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This paper proposes a constrained egalitarian solution concept for TU games 
which combines commitment for egalitarianism and promotion of individual inter- 
ests in a consistent manner. The paper shows that the set of constrained egalitar- 
ian allocations is nonempty for weakly superadditive games. The solution is “al- 
most” unique if the desirability relation between players is complete. Journal of 
Economic Literature Classification Number 026. 6 19% Academic RUSS, I N .  

1. INTRODUCT10~ 

Consider a society, represented as a coalition of n people. Each person 
has subjective preferences which define his or her personal utility func- 
tion. The n-tuple of utility functions, in conjunction with the opportunities 
open to the grand coalition and intermediate coalitions, gives rise to a 
transferable-utility cooperative game in characteristic function form. The 
standard task of cooperative game theory is to construct a solution con- 
cept which will predict for every cooperative game the payoff vector(s) 
representing reasonable outcome(s), that is, outcomes that “rational” 
utility-maximizing agents may agree upon. 

Suppose, however, that the society consists of individuals who sub- 
scribe to equality as a desirable social end. Thus, agents are not rational 
fools,’ and do not necessarily choose actions to maximize individual util- 

* This research has benefited greatly from comments by BezaJel Peleg. We thank the 
Departments of Economics at the University of California, Davis, and the Universitat 
Autonoma de Barcelona, where earlier drafts of this paper were written. We are grateful to 
the Editor and an anonymous referee for comments on a previous version. 

’ See Sen (1977). Prior to Sen, Harsanyi (1953) had also made the important distinction 
between a person’s “ethical” and “subjective” preferences, the former being what an 
individual would prefer on the basis of impersonal social considerations alone, while the 
latter expresses what he or she actually prefers. 
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ity, since moral reasoning (such as commitment2 to equality) also influ- 
ences individual actions. A natural question is: given a tension between 
social values and individual interests, how will society choose rules or 
solution concepts? 

Note that if primacy is given to either commitment or individual inter- 
est, then the problem has an easy solution. For suppose individuals place 
commitment to equality ahead of individual interest. Then, the extreme 
egalitarian rule that prescribes equal division of the aggregate worth of the 
society, irrespective of the worths of intermediate coalitions, is the natu- 
ral candidate. However, such a rule will inevitably run into problems if 
individuals are not willing to accord primacy to egalitarian principles over 
individual interest since some coalition may receive an allocation whose 
aggregate value falls short of its worth. The coalition may then “block” 
the equal division rule. 

Conversely, if primacy is given to individual interests, then one may 
suggest an allocation rule which yields the “most equal” allocation (ac- 
cording to an agreed measure of inequality) from within the core of the 
cooperative game. However, this rule treats coalitions asymmetrically. 
For, suppose an allocation x not in the core is proposed. Then, a specific 
coalition, say S, blocks it since it can “arrange” a feasible allocation, say 
y, for itself so as to make everyone in S better off. But S itself is a 
potential subsociety, and individuals in S also have a commitment to 
egalitarian principles. In particular, if S forms, then it has to choose the 
most equal allocation within the core of the game restricted to S. In other 
words, y may not be achievable, so that the threat to block x is not 
“credible.“3 

In Dutta and Ray (1989), we proposed an egalitarian solution concept 
for transferable utility games which married commitment for egalitarian- 
ism and promotion of individual interests in a consistent manner. Broadly 
the social ethic is captured in the design of social rules, while individual 
behavior is expected to be “selfish” within the context of these rules. 
More specifically, the objective was to identify allocations for the grand 
coalition that are “egalitarian” and “unblocked.” By the first of these 
two terms, we meant that the grand coalition must choose the Lorenz- 
maximal elements of the set of allocations that are feasible for it.4 By the 

2 Indeed, one way in which Sen (1977) defines commitment “is in terms of a person 
choosing an act that he believes will yield a lower level of personal welfare to him than an 
alternative that is also available to him.” 

3 Thus, the problem is similar to that of subgame perfection in noncooperative games; one 
must know what a coalition can credibly do once it deviates. 

4 We chose the Lorenz criterion as our (partial) ordering of unequal allocations because 
this criterion is widely accepted as embodying a set of minimal ethical judgements that 
“should” be made in carrying out inequality comparisons. Additional ethical judgements 
needed to complete the ordering are not so widely agreed upon. On this, see Atkinson 
(1970), Dasgupta et al. (1972), and Sen (1973). 
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second, we meant a notion of blocking that is different from the standard 
concept, in that two restrictions are imposed on a blocking coalition. 
First, a coalition can only block using allocations that are in turn “un- 
blocked” by any subcoalition. Second, among these allocations, a coali- 
tion can only use the Lorenz-maximal ones, because each member of the 
coalition subscribes to the social ethic of egalitarianism. Therefore, the 
commitment to egalitarianism was applied in a consistent manner across 
coalitions. The construction of the egalitarian solution has, consequently, 
a recursive structure. 

The following result was proved in Dutta and Ray (1989). Suppose that 
the concept of blocking is “weak,” in the sense that every member of the 
blocking coalition is at least as well off as before, and at least one member 
is strictly better off. Then, for each transferable utility game, there can 
exist at most one allocation for the grand coalition satisfying the above 
properties. This allocation, which we called the egalitarian allocation, is 
not necessarily a core allocation, even though it has the stability proper- 
ties we have described above. However, for conuex games, the egalitarian 
allocation exists, lies in the core, and Lorenz-dominates every other core 
allocation. In this paper, we refer to the egalitarian allocation as the W- 
constrained egalitarian allocation, or WCEA for short.5 The purpose of 
this paper is to examine a parallel concept, called S-constrained egalitar- 
ian allocations (SCEA). The construction is identical, except that the 
concept of blocking we use here requires every member of the blocking 
coalition to be strictly better off. 

