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1. INTRODUCTION

We consider a 2 x2 game played repeatedly by two satisficing players.
The class of games considered is general enough to include the Prisoner’s
Dilemma, as well as 2 x 2 symmetric games of coordination and common
interest.

Each player has an aspiration at each date, and takes an action. The
action is switched at the subsequent period only if the achieved payoff falls
below the aspiration level, with a probability that depends on the shortfall.
Aspirations are updated in each period, depending on the divergence of
achieved payoffs from aspirations in the previous period.

The aspiration-based process exhibits two specific features: (i) inertia:
every action is repeated with at least a certain probability bounded away
from zero; and (ii) experimentation: with a small probability, aspiration
levels experience small random trembles around the going aspiration, thus
preventing them from being perpetually satisfied with any given action. We
examine the long run outcomes that are induced by vanishingly small tremble
probabilities. This paper therefore builds on [3], in which a model of con-
sistent aspirations-based learning was introduced.’

We make precise and prove the following result (Theorem 1 below):

If the speed of updating aspiration levels is sufficiently slow, then the
outcome in the long run must involve both players cooperating most of the
time.

The model therefore describes an adaptive learning process where
individuals not only cooperate, but play strictly dominated strategies of the
stage game for most of the time. While players may (and occasionally do)
profit by deviating from cooperative behavior, the dynamics of the process
ultimately lead back to mutual cooperation. It should be stressed that the
result does not rest on a conventional repeated game argument (i.e., based on
players’ rational responses to others’ strategies of conditional cooperation),
since players exhibit a form of nonstrategic behavior which is entirely myopic.
Morever, cooperative behavior emerges in the long run, irrespective of initial
conditions.

Section 2 introduces the model, and describes some of its preliminary
properties. Section 3 presents the main results. Section 4 provides an infor-
mal discussion of the reasoning underlying the main results. Section 5
discusses related literature, Section 6 concludes, and Section 7 collects all
proofs.

! That paper did not consider the updating of aspirations within a game. For discussion of
this and related literature, see Section 5.
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2. THE MODEL

Consider the following 2 x 2 game:

C D

(o,0) | (0,0)

D | (0,0) | (6,09)

where ¢ >0>0, and 0<0#6.2 If 0> o, this is a Prisoner’s Dilemma.> If
0 <o, this is a game of common interest. The case § =0 corresponds to
a game of pure coordination, where (C, C) and (D, D) are both Nash
equilibria.

Player I's state at date ¢ is given by an action A4,€{C, D}, and an
aspiration level «,, which is a real number. The corresponding objects for
player 2 are given by B, and f,. A state s is the pair made up of player 1’s
state and player 2’s state. Thus at date ¢, s,=(4,, a,; B,, f,). The state at
date ¢ determines the actions chosen and hence the payoffs 7! and =n? for
the two players. We now describe the updating of each player’s state.

Consider the rule followed by player 1; an analogous rule is followed by
player 2. There are two features. First, actions are updated as follows: if
n} >a,, then player 1 is satisfied, and A,= A, ;. Otherwise player 1 is dis-
appointed, the action is switched (4, | # 4,) with probability 1 — p, where
p is an indicator of inertia. It is assumed that p is a nonincreasing function
of the extent of disappointment (o, — 7} ), satisfying:

1. p=1ifa,—n!<0,
2. pe(p, 1) otherwise, for some pe(0, 1), and

3. p is continuous and the rate at which it falls is bounded, i.e., for
all x>0, 1 — p(x) < Mx for some M < o0.*

Figure 1 describes p. In words, for any given positive degree of disap-
pointment, the player will switch his action with positive probability.

2 Our main result does not hold in the case where 0 =4, for reasons explained further in
Section 4.

3 Note however that no condition has been imposed on the relative values of 6 and 0, so
the model allows for the case in which alternation between (C, D) and (D, C) yields a higher
payoff than (C, C).

4 This last set of conditions is inessential for our main result, though employed in the proof.
As will be discussed in Section 6, modified arguments apply in the case where the inertial
probability is discontinuous at the point of zero disappointment, i.e., is bounded away from
1 as well as 0 for any positive disappointment.
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FIG. 1. The function p.

However, owing to inertia the probability of not switching is bounded
away from zero.

Second, with respect to the updating of aspirations, it is convenient to
first consider the case without any “trembles”.

2.1. The Model without Trembles

Aspirations are updated as an average of the aspiration level and the
achieved payoff at the previous play. For player 1, this yields

a1 =Au,+(1=2) =, (1)

where A€(0,1) may be thought of as a persistence parameter, assumed
equal for both players for simplicity. A parallel equation applies to player 2.

These updating rules (i.e., without trembles) define a Markov process
over the state space, which we may identify with the set E={C, D}*x R
This process will be denoted P, and will be referred to as the untrembled
process.

Given any action pair (A4, B), let the corresponding pure strategy state
(pss) refer to the state where this action pair is played with aspiration levels
exactly equal to the achieved payoffs: a =7'(4, B), f = n*(A, B). It is clear
that every pss is an absorbing state of the untrembled process: if players are
satisfied with the payoffs they receive in an ongoing action pair, they have
no reason to alter their actions or aspirations. Indeed, it is for this very
reason that it is necessary to explore the robustness of any absorbing state
by admitting the possibility of perturbations.
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Before proceeding to the case of trembles, however, it is useful to settle
a preliminary question: does the untrembled process always converge? This
is addressed in

ProOPOSITION 1. From any given initial state, the untrembled process P
converges almost surely to some pure strategy state.

This result is discussed in Section 4.

2.2. The Model with Trembles

While the untrembled process always converges to some pss, one
suspects that some of these may not be robust to small perturbations in a
player’s state. To model such phenomena, we introduce trembles in the
formation of aspirations.’

With probability 1 —#, aspirations are formed according to the deter-
ministic rule (1), while with the remaining probability #, the updated deter-
ministic aspiration o is perturbed according to some density g(., «).
Assume, again for simplicity, that # is the same for both players.

Informally, we would like small perturbations on either side of a to be
possible, but at the same time, uninteresting technical complexities would
be introduced by allowing aspirations to wander too far from the payoffs
of the game, and we want to avoid these. Assume, then, that there exists
some compact interval 4 which contains all feasible payoffs such that for
each ae A, the support of g(.|a) is contained in 4, and moreover, that
g(a' |a)>0 for all o' in some nondegenerate interval around o (relative
to A). Furthermore, suppose that g is continuous as a function of «. Finally,
assume that all initial aspiration vectors lie in the compact region 42 and
that all perturbations are independent over time and across players.®

Denote the resulting stochastic process by P7. A standard theorem (see,
e.g., [ 14, Theorem 16.2.5]) guarantees that the process has a well defined
long run outcome:

ProPOSITION 2. For each >0, the process P" converges (strongly) to a
unique limit distribution ", irrespective of the initial state.

5 Starting with any pss, a small upward push to a player’s aspiration level will cause that
player to be disappointed, and hence induced to experiment with other actions. An alternative
modeling approach would directly allow experimentation with different actions. We suspect
that the results would be the same in such an approach.

6 As usual, a similar definition holds for player 2. It is immaterial to the argument whether
the function g is the same for both players.
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3. MAIN RESULTS

By Proposition 3, the introduction of trembles serves to single out a
unique (though probabilistic) long-run outcome. Obviously, one is inter-
ested in the nature of the long run distribution x” when the tremble proba-
bility # is close to zero, since this is likely to yield a selection from the
multiple long-run limits of the untrembled process.

Some preliminary steps are needed before we can state such a result
precisely. To begin with, one needs to ensure that the sequence of long run
distributions u” settles down as # goes to zero:

PROPOSITION 3. The sequence of distributions u" converges weakly to a
distribution u* on E as n | 0.

Proposition 3 is a corollary of a general observation on the long run
behavior of Markov processes subjected to small stochastic perturbations,
which also provides a precise characterization of the limiting distribution.
Because this result may be of wider interest than the specific application
studied here, we provide a self-contained statement and proof of this
general theorem (Theorem 2) in Section 7. Theorem 2 also yields, as a
corollary, a description of the limit distribution x«*, which we now state.

Use Q; to denote the one step transition probability of the stochastic
process, conditional on the situation where only player i’s aspiration is sub-
jected to a tremble. Let Q denote 3(Q; + Q,). We may interpret this as the
transition rule when exactly one player trembles, with both players being
equally likely to tremble.

Let R denote P, the infinite step transition rule in the untrembled
process. This is well-defined by Proposition 1. Finally, let QR denote the
composition of Q and R. In words, the process QR refers to the effect of
subjecting exactly one player (chosen randomly) to a tremble in her aspira-
tions, followed by the untrembled process thereafter for ever.

ProPOSITION 4. The limiting distribution u* is the unique invariant dis-
tribution of the process QR.

By Proposition 1, the untrembled process converges to a pss. It follows
that an invariant distribution of QR must be concentrated on the pss’s.
Proposition 4 says that QR has a unique invariant distribution, which is
precisely the limit of the invariant distributions corresponding to vanishing
tremble probabilities.

In words, the selected long run outcome can be obtained as the unique
long run outcome of an “artificial” Markov process defined only over the
four pss’s, with the transition probability between pss’s obtained as follows:
Starting with any pss, subject one player chosen randomly to a single tremble
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in aspiration to obtain a new state, from which the untrembled process is
left to operate thereafter to arrive eventually at some pss.

