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Both the core and the bargaining set fail to satisfy a natural requirement of 
consistency. In excluding imputations to which there exist objections, the core does 
not assess the “credibility” of such objections. The bargaining set goes a step 
further. Only objections which have no counterobjections are considered justified. 
However, the credibility of counterobjections is not similarly assessed. We 
formulate a notion of a consistent bargaining set in which each objection in a 
“chain” of objections is tested in precisely the same way as its predecessor. Various 
properties of the consistent bargaining set are also analyzed. Journal of Economic 
Literature Classification Numbers: 021, 022, 026. 0 1989 Academic P R S S ,  inc. 

1. INTRODUCTION 

The core and the bargaining set as solution concepts fail to satisfy, at 
least a priori, a natural requirement of consistency. Consider, for instance, 
the notion of the core. Let x be an imputation which is not in the core. %n 
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particular, suppose a coalition So can ensure for its members a payoff 
vector x0 which is higher than what these players were getting at the 
imputation x; i.e., (So, x0) is an objection or a “threat” to x. However, is 
this threat “credible”? What is there to prevent the existence of a coalition 
S’ and a pair (S’, x’) such that (S’, x’) is an objection to x0 itself? 
Ray [S] and Greenberg [4] show that if x does not belong to the core, 
then there exists an objection (So, x0) to x which is “internally stable” in 
the sense that no subset of So can have an objection to x0; i.e., there does 
exist an objection which is credible in so far as its subsets are concerned. 
In other words, the core is “internally consistent”. 

However, the above argument does not apply to the credibility of an 
objection in relation to coalitions which are not subsets of the original 
objecting coalition. Indeed, the bargaining set can be seen as a solution 
concept which attempts to modify the core to take account of this problem. 
We shall argue that even the bargaining set does not go far enough in this 
respect; while it does test objections against counterobjections, it does not 
similarly test the counterobjections or any further objections, and, in this 
sense, it is not consistent. The purpose of this paper is to analyze the 
consequences of imposing consistency requirements on the bargaining 
set. This leads to a new solution concept which we call the consistent 
bargaining set. It is a set which, in general, is larger than the core but 
smaller than the bargaining set. 

Recall that the bargaining set’ does not exclude an imputation x simply 
if it admits an objection. x is excluded from the bargaining set only if there 
exists an objection (So, x0) which is justified in the sense that it does not 
admit a counterobjection, i.e., an objection (S’, x’) which is also an 
objection to x0, While there are many variants of the original notion of the 
bargaining set introduced by Aumann and Maschler [l], we shall restrict 
ourselves to the one formulated by Mas-Cole11 [6], primarily because, for 
our purposes, it represents a simplification of the earlier notions. 

Note that the Mas-Cole11 bargaining set can be partitioned into the set 
of core imputations and the set of those imputations to which there is no 
justified objection. But is an imputation in the latter set a reasonable or 
allowable allocation? An affirmative answer clearly presumes that the 
counterobjection is always “justilied” so that if it exists, the original objec- 
tion is nut justified. But any notion of consistency would demand that the 
counterobjection be itself judged on terms similar to those of the objection! 
In fact, as we show in the next section, for any imputation which belongs 
to the bargaining set but not to the core, there must exist a counter- 
objection to an objection which is itself followed by yet another objection. 
So the validity of counterobjections should not, in general, be allowed to 

’ A precise definition follows in the next section. 
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go unchallenged. Mas-Cole11 [6] does consider a modi~~atio~ in w 
objections are tested only with respect to counterobjectio~s which are 
themselves justified in the sense that there exists no further objection to the 
~onnt~robjection. As he points out, this definition “iterates one more seep 
the objection-counterobjection logic.” But why sto 
iteration?z In the interests of consistency we ou 
~o~~terobjection simply because it has a further 
further objection that, too, should be tested in a c 

e therefore formulate a solution concept that 
t every objection in a “chain” of objections is tes 
same way as its predecessor. 

y scrutinizing counterobjections, and hence making t 
0 solution concept yields a set of imputations wbi~h 
bargaining set. Of course, it contains the core. In Secti 
example where our solution lies strictly between the bargain 
core. This demonstrates that, in general, both the core and 
set are not consistent; the core is not consistent because it leaves cm% 
imputations which have only invalid object’ against t 
bargaining se% is not consistence because it in es imputat 

ection has only invalid counterobjections. In the same section we 
ide some classes of games in which the bargaining set coincides 
notion of a consistent bargaining set. These are three person 

superadditive games, ordinal convex games, an games generate frml 
exchange economies with a continuum of agents. ‘These also turn ou% to be 
classes of games in which the consistent bagai~in~ set exists. 

e consistent bargaining set contains t e core, existence is 
cerlainly guaranteed in all games where the latter exists. One 
expecl to be able to establish existence under weaker conditions 

r showing the existence of the core. This seems no% to be 
the bargaining set is non-em~%y in %~~~sfe~abIe utili%y 

ion VI of Mas-Cole11 [6]ft the same is not true for nhe 
consistent bargaining set. In Section 4 we e sf 
a s~~e~add~%ive~ transferable utility g “Lent 
bargaining set is empty. 

In Section 5 we examine some other properties of the consi§%e~% 
gaining set. We show that it is covariant and symmetric bu 

‘sfy individual rationality or the reduced game property of 
schler [2-j. 

’ In fairness to Mas-Colell, we should emphasize that in his context, namely of an exchange 
econqmy witb a continuum of agents, his equivalence result implies that the bargaining set is 
consistent (see also Section 3.3 below). 