At first blush, this slight modification does not appear to have any 
serious implications for our solution concept. However, this is not the 
case. Indeed, we show that the new set of allocations that are generated 
are markedly different from the old. The reader who wishes to obtain 
some feeling for this right away can turn to Examples 1 and 2 in Section 3 
of the paper. 

Indeed, the two sets of allocations “rarely” coincide. We provide a 
complete characterization of when they do in fact coincide (see Theorem 
7). The condition imposed on the game for coincidence to occur implies a 
very small class of possible games. Moreover, not only do the two sets of 
allocations fail to coincide, they have very different qualitative proper- 
ties. 

To begin with, S-constrained egalitarian allocations exist under an ex- 
tremely mild condition on the game, which we call weak superadditiuity.6 
In contrast, the W-constrained egalitarian allocation may not exist even 
for balanced games, although as we have mentioned earlier, existence is 

5 We use a different terminology in this paper, as the name “egalitarian allocation” has 
been used before for a different solution concept (see Kalai and Samet, 1985). 

6 This simply states that the worth of the grand coalition is at least as great as the sum of 
the worths of any set of subcoalitions that partition the grand coalition. 
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guaranteed for convex games. The fact that S-constrained egalitarian allo- 
cations exist under very mild assumptions significantly widens the poten- 
tial class of applications. 

On the other hand, S-constrained egalitarian allocations do not possess 
the extremely appealing uniqueness property that was established for 
their “weak” counterpart. However, we identify classes of games in 
which all S-constrained egalitarian allocations have the same Lorenz 
curve. These classes include the class of the three-player games and 
games in which the desirability relation’ between players is complete. 
However, that the concept is in general multivalued is demonstrated by 
means of a four-player game in Section 3. 

Of course, the two concepts are not completely unrelated, and a discus- 
sion of the relationship may be found in Section 5 of the paper. In general, 
there is always an S-constrained egalitarian allocation which Lorenz- 
dominates the W-constrained egalitarian allocation. For convex games 
and all four-player games, every S-constrained egalitarian allocation 
Lorenz-dominates the weak egalitarian allocation. But this property is not 
true in general, and an example of a five-player game is provided to 
illustrate this. 

Another property of S-constrained egalitarian allocations is that when- 
ever they are different from their weak counterpart, they also fail to lie 
in the core. Yet they are stable, in the sense that no coalition, using an 
S-constrained egalitarian allocation of its own, can deviate profitably from 
the S-constrained egalitarian allocation for the grand coalition. 

2. NOTATION 

For any nonempty subset S of {1,2, . . . , n}, denote by ISI the cardinal- 
ity of S. We write 9P for %lsl(JS(-d imensional Euclidean space), where the 
coordinates are numbered according to the indices present in S. For two 
vectors x and y in CJP, we write x = y if xi = yi for all i E S, x > y if x # y 
andxir:yiforalliES,andx~yifxi>yiforalliES.ForanyxE~.S, 
denote by f the vector obtained by permuting the indices of x such that 
f, 2.22 2. . . z flsl. Also, suppose some x E 9V is given. The projection 
of x on T, a subset of S, is given by xr. 

3. CONSTFWNEDEGALITAFUANALLOCATIONS 

We consider a transferable utility game in characteristic function form. 
N = {I, 2, . . . , n} is the player set. A coalition is a nonempty subset of N. 

’ See Maschler and Peleg (1966). 
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To every coalition S is attached a number u(S), called the worth of that 
coalition. A feasible allocation for S is any ISI-dimensional vector x with 
Ei,S Xi = U(S). 

The notion of a constrained egalitarian allocation is now developed. 
First, we introduce the concept of egalitarianism that we use. Consider 
two k-person allocations x and y in G?P such that x{= 1 Ei 5 c{= 1 ii for allj = 
1 * * , k, with strict inequality for some j. This partial ordering has a 
well-known characterization as an ordering that agrees with basic ethical 
notions of egalitarianism (see, e.g., Kolm, 1969; Dasgupta et al., 1973; 
Fields and Fei, 1978). To put it loosely, y Lorenz-dominates x iff x can be 
reached from y by a sequence of “income transfers” from “poor” to 
“rich.” Naturally, all pairs (x, y) cannot be compared in this way, so it is 
no surprise that the Lorenz ordering is partial. 

Two allocations x and y have the Same Lorenz curue if 3 = 9. 
We assume that our society seeks Lorenz improvements whenever 

these are “achievable,” where the meaning of the word in quotes will be 
made precise below. Thus for each set A of k-person allocations of a given 
total, let EA be the set of all allocations that are Lorenz-undominated 
within A. That is 

EA = {x E Al there is no y E A such that y 

Lorenz-dominates x). 
(1) 

We are now ready to define constrained egalitarian allocations. For two 
vectors x, y E Sk, let x d y denote a domination relationship. In our paper, 
d represents > or %-. We start by defining Lorenz cores (relative to d). 

The Lorenz core of a singleton coalition is Ld({i}) = u({i}). Now suppose 
that the Lorenz core (relative to d) of a coalition of size (k + 1) is defined 
by 

Ld(S) = {x E %SI x is feasible for S, and there is no 

T C S and y E ELd(T) such that y d xT}. 
(2) 

The set of constrained egalitarian allocations (relative to d) for T is 
given by ELd(T). And ELd(N) denotes the set of constrained egalitarian 
allocations (relutiue to d). 

Define the set of W-constrained egalitarian allocations as the set of 
constrained egalitarian allocations relative to >. This is the concept stud- 
ied in Dutta and Ray (1989), and it was established there that this set 
contains at most one element. Consequently, we shall refer to this ele- 
ment as the W-constrained egalitarian allocation, whenever it exists. 