Why do we need a precise characterization of the limit of the long run
distributions, unlike the work of previous authors? The reason is that the
long run distribution will not generally be concentrated on a single pss.
This is in sharp contrast with random matching contexts considered by
[12] and [24], where the corresponding process singles out a unique limit
state.

In the informal discussion, which we postpone to Section 4, we attempt
to provide a clearer intuitive explanation of this observation.

We are now in a position to state our main result. Let ¥ denote the
singleton set consisting of the (C, C) pss.

THEOREM 1. The weight u*(%) placed by the limiting distribution u* on
the mutual cooperation pure strategy state is close to 1, for persistence
parameter 1 sufficiently close to 1. Formally,

lim u*(%)=1.

A—-1

4. INFORMAL DISCUSSION

The assertions thus far may be summarized as follows. First, the untrem-
bled joint process of aspirations and actions always converges to a pure
strategy state. Second, the trembled process is ergodic and converges to a
unique invariant distribution. Third, these invariant distributions (viewed
as functions of the tremble) themselves settle down to a “limit” invariant
distribution as the tremble probability approaches zero. Finally —and this
is the main result —the limit invariant distribution places almost all weight
on the cooperative outcome, provided that the persistence parameter is suf-
ficiently close to unity.

We discuss these informally in turn.

(1) Begin with the convergence of the untrembled process. The formal
proof of Proposition 1, in the appendix, takes the easiest route towards
establishing convergence, by exploiting a degree of inertia in the model that
is built in by assumption. Specifically, given any state, there can be an
infinite run on the current action pair, which would cause aspirations to
converge to the corresponding payoffs.

To illustrate this, consider action pair (C, D) in the Prisoner’s Dilemma
where 6>0, and suppose that initial aspirations of both players lie
anywhere in the interior of the feasible payoff region. What is the probabil-
ity of an infinite run on (C, D) thereafter in the untrembled process, which
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would result in convergence to the (C, D) pss? Along such a path, player
2 would have no cause to switch away from D, so what is needed is for
player 1 to stick with C perpetually despite being disappointed at every
stage. At stage ¢, player I’s aspiration and hence disappointment level
would be A‘«, if a denotes her initial aspiration. Hence the probability of
converging to (C, D) is [];2; p(A'a), which is positive if and only if

Y [1—p(ifa)] < oo,

t=1

a condition which is satisfied, since the left hand side equals

o0 M"
Y [p0) = p(Am)] <72
t=1

A similar argument can be given for the possibility of an infinite run on any
action pair, and any initial set of aspirations, as detailed in the proof of
Proposition 1. Note that no assumption has been made concerning the
speed at which aspirations are updated; the result follows solely from our
assumptions regarding the nature of inertia. Nevertheless, the formulation
of inertia can be substantially weakened without affecting this result (see
Section 6).

(i1)) Now turn to the ergodicity of the trembled process, as described
in Proposition 2. This is familiar by now in the literature on stochastic
evolution. What is somewhat unusual, however, is that as trembles vanish
the limit invariant distribution places weight on more than one pure
strategy state. Specifically, it is possible to transit from any pss to any other
with one tremble, so that one pss cannot become infinitely more likely than
another as the tremble probability vanishes. For instance, consult Fig. 2
which depicts the Prisoners Dilemma. Here, a tremble (represented by a
dotted path) perturbs the aspiration of player 2 from the cooperative
payoff (o, g), following which the untrembled process generates a “long
aspiration cycle” (shown by the curved arrow) that ultimately converges to
the defection payoffs from below. Of course, the reverse transition from the
(D, D) pss to the (C, C) pss is also possible, as shown in the same figure
by a dotted tremble from (9, J) followed by the straight arrow.

(i) These observations imply that it is no longer possible to charac-
terize long run outcomes by studying the support of the limit invariant dis-
tribution: we need to understand the relative weights on the different pss’s.
To get a handle on which pure strategy state is likely to receive the lion’s
share of probability weight, we must deduce an explicit formula for the
limit invariant distribution. Proposition 4 specifically states that this limit is
the same as the limit distribution of the process QR. The proof of this
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0,9)

6,0

FIG. 2. Possible convergence to (D, D) from perturbed (C, C).

proposition (and that of Proposition 3) relies on Theorem 2, a technical
result concerning perturbed Markov processes, which we state and prove in
the appendix.

(iv) Given Proposition 4, we need thereafter to focus on the process
OR. As discussed following Proposition 4, the unique limit distribution of
OR must be concentrated on the four pss’s. To prove Theorem 1, therefore,
we need to characterize the relative probabilities of transiting from any pss
to any other, when the aspiration of one player is trembled once, and the
untrembled process operates perpetually thereafter. Specifically, it suffices to
prove that as A — 1, transitions from the (C, C) pss from the other three
pss’s in the QR process occur with probability approaching 0, while the
likelihood of the reverse transitions remains bounded away from 0.

Since the proof of this is somewhat long and involved, it will help to out-
line the various steps in the argument. The case of a game of pure coordina-
tion (0=0) is the easiest to consider, and is illustrated in Fig. 3. Note first
that if aspirations lie in the region I where player 2 has aspiration lying
between ¢ and o, then if A is close enough to one the untrembled process
will converge to the mutual cooperation pss with probability close to one.
The reason is that (a) if aspirations start in the interior of I, then for A
close enough to one, they will continue to lic within I for a large number
of subsequent dates; (b) at any time during this period, the probability that
(C, C) will be played at least once within the next two dates is bounded
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(0,0)

¢,9

»
»

0 o

FIG. 3. Cooperation in the game of pure coordination.

away from zero;’ (c) once (C, C) is played while aspirations are still in the
region I, both players are satisfied, and will have no incentive to switch.
Thereafter, (C, C) will be repeated forever, causing the untrembled process
to converge to the mutual cooperation pss.

Now consider the dynamic of the process QR. If we start at the mutual
cooperation pss, and subject one player’s aspiration to an upward tremble,
say player 2, the new aspiration vector is at point C’ in Fig. 3. If the
untrembled process runs thereafter, aspirations must lie in the convex hull
of the point C’, and the pure strategy payoff points. Morever, if aspirations
are updated slowly enough, then the process can converge to any pss not
involving mutual cooperation, only if they pass through the interior of the
intermediate region /. But by the argument of the preceding paragraph, if
aspirations are ever in the interior of I, they must converge back to the
mutual cooperation pss with probability close to one (if 4 is close enough
to one). In other words, the probability of transiting from the mutual
cooperation pss to any other in the QR process converges to 0 as A
approaches 1.

"If (D, C) or (C, D) is played today, then both players are disappointed by a discrete
amount. The player selecting C today will not switch with some probability (at least ) owing
to inertia, while the other player will also switch to C with some probability that is indepen-
dent of 4, resulting in a play of (C, C). And if (D, D) is played today the second player is
disappointed by at least a certain amount, causing her to switch to C at the following date,
while the first player may continue to play D. Hence with positive probability (D, D) will be
followed by (D, C), which in turn may be followed by (C, C) as in the preceding argument.
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The reverse transitions, however, continue to remain probable in the QR
process. Starting from the mutual defection pss, player 2’s aspiration could
undergo an upward tremble, taking aspirations to point D', in the interior
of the region /. Then the untrembled process would move to the mutual
cooperation pss with probability close to one. Similarly, starting from any
of the asymmetric pss’s where the two players fail to coordinate, the player
selecting D could experience an upward tremble to her aspiration, taking
aspirations from (0, 0) to the point E’ in Fig. 3. This would cause (C, C)
to be played, following which the untrembled process would converge to
the mutual cooperation pss. This completes the argument for the pure
coordination game with 0 =0.

When 0 is positive, the argument becomes substantially more com-
plicated, owing to the fact that plays of the asymmetric pss’s can then serve
to raise one player’s aspiration level. This is best illustrated in the alter-
native case of the Prisoners Dilemma, where 0> o. Starting with the
mutual cooperation pss, if player 2 receives a boost in aspiration, it causes
her to switch to D. This results in a play of (C, D), which serves to raise
2’s aspiration even further. Of course, player 1 will be disappointed and will
switch to D, but will be disappointed with the resulting play of (D, D) as
well, and tend to switch back to C. If player 2 has stuck to D, then another
play of (D, C) results, which again boosts her aspiration. It is possible
therefore for a large number of plays of (D, C) to occur, which serve to
raise player 2’s aspiration, and lower player 1’s. It is then possible for the
aspirations to wind around, as depicted by the curved arrow in Fig. 2, and
converge to the mutual defection pss from below, following one perturba-
tion of the mutual cooperation pss.

Nevertheless, Theorem 1 applies to the Prisoners Dilemma, and extends
to values of 0 intermediate between ¢ and J as well. The main steps in the
reasoning (for the case of the Prisoners Dilemma) are as follows. First, as
Lemma 3 in Section 7 shows, if a player (1, say) has an aspiration smaller
than his maxmin payoff of J, then his aspiration will drift upward with
probability close to 1 (if 4 is close enough to 1). The reason for this is
simple: either the two players continually cooperate (in which case 1’s
aspiration must increase steadily), or sooner or later player 1 will select his
maximin action D. In the latter case, 1 will stick to action D, being satisfied
with the maxmin payoff  which exceeds the current aspiration level. His
aspirations must then drift upwards. Intuitively, players learn to aspire to
payoff levels that are at least as large as their maxmin payoffs.