642/49:1-i 
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2. CONSISTENT OBJECTIONS 

2.1. The Model and Assumptions 

Consider a game with n players where N = (1, . . . . n} denotes the set of 
players and JV the set of all non-empty subsets of N. A coalition S is an 
element of JV. For any coalition SE JV, let R” denote the 1 SI-dimensional 
Euclidean space with coordinates indexed by the elements of S. For x E RN, 
xs will denote its projection on R ‘. Each coalition S has a feasible set of 
payoffs or utilities denoted V(S) c R’. A non-side payment game in charac- 
teristic function form can now be denoted (N, V). 

For x, yeRS, we write x%y if xi>yi for all iES, x>y if x,>y, for all 
i E S, and x > y if x > y and x # y. For any set B c RS, Bdry B denotes the 
boundary of B and Int B, the interior of B. Let B* = {x E B ( 3y E B such 
that y > x}. We say that x E RS is an imputation for S if x E V*(S). x E RN 
is said to be an imputation if it is an imputation for N. 

A pair (So, x0), where So E JV and x0 E V*(S’), is said to be an objection3 
to an imputation x if x0 > x9. 

The core of a game V is defined as 

C(V) = {x E V*(N)) tl(S’, x0) which is an objection to x}. 

Let (So, x0) be an objection to x. (S’, xl), where S1 E Jtr and 
x1 E V*(S), is said to be a counterobjection to (So, x0) if xi > xy for all 
i E So n S’, xi 2 xi for all i E S’\S”, and at least one of these inequalities is 
strict. 

An objection (So, x0) to x is said to be a justzj?ed objection if there does 
not exist any counterobjection to (So, x0). 

We can now define the bargaining set as in Mas-Cole11 [6]. 
The bargaining set of a game l’ is defined as 

B(V) = {x E V*(N) 1 Zl(S’, x0) which is a justified objection to x>. 

We shall make use of the following assumptions. 

(Al) For all SE JV, V(S) is closed; it is comprehensive in the sense 
that V(S) = V(S) - Rs ; 0 E V(S); there exists a real number m such that if 
UE V(S) and u>O, then rn>q for alljES. 

(A2) (Superadditivity) For any two disjoint coalitions S, TE JV, if 
XE V(S), ye V(T), then (x, y)~ V(Su T). 

3 Notice that instead of the usual requirement x0 E V(S”), we require that x0 E V*(p). The 
reason for this will become clear in the next section when we define the consistent bargaining 
set. It should, however, be clear that this modification leaves the core and the bargaining set 
unchanged. 
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(A3) For all S E JV if X, y E V(S) and x > y, then there exists 2 E V(S) 
such that 2 9 y. 

hile (Al) and (A2) are standard assumptions, for some of our results 
we shall also make use of (A3). Given comprehensiveness, (A3) i 
that the boundary of V(S) does not become parallel to any of th 
dinate axes. This means that given any feasible utility vector for a coahtion, 
it is possible to increase the utility of any player in the coalitio 

cing the utility of some other player. In exchange econo 
by the strict monotonicity of preferences. lit should als 

that (A3) is satisfied in all transferable utility games.4 

2.2. The Consistent Bargaining Set 

e shall need to introduce some additional notation before describing our 
solution concept. Define a collection d as (x; (S, xi)Zo), where 

putation and, for each i= 0, . . . . m, xi is an imputation for s”. 

ax{xi,x{liESi,j=O ,... ,m), if E’E fi Sj; 
j=o 

otherwise. 

We will someti s find it more convenient to refer to h(d) as 
b(x, x0, ..~, xm). A pair (3, a), where SE-N and 1~ V*(S), is an objection 
to the collection d if 

Hf ($2) is an objection to the collection -c3, we shall also say that S objects 
to d. 

A collection (x; (9, xi):= 0> is a chain if (So, x0) is an objection to x, an 
for each i= 0, 1, .,., m, (9, x’) is an objection to the collection &‘-I = 
(x; (S”, x’);=‘,>. A chain of x refers to a chain with x as the imputation. 
The le~gtk of a chain LX!’ is the number of coalitions which appear in &. 

A pair (3, 2) is a terminating objection to the chain d = (x; (9, xi)?=“=,] 
if it is an objection to d such that there is no objection to the chain 
(x; (9, xyzo, (S, a)}. d 1s a terminating chain if there is no objection to 
d. 

Suppose the imputation x is proposed initially and an objection (SD, x0) 
is raised to X. A counterobjection to this objection and further counter- 
objections can be arranged in the form of a chain. Given that t 
of coalitions is finite and given that the object~o~/~ou~te~obje~t~o~ is 

rawn from the set of imputations of the dissenting coalition, it fsllows that 
4 Reed that a transferable utility game is one in which each coalition SE JV is assigned a 

real number o(S) such that V(S)= {xEP~~,.~.x,<~I(S)~. 
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all chains must be of finite length. Ultimately, there must be a terminating 
objection. We use this fact to assess the validity of the original objection. 

Let d be a chain, and ($2) an objection to d (for economy of 
notation we will also consider the collection {x> to be a chain). To the 
objection (s, 2) we shall give a label: valid or invalid. The labelling must 
satisfy the following property: 

(P) An objection ($2) to d is valid if there is no valid objection to 
(d, (9, a,>. It . 1s invalid if there exists a valid objection to {&, ($ J;-)}. 

It is easy to verify the truth of the following: 

Fact. Under (Al), there is a unique “labelling” satisfying property (P). 

As we mentioned above, all chains of objections must eventually 
terminate. Suppose ($, 2) is a terminating objection to J&‘. Then, by (P) 
it is valid. We may now work backwards from the valid terminating 
objections to uniquely determine the “label” of each objection. This is the 
intuition behind the Fact. 