The concept that we study here is the set of S-constrained egulituriun 
allocations, defined as the set of constrained egalitarian allocations rela- 
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tive to the strong domination relation %. We refer to the Lorenz core 
(relative to 9) as the S-Lorenz core, written L*(.), while the Lorenz core 
relative to > is called the W-Lorenz core, written L(e). 

Finally, if x is feasible for S, and there is T C S with y E EL*(T) such 
that y % xr-, we say that y L*-blocks x. We shall also say in this case that T 
L*-blocks x. (Write “L-block” for the corresponding notion with weak 
blocking > .) 

Remarks. (1) If T L*-blocks x (or L-blocks x) then it possesses a 
credibility property. For T can then block x using an allocation y which is 
itself a constrained egalitarian allocation for T. So, if T deviates and 
forms a subsociety on its own, with the same egalitarian norms being 
applied to itself, it can still “achieve” the allocation y. And every member 
of T is better off with y than with x. This is what we earlier referred to as 
“selfish behavior within the context of societal rules.” 

(2) For any coalition S, the core of S is defined by 

C(S) = {x E GRh!SI x is feasible for S, and there is no T C S such that v(T) 

> CiETXi)* 

Clearly, for each S, C(S) c L*(S) and C(S) c L(S). The requirement 
that coalitions can only block credibly, i.e., with allocations that are 
constrained egalitarian allocations for those coalitions, enlarges the set of 
“unblocked” allocations. 

The concept of S-constrained egalitarian allocations differs from our 
earlier formulation only via the domination relation (> is replaced by *). 
At first sight, it might appear that this slight modification in the concept of 
blocking should not cause any drastic alteration in the structure of Lorenz 
cores or in the sets of SCEAs and WCEAs. However, this intuition is not 
correct. In Section 5, we provide a detailed comparison of the sets SCEAs 
and WCEAs. Here, we merely point out two significant differences ema- 
nating from the two different notions of blocking. First, while we show in 
Dutta and Ray (1989) that the set of WCEAs may sometimes be empty 
(because, for instance, the W-Lorenz core may be empty), existence is 
not a problem in so far as SCEAs are concerned. Second, while the set of 
WCEAs can contain at most one element, there may be multiple SCEAs. 
And there are other differences, which we shall soon explore. 

The following examples illustrate some characteristics of the two types 
of constrained egalitarian allocations, as well as the structure of the corre- 
sponding Lorenz cores. 

EXAMPLE 1. Let N = (1, 2, 3}, u(N) = ~((1, 2)) = 2.2, ~((1, 3)) = ~((2, 
3)) = 1.4, ~((1)) = ~((2)) = 1, ~((3)) = 0. Then, L(N) = {x E %!31~1 > 1, 
x2 > 1, xl + x2 = 2.2) and EL(N) = (1.1, 1.1, 0}, while L*(N) = {x E 
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a31(x1 L 1.1, x2 L 1) or (xl Z- 1, x2 I 1.1) and xl + x2 + x3 = 2.2}, and 
EL*(N) = {x1, x2}, where x1 = (1.1, 1, 0.1) and x2 = (1, 1.1, 0.1). 

Note that the coalition (1, 2) L-blocks both x1 and x2. But, (1, 2) cannot 
L*-block either allocation since it can only use (1.1, 1.1) to block with. 
Similarly, coalitions {1,3} and {2,3} can only use the allocation (1,0.4) for 
blocking, and hence cannot L-block (1.1, 1.1, 0) or L*-block x1 or x2. 
However, C(N) = 4 since in the usual core sense, coalitions are allowed 
to block with any feasible allocation. 

Example 1 illustrates the point that SCEAs may not be unique whereas 
the WCEA must, of course, be unique. The next two examples show the 
relative advantage of the “strong” concept over its “weak” counterpart. 

EXAMPLE 2. N = A U B, where )Bj = IAl - 1 1 0. For any S C N, 
u(S) = min((S n Al, IS n ~1). This example corresponds to the well-known 
“right and left gloves” situation (see Aumann, 1985). It is well known that 
the core of this game gives one unit each to members of B, and none to 
members of A, even if A and B are both very large sets. This “discontinu- 
ity” arises from the fact that IBI < IA]. 

In this game, there is no WCEA. Of course, the W-Lorenz core, L(N), 
being a superset of the core, is nonempty. However, the WCEA does not 
exist because L(N) is not closed. There exists, however, a unique SCEA, 
given by x, where 

IBI 
xi = 2(IBl -t 1) if iEA 

1 
Xi = - 2 

if i E B. 

EXAMPLE 3. Let N = (1, 2, 3}, and u be a symmetric game, with 
v(S) = u(N) = 1 if ISI = 2, and u(S) = 0 if S is a singleton coalition. 

Here, the WCEA does not exist because L(N) is empty. The set of 
SCEAs is given by ((4, S, 0), (4, 0, B), (0, i, 4)). 

4. EXISTENCE AND CHARACTERIZATION RESULTS 

This section contains several results on S-Lorenz cores and S-con- 
strained egalitarian allocations. In particular, we provide a characteriza- 
tion of S-Lorenz cores. We then go on to show that, under a condition 
weaker than superadditivity, the S-Lorenz core and the set of SCEAs are 
always nonempty. The next issue taken up is uniqueness. Of course, the 
fact that S-constrained egalitarian allocations are not necessarily unique 
is evident from Example 1 itself. However, in Example 1, X1 = Z2, so that 
x1 and x2 both have the same Lorenz curue. Is it then true that in any game 
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all SCEAs have the same Lorenz curve? We show that this is indeed true 
in games where the desirability relation between players is complete, and 
in all three-person games. However, Example 4 shows that this property 
does not carry over even to convex games with four or more players. 
Contrast this with the general uniqueness result for W-constrained egali- 
tarian allocation. 

The following definitions are useful. For any coalition S, define 

This is the average worth of the coalition S. When there is no ambiguity 
about u, we simply write a(S) instead of a(S, u). 