Lemma 5 in Section 7 then shows that this upward drift in players’
aspirations continues to hold when aspiration levels are approximately
equal to the maxmin payoff J. Specifically, if aspirations start within region
N in Fig. 4, then player 1’s aspiration must continue to increase beyond J,
while player 2’s aspirations stay intermediate between J and ¢. The intuition
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player 2's
payoff

(0,0) 8 [\ 1} player 1s payoff

FIG. 4. Steps in the proof of Theorem 1: The Prisoner’s Dilemma.

for this is that the dynamics are continuous at an aspiration level of J for
player 1, so the upward drift that occurs when 1’s aspiration is less than J,
continues to extend at the point when his aspirations are approximately at
0. However, the proof for this is long and delicate.

The next step is to consider what happens when the aspirations of both
players are intermediate, lying between d and ¢. Using a logic similar to the
case of a pure coordination game, Lemma 2 shows that if 1 is close to one,
the untrembled process converges thereafter to the mutual cooperation pss
with probability approaching one. Intuitively, any play of (D, D) will leave
both players disappointed, inducing both to switch simultaneously to C,
thus resulting in a play of (C, C), from which point the process converges
to the mutual cooperation pss. And any play of (D, C) or (C, D) will tend
to be followed by (D, D), and thereafter by (C, C).

Lemma 6 then uses these results to prove that starting with the mutual
cooperation pss, the process QR will move back to this pss with proba-
bility approaching one as 4 — 1. Hence, paths such as the curved arrow
in Fig. 2 by which the process moves from the cooperation pss to the
defection pss following one tremble, become increasingly improbable. The
geometric structure of the argument is described in Fig. 4. In this figure,
region [ is a rectangle containing aspirations that are intermediate between
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0 and ¢ for both players. Region N satisfies the same property for player
2 as region I does, but only contains aspirations for player 1 that lie in
some neighborhood around J. Finally, region L contains all aspiration vec-
tors such that player 1’s aspiration falls short of his lowest aspiration in N.
(Regions M and K are defined analogously to N and L respectively.)

The area comprising the union of the regions L, N, I, M and K acts as
a reflecting barrier (with high probability) as 4 — 1. By Lemmas 2 and 5,
regions N, M and I cause aspirations to revert back to (o, o), whereas by
Lemma 3, neither regions L nor K can be penetrated from outside. It
follows that the probability of aspirations converging to (0, 8), (6, 0), or
(0, 0), following a single tremble from the (C, C) pss, approaches zero as
A— 1. On the other hand, the reverse transition from the (D, D) pss to the
(C, C) pss becomes increasingly likely since a single tremble takes aspira-
tions from (d, J) into the sets N or M with positive probability, following
which Lemma 5 can be applied.®

Similarly, starting from any neighborhood of (0, ), aspirations must drift
“rightwards”, and thereafter out of the set L. The likelihood of converging to
(0,0) is close to zero, since region K cannot be penetrated from outside.
Hence starting from the (D, D) or the (C, C) pss the process QR will almost
surely converge to either the (D, D) or (C, C) pss, implying that the weight
on both asymmetric pss’s in the invariant distribution of QR must approach
zero. Combining this with the earlier argument, it follows that almost all the
weight of the limit invariant distribution must be on the (C, C) pss.

Intuitively, transitions following a single perturbation of the (C, C) pss
to the other pss’s must necessarily require one or both players to not switch
their actions for long stretches of time, even if they are disappointed. As
aspirations adjust more and more slowly, the bouts of inertia required
become indefinitely large, and therefore increasingly improbable.® On the

8 This argument does not apply to the case when 6 exactly equals 6. Then starting from the
mutual defection pss, a perturbation of exactly one player’s aspiration level will cause the pro-
cess to revert back to the defection pss with probability 1. Hence in this case almost all the
weight in the limiting distribution is placed on the mutual defection pss, instead of the mutual
cooperation pss. The reason is that if player 2’s aspiration goes above J, for instance, inducing
her to switch to C, such a switch will not affect player 1’s aspiration at all, since § =4. So
player 1 will continue to stick to D. And as long as she does so, she obtains a payoff of J,
no matter what player 2 does. Hence player 1 can never deviate away from the action D,
implying that player 2 must return to D as well. However, as our proof shows, this argument
is inapplicable as long as 6 is even slightly different from o, for that causes a divergence
between payoffs and aspiration for player 1 at some date, motivating a switch away from the
action D, provided / is close enough to 1. The degenerate case also indicates that the basic
arguments for the cases 6 >J and 0 < ¢ are qualitatively different from each other.

% If the inertia function p were to be discontinuous at 0, then the probability of converging
to any other pss from the cooperative pss following one tremble is obviously zero, so the
result is straightforward in that case.
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other hand, the transition to the (C, C) pss from the other pss’s do not rely
at all on inertia, and are thus infinitely more likely relative to the reverse
transitions.

Note in conclusion that even for small tremble probabilities and speed of
aspiration updating, the process does not converge to mutual cooperation
in the long run. Cooperation simply becomes statistically dominant.
Players perpetually oscillate between different action pairs, as their aspira-
tions are occasionally subjected to trembles in different directions, with
effects that last beyond the trembles. In particular, these trembles cause
them to experiment with actions different from those used in the recent
past. For instance, starting with mutual cooperation, such trembles induce
experimentation with defection, which leads to transitory gains from
exploiting the cooperative partner. However, the partner is dissatisfied in
such situations, and will switch to defection as well, which serves to
“punish” the initial defector. A period of mutual defection then ensues,
which tends to disappoint both players, inducing an eventual return to the
cooperative phase. Even though, along this process, the players often play
a dominated strategy, this is not due to the fact that the learning process
per se makes them stick to an inferior action (e.g., it is not that they would
zero in on “defect” in the Prisoner’s Dilemma when facing a fixed strategy
on the part of the opponent). Instead, it is the interaction between the
learning dynamics of both players which leads to this possibility.

The above is reminiscent of how cooperation may be sustained in a
repeated game. It does seem that aspirations-based learning leads to a
manner of play in which trigger-based punishments appear to be used.
However, the establishment of a precise connection is beyond the scope of
this paper. It should be mentioned, nevertheless, that we obtain this
similarity despite the fact that players are only “learning” to play the stage
game. This is in contrast to some recent literature such as [11], in which
convergence to an equilibrium of the repeated game is considered.

5. RELATED LITERATURE

The model of adaptive behavior considered in this paper presumes a
limited form of rationality, where players need not know the structure of
the game, or the opponents’ previous actions; nor do they have to be able
to solve maximization problems. The notion of “learning”, if any, does not
reflect the acquisition of any new knowledge per se; instead it concerns the
adjustment of aspirations or payoff expectations on the basis of past
experience, which in turn shapes agent behavior in the face of current
experience. In the terminology of [21], such models represent “stimulus”
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or “reinforcement” rather than “belief” learning. They originated in the
mathematical psychology literature [ 7], and have received a certain degree
of support in laboratory experiment situations involving human subjects
[ 15, 16, 20, 22, 23]. Other recent explorations of such models of learning
include [4] and [6], both of which explore the relationship with
“replicator dynamics” models, and [10], which develops an axiomatic
“case-based decision theory” where players satisfice relative to aspiration
levels that are based on past experience.

The structure of interaction between players in our model does not
correspond to random matching of pairs selected from a certain popula-
tion, as in the evolutionary literature (see, for instance, [4, 12, 24]). In our
context, a given pair of agents plays the game repeatedly over time. This
also stands in contrast with some of the well-known models whose concern
is to provide an evolutionary basis for the rise of cooperation, e.g., [4,
8, 19]. These papers consider situations in which the repeated Prisoner’s
Dilemma is recurrently being played between pairs of individuals randomly
selected from the general population. In a sense, the objective is to select
among multiple equilibria of the underlying supergame by embedding it in
a wider intertemporal framework. Instead, our approach remains within
the scenario of a single indefinite repetition of the stage game, singling out
the stage outcome which happens to be played most of the time in the long
run.

[3], a precursor to this paper, assumed aspiration levels were fixed, and
analyzed models of reinforcement learning leading to long run outcomes
consistent with the given aspiration levels. In the context of general two
player repeated games, it was shown that such an equilibrium concept
allowed individually rational Pareto-undominated pure strategy outcomes
to be played in the long run. This paper extends this model by providing
an explicit process by which aspiration levels as well as chosen actions
evolve, but in the context of a specific class of 2 x 2 games. Aspirations do
turn out to converge, and the long run outcome is essentially cooperative,
thus complementing the analysis in that paper.

[13] and [18] both apply the Gilboa—Schmeidler case-based theory to
games of coordination or the Prisoners Dilemma. They allow aspirations to
evolve simultaneously with the strategies selected by players in a context of
repeated interaction, and provide conditions under which long run out-
comes entail cooperation. These conditions entail initial aspiration levels
lying in prespecified ranges: for instance, Pazgal needs to assume that they
are sufficiently high relative to the cooperative payoffs for both players,
while Kim assumes that they lie above a level which is slightly below the
cooperative payoff for both players. Our model in contrast predicts cooper-
ation in the long run, irrespective of initial conditions. Another important
difference is that [13] and [18] both assume that aspirations average
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maximal experienced payoffs in past plays, whereas we assume they average
the actual experienced payoffs. Hence the theory in these papers imparts a
certain additional degree of “ambitiousness” to players, which helps in
ensuring convergence to cooperative outcomes.