Notice that the validity or invalidity of an objection is to be assessed in 
the context of the chain that it objects to, since it is the chain that places 
restrictions on the kinds of counterobjections that can follow upon the 
objection under consideration.’ 

We are now in a position to define the consistent bargaining set. This is 
the set 

CB( V) = (.x E V*(N)] 3 a valid objection to x}. 

An example illustrating this solution concept is provided in Section 3.1 
below. Embedded in the concept of a valid objection is the consistency 
requirement outlined in Section 1. Counterobjections are now being 
assessed in exactly the same way as the objection itself. In contrast, the 
bargaining set B(V) and its close cousins ignore the validity of the 
counterobjection, and hence fail to satisfy the consistency requirement. 

An objection is clearly valid if it is justified. Hence 

C( V) c CB( V) -c B( V), (1) 

so that the consistent bargaining set is sandwiched between the core and 
the bargaining set. 

Recall that if x belongs to B(V) but not to C(V), then there exist chains 
of x of positive length and all such chains must be at least of length 2. We 
shall now show that if (Al)-(A3) are satisfied, then there must exist a chain 
of x which has length greater than 2. In other words, there must exist an 

5 The same observation also applies to the criterion by which an objection is judged to be 
justified or not; it depends on the objection as well as the original imputation, i.e., on the 
chain. 
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objection having a counterobjection such that there is a further o 
following the counterobjection. Put another way, there must exist a coun- 
terobjection which is not terminating, i.e., not justified in the sense of 
~as-Col~l~ [6]. While this does not by itself imply that the objection- 
counterobjection logic is never enough to check t e validity of an objection 
(indeed, in the next section we provide some cases in which it is), it 
certainly provides an important motivation for studying the consistent 
bargaining set introduced above. 

PrPoPosrTIoN 2.2. Suppose (N, V) satiy7e.s (M-(83) and x fz 
(V)\C(V). Then there exists a chain of x of length greater than 2. 

ProoJ Since x E B( V)\C( V) there exist chairs of x of positive lengt 
and any such chain must be at least of length 2. suppose the conclusion of 
the Proposition is false. Then every chain of positive length must be exact/y 
of length 2. Let (x; (So, x0), (S’, xl)} be such a chain irst observe that 
Son S’ # 0. Otherwise, from (Al) and (A2) it would follow that So u S’ 
has a justified objection to x. 

Let bG= xso. Since So has an objection to x, it follows from (Al) an 
(A3) that b” E Int V(S’). Let B = So n S’ and ei E RSO be the vector whi&. 
has 1 in every coordinate i E B and 0 elsewhere. By (Al ) and (A3) we can 
now find a real number to > 0 such that 

X0 = b” + toei E V*(SO). 

Similarly, by letting b’ =x9 and defining e; to be a vector in 
find a real number t’ > 0 such that 

2” = b’ + t1ei E V*(SE). 

There are three possibilities; t’ > to, t’ < to, or t1 = fO. 
guppose t’ > to. Then 

2’ > bSl(X, 210) (2) 
and 

b(x, X’) = b(x, X0, .?I). 139 

From (2) and the fact that t” > to > 0 it follows that ix; (So, X”), (S”, 3’)> 
y hypothesis it must be a terminal chain; i.e., there does not 
ch that i > bs(x, X0, 2’) = bj(x, 2’). Since {x; (S”, .%i?“)> is also 

a chain, this must mean that it is a terminal chain. But this contradicts the 
hypothesis that x E B(V). 

If t1 < t” we can use the same argument as above to show t 
(x; (SO, 2”)) is a terminal chain, which again contra 
that XEB(V). 
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Suppose t’ = to. We begin by showing that S”\B # @. Suppose not. 
Then 5”~ S1 and it is easy to see that b(x, x0, x1) = b(x, x’). Since 
{x; (So, x0), (Sr, xi)> is a terminating chain, this must mean that so is 
(x; (S’, xi)}, which contradicts the hypothesis that x E B( Y). 

Since there exists ie S”\B and we know that b” E Int V*(SO), there exists 
a real number E > 0 such that for all E < E, b” + se: E Int V*( So). By (Al) 
and (A3), for every E 6 E, there exists t(E) > 0 such that 

X0(&) = b0 +&e; + t(E) t?“B E v*(sO). 

Certainly, for every F > 0, t(e) < to = t’. Thus, for every 0 < E < E, 
(x; (So, X’(E)), (S’, Z’)} is a chain, and by hypothesis, a terminal chain. 
We shall now show that {x; (S’, ;Fi)} is a terminal chain which provides 
the necessary contradiction for completing the proof. Certainly, (x; (S’, Xi)} 
is a chain. Suppose it is not a terminal chain. Then there exists ($ R) such 
that f.~ V(s) and 

i > b$(X, 3). 

By (Al) and (A3) we can now find XE V*(s) such that 

3 9 bS(X, Xl). 

By the construction of X’(E), this implies that for some 0 <E <E, 

x $ bs(X, X0(&), Xl). 

But this implies that for some 0 <E <E, (x; (So, X’(s)), (S’, Xi)} is not a 
terminal chain-a contradiction. 1 

3. CONSISTENCY AND THE BARGAINING SET 

In this section, we examine the circumstances in which the bargaining set 
is consistent; i.e., we provide classes of games in which B(V) and CB( V) 
coincide. These also turn out to be cases in which CB(Y) is non-empty. We 
start by showing that there exist transferable utility games where CB( Y) 
lies strictly between B(V) and C(V). This shows that B(V) and C(V) are 
not, in general, consistent. In Sections 3.2 and 3.3 we show that B(V) and 
CB( V) do coincide in all 3-person superadditive games as well as in the 
class of ordinally convex games. Section 3.4 contains a discussion of 
continuum games. 