The equal division allocation for S is the allocation x for S such that for 
all i E S, xi = a(S). Denote it by es. Finally, S is an equity coalition if 
a(S) 2 a(T) for all T C_ S. 

We start with a couple of preliminary lemmas. 

LEMMA 1. Zf S is an equity coalition, then EL*(S) is a singleton set 
containing the equal division allocation. 

Proof It is sufficient to prove that L*(S) contains es. Suppose not. 
Then, there is T C S and y E EL*(T) such that y % es(T). So, &-yi > 
a(S)[T(, implying a(T) > a(S). This contradicts the hypothesis that S is an 
equity coalition. n 

LEMMA 2. For some S C N, let y E EL*(S). For any i E S, ifyi > 
minjEs yj, then there exists an equity coalition T containing i and satisfy- 
ing 

(i) a(T) = yi. 
(ii) T C {k E Sl yk < yi} U {i}. 

Proof. Pick any S G N, and suppose y E EL*(S), where y # es. 
Choose any i E S such that yi > minjEs yj. Let T be any equity coalition 
satisfying 

(a)iE TandifjE T- {i}, thenyj<yi. 
(b) T has an average worth at least as high as that of any equity 

coalition containing i and satisfying (a). 

Clearly, such an equity coalition exists since {i} is an equity coalition. 
Suppose that a(T) > yi. From Lemma 1, eT E EL*(T). Also er 9 yr in 
view of (a). Hence T L-blocks y, a contradiction. 

SO, suppose U(T) < yi. Define E = 1 minjEs(yi - U(T), yi - yj). Choose 
anyj E S - {i}, and construct a new allocation y’ for S as follows: y; = 
yi - E, y,! = yj + E, and for all k # i,j, y; = yk. It is easily verified that y’ E 
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L*(S). But, y’ Lorenz-dominates y, since y; > y [ > yj > yj* Hence y $5 
EL*(S). 

Hence, there must exist an equity coalition T containing i with a(T) = yi 
and T C G E SI yk < yi} U {i}. 

THEOREM 1. L*(N) = {xjx is feasible for N andfor no S C N: es % xs}. 

Proof. Let R = {XlEiEN Xi = u(N), and for no S C N: es * xs}. We 
want to show that R = L*(N). 

Suppose x E R, but x $5 L*(N). Then there exists S C N, y E EL*(S) 
such that y 9 xs . Clearly, y # es since x E R. Let yi = maxjes yj. Then by 
Lemma 2, there is an equity coalition T C S containing i with a(T) = yi. 
But, then er % xr, contradicting the supposition that x E R. Hence, R C 
L*(N). 

Suppose now that x E L*(N), but x @ R. Then, there exists S such that 
es % xs. Since x E L*(N), es $Z L*(S). By Lemma 1, S is not an equity 
coalition. So, there exists an equity coalition T C S with u(T) > u(S). By 
Lemma 1, eT E EL*(T). But es % xs and u(T) > u(S) imply that er % XT. 
Hence, x $Z L*(N). So, L*(N) C_ R. n 

This completes the proof of the theorem. 

Remark. Theorem 1 shows that the S-Lorenz core is precisely the set 
of allocations which cannot be blocked (in the strong sense) by any coali- 
tion using its equal division allocution. Selten (1972) had earlier intro- 
duced this set for zero-normalized characteristic function games.8 How- 
ever, as Selten (1987) makes clear, the desire to conform to social norms 
was not the driving force in introducing equity considerations in his for- 
mulation. Selten (1987) remarks that “the main importance of equity con- 
siderations seems to lie in their usefulness for establishing baselines in 
strategic reasoning. One looks at what would be obtained in the absence 
of payoff differences in order to obtain bounds on power-adequate payoff 
distributions.” Thus, Selten’s approach recommends the entire set L*(N) 
as the set of “reasonable” payoff vectors. In our approach, the set of 
“reasonable” payoff vectors is derived by a consistent use of commit- 
ment to the social norm. Hence, our solution set is the set of “most 
equal” payoff vectors from within L*(N). Quite clearly, Selten’s ap- 
proach and ours differ both in motivation and in the solution concepts.9 

s Given any game (N, u), the corresponding zero-normalized game u0 is given by u&3) = 
U(S) - Zies ~({i}), for all S c N. 

9 Crott and Albers (1981) are closer to our approach. In their model, agents believe in the 
“symmetry” principle that equal division will result when “persons’ inputs do not differ.” 
Symmetry, however, is different from equity. Crott and Albers assume the symmetry princi- 
ple holds for subcoalitions, but not for the grand coalition, whereas we apply the egalitarian 
principle consistently across all coalitions. 
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Theorem 1, of course, is silent on whether L*(N) is nonempty. One 
might think that since the S-Lorenz core is similar to the core at least in 
spirit, and since the core is nonempty only for balanced games, the S- 
Lorenz core will also be nonempty only under relatively stringent condi- 
tions. Recall also (from Example 3) that L(N) can also be empty. Our next 
theorem shows, however, that L*(N) is nonempty under a condition even 
weaker than superadditivity. 

Recall that u is superadditive if for all disjoint S, T, 

u(S) + u(T) 5 u(S u T). (3) 

Define u to be weakly superadditive if for all partitions {St, . . . , S,} of 
N, 

U(N) 2 2 u(Si). 
i=l 

(4) 

LEMMA 3. Let u be weakly superadditiue. Then the S-Lorenz core of 
N is nonempty. 

Proof. We construct a specific allocation x* which is in L*(N). The 
allocation x* is generated by an algorithm which we describe below. 