Finally, [9] and [17] consider models in which numerous pairs of
players simultancously play a given bilateral game, their aspirations being
formed on the basis of the average payoff earned across the whole popula-
tion. [9] postulates that the pair of players is repeatedly matched over
time, and obtains the result that in the long run all players must cooperate.
In [17], it is assumed instead that players are rematched every period, and
demonstrate a tendency towards partial cooperation in such a case. In these
papers cooperation is attained by virtue of the fact that non-cooperators
become dissatisfied owing to the relative success experienced by other
agents who manage to cooperate. In our paper, such mechanisms of “social
learning” are absent.

6. EXTENSIONS AND CONCLUDING COMMENTS

The behavioral dynamic studied in this paper is admittedly stylized, and
the context to which it is applied undoubtedly special. Simple behavior
rules of the kind we have analyzed here are more plausible in settings
where players are involved in games of greater complexity (e.g., where each
player has a large number of actions to choose from). Considerations of
tractability caused us to initially restrict attention to a simple class of 2 x 2
games, which should be viewed as the first step of a more general analysis
that needs to be explored in future research. We believe, nevertheless, that
some of the insights of this paper would extend to more general environ-
ments. We describe below possible alternative formulations of the following
features of our model.

(a) Inertia. While our stated assumptions provide the easiest way
to prove Proposition 1, the result also holds under weaker assumptions
concerning the inertia function p, providing we restrict aspirations to not
be updated too rapidly. For instance, if 4 is close to 1, convergence is
ensured by an alternative argument which does not rely on the inertia-
based infinite runs on ongoing action pairs.'® This argument works even

10 Consider the Prisoner’s Dilemma, for instance, and suppose, contrary to the assertion of
the proposition, that the untrembled process does not converge. Then it can be shown that
the process must wander infinitely often through the interior of the rectangle I depicted in
Fig. 4. Using the argument of Lemma 2, this implies that the process must converge to the
mutual cooperation pss.
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when p falls at an unbounded rate near the point of zero dissatisfaction, or
even if it is discontinuous at that point.

(b) Experimentation. A natural variant of our formulation of trembles
would be directly with respect to the actions chosen, rather than aspiration
levels. Since the effects of trembles in aspirations and action choices are
similar, one would expect the main results to extend to such contexts.

(c) Aspiration Updating. One would also expect our results to
extend to a more general formulation of adaptive aspiration revision rules,
for instance, nonlinear ones. More complex is the question of what happens
when aspirations are formed on the basis of simple time averages of past
payoffs. Then any transition becomes progressively more lengthy as time
proceeds, which could conceivably lead to non-ergodic behavior (even with
trembles). However, the relative likelihoods of the different transitions
across pss’s would be similar to that described in our model.

(d) Matching Rules. A different direction for extension would be a
finite-population context where players are randomly matched every period
to play the Prisoner’s Dilemma, say. We conjecture that the cooperative
outcome (i.e., all players choosing C) would still be the unique long-run
outcome for A close to one. The reason is that, in this context, the
destabilizing effect of one tremble would still be the same as before, once
we are allowed to specify the particular outcome (or chain of outcomes) of
the matching mechanism. Since every matching outcome has positive prob-
ability, so does any finite chain of matches required for the perturbation to
operate in the desired direction.'!

(e) Behavior Rules. Finally, one might allow players to select from
a richer class of behavior rules, for instance, those permitting current
action choices to be conditioned on the history of recent plays. Payoff
experience from the use of different rules could be used to discriminate
between them. Such a framework may shed light on the difficult issue of
whether sophisticated rules may either arise or, at least, play a crucial role
in facilitating the emergence of simple cooperative behavior.

7. PROOFS

Proof of Proposition 1. Given initial aspirations (o, ), aspirations at
all later dates will be contained in the convex hull of (ay, f,) and the four
(pure) payoff points of the game. Let this convex hull be denoted # and

1 On the other hand, random matching within an infinite population may cause perpetual
defection to be the unique long run outcome, as the probability of the appropriate matches
shrinks to zero as the population grows indefinitely.



ASPIRATIONS AND COOPERATION 309

let the maximum aspirations for the two players in # be denoted by « and
[ respectively.

Consider any state (4, a, B, §) with (a, f) € #. Let the payoffs generated
by the action pair (4, B) be denoted (z!, z?). Consider the probability of
an infinite run on this action pair, which is given by

p(A(a—n")) p(21(p—n)).

s

h(a, ) =

t

1

We claim that (i) #(a, ) > 0 for every (a, f) € #, and (ii) & is nonincreasing
in each argument.
To prove (i), it suffices to check that:

Y [1=p((a—=")) p(A'(f—n?)] < 0.

This condition is satisfied because the left hand side is bounded above by

A
1—-4

M {la—7'| + | ==},

thus establishing (i). Claim (ii) follows directly from the fact that p is non-
increasing.
Given (i) and (ii), we see that for every (a, f) € #,

h(a, f) = h(&, §) > 0.

Let ¢>0 denote the minimum value of A(&, ff) across all possible initial
action pairs. It follows that at every date the probability of converging
to the pure strategy state corresponding to the ongoing action pair is at
least &, thereby completing the proof. ||

We now prepare for the statement and proof of Theorem 2. Let A(E)
denote the set of probability measures on a compact metric state space FE,
endowed with the Borel g-algebra. For any transition probability Q on E and
any measure u € A(E), define a measure uQ by uQ(A4)= [z O(x, A) u(dx)
for any Borel set 4. In this way, two transition probabilities P and Q
naturally induce a third PQ, where PQ(x,.)= P(x,.) Q. This permits us to
define m-step (for m >2) transition probabilities iteratively: P™= P™~'P,
where P'=P.

Given a real-valued measurable function f on E and a transition proba-
bility Q, define the function Qf(x) = jE f(y) O(x, dy). Q is said to have the
strong Feller property if Qf is continuous for every bounded measurable
function f.
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A measure y on E is invariant with respect to P if uP=u.

For each #€(0, 1), let Q" be a transition probability. Let ¢(x) and y/(#)
be functions, with 0 <¢(n) <1 and 0<y(n) <1, and with (¢(n), Y(n)) -
(0,0) as # — 0. Define

Q"= (1—4(n) Q+¥(n) OF,

and now perturb some given transition probability P in the following
manner:

P1=(1=¢(n) P+d(n) Q"

for all 7€(0, 1).
The following lemma will be useful.

LEMMA 1. Let Q be a strong Feller transition probability function on
a compact metric space E. Let g" be a family of measurable functions,
uniformly bounded by K, such that for each x€ E, g"(x)— g(x) as n tends
to 0.

Then

lim sup |Qg"(x) — Qg(x)| = 0. (2)

70 xeE

Proof. Suppose (2) is not true. Then there exists ¢ > 0, 7, converging to
0 and x, in E such that

|Qg”n(xn)_Qg(xn)| Zé. (3)
Since E is compact, there exists a subsequence {x,, | of {x,} converging to

some x in E. For simplicity of notation, write f, = g%, ;= 0(x,,,.), f =g
and u(.)=0(x,.). Let

Bu= U {re£:1nn—ri>5)

Then B,, decreases to the null set. Now x,(B) converges to u(B) for every
measurable set B in E (by the strong Feller property). Hence by the Vitali—
Hahn-Saks theorem (see, e.g., [ 2, p. 43]),

sup [¢;(B,)]—=0 as m- oo. (4)
J
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Hence
108"(x,,) — Q2(x, )| < [ |fu—f1 dts
<[ V=1 T 1<y diue

‘f‘f Ui = Sl Lg1p— 1 > o2y b

<+ ke ({Uh-1>5})

&

<
2

+ K sup [ f4,,(By)]
Using (4) we see that

. &
lim sup | Qg"x(x,,) — 0g(x,,)| <

contradicting (3). So (2) must hold. ||

THEOREM 2. Assume that
[a] For each xeE, (1(T+1))X%_, P(x,.) converges weakly to
R(x,.) as T— oo (so that R is a transition probability).
[b] O has the strong Feller property.
[c] O is open set irreducible, i.e., for all open sets U and all x € E,
< 0"x,U)>0; and

n=1

[d] OR has a unique invariant measure u*.

Then P" has a unique invariant measure p", which converges weakly to u* as
0.

Proof. Given any 5 >0, properties [b] and [c] imply that P” is a
T-chain. Applying Theorem 16.2.5 in [14], P” is uniformly ergodic, and
has a unique invariant measure x”. Then

H'L(L—=¢(n) P+ d(n) Q"1 =p",
implying that

W' g(n) Q"] =u"—(1—¢(n)) u"P.



312 KARANDIKAR ET AL.

For any bounded continuous function f, apply the probability measures in
the equation above to Pf:

w' () Q"1 P'f =u"P'f — (1 — (i) W' P* Y.
Multiplying by (1 —¢(7))* and summing over t=0, ..., T we obtain

) 100" { X (1= gia))' P | = L1 = g1 P
Taking T — o, and using sup, |u"PT+f(x)| <sup, | f(x)|, we get
Qg = pf, (5)
where
g Z [1—¢(n)]" PS(x). (6)

Note that lim;_, (1/(T+1)) X7, P/f =R/ implies g”(x)— Rf(x), for
each xe E, as n | 0. Moreover, |g"(x)| <sup, |f()] —M< oo for all . We
may therefore apply Lemma 1 to conclude that

,}T}) sup [Qg"(x) — ORf(x)| = 0.