The following lemma will prove useful in this section. 
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LEMMA 3.0. Assume that (N, V) satisfies (Al) and ( 
chain. Suppose Y = (SO, . . . . Sm} is the collection of all co~~~tiQns which ca~i 
object to d and nyEo S’ # @. Then there exists an element of Y which has 
a terminating objection to d. 

ProoJC. For i=O, . . . . m, let b”= b,,(d) and let B= n~SO s’. 
argument as in the proof of Proposition 2.2, for every s’ E Y we can find 
a real number t’ > 0 such that 

2’ = b’ + t’eg E V*(S’). 

Let Sj be a coalition with a maximal t”. It is now easy to see that 
(J&‘, (Sj, 2”)) is a terminating chain. 1 

3.1. An Example 

Here we give an example to illustrate our solution concept and to 
demonstrate that there are cases in which CB(V) lies strictly between the 
core and the bargaining set. 

The example is a variant of an example in -Cole11 [6J (N, v) is a 
transferable utility game, with N = ( 1, 2, 3, 4). characteristic function 
v is the minimal superadditive function compatible with the values 
v(N)=4, v({l,2,3})=3.03, ~(~2,3,4~=3.06,~({2,4~)=~(~3~4~)=2.~6 
and ~((2)) = 1. This game has a non-empty core. For instance, the imputa- 
tion (0, 1.6, 1.6,O.S) has no objection. 

The imputation x = (1, 1, 1, 1) is not in the core. coalitions (1, 2, 3 >, 
(2, 4}, (3, 41, and (2, 3,4} can all object to X. owever, x is in the 
bargaining set because none of these coalitions has a justikd objection. 

ample, if { 1,2, 3 > objects, it has a co~~te~objectio~ from {2,4) and 
Hf (3,4) objects, there must be a co~~terobject~o~ from either 

(2,4) or (1,2, 31. 
Nevertheless, there is a valid objection to this imputation, so that it is 

not in the consistent bargaining set. This is the objection ({2, $4 jg x0), 
where )c* = (1.01, 1.01, 1.04). The coalitions w b can object to 
(x; @,3,4), x0,> are (1,2, 3), (2,4>, and (3,4). t no coalition can 
terminate the chain. Moreover, any two of these h on-empty inter- 
section and so, by Lemma 3.0, every objection to (x; ({2, 3,4>, x0)] can 
terminated. Thus this is a valid objection. 

PIJow consider the imputation (0.94, 1.03, 1.03, 1) which does not 
to the core. In fact, the coalitions ( 1, 2, 3 >, (2,4>? (3,4) can object. 
these are the only coalitions which can object. It is also asy to check that 
none of these can have a justified objection. Moreover, t e remainder have 
a bob-empty intersection and, again, by Lemma 3.0, this implies that every 
objection can be terminated and is, therefore, invalid. Thus this irn~~t~t~~~ 
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lies in the consistent bargaining set but not in the core; i.e., the former 
strictly contains the latter. 

We have, therefore, demonstrated that there exist games satisfying 

C(V)cCB(V)cB(V). 

3.2. Three-Person Games 

PROPOSITION 3.2.1. Let (IV, I’) be a three person game satisfying (Al )- 
(A3). Then B(Y) = CB( Y). 

ProoJ It suffices to show that B(V) s CB( V). Suppose not. Then there 
exists x E B( V)\CB( V); x has no justified objection but does have a valid 
objection. Let (So, x0) be such an objection. Let Y be the collection of all 
coalitions which have objections to & = {x; (So, x0) >. Because x has no 
justified objection, Y # a. Now we claim that fl,, Y S# @. To see this, 
we first make the following observations: 

(1) If S can object to d it can object to x, 
(2) Given (A2), if S, TE Y and S n T= 0, then S v TE Y, and 

hence, 
(3) For i#j#k it is impossible that {i] and {j, k} can both object 

to x, or that {i>, {j> and {k) can all object to x. 

To establish our claim, suppose to the contrary that rise yS= @. Then 
using observations (l), (2), and (3), it is immediately seen that Y can only 
take one of the following two forms: 

(a) 9 = { (i,j>, (iI, {j} 1 or 
(b) 9 = { (ij>, {A k), {t k) 1. 

In case (a) So can only be {i, k), (j, k}, or {k}. In either case, using obser- 
vation (l), we contradict observation (3). In case (b) So must be a 
singleton, say (i}. But again using observation (1) we contradict obser- 
vation (3 ). 

Thus n,, 9S# 0. We can now appeal to Lemma 3.0 to assert that 
there exists a terminating chain (x; (So, x0), (9, a)>, where SE 9. But this 
contradicts the supposition that (So, x0) is a valid objection. 1 

Remark 3.2. Assumption (A3) cannot be dispensed with in the above 
proposition. Consider, for instance, the following three-person game 
satisfying (Al) and (A2): 

N = (1, 2, 3); V(N) = {(x,, x2, x3)1x1 +x2 +x3 < 1.5}; V((i)) = 
(xJx<O} for all i= 1,2,3; V(Li})={( x, , xi)1 x1 < 0, xi < 1 }, for i = 2, 3; 
V( {2,3}) = {(x,, xs)Ixz ~0, x3 GO}. This game satisfies (Al) and (A2) 
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but not (A3). The reader can also check that the ~rn~utatiQ~ x = ( - $, i, i) 
is in B( V )~ But (( 1 >, 0) is a valid objection to x; so that x: $ C 

PROPOSITION 3.2.2. If the conditions of ~ro~os~t~Q~ 3.2.6 me satisfied~ 

ProoJ This follows immediately from roposition 32.1 and the 
-person games satisfying ( 

3.3. ~rd~~al~y Convex Games 

Tn this section we show that the bargaining set is ~o~s~ste~t if (N, V) is 
ordinally convex. Indeed we show that in this case ( V), and hence C 
akcides with C(V). 

rdinal Convexity); For all S, TE JV an 
USE V(S) and USE V(T), either uSvre V(Su T) or LZ~,-~E V(Sn T). 