First, choose 

S: E argmax{a(S)}. 
SCN 

(5) 

Recursively, having chosen SF, Sz, . . . , St, if {ST, S,*, . . . , S,*} does 
not form a partition of N, then choose 

(6) 

Let {S:, S:, . . . , S,*} be the partition of N generated by this algorithm. 
Let x E 5V be defined by 

xi = a(S,*), where i E Sj*, i = 1, . . . , II. (7) 

From weak superadditivity, 

6= 
U(N) - E.&l xi 

2 0. 
n 

Construct x* such that Vi E N, x7 = Xi + 6. Suppose x* $ L*(N). Then, 
from Theorem 1, there exists a coalition T such that er % x;. Let x,? = 



CONSTRAINED EGALITARIANISM 413 

maxj,TxT, and fixj such that i E S,!. Then, T fl {lJ{ltS~} = 0, and a(T) > 
a@,?). But, this contradicts the construction of the partition {ST, Sz, 
. . . ) Si}. Hence, x* E L*(N). n 

Note that L*(N) is closed, and hence compact. Since L*(N) is always 
nonempty, this immediately yields the following. 

THEOREM 2. Zf v is weakly superadditive, then the set of strong egali- 
tarian allocations is nonempty. 

So, a weak condition on the game guarantees the existence of SCEAs. 
This result should be contrasted with the results obtained for the W- 
constrained egalitarian allocation in Dutta and Ray (1989), which showed 
that convex games always possess a WCEA. However, the WCEA may 
not exist even in balanced games (see Example 3 in this paper). Obvi- 
ously, Theorem 2 widens the scope of applicability of constrained egali- 
tarianism quite dramatically. 

We turn now to the question of uniqueness. Examples 2 and 3 have 
already demonstrated that the set of SCEAs is not necessarily unique. 
However, it may be argued that the nonuniqueness exhibited in these 
cases is not a cause for much concern, since the set of SCEAs (in each 
game) has the same Lorenz curve. We now examine conditions under 
which this property holds. 

Let (N, v) be any game, and i, j E N. Say that i is at least as desirable as 
j in v, written i d(v)j if for all S c N - {i, j}, v(S U {i}) L v(S U {j}). 

Maschler and Peleg (1966) proved that the desirability relation between 
players is always transitive. There are many games of interest in which 
d(v) turns out to be complete, lo but of course, this is not generally true. 

THEOREM 3. Suppose (N, v) is a weakly superadditive game satisfying 
any one of the following conditions. 

(i) d(v) is complete. 
(ii) INI 5 3. 

(iii) N is an equity coalition. 

Then, all allocations in EL*(N) have the same Lorenz curve. 

Proof. (i) Suppose d(v) is complete. Since d(v) is transitive, assume 
w.l.o.g.thatid(v)i+lfori=l,. . . ,n-l.Foralli=l,. . . ,n, 
define Si = argmaxsGhria(S), where Nr = N - (1, . . . , i - l} for i > 1. 
Note that we must have 

(a) Si={i,i+ 1,. . . , i + k(i)}, for some nonnegative integer k(i). 
(b) a(SJ 2 dSi+t)- 

lo For instance, quota games [q : w, , w2, . , w,], where a coalition S is winning iff xi,, 
wi 2 q, have complete desirability relations. 
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Suppose Si = (1, 2, . . . , k}. Then, from (b), Et, a(SJ I u(Si). 
Similarly, if Sk+, = {k + 1, k + 2, . . . , m}, then Ezk+i a(SJ I u(Sk+J. 
Repeating this and using superadditivity, we get xy=i a(Si) I u(N). 

Consider the allocation z where zi = a(Si) for each i. Then u(N) - zF=, 
zi = 6 2 0. Observe that in the set of allocations { y E 3.” 1 y 2 z and Z YE1 
yi = x yZ1 zi + a}, there is a unique Lorenz-maximal element; call it X. Note 
that Xi 2 Xi+1 for all i and Xi > zi implies Xj = Xj+r for allj L i. Let K be the 
largest index such that xK = zK. 

Using Theorem 1 and the construction of x, it is easy to see that 
x E L*(N). 

Now, choose y E L*(N). We want to show that if the Lorenz curves of 
x and y are different, then x Lorenz-dominates y. 

Let o be a permutation of { 1, . . . , n} such that ye(i) 2 ya(i+l) for all i = 
1,2,. . . , n - 1. For all i = 1,2, . . . , IZ, define S; = argmaxsGN; u(S), 
where N; = N and NI = N - {a(l), . . . , c(i - l)}. Now, choose any 
k 5 K. It will suffice to show that 

i Ye,(i) z 5 Xi* 
i=l i=l 

(9) 

For in view of the construction of x, it follows that if K < n - 1, then 
xK+I = &I. So, (9) will show that either x and y have the same Lorenz 
curves or x Lorenz-dominates y. 

Since y E L*(N), we have for all i I k, 

Yv(i) 1 u(SI)* (10) 

Since 6; = 0 for all i 5 k, 

Xi = U(Si)e (11) 

The proof of (9) is completed by showing that a@,!) 1 a(Si) for all i. 
Choose any i. If Ni = Ni, then a(SJ = u(Sf). Suppose Ni # N,!. Since 
Ni={i,i+ 1,. . . , n}, the players in N’ but not in Ni are at least as 
desirable as i, the “most” desirable player in Ni. So it is clear, that u(Sf) 
2 U(Si). 

Hence, ifj # x, then x Lorenz-dominates y. So, the set of SCEA must 
consist of allocations whose Lorenz curves coincide with that of x. 

(ii) Suppose now that INI = 3. Let y’ and y* both be in EL*(N) with 
yi # y*. Clearly, y f = 7:. Hence, we must have (7:) y$) # ( y: , y$). Since 
Xf=ry,l = x:=iy: = u(N), either yi Lorenz-dominates y* or y* Lorenz- 
dominates yi. But, they yi and y* cannot both belong to EL*(N). So, in all 
three-person games, the set of SCEAs must have the same Lorenz curve. 
Obviously, this proposition is also true in two-person games. 
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(iii) Finally, note that if N is an equity condition, then eN E L*(N). 
Then, eN must be the only allocation in L*(N). 