Consequently, if #, is any sequence, with #, | 0 and with u" — i in the
topology of weak convergence,

W Qg — AORS. (7)
At the same time,
wog" = (1—y(n) W' Qg"+y(n) u"0%g", (8)

and y(n) -0 as # — 0, while x"Q’% g" is uniformly bounded. So we may
combine (7) and (8) to conclude that

lim " Qg = AORYS. 9)
Combining (5) and (9),
AQRf =4f.

Because f was an arbitrary bounded continuous function, it then follows
from [d] that 4 =u*, which completes the proof. |
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Proof of Propositions 3 and 4. Define

o) =n>+2n(1 —n),

772

V= o=y

Let O, denote the transition probability when both players are subjected
simultaneously to a tremble. It is then evident that

P1=[1—=¢(n)] P+ ¢(n) Q"

where

O"=[1-4(n)]Q+¥(n) O,

Assumption [a] of Theorem 2 is established by Proposition 1, while
assumptions [b] and [c] are valid by construction. Hence it remains to
check assumption [d], i.e., that the process QR has a unique invariant dis-
tribution. We know from Proposition 1 that every invariant distribution of
OR must be concentrated on the four pss’s. Hence it suffices to show that
there exists a pss (the mutual defection pss) which can be reached with
positive probability from every other pss in the QR process.

For this it suffices to check the claim that the action pair (D, D) will be
played with positive probability at some date, when we start at any pss and
subject the aspiration of one player to a tremble. The reason is that once
this happens, the argument of Proposition 1 implies that with positive
probability there will be an infinite run on (D, D) thereafter, causing con-
vergence to the (D, D) pss.

If we start with the (D, D) pss then the claim is obvious, owing to inertia.
And if we start with any other pss, then one small upward tremble to one
player’s aspiration will cause (C, D) or (D, C) followed by (D, D) to be
played with some probability. ||

For the proof of Theorem 1, we need some additional notation. If 7,
denotes the payoff to player 1 in any period s, then
O(s+1:/1(xs+(1 _/1) T

AR

so that
|<xs_as+l| 2(1_2) |O(S—7'(s| <(1_/1) W,

where W is the maximum conceivable divergence between aspirations and
payoffs (i.e., the width of the compact interval A4 to which aspirations
belong).
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Let T be the minimum number of periods that need to elapse before
aspirations at time 7+ 2 are different from aspirations at time 0 by an
amount not less than «. Then it is clear that T> T(4, a), where T(4, a) is
the smallest integer such that

(1=)[T(4a)+2] W=a.

It follows that
a
1—-2)T(Aa)=z——2(1—2). 10
(1=4) T(h @) 25521 =) (10)

Note that if a >0, then 7'(4, a) >0 for all 4 sufficiently close to unity, and
indeed, that T'(4, a) » oo as 2 — 1. This construct will be used at various
stages below.

For any (4, b)>>0 such that 0+d<o—a and +b <o —b, let 1(a, b)
be the rectangle defined by [0 +d,0—d] x[J+ b,a—b].

LemmA 2. Consider any (4, b)>>0 such that +d<o—a and 5+ b <
o —>b. Then given any ¢ >0, there exists 1, € (0, 1) such that

Prob*(s,— (0, C,0,C) | J)>1—¢

Sor all T, all events J that are subsets of {(ay, fr)€ (4, l;)} and measurable
up to date T, and all 1€ (24, 1).

Proof. Fix any T and some conditioning event J as described in
the statement of the lemma. Then (s, ;) €1(4, b)). Let T*(1) be the
minimum number of periods 7 such that (ctz, .4, fry,40) ¢ 1(d/2, b/2).
Observe that if a=1min{d, b}, then T*(1)=T(, a) (see (10)). It follows
that a lower bound for 7*(4) can be found that is independent of 7, the
initial date.

We observe, next, that there is { >0 (independent of 7 and A) such that
s,=(C, C) with probability at least {, for each r=T7T+2, T+3, ..,
T(A, a)+ T. To see this, suppose first that (C, C) is played in period ¢ — 2.
In that case (C, C) is played in period ¢ with probability one. If (D, D) is
played in period ¢#—2, then the probability is easily seen to be at least
p(a/2) p(b/2). If at date 1 —2, (D, C) is played, then the conditional prob-
ability of playing (D, D) at t—1 is at least p[ 1 — p(J)]. This is because
with probability p player 1 will stick to D, while player 2 will switch with
probability at least [ 1 — p(d)]. Thereafter, a switch to (C, C) in period ¢
occurs with probability at least p(d/2) p(h/2). The conditional probability
in this case is therefore at least p[ 1 — p(d)] p(4/2) p(b/2). Finally, the argu-
ment for (C, D) is symmetric.
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Thus in all cases, the conditional probability of playing (C, C) at date ¢
is bounded below by the positive number (= j[1— p(d)] p(d/2) p(b/2).
The probability that (C, C) will never be played between ¢ and ¢+ T(4, a)
is thus bounded above by (1 —{)7* =2 Select 4, such that

1 —(1—)Tha=25] _g

to ensure that (C, C) is played at least once between ¢ and ¢ + T(/, a) with
probability at least 1 —e. And if (C, C) is played during one of these dates,
s say, (a,, B,) <(o—a/2, ¢ —b/2) by the construction of T(4, a). It follows
that once (C, C) is played, the state will thereafter converge to the (C, C)
pss with probability one. ||

We now establish the result concerning upward drift in aspirations
whenever a player has an aspiration below the maxmin payoff d.

LemMA 3. Suppose Yy =min{d, 0} >0. Let u and v be positive numbers
such that u<min{y, v}. For any ¢>0 and for any date T, there exists
A, €(0, 1) such that

Prob*[a,<u for some t>T |J]<e (11)

for any J€(A,, 1) and any event J which is a subset of the event that
{oagp=v} (measurable with respect to the process up to date T).

Proof. Pick 7,e(0,1) to satisfy [p(u)]t—md=21-1 ¢ and
T(Ay, w—u)>1, where w=min{y, v} >u. Take any A€(1,,1). Define
intervening dates (random variables) / and m as follows: m is the first date
k when o, <u, and [ is the last date k before m such that a, >w. Clearly,
u<o, <w for all intervening dates.

We first claim that at no intervening date k& can player 1 play D. The
reason is that if he does, he attains a payoff of at least d >w>a,, his
aspiration level, and will continue to play D for all dates between / and m.
This contradicts the supposition that « drops below u during this time
interval.

Thus between date / and m — 1, only (C, D) and (C, C) could be played.
Moreover, for 1’s aspiration to drop from w to u, (C, D) must be played
at least (w —u)/w(1 — A) times, since 1’s aspiration drops by a maximum of
(1 —A) w each time (C, D) is played, while it increases whenever (C, C) is
played. Each play of (C, D) must create disappointment of at least u for
player 1; despite this he must not switch to D. The probability of this is
bounded above by

[p(u)]((w—u)/wu —A)— 1’
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and by our choice of 4> 4,, this must be less than ¢ and the lemma
follows. ||

We now turn to the dynamics consequent on aspirations falling within
the region N depicted in Fig. 4. In analyzing this, the following lemma will
be useful.

LEmMmA 4. Let T(A) be a sequence of positive integers such that
T(A)— o0 as A— 1. For each A, let { X%, Z#} be a finite horizon stochastic
process with terminal date T(1), such that X} takes values only in {0, 1}
(there is no restriction on Z?).

Suppose that for each A, X is equal to a constant (1) (which can take the
values either 0 or 1). Use the notation h, to denote t-histories for each t > 1,
and the notation L(h,) to denote the value of X*_, for every t-history.

Suppose that for every A€(0, 1),

Prob(X?=1|h)<u<l,
whenever L(h,) =0, while
Prob(X?=1|h,)<v<]1,

if L(h,)=1. Then for every v>0,

as A— 1. (12)

) u+v
Prob{ < }—>

Tuy+1EL "Tl-v+u

Remark. {Z?} appears to play no role in the statement of the lemma,
but it does, for its realizations enter into the histories {A,}.

Proof. Tt will be sufficient to establish the lemma for the case where i(/)
is a constant 7, independent of A. (The general case then follows easily from
a subsequence argument.) To do so, we use a coupling result, the proof of
which is available on request.

Claim. Suppose {U,, Uy, U,, .., Uy} is a finite sequence of random
variables that assume values in {0, 1}. Suppose that U,=i (where i is
either 0 or 1), and that for t>1,

Prob(U,=1|h,)=p(h,)<u<],
if L(h,)=0, and
Prob(U,=1|h,)=p(h,)<v<],

if L(h,)=1.
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Construct a (finite-horizon) Markov Chain { V', V,, ..., V;} with values
in 0, 1 such that V,=i and for all >0,

Prob(V,,,=1|V,=0)=u  Prob(V,,,=0|V,=0)=1—u
Prob(V,,,=1|V,=1)=v  Prob(V,,,=0|V,=0)=1—u0.