Remark 3.3.1. Ordinally convex games have 
Sharkey [9], and Peleg [7]. It is easy to 

utility games satisfy (A4). The core is non- 
convex games (see Greenberg [3]) and, th~refore~ so is the ~o~si~te~t 
bargaining set. 

The following lemma will be useful in proving the main result of this 
section. 

bZ%fMA 3.3. Given (Al), (A3), and (A4), for all S, TEN ~~~~~r al’/ 
UERN such that USE V(S) and U=E V(T) either uSvTe V(Su T) or 
USn TE Int V(Sn T). 

Prbof. Pick any u E RN such that USE V(S) and USE V(T). 
either u SvT~ V(Su T) or uSnr~ V(Sn T). If uSvrtz V(Su T) o 
Int V(Sn T) then there is nothing to prove. So suppose uSU T$ 
and U,,TE dry V(S n T). Construct U’ E RN such that 

ii) 4i,T< US\T (ii) &, s < uT\s (iii) u$i, T> US,- T 

(iv) u’s f V(S) (~1 U;E UT) (vi) GUT 4 V(S u T). 

Given (Al) and (A3), the reader can check that such a u’ exists. 
smce u,,.~Bdry V(Sn T), (iii) implies that ukrlT$ V(§n T 
along with (iv), (v), and (vi) implies a violation of (A4). 

~R~POS~T~O~ 3.3. Let (N, V) satisfy (Al), (A3), and (A4). P’hen 
CB(V)= C(V). 
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ProoJ: It is clearly sufticient to prove that B(V) -c C(V). Suppose this is 
not true. Then there exists x E B( V)\C( Y). So there exists a coalition which 
objects to x. For any Ss N let C,(V) denote the core of the game 
consisting of the players in S with Y restricted to S. By considering a 
minimal coalition which objects to x, it is easy to see that the collection 

Y= (SEJV(~~EC~(V) such that y>x,) 

is non-empty. Let S* be a maximal coalition in 9, i.e., S* ~9 and if 
S* c T, then T# 9’. Pick y* E C,,(V) such that (S*, y*) is an objection to 
X. Because XE B( V), there must exist some coalition T which has a 
counterobjection. Let Y be the collection of all coalitions which have a 
counterobjection to (x; (S*, y*). Note that for any TE 5, T\S* # 0. Let 
e(T) be the vector in RTiS* consisting of 1 in every coordinate. From (Al) 
and (A3), for every TE Y, there exists a real number t(T) > 0 such that 

(XT\S*+t(T)e(T),y~*,T)E V*(T). 

Let T* E Y be such that t(T*) 3 t(T) for all TE 5. Because y* E C,*(V), 
y& ~ T* $ Int V(S* n T*). From Lemma 3.3, it must be the case that 

(X Tb,Sa + t(T*) e(T*), y*) E V(S* u T*). 

Pick any z E V*( T* u S*) such that z > (x,*,~* + t( T*) e( T*), y*). We 
shall now prove that z E Csqv T* (V). Su.ppose not. Then there exist 
W_cS*u T* and WE V(W) such that w>zw. Since y*~c,*(V), 
WjS* # 0. Since w > zw, WET. But, because w>zw, t(W)>t(T*), 
which contradicts the definition of T*. 

Hence, z E C,, v T. (V). Moreover, it is clear that (S* u T*, z) is an 
objection to X. But this contradicts the definition of S* since ] S* u T* / > 
Is*l. I 

Remark 3.3.2. It is worth pointing out that the equivalence of the 
Aumann-Maschler bargaining set and the core in convex, transferable 
utility games was proved by Maschler, Peleg, and Shapley [5]. The proof 
of Proposition 3.3 also serves as an alternative proof of the Maschler- 
Peleg-Shapley result. 

3.4. Continuum Games 

An important class of games in economics is the one consisting of games 
generated from exchange economies with a continuum of agents. 

In Section 2 we defined a notion of a consistent bargaining set for games 
with a finite number of players. A direct extension of that definition to 
games with a continuum of players does not seem possible; due to the 
presence of chains of infinite length, it may no longer be possible to 
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apply our earlier definition to check whether an objection is val 
invalid. Notice, however, that simply the presence of an iniinite 
(x; (So, x0), . ..) by itself does not mean that our earlier criterion can 
applied to check whether (So, x0) is valid or invalid. For example, 
be the case that there exists a terminating chain (x; So, x0), (S”, xl)), in 
which case (So, x0) is invalid. In general, ou original ~~assi~~atio~ of 
objections as valid or invalid may no longer e exhaustive. Clearly, we 
would include in the consistent bargaining set any imputation to whit 
possible objections are invalid and exclude any ~rn~~tatio~ to which there 
exists a valid objection. In other words, 

{x E V*(N)\ 3 a valid objection to xl 1 C 

2 (x E V*(N) 1 any objection to I is (49 

While it would be of some interest to formulate a definition which classifies 
objections as valid or invalid in an exhaustive and mutually exclusive 
manner, given (4), we do know that 

as-Cole11 [6] has shown that, under the standard assumptions, jn 
change economies with a continuum of agents, B( V) = C( V). This clearly 

implies that in this context, C( V) = G (id) =B(V) and, hence, the 
bargaining set is consistent. 