This completes the proof of Theorem 3. n 

Remark. It should be clear to the reader that if d(u) is complete and 
asymmetric (that is, iu’(u).j implies notjd(u)i), then x is the only allocution 
in EL*(N). Indeed, the proof shows that x will then Lorenz-dominate 
every other allocation in L*(N). 

Unfortunately, in Example 4, we show that if none of the conditions of 
Theorem 3 are satisfied, then even in conuex games, allocations in 
EL*(N) need not have the same Lorenz curve. 

Recall that a game is conuex if for all S, T C N, 

u(S) + u(T) 5 $3 U T) + u(S C-I T). 02) 

EXAMPLE 4. Let N = (1, 2, 3,4). Let u be described by the following 
schedule: 

111 23 
G? 40 
{31 

{l, 2) 1: 
11, 31 82 
{2, 31 79 

11, 2, 31 159 
N 167 

and for all S#{l, 2, 3}, u(S U (4)) = u(S). 
It is easy to check that u is conuex and that y’ = (53,40,39,35) and y2 = 

(36.5, 53, 41, 36.5) both belong to EL*(N). The Lorenz curves corre- 
sponding to y1 and y2 intersect each other. 

The nonuniqueness of Lorenz curves associated with SCEAs causes a 
problem. Consider, for instance, Example 4. Should society “choose” y* 
or y2? Since individuals believe in equality as a desirable end, it makes 
sense to recommend that society choose the allocation which corresponds 
to a more equal distribution. However, since y’ and y2 have intersecting 
Lorenz curves, it is not possible to get an unambiguous ranking (in terms 
of equality) over y’ and y2. Thus, in all such cases, the prescription to 
choose “the most equal” distribution must be supplemented by the advo- 
cacy of some purticulur measure of equality. Mere reliance on Lorenz 
domination will not suffice. In this sense, the W-consistent egalitarian 
allocation provides a sharper picture by virtue of its uniqueness. How- 
ever, we recall again that the WCEA lacks general existence properties. 
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5. THE SCEA, THE WCEA, AND THE CORE 

Example 4 in the previous section also illustrates two other features of 
the set of SCEAs. First, the WCEA for that game is x = (53, 53, 53, 8), 
and both SCEAs y’ and y* Lorenz-dominate x. Second, neither y1 nor y* 
belongs to the core since the coalition { 1,2,3} can block either allocation. 
There is some intuitive reason to expect both features to hold in general. 

Suppose, for example, that ,!?T is a coalition maximizing average worth 
among all coalitions. If x is the WCEA, then it is clear that xi = a($‘) 
for all i E ST. In contrast, if y is a SCEA, then some individual, say j E 
ST, must be allocated a@:). It is not necessary to allot individuals in sf 
other thanj the amount a(sr) because so long as yj = a@:), sT cannot L*- 
block y. 

In constructing y, one now has to choose S: E argmaxsc+fj){a(S)} and 
again only o~te individual in St need be given a@;). However, in con- 
structing the WCEA, one cannot ignore coalitions intersecting with ST 
even at the second stage. Of course, the process of constructing SCEAs is 
considerably more complicated since the choice of individuals at each 
stage cannot be made arbitrarily. Indeed, the reason why all SCEAs do 
not have the same Lorenz curve is precisely that the choice of individuals 
at each stage is not unambiguous, unless d(u) is complete. 

In this section, we first analyze the cases under which the first feature 
of Example 4, namely all SCEAs Lorenz-dominating the WCEA, hold. It 
turns out that whenever the WCEA is not SCEA, this is true in all games 
with II I 4. This phenomenon is also true in all convex games. It is also 
the case that for all games, there is at least one SCEA which Lorenz- 
dominates the WCEA, if the WCEA is not an SCEA. However, we con- 
struct in Example 5 a five-player game in which one SCEA and the 
WCEA are Lorenz-noncomparable. We then go on to examine the condi- 
tions under which the second feature of Example 4 obtains: namely, all 
SCEAs belong to the core. It turns out that this issue is related to the 
WCEA also being a SCEA. We show that the class of games under which 
the WCEA is a SCEA coincides with the class of games under which the 
SCEA is unique and belongs to the core. Typical examples of this class 
are games in which N is an equity coalition, inessential games, and two- 
player games. We provide a complete description of this class of games. A 
“nontrivial” game will generally not fall into this class. 

We start by showing that in all games, if the WCEA is not an SCEA, 
then at least one SCEA Lorenz-dominates the WCEA. 

THEOREM 4. Zf EL(N) f 0 and EL(N) n EL*(N) = 0, then there exists 
an SCEA which Lorenz-dominates the WCEA. 

Proof. We prove this result by showing that L(N) C L*(N). Suppose 
x $Z L*(N). Then by Theorem 1, there is T C N such that eT % xr. If Tis an 
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equity coalition, then clearly {er} = EL(T), and T L - blocks x. If T is not 
an equity coalition, then ‘there exists an equity coalition S C T with es 9 
xs . Then, S L-blocks x. 

Hence, L(N) c L*(N). It now follows, using the fact that L*(N) is 
compact, that if the WCEA exists, then it must be Lorenz-dominated by 
some SCEA. w 

A stronger result can be obtained for all three- and four-player games, 
and convex games. We prove these in turn. 

THEOREM 5. Let INI I 4. Suppose that EL(N) # 0 but that EL(N) II 
EL*(N) = 0. Then every SCEA Lorenz-dominates the WCEA. 