Then for all x,
Prob(U,;+ Uy+ - + Ur<x)=ZProb(V,+V,+ -+ + Vr<Xx) (13)

Let { V,} be the Markov chain constructed in the Claim. Then interpreting
X#as U, (13) implies immediately that

A U+ ) Ut
Prob(——— ¥ Xi<—— " )>Prob(— ¥ V,<— ).
ro <T(/1)+IEO ‘ l—v+u> ro <T(A)+1§0 ’ 1—v+u>

By the strong law of large numbers for Markov chains, the RHS above
converges to 1, and we are done. ||

In the arguments below, we shall initially consider the case 6 > .

LEMMA 5. Assume 0> 9. Use 6 to denote min{0, a}. Then for any b>0
such that 0 <0 —2b<0d+2b<6—2b, there is ae(0,b) with the property
that for any ¢ >0, there exists J5€ (0, 1) such that

Prob{s,— (0, C,0,C)|J} =1 —¢ (14)

Sor every T, every ). € (23, 1), and any event J that is a subset of { (o, f7) € N }
and measurable up to T, where N=[0—a, d +a] x[J+2b,6 —2b].

Proof. We begin the proof by showing how given any b satisfying the
requirements of the lemma, we select the number a, as well as by defining
several other variables used in the argument.

Define the rectangle M, = {(a, f) |a€[6—b,d+b], fe[J+2b, 6 —2b]}.
Consider the process commencing from some aspiration vector (o, i) € M,
at date 7, and any given pair of actions. For each 4, note that a lower bound
on the the minimum number of periods after which (oty, , 2, fri:4») fails
to lie within the larger rectangle, M,={(a, ff) | ae[d—2b,0+2b], fe
[0+b, 6—D]} is given by T(4, b) (see (10)). Clearly, there is an interval
(4, 1) such that for every A in this interval, T'(1, b)> 0. For the rest of the
argument, A will be taken to lie in this interval.

Define K= (b/W)—2(1—2)>0. It follows then that for all 1€ (4, 1),

(1-4)T(4, b)=K>0. (15)
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Next, for any a e (0, b], define the following quantities:
d'=1—pla)>0

p(2b)[1—p(D)]>0 (16)
plo—2b)<1.

e/

l'!

Observe that the inequalities above hold because p(x)e(0, 1) whenever
x> 0.
We will impose a restriction on the choice of a. It must satisfy:

, d’ , (0+a)d _2a
where y is a strictly positive number given by
y=min{p(2b) p(6 —0—b),1 —p(d+b)} —& (18)

for some small but positive &

Let us check to see that this can be done. Certainly y can be chosen as
in (18). Having done so, note that the RHS of (17) goes to 0 as a— 0,
while the LHS of (17) converges to [0 —0J] ¢’y >0. By the continuity of
both sides of (17) in a at a=0, it follows that there exists ¢ small but
strictly positive such that both d + @ <6 —a and (17) hold.

We complete our construction by noting that there exists ¢’ > 0 such that
if we define

d=1—pla)+¢
e=p(2b)[1—p(b)]—¢ (19)
i=pd—2b)—¢,

then d, e and i all lie strictly between 0 and 1, and moreover,

(5+a)d>2a

=>—. 20
l1—i+d™ K (20)

d
[0—(0+a)] (E}(—li_‘_d>—a(1 —ey)—

In what follows, a, b, d, e, i, & and &' are fixed by these considerations,
irrespective of the value of Ae[/, 1). Now fix any conditioning event J
satisfying the description in the statement of the lemma.

Let W, ={(C, C) is played for some 7 such that: (i) T<:<T(4,b)+ T,
and (i) o, <J +a for all k such that T<k <t}. Note by the construction
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of T(4, b) that (a,, f,) <(6—b, 6 —b) for all te{0, 1, .., T(4,b)}. Conse-
quently, if W, occurs, (C, C) will be played repeatedly thereafter, and s, —»
(o, C, g, C)) for sure. Thus

Prob*{s, - (a, C, 0, C) | W,} =1. (21)

In what follows, then, we consider cases in which the event W, does not
occur.
Denote by S* the event {(«,, 8,) € I(a, b) for some T<t<T(A, b)+T}.

CLAIM. There exists a function g(2) on (A, 1), independent of T, with
g(A) > 1 as A -1, such that

Prob*(S*|(ar, fr) €N, ~ W) = g(4). (22)

To establish this claim, let W, be the event {a,>J+a for some 7=
T, T+1,..,T(4 b)+ T—1}. Note that if W, first occurs at some date ¢,
then (a,, §,) € I(a, b). Thus there exists 1* € (0, 1) such that A > A* implies

PrObl(Sl | (a’Ta ﬁT) ENa W2> ~ Wl) =1 (23)

In what follows, we shall suppose that A > A*. It remains to evaluate the
conditional probability Prob*(S* | (as, 7)€ N, ~W,, ~W,) for each T.

It will be useful in what follows to concentrate on the action plays in
each of the periods T, T+ 1, .., T(4, b) + T. One way of doing this is to
note that the overall stochastic process, conditional on some initial action s,
(g, fr)€N and the event ~(W,u W,), defines a stochastic process
(which in general will be non-Markovian) on the actions s, played in
periods t=T, T+1, .., T(., b)+ T. This process can be described, given
the initial conditions, by a sequence of functions (one for each date),
describing the probability of each action pair at date ¢ conditional on the
entire history of actions /, up to that date. At ¢, let P*(., h,) denote this
function. With slight abuse of notation, we will use P* to denote the proba-
bility of various events as well, conditional or otherwise.

Let u denote the fraction of occurrences of (D, D), and y the fraction of
occurrences of (C, D), between dates 7 and T'(4, b)+ T. Of course, u and
y are random variables for each A. Recalling the definitions in (19) and the
definition of y in (18), consider the event Z described by

u<l—ey (24)

and

<4
"ST2ivd
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Subclaim. There exists a function 3(1.) on (., 1), independent of T, with
g(A) > 1as A— 1 such that

ProbX(Z | (ar, Br) €N, ~ Wy, ~ W) Z&(A). (20)

The argument up to the third paragraph following (30) is concerned with
the proof of this Subclaim.

Begin by computing a lower bound to P*((D, D), h,) for each 4, t>1
and /,. Let s(h,) denote the last action vector, i.e., the action at date r— 1,
under the t-history #,. If s(h,)=(D, D), then the probability that both
players continue with D is at least p(2b) p(6 —0 —b) (since player 1’s
aspiration cannot exceed J +2b and player 2’s aspiration cannot exceed
6 —b, by the construction of T'(4, b)). If s(h,)=(C, D), then by a similar
argument, the probability of moving to (D, D) the next period is at least
1—p(0—2b). If s(h,)=(D, C), the probability of moving to (D, D) is at
least 1 — p(J + b). By invoking (45), we see, therefore, that

PA((D7 D)> ht)>x+é

for all 4, and all A
Let E* be the event

{ 1 T(A,b)+T

- Lo oy 7 b
T(J, b)+ 1 (P, D) X}

t=T
where the notation 1, denotes the indicator function of the action vector s.
Note that y is independent of 7. Now apply Lemma 4, with X, =0 when-
ever (D, D) is played, X, =1 if anything else is played, with Z, set equal to
some constant, with u=v=1—y, and v=& We may deduce that there
exists a function g,(4) (with g,(4) —» 1 as A — 1) such that

[11 PHE*)>g(A).

Next, consider the probability PX(D, C), h,) for histories such that
s(h,) = (D, D). For (D, C) to follow (D, D), player 1 must stay at D while
player 2 switches. Because a, <0 + 2b, player 1 stays with probability at
least p(2b), while because ff,>J + b, player 2 switches with probability at
least [ 1 — p(b)]. Consequently, recalling (19), we see that

PY(D,C),h,)>e+¢ (27)
for all =1, all 4, and all 4, with s(h,) = (D, D).
Now, define the event
T(Ab)+T

1
FAE{T(lb)Jrl )3 l(D,C)>X},

t=T
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and consider the conditional probability P*(F* | E*). Note that we are con-
ditioning on the event E* where (D, D) occurs at least yT(4, b) times. Use
this information to construct a stochastic process as follows. Each
occurrence of (D, D) is to be treated as a “date”. The number of dates will
be taken to be the greatest integer not exceeding y7'(4, b): this is T(A) in
Lemma 4. Throw away all information after this date. Let X, be the follow-
ing random variable that describes the action vector immediately following
the tth realization of (D, D): X=0 if (D, C) occurs, and X =1 otherwise.
Let Z, be a list of all the action vectors that follow the th occurrence of
(D, D), up to the (¢+ 1) th occurrence of (D, D). [1If (D, D) is immediately
followed by another (D, D), then set Z equal to some arbitrary constant. ]
This process fits all the conditions of Lemma 4, if both u and v are iden-
tified with 1 —e—¢'. Applying the lemma, we may conclude that there
exists a function g,(4) with g,(4) > 1 as 4 — 1 such that

[II] PAF*| E*)>gy(4).

Again, note that g, is independent of 7, since e is.

Next, consider the probability P*((C, D), h,). First suppose that s(h,) =
(D, D). For (C, D) to follow (D, D), player 1 must switch to C while player
2 stays at D. Because we are conditioning on ~ W,, we have a, <d +a. It
follows that the transition occurs with probability no more than [ 1 — p(a)].
Therefore (recalling (19)),

PH(C, D), h)<1—pla)=d—¢ (28)

for all t>1, all 4, and all &, with s(h,) = (D, D).