4. AN EXAMPLE WHERE THE CONSISTENT ~A~GA~N~~G S;ET IS EMPTY 

In this section, we present an example of a superadditive, tra~sferabIe 
utility game with four players in which the consistent bargaining set is 
empty. 

EXAMPLE 1. Let N=(l,2,3,4), $‘=(1,2,3), S2=(2,3,d), S3== 
(1,4), S4= (1,2,4), S5= (1, 3,4}. Also, v(S”)=v(S29=66, v(S”)= 
u(S4) = u(S5) =63, v(N)= 80, and for all other coalitions S, v(S) 
Notice that player 1 is symmetric to player 4, wbiie 
to player 3. 

Throughout this section we shall be concerned only with the game 
defined in the above example. 

hOPOSITiON 4.1. CB( V) = 0. 

e shall need two lemmas concerning the game in Example 1 before we 
prove that its consistent bargaining set is empty. 
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LEMMA 4.1. If x E CB(V) and S5 does not have an objection to x, then 
{S’, S2, S’, S4) cannot all have objections to x. 

Prooj Suppose (S’, S2, S3, S”} constitutes the set of objecting 
coalitions to x. Since S5 cannot object, x2 < 17. We first show that if 
XECB(V), then 

max {x1, x4} < 23. (5) 

Suppose not. Let x1 6 xq and x4 > 23. Either x3 6 3 +x4 or x3 > 3 +x4. 
In the former case, (S’, xi) is a justified objection6 where xi = 
(46 -x4, 17, 3 + x4). In the latter case (S4, x4) is a justified objection where 
x4 = (46 -x4, 17, x4). Hence, remembering that players 1 and 4 are 
symmetric, (5) must hold. 

Given (5), we must also have x3 < 26. Otherwise, (S4, 2) is a justified 
objection where X = (23, 17,23). So suppose x3 = 26 -E for some E > 0 and 
max(x, , x4) = 23 - S for some 6 > 0. Choose y such that 0 < y < min { E, 26). 
Consider the objection (S4, 2) where 2 = (23 - y/2, 17 + y, 23 - y/2). Then 
b(x, 2) = (23 -y/2, 17 + y, 26 -E, 23 - y/2). For i = 1, 2, 3, let the excess of 
coalition S’ over the chain d = (x; (S4, X)} be defined as ei = v(S) - 
cjssz bi(x, X). It is now easy to check that 

Y e’=E-- Y 
2’ 

e2=E-- 
2’ 

and e3 = y. 

Thus 

ei+ej>ek forany i,j,k=l,2,3. (6) 

Let Y = (S’, S2, S3}. Note that 

while 

S’nS’#@ for any i, j = 1, 2, 3. (8) 

Since every coalition in 5 has a positive excess, it has an objection to the 
chain d. Of course, any coalition which objects to d must be in Y. 
However, no objection (A”, xi) to the chain d can be a terminating objec- 
tion. For if it is a terminating objection, given (7), we would contradict (6). 
Moreover, given an objection (S; xi), there must be a terminating objec- 
tion to the chain {&‘, (Si, x’) >. This follows from Lemma 3.0 and (8). Thus 

6 Notice that 46-x, >x, since S3 has an objection to x. 
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any objection to B is invalid; i.e., (S4, 2) is a valid objection to x, wbick 
means that x 4 CB( V). 

LEMMA 4.2. If x E CB( V), then x 3 0. 

Broof~ Step 1. x E CB( V) implies that x 1 > 0. 
Suppose not. Clearly, S2 cannot have an objection to 3~. Since x $4 C(V), 

there must be some coalition with an objection to x. Let S be a ~oa~~t~~~ 
which has the maximum excess over X. By s~~eradditi 
in S. Let S,= {iI xi < 0). Now consider x’ E 
and xi = max(0, xi) for all i E S, i # 1. Since S has the maximum excess over 
x, by superadditivity and the fact that v (i} = 0 for all i, such an X’ must 
exist. e now claim that (S, x’) is a justified objection to x. Suppose not. 
Then there exists a counterobjection (T, z). Since &x, x-‘f 2 0 by construc- 
tion, T must contain S’ or S3 or S4 or S’. Notice that player 1 beholds to 
all such coalitions. However, if 1 E T, then Tu S, also has a ~Q~~te~obj~~- 
kion to (S, x’). But this must mean that TV S, has a high 
a contradiction. Thus x 6 B(V), which contradicts the 

Stq 2. x E CB( V) implies that x2 > 0. 
S~~~o§e not. Clearly, then, S5 cannot have an objection to X. 

Lemma 4.1, we can now claim that {S’, S*, S3, S4j cannot ali have objec- 
tions to X. Therefore, there can be at most t ree coalitions from Y = 
{S’, 5” S3 S4 S5 > which have objections to x. The only cohecei 
coalitions in 4 which has an empty intersection is (Sl, S2, S3 1. 

of three 
ut given 

if S3 has an objection so must S4. So this cannot be e collec- 
e coalitions from 5‘ having an objection to X. Thus, if (Sj) c 9’ 
on of objections to X, nj S’ # D. Let k E 0, Sj. 

if there exists no objection to x from Y, it is easy to see that (S,, 0) Is 
a justified objection to x. If there does exist an objection 
a coalition with the maximum excess over x and let X’ E 
CieS xi = v(S), and xi= max(0, xi) for if k. 
Step I above, we can now show that (S, x’) is a 
have, therefore, established that if x2. < 0 there 

contradicts the supposition that XE 
Given the symmetry between players 1 and 

3, the same argument as in Steps 1 and 2 
en x,>,O and x3 30. And this completes the proofs 

PYK$ af Proposition 4.1. From Lemma 4. 
then x >/ 0. We show that CB(V) = @ by sbowi~~ that any i~~~ta~~~~ 
x 3 0 has a valid objection. Note that since (iv, U) is not bahced, every 
im~~tatio~~ must have at least one objection. Let 9 = { sl, s2, s3, S4, ~~1~ 
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For any imputation x k 0, an objection can only come from a coalition in 
Y. Moreover, one of the following must hold: 

(i) Exactly one coalition in Y objects to x. 
(ii) Exactly two coalitions in Y object to X. 

