5	\times	68	\emptyset
6	\times	73	\emptyset
7	\times	77	\emptyset
8	\times	80	\emptyset
9	\times	82	\emptyset
10	\times	84	\emptyset

TABLE 15. example 2bis $-\theta=.9136, p=3.9$

n	Stable?	i-Stable Gain (\%)	Stable Gain (\%)
1	$\sqrt{ }$	0	0
2	$\sqrt{ }$	20	20
3	\times	54	\emptyset
4	\times	65	\emptyset
5	\times	73	\emptyset
6	\times	78	\emptyset
7	\times	82	\emptyset
8	\times	85	\emptyset
9	\times	87	\emptyset
10	\times	89	\emptyset

Table 16. example 2bis $-\theta=1, p=3.9$

n	Stable?	i-Stable Gain (\%)	Stable Gain (\%)
1	$\sqrt{ }$	0	0
2	$\sqrt{ }$	29	29
3	\times	58	\emptyset
4	\times	70	\emptyset
5	\times	77	\emptyset
6	\times	82	\emptyset
7	\times	86	\emptyset
8	\times	89	\emptyset
9	\times	91	\emptyset
10	\times	92	\emptyset
TABLE 17. example 2bis $-\theta=1.1, p=3.9$			

[^0]: ${ }^{1}$ Genicot, G. and D. Ray (2002), "Group Formation in Risk-Sharing Arrangements," forthcoming, Review of Economic Studies.