Next, suppose that s(i,) # (D, D). In this case, P*((C, D), h,) can only be
positive when (C, D) itself was played last (remember that we are condi-
tioning on ~ (W, u W,)). This requires that player 1 stick to his previous
action, which will occur with probability at most p(d — 2b). Using (19), it
follows that

PH(C, D), h,)<i+é (29)

for all > 1, all 4, and all i, with L(h,) # (D, D).
Consider, then, the event

., 1 T, b)+T d
=" 1 <—
G {T(A,b)-ﬁ-l ,;T (& D) 1—i+d}

We claim that there exists a function g;(4), independent of 7, with
g3(4)—> 1 as 41— 1 such that

[II] PXG*)>gs(A).
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Proving this claim requires the application of Lemma 4 yet again. Start
with the (unconditional) event G*. Define a stochastic process as in Lemma 4
with T'(A)=T(4, b), with X,=1 if the action vector at time 1+ T is (C, D)
(and 0 otherwise), with u=d—¢' and v=i+ ¢, and with v=¢'. Take Z, to
be some constant for all zz Now the lemma applies, so we see that there
exists a function g5(4) with the required properties.

We may now combine observations [ I]-[II1] to infer that

PG N F*nE*) 2 g(4), (30)

for some function (/) that is independent of 7" and with the property that
gA)->lasi—1.

To complete the proof of (26), we unravel what the event G* N F* n E*
implies for the values of 4 and y, which, it will be recalled, are the fractions
of (D, D)’s and (C, D)’s occurring respectively between the dates T and
T(A,b)+T.

Let x denote the fraction of (D, C)’s during this period. Note, first, that
1+ x <1, while under the event F* x> ey. Combining these two observa-
tions, we may conclude that <1 —ey. This shows that (24) must hold
under the events E* and F*.

Next, note that under the event G* y < d/(1 — i+ d), which is, of course, (25).

The observations in the last two paragraphs, coupled with (30), establish
(26), and the proof of the Subclaim is complete.

Suppose, then, that the conditional event described by (26) does in fact
occur. Let us find a lower bound on the change in player 1’s aspirations as
a result of this event. Recall that «, ; =Ax,+ (1 — 1) w,, where =#, is the
payoff at date ¢, so that

a1 — o, =(1—2A)(m, —a,) (31)

Recalling that o, <d +afor =0, 1,..T(4, b) — 1 (i.e,, the event W, does not
occur), we see that the RHS of (31) is bounded below by (1 —A)[0 —(d +a)]
when the action (D, C) is played, by —(1 —A)a when the action (D, D) is
played, and by —(1—4)(d +a) when the action (C, D) is played. Using
(24) and (25), we may therefore provide a lower bound to the fotal right-
ward drift over T'(4, b) periods by

T2, b)(1 = 2){[0— (6 +a)I[1 —y—p] —ua— (6 +a)}

d S+a)d
> T(. b)(1— 1) {[0—(5+a)] <e;{—l_l_+d>—a(l —ex)—%}

=T(4b)(1—12) = =>2a,
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using (15) and (20). We conclude, then, that under the event Jn Z,
Ury 75 =0t 4, (32)
while, by the construction of T'(4, b),
Briri,p=0+b. (33)
From (32) and (33), it follows that
Prob*(S* | (ag, Br) €N, ~ Wy, ~ W) =g(A), (34)

where g(A) was introduced in (30).

By combining (23) and (34), and defining g(1) =g(4), we obtain (22),
which completes the proof of the claim.

Combining this claim with Lemma 2, the proof of Lemma 5 is com-
plete. 1

LEMMA 6. Assume 0> 0. For any e¢* >0, there exists A,€ (0, 1) such that
Prob{s, (3, D, 8, D) | (o, Bo) > (0, o)} <&* (35)

for all € (A4, 1).

Proof. Denote by F the event {s,— (4, D, d, D)}, and by G the condi-
tioning event { (oo, o) = (0, 0)}.

Because (o, fy) =(0,0) and («,, f,) = (6, 0), the intervening region
must be traversed almost “continuously” for A close to unity. We note one
implication of this formally. Fix any @, b and N satisfying the conditions of
Lemma 5. Then there exists 1€ (0, 1) such that for any Ae(Z, 1), the event
F (conditional on G') must be accompanied by at least one of the following
events:

[1] a,<0d—a for some ¢,

[2] («,, ;) €N for some ¢,

[31 (e, ;) ella,?2b) for some ¢, or

[4] One or more of events [ 1]-[3], with players 1 and 2 permuted.

Figure 5 explains the simple geometry behind this assertion. The thick
lines illustrate the zones implicit in [1]-[3]. The lighter lines simply
indicate the mirror regions on permutation of the players.

By the symmetry of the problem, we may therefore assert that for

Ae(4, 1),
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(o, By)
/T (0,)
/
/ 2b
/ /
< 3 -]
a,<%-a N I(a, 2b)
4 a—» 2b
(8,3)
FIG. 5. Illustration of [ 1]-[4] in the proof of Lemma 6.

3 Prob*(F | G) < Prob*(F | {a, <6 —a for some 1} N G)

Take ¢ =¢*/6 and /1, =max{/, 4,, 4., A3}, where 2, is given by Lemma 2
for this ¢ and (4, b) = (a, b), where 15 is given in Lemma 5, corresponding
to this ¢ as well, and 4, is given in Lemma 3, corresponding to this ¢,

x (Prob*({a, <6 —a for some t} | G)

+ Y Prob*(F | {(os, B7) €N firstat T} N G)

T=0

x Prob*({(az, f) €N firstat T} | G)

+ i Prob*(F | {(ay, B7)€l(a,2b) firstat T} N G)

T=0

x Prob*({(as, B7) € l(a, 2b) first at T} | G).

u=0—aand v=o.

The following arguments are made for A€ (4,, 1). The first term on the
RHS of (36) is bounded above by

Prob”({a, <J —a for some ¢} | G),

and Lemma 3 implies that this term is less than ¢ =¢*/6.
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Using Lemma 5, the second term on the RHS of (36) is bounded above
by

o *
e Y Prob*({(ar, fr)eN first at T}| N G) <£=%,
T=0
because ({(az, f7)€N first at T} | G) qualifies as an event of the form J
in that lemma. Finally, using Lemma 2, the third term is bounded above
by

*

¢ Y ProbX({(az, fr)el(a, 2b) first at T} |G)<s=%,
T=0

because {(oz, f7) € I(a, 2b) first at T} n G qualifies as an event of the form
J in that lemma.
Combine these three observations with (36) to complete the proof. ||

We are finally in a position to complete the

Proof of Theorem 1 when 0> 6. For each 1, let R* denote the infinite-
step transition in the untrembled process. We know that the limiting dis-
tribution of states (as trembles vanish) is given, for each A, by OR”. By
Proposition 1, limit weight is only placed on some pss, so that QR* may
be identified with a 4 x 4 matrix, each cell corresponding to a pair of pss’s.
It clearly suffices to prove the following:

[A] lim,_ ; QR s**|(C, C) pss) =0 for all pss s** #(C, C) pss.
[B] lim,_; ORM(C,D)pss|(C, D)pss)<1andlim,_ , OR (D, C)

pss | (C, D) pss) <1, and the same is true starting from the (D, C) pss.
[C] lim,_, QRX(C, C) pss | (D, D) pss)>0.

Let s* and s** be two pss’s. Then the corresponding entry of QR” is
ORs** | %)= [ RAs** | 5) dals | s%), (37)

where ¢(. | s*) is the measure induced by the perturbation of aspirations
from the pss s*.

By a standard argument using (37) and the dominated convergence
theorem, we see that to establish [ A]-[ C] it suffices to prove the following
steps:

[1] For any state s in the support of ¢(. | (C, C) pss),
RYs**|s)—>0 as A—1

for any other pss s**. This will prove [A].
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To prove [1] (and thus [A]), begin with any tremble of aspirations
(of a single player) from the (C, C) pss leading to a state of the form
s=(C,o+x, C, a+ y), where only one of x and y is nonzero. Wlog y =0
(the argument is symmetric when y #0). If x <0, the untrembled process
reverts to the (C, C) pss with probability one. So let x >0. By Lemma 6,
R*((D, D) pss | s) =0 as A — 1. Convergence to the (C, D) pss is certainly
included in the event described in Lemma 3, for some ue(0, ) and v =g,
and therefore the probability of such convergence tends to zero as well. An
analogue of Lemma 3 applied to player 2 similarly takes care of the (D, C)
pss, and the proof of [ 1] is complete.

[2] There exists a positive measure of states s under ¢(. | (C, D) pss)
under which

lim R*(C, D) pss|s)=0,

A—1
and

lim R*((D, C)pss |s)=0,
A—=1

and the same is true starting from the (D, C) pss. This will prove [ B].

To prove [2] (and thus [ B]), recall that the tremble has g(a' | o) >0 for
all aspirations o’ in some nondegenerate interval around a (relative to A).
This translates into the statement that a tremble to states s of the form
(C, x; D, 0) has positive probability under ¢(.|(C, D) pss), for x in
some nondegenerate closed interval of strictly positive numbers. For each
such x, define v=x and u=min{x, d}/2. Now for these values of (u, v),
re-convergence to the (C, D) pss is contained in the event described in
Lemma 3, so this establishes the first part of [2].