(iii) Exactly three coalitions in Y object to X. 
(iv) Exactly four coalitions in Y object to X. 
(v) All live coalitions in Y object to x. 

Clearly, in case (i), the objection is justified, so that x & B(V) and hence 
x # CB( V). In case (ii), the two objecting coalitions must have a non-empty 
intersection (by super-additivity) so that by Lemma 3.0, x 4 B(V). The only 
collection of three coalitions in Y having an empty intersection is 
{S’, S’, S3 >. But if S4 and S5 cannot object, then x3 < 17 and x2 d 17. It 
follows that if S3 can object so can either S4 or Ss (or both)! Therefore, if 
exactly three coalitions object, they must have a non-empty intersection 
and Lemma 3.0 can again be applied to show that x $ B( V). In view of 
Lemma 3.0, we, therefore, only need to consider collections of four and live 
coalitions in P’, each collection having an empty intersection. 

In case (v), the only collections offour coalitions in Y having an empty 
intersection are: 

(a) {Sl, S2, S4, S5} 
(b) {S’, S2, S3, S”} 
(c) (Sl, s2, s3, S5). 

However, the collection in (iv a) cannot be the set of objecting coalitions, 
for the fact that S3 cannot object implies that x2 +x3 Q 34. On the other 
hand, the fact that S4 and S5 can object implies that x3 > 17 and x2 > 17. 
Hence x2 + x3 > 34, a contradiction. 

We have already shown in Lemma 4.1 that (iv b) is not possible. Since 
players 2 and 3 are symmetric, the same argument can also be used to 
show that case (iv c) is impossible. 

Hence, if x E CB( V), then all five coalitions in Y must object to x. We 
begin by showing that in this case 

max (.x1, x4> = say x4 < 23. (9) 

Suppose (9) is not true, so that x4 > 23. Since S3 can object to x, x1 + 
x4 ~46, which implies that x1 <46-x4 <x4. Also, since S2 can object, 
x2 + x3 + x4 < 66, which in turn implies that x3 < 66 - (46 - x4) - x2. 
Hence, (S1, x’) is an objection where x1 = (46 -x4, x2, 20 +x4 -x2). We 
now claim that (Sr, x’) is a justified objection to x. Note that b(x, xl) = 
(46-x,, x2, 20-x,+x,, x4). Also, since S4 and S5 can object to 
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x, x2 > 17, x3 > 17. Hence, for any SE 9, U(S) < Ciss bi(X, X’). Thus, there 
cannot be a counterobjection to (S’, x’). This proves that if x E C 
then (9) must hold. 

Next, we prove that 

x,+x,<43. (10) 

Suppose x2 +x3 3 43. Then, in view of (9), (S3, x3) is an objection where 
x: = xi = 23, Noting that b(x, x3) = (23, x2, x3, 23), x2 + xj > 43 an 
fact that min{x,, x3) > 17, we can check that u(S)<xiGs bi(x, x3) for 
SE Y. Hence, (S3, x3) must be a justified objection, which contradicts the 
supposition that x E CB( V). 

Now, min(x,, x3) > 17 and (IO) implies that max (x,, x3) < 26. out 
loss of generality, assume x*=min(x,, x,), x1 =min(x,, x4). Let x2= 
17 + yp x3 = 26 - 8. By (lo), E > y > 0. Now, consider the objection (S4”‘, g), 
where 1, = 46 - y - J?~, I, = 17 + y, and Z’4 = max((46 - y )/& x4). Wote that 
S1, S2, and S3 can object to (x; (S4, 2)). It is also easy to check that the 
excesses of these coalitions are 

e’=E--(23-.Z4) e2=23i(E-y)-& e3 = y. 

Hence, 

eifej>ek for all i,j, k = 1, 2, 3. 

e can now use the same argument as in the proof of Lemma 4.1 to show 
that any objection to (x; (S4, Z-,)) is invalid; i.e., (9, Zd) is a valid objec- 
tion to x and x $ CB( V). This completes the proof that there does not exist 

utation x E CB( V). 

5. OTHER PROPERTIES OF THE CONSISTENT 

In this section, we examine whether C&P’) satisfies ssme classical 
properties of cooperative game theory. We focus attention on the fo~~ow~~~ 
properties: covariance, symmetry, individual rationality, an 
game property of Davis and Maschler [2]. 

Let T be a set of games. A solution of I- is mapping B which assigns to 
each game (N, V) E r a subset o(N, V) of V(N). 

For any solution 0, we may now define the properties of interest to us: 

Covariance: For all a E RN, if (N, Vi- (a > ) is defined 
VS)-ka,, SEN, then a(N, V+ (a))-o(N, V)+a. 

y (Vi {a})(S)= 

‘We are grateful to a referee for suggesting the inclusion of a section on the properties 
discussed here. 
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Symmetry: For all permutations rc of N, o(N, zV) = nc(N, V), where 
nV(S) = V(7cS), SE 1. 