Proof. Suppose INI = 3. Then, the result follows from Theorems 3 
and 4. (If jN( = 2, then the WCEA is also the SCEA.) So, let INI = 4. If N 
is an equity coalition, then eN is the only element of EL*(N) and is also a 
WCEA. Hence, assume that N is not an equity coalition. Let S* be (one 
of) the largest coalition(s) with the highest average worth, i.e., a@*) 2 
a(T) for all T G N and if S* C T then a@*) > a(T). Let x denote the 
WCEA. Suppose IS*1 = 3. Then, xi = a@*> for all i E S*. It is then easy to 
check that the theorem is true. 

Suppose ISIS = 1. Renumber players so that S* = (1). Let y’ be the 
SCEA which Lorenz-dominates x. Such a y’ exists, by Theorem 4. Let y* 
be any other SCEA. Then y t = y: = x1 = ~((1)). Moreover, from Theorem 
4, and the fact that IS*1 = 1, it follows that 9’ = p. But, then y’ Lorenz- 
dominates x implies that y* Lorenz-dominates x. 

It remains to consider the case: IS*/ = 2. W.1.o.g. assume S* = (1, 2). 
Let y be an SCEA which does not Lorenz-dominate x. We must have xl = 
x2 > max(x, , x4). Assume y1 = x1, and w.1.o.g. let y3 = max( yj , y4). Either 
(9 ~2 2 ~3 or (ii) ~3 > ~2. 

Suppose (i) holds. Then, y2 < x2 and since y does not Lorenz-dominate 
x, 

Y 1 + y2 + ~3 > XI + x2 + max(x3, ~4). (13) 

Hence, 

(14) 

and 

~4 < min(x3, x4). (15) 

Since y3 2 y4 either (i) ~((3, 4)) = y3 or (ii) ~((3)) = ~3. If ~((3, 4)) = y3, 
then (14) implies that (3, 4) L-blocks x. If ~((3)) = y3, then again (14) 
implies that (3) L-blocks x. 
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So, we must have y3 > yz. Since y does not Lorenz-dominate x, we 
must have y3 > x3. From Lemma 2, there exists T containing 3 such that 
(i) a(T) = y3 and (ii) T C (2, 3,4}. Now, if 2 $ T, then TL-blocks x. If 2 E 
T, then construct y’ such that y; = y1 = a@*), y$ = ~3, and y; = y; = 
(u(N) - yi - y5)/2. It is tedious but easy to check that 

(i) y’ Lorenz-dominates y, and 
(ii) y’ E L*(N) or x 4 L(N). 

Hence, either y & EL*(N) or x $‘! L(N). This contradiction completes the 
proof of the theorem. 

Before proving the corresponding result for convex games, we need to 
define the structure of the WCEA for convex games. As shown in Dutta 
and Ray (1989), the WCEA for convex games is obtained by means of the 
following algorithm. 

Let (u, N) be a convex game. Define ur = u. 

Step 1. Let ST be the largest coalition having the highest average 
worth in the game (ur , N). Convexity of u1 ensures that Sfis unique. Let 

XT = a(Sf, u,) for all i E ST. (16) 

Step k. Suppose that ST, . . . , Sk*-, have been defined recursively and 
U firr ,SF = Zk-,#N. Define a new game (uk , Nk) with player set Nk = N - 
Zk-r , and for all S C Nk, u&Y) = uk-r(S U Sk*-r) - uk-.1(S$-r). The reader 
can check that uk will also be convex. Just as in Step 1, define S$to be the 
largest coalition having the highest average worth in (uk, Nk). Define 

.$ = &if, uk) for all i E Sk*. (17) 

Clearly, in m of these steps (m 5 n) there will be a partition of N into 
sets {ST, S,*, . . . , Sz}. Let x* be the allocation defined by equations of 
the form (16) and (17). Note that if i,j E S$for any k = 1, . . . , m, then XT 
= XT. Also, ifi E Szandj E ST and k < 1, thenx,? > x,?. 

The following was proved in Dutta and Ray (1989). 

PROPOSITION 1. Suppose (u, N) is a conuex game. Then, x* is the 
WCEA of(u, N). Moreover, x* E C(N). 

Now we may state 

THEOREM 6. Suppose u is u conuex game. Then either the WCEA is 
the unique SCEA or every SCEA Lorenz-dominates the WCEA. 

Proof. Let x* be the WCEA, and let y be some SCEA such that y f 
x*. We have to prove that y Lorenz-dominates x*. It will suffice to show 
that if there is i E N such that yi > XT then there is no j E N with yj < y;. 
Suppose, on the contrary, that there are i, j E N with yi > x’ and yi > yj. 
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Then, from Lemma 2, there is an equity coalition T containing i such that 
(i) a(T) = yi and (ii) T C {k E Njyk < yi} U {i}. 

Let i E S$ where {ST, . . . , Sz} is the partition of N induced by the 
algorithm generating x*. Define A = T U .Zk-, , and B = T II Zk-I , where 
Zkml = Ujk_;l ST. Consider two cases. 

Case 1. B = 0. Then, U(T) = Y; > XT 2 XT for allj E T. SO, EjcTXT < 
u(T). Then, x* 4 C(N), contradicting Proposition 1. 

Case 2. B # 0. Using convexity, 

u(A) = u(T U Zk-,) 1 u(T) + u(Zkml) - u(B). (18) 

u(T) - u(B) = a(T)IT( -a(B)IBI 2 a(T)(ITI - IBI) (19) 

using the fact that T is an equity coalition and B C T. Combining (18) and 
(19). 

u(A) 2 a(T)(ITI - IBI) + 4&d. (20) 

But 

z XT = C XT + C X” < yi(lTI - IB() + u(Z~-1) 
iEA ET-B iEZk- I 

= a(T)(ITl - [B[) + u(Zk-,) I u(A). 