For the second part, we simply apply the analogue of Lemma 3 to player 2.
This time, take u to be any positive number in (0, ) and v = 6. Replacing
o by p and applying the lemma, we are done.

[3] There exists a positive measure of states s under ¢(. | (D, D) pss)
under which

lim R*(C, C)pss|s)>0.

A1

This will prove [C].

To prove [3] (and thus [C]), note (as in part [2]) that a tremble
to states s of the form (D, d, D,d + x) has positive probability under
q(.| (D, D) pss), for x in some nondegenerate closed interval of strictly
positive numbers. Pick b satisfying the conditions of Lemma 5 such that
it is less than the minimum value in this interval, any positive ¢ satisfying
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the conditions of Lemma 5 (given b), and define N as in that lemma.
Then following this class of trembles, the aspiration vector («, )€ N. By
Lemma 5, we are done following any of these trembles.

The proof of the theorem in the case 8 >0 is now complete. ||

We now turn to the case # <J. We start with an analogue of Lemma 2.

LEMMA 7. Assume 0>0>=0. Then for any a,b satisfying 0<a<b,
c—a>0+aand c—b>0+Db,

lim Prob*[s,— (o, C,a, C) | (ay, B7)

A—1

e(@+a,0—a)x(0+b,0—>b) forsome T]=1.

This is proved analogously to Lemma 2, by using the observation that
conditional on («,, f8,) staying in (0 +a/2, 6 —a/2)x (5 +b/2, 6 —b/2) for
at least 7* periods starting from date 7, the probability of playing (C, C)
at any given date between 7+2 and T+ 7* is bounded below by y =
P*[1—p(c/2)]? where ¢=min{a, b}. This is because a play of (D, C) or
(C, D) at any date will be followed by a play of (C, C) at the next date
with probability at least p[ 1 — p(c/2)], as the player selecting C repeats it
owing to inertia, while the player selecting D is disappointed and switches
to C. Morever, a play of (D, D) at any date will cause player 2 to be disap-
pointed by at least ¢/2. Hence with probability at least [ 1 — p(c/2)], this
will be followed by a play of (D, C) at the next date. The probability that
(C, C) will be played two periods later is thus bounded below by . Then
as A— 1 and T* — oo, the probability that (C, C) will be played at least
once between T+2 and T+ T* converges to one. With 7* constructed
suitably relative to the value of A, the result of the lemma follows.

Next, we turn to the following analogue of Lemma 5:

LemMA 8. Suppose 0 <0< 6. Then there exists ze (0, 0) such that for
any be (0, z), there is ae (0, b) with a <0 — 0, such that

lim Prob’[s, - (a, C, 5, C) | J*] =1 (38)

A—-1

Sfor any date T and event J* a subset of {(oz, f)€ N*} and measurable up
to T, where N*=[0—a,0+a] x[d+2b,a—2b].

Proof. For any b e (0, 0/2), define the rectangles M F=[0—b, 0+ b] x
[0+2b, 0—2b] and M¥=[0—2b, 0+2b]x[6+b, 0 —b]. Given any
such b we can find A(b) < | such that A > A(b) implies that T(A, b), the min-
imum number of periods it takes for aspirations to exit M ¥ if they start in
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M ¥, is positive. Let K(b)=(b/W)—2(1—A(b)). Then for all A€ (A(d), 1)
we have (1 —41) T(4, b) = K(b) > 0.

Claim 9.1. There exists z € (0, 0/2) and ¢ > 0 such that for any b € (0, z),
there is a € (0, b) with a < — 0, such that letting

¥ =min{[1—p(d+b)] pa), p(c—b—0)[1—p(0—b)], p(cd —b—0)} +&},
i*=p(@—a) p(o+b—0)—e¢, and

d*=1-p(b)+e,

we have

d* 2a

[0—(0+a)] X*—[l—}(*]a—l_i*(0+a)>K(b),

while y*,i*, d* all lie in (0, 1).

To prove this claim, note that when evaluated at a=b=¢=0,

y¥=x=min{[1—p(d)], p(e —0)[1—p(0)] p(6 —5)} €(0, 1), and
=p(0) p(6—0)€(0, 1),

while d* =0. Since the LHS of (39) is continuous in (a, b, ¢) at (0, 0, 0),
and takes the value (6 —0) 7 >0 at this point, it follows that there exist
numbers ze(0,0/2) and K>0 such that ae(0,z), be(0,z), e€(0, z)
implies that the LHS of (39) is at least K, while y*>0, i* >0, for all
(a, b, e)e(0,z)% Fix any be (0, z), and then we can select @ small enough
so that the RHS of (39) is smaller than K, and the claim is proven.

In what follows, we fix @ and b as specified by Claim 9.1.

~ 0D

l'*

Claim 9.2. Given date 7, define event Z* by the requirement that
between the dates T and T+ T'(4, b), the fraction of occurences of (D, D)
is at least y*, and of (C, D) is at most d*/(1 —i*). Then

lim Prob*[ Z* | (oy, fy) € N*, ~ W¥, ~ W3] =1 (40)

A1

where Wi denotes the event that (C, C) is played at least once between T
and T+ T(A, b), and W} the event that a,>60+a at any te{T, T+1, ..,
T+T(b)}.

To prove this claim, note that given any date te {7, T+1,.., T+
T(4, b)}, and any history h,_, upto #—1, we have

Prob*[ (D, D) is played at ¢ | h,_,, ~W¥ ~W¥]>y*—e.
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Morever,
Prob*[(C, D) is played at ¢ | h,_,, ~W¥ ~WF]<i*+e

Applying an argument analogous to that used to prove the subclaim in
Lemma 5, Claim 9.2 follows.

Claim 9.3. Let S* denote the event that («,, f,)€(0+a, 6 —a)x (0 + b,
o —b) for some date ¢ between T and T+ T(4, b). Then

lim Prob*[ S* | (ap, Br) € N* ~ W ~Wi]=1 (41)

A—-1

To see this, suppose that event Z* occurs. Then the total change in
player 1’s aspiration between 7 and 7+ T'(4, b) is bounded below by the
LHS of (39). Using the result of Claim 9.1, it follows that the total
rightward drift of « is at least 2a. Hence if event Z* occurs, then
%7y (s 5> 0 +a. Morever, by construction, fr, 7 5 €(d+b, 0 —b), and
%7y 74 5) <0 — a, thus establishing Claim 9.3.

Finally, combining Lemma 7 and Claim 9.3, the result of Lemma §
follows. |

LemMMA 9. Suppose 0 <6. Then lim, _,, OR*(D, D) pss | (C, C) pss) =0.

Proof. 1If 0 <0<9, we utilise an argument analogous to that used in
Lemma 6 and the part of the proof of Theorem 1 already completed: for
4 close enough to 1, at least one of the following events must occur (condi-
tional on (o, fy) = (0, g), and the event s,— (J, D,d, D)): [1'] a, <O —a
for some ¢; [2'] (e, f,) e N* for some ¢; [3'] (a,, B,)€(0+a, d—a)x
(0 4+ 2b, 0 —2b); [4'] one or more of the above events, with players 1 and
2 permuted. An application of Lemmas 3, 7 and 8§ establishes this.

For 6=0, the argument needs to be modified as follows. For small
positive numbers a, b and 4 close enough to 1, for the state to converge to
the (D, D) pss following one perturbation to the (C, C) pss, it must be the
case that (with the two players permuted if necessary) [3”] holds, where
[3”] denotes the event that at some date 7, aspirations ((«,, f5,)) lie in the
rectangle (6 —a, o+a)x(60+b, a—>b). This follows from the fact that
given the aspirations (o, o + x) resulting from one tremble to player 2’s
aspiration when starting from the (C, C) pss, the aspirations resulting in
the untrembled process thereafter must be confined to the convex hull of
(0,0 +x) and the four pure strategy payoff points of the game. Hence
selecting any a such that 0 <a<d[1—(a/W)], where W is the maximum
aspiration resulting from one tremble of aspirations from g, it follows that
f.=(0—a)(W/o) implies a,>0J —a. Hence event [3”] defined by a and
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b=0[(W/og)—1]—a(W/o)>0 must hold at some date. The proof of
Lemma 9 then follows from Lemma 7. ||

To complete the proof of Theorem 1 for the case 0 < <, note that the
inequality

lim QR*((C, C) pss | (D, D) pss) > 0.

A1

follows from applying Lemma 8 consequent on a perturbation of aspira-
tions from the (D, D) pss to (J, 6 +b). Morever, Lemma 3 implies that
when 0 <6< 9, the probability of converging to any of the asymmetric
pss’s when starting at any of them and applying one tremble, goes to zero
as 41— 1. This completes the proof of Theorem 1 for the case 0 <6 <.
When 6 =0, note that starting at any of the asymmetric pss’s and applying
one tremble (smaller than ) to the aspiration of the player selecting D,
(C, C) will be played at the next date with positive probability, following
which the state will converge to the (C, C) pss. Hence, the probability of
transiting from an asymmetric pss to the (C, C) pss is positive in the QR
process, for all 4.
This completes the proof of Theorem 1.
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