Individual Rationality: For every XE o(N, V), xi> sup{y 1 y E V( { i))} for 
all iEN. 

In order to define the reduced game property, we need some further 
notation. 

Let (N, V) ET, let XE V(N), and let SE&“. The reduced game with 
respect to S and x is the game (S, V,..) where 

Vx,s(S) = {Y,I (ys> x,v\s) 6 V(N)), 

Y,,s(T) = u {YTI (yr, xp) E V(Tu Q,} if TsS, T#S. 
_ QcN\.S 

The reduced game (S, Vx,,) has the following interpretation. The players 
of S are allowed to choose only payoff vectors ys that are compatible with 
x,,,, the fixed payoff distribution to the members of the complementary 
coalition (N\S). However, proper subcoalitions T of S may seek the 
cooperation of subsets Q of (N\S), f i each member i of Q is given -xi in the 
resulting payoff vectors for (Tu Q). It should be noted that even if (N, V) 
satisfies (Al), (A2), and (A3), a reduced game (S, V,, s) may fail to be 
superadditive, although it will satisfy (Al) and (A3). 

Reduced Game Property: If SE JV and x E a(N, V), then xs E a(S, V,,,). 

PROPOSITION 5.1. CB( V) is symmetric and couariant. 

ProoJ: Suppose x E CB( V). To show that the consistent bargaining set 
is covariant, we need only show that x + a E CB( V + (G>). Suppose not. 
Then there is a valid objection (S, y) to x + a. It is then trivial to check 
that (S, y - as) is a valid objection to x in the game (N, V). This 
contradicts the supposition that x E CB( V). 

The proof of symmetry is also obvious and is left to the reader. i 

It is easy to construct examples of non-superadditive games in which 
CB( V) contains imputations which violate individual rationality. In three- 
person superadditive games it can be shown that all imputations in CB(V) 
do satisfy individual rationality. We shall now present an example of a five- 
player, superadditive, transferable utility game in which CB( V) does not 
satisfy individual rationality. This example also illustrates the fact that 
CB( V) may contain imputations in which a “dummy” player gets a 
positive utility.’ Of course, these properties are also shared by B(V). 

s This is also the case with the Aumann-Maschler bargaining set. 
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EXAMPLE 2. (CB(V) violates individual rationality). 
e consider a five-player, superadditive, transferable utility game w 

is a modification of Example 1. Player 5 is a “dummy” player in the sense 
that he/she does not contribute to any other coalition and has 0 individual 
worth. The payoffs of coalitions not containing player 5 are exactly as in 
example 1. N= {1,2, 3,4,5), S’={l,2, 31, S’= {I&3,4], S3= (1,4), 
S” = { 1,2,4), 5” = (1, 3,4}. Also, u(S) = v(S’) = 66, u(S3) = 46, v(S4) 
u(S5) = 63, U(N) = 80. For all other coalitions SC (I, 2, 3, 41, v(S) = 

=Oandfor any Sc(l,2,3,4), v(Su(5))=v(S). 
shall show that for any E > 0, x = (-E, 17, 17, -~~46 + 2s) belon 

ProoJ Notice that player 5 cannot belong to a coalition which has 

an objection to X. Indeed, the only coalitions whi ave objections to I 
are 

Si, S2, S3, S4, S, (11, w , and (8, 2, I(4). 

e shall show that none of them has a valid objectio 
Suppose (S1, y) is an objection to x. If y1 < 0 t 

and y, + y, > 66. Now it is easy to see that (S3, ( 9 23)) is a terminating 
objection to the chain d = (x; (S’, y)). If y, > 0, en, ciearly, there exist 
counterobjections to d. Moreover, player 4 belo s to all the coalitions 
which have further objections. By Lemma 3.0 this i plies that there exists 
a terminating objection to the chain d. Thus, S’ oes not have a. vaii 
objeetion to x. 

Given the symmetry between players I,4 and 2, 3 a similar 
at S2 does not have a valid objection; either tkere is a te 

to it from S’ or player 1 belorngs to a13 further 
coalitions. 

Suppose (S3, y) is an objection to X. Then (yr, 17, 17, y4) is an irn~~ta~ 
lion of the game defined in Example 1. As we have already shown in 
Section 4, there exists a valid objection to any imputation of Ex 

coalitions which can object to the chain (x; (S3, y)) in th 
are exactly those which can object to (yI, 17, 17, y4) in Exa 

this means that there exists a valid objection to (x; (S3, Jo)); i.e., S3 does not 
have a valid objection to x. 

Since objections from S”, S5, and ( 1, 2, 3, 4 1 also yield imputations for 
the game in Example 1, the same argument as above im 
these coalitions can have a valid objection to x. 

Consider the objection to x from coalition (11~ Now ((4),0) is a vah 
objection to the chain & = (x; (( 1 }, 0)). T 
tions to & from coalitions S’, . . . . S5and (1,2,3,%]and 

642/49/l-8 
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the corresponding argument from above to show that any such objection 
to d is invalid. 

Given the symmetry between players 1 and 4, it can also be shown that 
the objection from (4) has a valid counterobjection in (( 1 }, 0). This 
completes the proof that x E CB( V). 1 

In the following example we show that CB( I’) need not satisfy the 
reduced game property. 

EXAMPLE 3. CB( V) does not satisfy the reduced game property). 
Consider the game in Section 3.1 and x = (0.94, 1.03, 1.03, 1) ECB( V). 

Let S= { 1,2}. Then 

vx,s(s) = 1.97 

K,s(W)=O.O3 

V&(2))= 1.06. 

It is clear that the only objection to xs is from (2) and, therefore, 
xs 4 CB( vx,s). 
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