Again, x* f$ C(N), contradicting Proposition 1. This completes the 
proof of the theorem. H 

Although we have provided some intuitive argument to support the 
contention of Theorems 6 and 7, this argument breaks down in general. In 
Example 5, we describe a five-person game in which the WCEA and one 
SCEA are Lorenz noncomparable. Needless to say, this game is not 
convex. 

EXAMPLE 5. Let N = (1, 2, 3,4, 5}. Let u be described by the follow- 
ing schedule: 

S 4% S u(S) 
111 .% i241 1.81 
01 .7Q {341 1.80 
I31 .70 (1231 2.36 
I41 

1:: 
u341 2.70 

(12) 0241 2.70 
I131 1.66 WI 2.85 
(14) 2.00 { 1234) 3.81 
I231 1.40 
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Moreover, 5 is a dummy player, so that u(S U (5)) = u(S), for all S c (1, 
2, 3, 4). 

Then, the WCEA is x = (1, .7, .7, 1, .41). The SCEAs are y1 = (1, .95, 
.9, .48, .48), y* (1, .9, .95, .48, .48), y3 = (1, .7, .7, .9.5, .46). 

Although y3 Lorenz-dominates x, x is not Lorenz comparable with yi or 
Y2. 

We end this section by taking up the second feature thrown up by all the 
examples so far-namely the failure of the SCEAs to be in the core, euen 
when the fatter is nonempty. In our next result, we characterize the class 
of superadditive games in which the SCEAs belong to the core. We also 
show that this is precisely the same class under which the WCEA happens 
to be SCEA. 

This class of games is defined by the following condition. 

Condition a. N can be partitioned into sets {S, T} such that the follow- 
ing are satisfied: 

(4 4s) = 2 uW). (21) 

(b) For all S’ c S, for all nonempty T’ c T, 

u(N) - u(S) 
ITI 

L u(S’ U T’) - u(F) 
PI 

(22) 

(c) min u({i}) > max a(T’) ifS # 0. (23) 
if3 T’CT 

Typical examples of games satisfying condition (Y are inessential games, 
in which case S = N, or games in which N itself is an equity coalition, so 
that T = N. Condition (Y is a stringent condition and the class of games 
satisfying (Y is “small” relative to the universe of all possible characteris- 
tic function games. 

THEOREM 7: Zf u is superudditiue, then the following statements are 
equivalent: 

(i) u satisfies condition a. 
(ii) The WCEA is the unique SCEA. 

(iii) The unique SCEA belongs to the core of u. 

Proof. We first prove that (i) and (ii) are equivalent. Suppose u satis- 
fies condition (Y. Define x* by 

for all i E S, XT = u({i}) (24) 

for all i E T, XT = u(N) - 4s) 
PI 
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Suppose some coalition R L-blocks x*. If R G S then (a) guarantees that 
R cannot L-block x*. Similarly, if R c T, then (b) guarantees that R 
cannot L-block x*. So, let R = S’ U T’, where 0 # S’ c S and 0fT’ c T. 
Let y E EL(R). Then, 

or 

z&Y’ U T’) > u(S) + ‘cN),;, ‘(‘) IT’I. 

But, this contradicts (b). 
So, x* E L(N). Given (c), if x is to Lorenz-dominate x*, then there 

exists i E S such that xi < XT. But, then Xi < u({i}), and {i} L-blocks x. So, 
x* is the WCEA of the game. 

Since x* EL(N) and L(N) c L*(N), x* E L*(N). It is easy to check, 
using (a) and (c), that x* is the unique SCEA. 

Suppose now that x is both the WCEA and the SCEA of (u, N). 
W.1.o.g. assume that XI 2 x2 1 * * * 2 x,. Now, if x1 = x, , then N is an 
equity coalition. So, the required partition is S = 0, T = N. Condition a! is 
satisfied since only (b) has to be checked in this case for S’ = 0. 

So, let x1 > x, . Define T = {jlxj = xn}, and let S = N - T. We show that 
{S, T} satisfies the required conditions. 

Let i* be such that XT = ZXies Xi. By construction, X* > Xj for allj E T. 
Since x is an SCEA, from Lemma 2, we know that there is R containing i* 

such that (i) R C T U {i*} and (ii) a(R) = x? . If R rl T # 0, then R L-blocks 
x*, a contradiction. Hence, either R = {i*} or x7 = u({i*}) > x, 2 maxrST 
a(T’). Hence (c) is satisfied. 

Similarly, pick any i E S. Again, there will exist R G {j E Nlxj < Xi} U 
{i} with U(R) = xi. If R n {jlxj < xi} # 0 then R will L-block x, a contradic- 
tion. SO R = {i} and Xi = u({i}). If u(S’) > x;Es, Xi for any S’ C S, then S’ 
will L-block x. So (a) is satisfied. 

Suppose now that for some nonempty T’ G T, and some S’ c S, (b) is 
violated. Construct the following allocation y for (S’ U T’). 

ViES’, yi = u({i}) = X; 

ViET’, Yi = 
u(S’ U T’) - u(Y) 

IT’1 * 

If x is the WCEA for (u, N), then y must be the WCEA for (S’ U T’). 
But, then (S’ U T’) L-blocks x, a contradiction. 
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This shows the equivalence of (i) and (ii). The proof of the theorem is 
completed by showing the equivalence of (iii) and (i). 

It is clear from (a) and (b) that x* belongs to the core. Hence, (i) implies 
(iii). 

Now, let x, the SCEA, belong to the core. W.o.1.g. suppose x1 2 x2 2 
. . .>x If x is the equal division allocation eN, then the trivial partition 
{iV} L&es all the requirements of condition (Y. 

So, suppose x#eN. Then, just as in the previous step, let T = {jlxj = x,} 
and S = {jlxj > x,}. The proof that {S, T} constitutes the required partition 
is exactly the same as in the previous step. So. (iii) implies (i). n 
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