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PART 11. Properties of Bequest Equil ibria 

1. Introduction 

In t h i s  paper, we study the  properties of equ i l ib r ia  in  a s ta t ion-  

ary version of the  aggregative growth model with intergenerational 

a l t ruism introduced in  Bernheim and Ray [19831 .- I/ In t h i s  model, each 

generation i s  act ive  for  a s ingle  period. A t  the  beginning of t h i s  

period it receives an endowment of a s ingle  homogeneous good which is  

the  output from a 'bequest investment ' mde by the  previous generation. 

It divides the  endowment between consumption and investment. The return 

from t h i s  investment const i tu tes  the  endowment of the  next generation. 

Each generation derives u t i l i t y  from i t s  own consumption and t h a t  of i t s  

immediate successor. However, since a l t ruism is  l imited,  i n  the  sense 

t h a t  no generation cares about l a t e r  successors, the  i n t e r e s t s  of dis-  

t i n c t  agents come in to  conf l ic t .  

Models of t h i s  type have been used t o  analyze a number of issues 

concerning intergenerational al truism. One l i n e  of research, pursued by 

Arrow [1973] and Dasgupta [197ba] elucidates the  implications of Rawl's 

pr inciple  of jus t  savings. Others, beginning with Phelps and Pollak 

[19681, have addressed the  question of how an ' a l t r u i s t i c  growth econ- 

omy' might actual ly  evolve over time. Topics of subsequent investiga- 

t i o n  have included the  asymptotic behavior of cap i t a l  stocks,  the  e f f i -  

ciency and optimality of equilibrium programs, and the  implications of 

intergenerational a l t ruism fo r  the  dis t r ibut ion of wealth. 

In previous e f fo r t s  t o  characterize the properties of a l t r u i s t i c  

growth economies, one of two approaches has been adopted. The f i r s t ,  

employed by Phelps and Pollak [1968] and Dasgupta [1974a,b], i s  t o  



simplify the  basic s t ruc tu ra l  model by assuming special  functional 

fo rm.  Generality is sacr i f iced  t o  assure  t r a c t a b i l i t y .  The second 

approach, adopted by Lane and Mitra [19811 , i s  t o  only consider equil ib- 

r i a  belonging t o  a spec i f ic  class--generations a r e  r e s t r i c t ed  t o  choose 

t h e i r  s t ra teg ies  from the  s e t  of l i n e a r  consumption functions. As 

G o l d m  [19801 has pointed out,  i n  such an equlibrium, agents need not 

a c t  in  t h e i r  own best  i n t e r e s t s  o f f  t h e  equilibrium path. In general, 

the  s e t  of equ i l ib r ia  i n  l i nea r  s t r a t e g i e s  and the  s e t  of perfect  equi- 

l i b r i a  ( i n  the  sense of Selten 119751 ) a r e  en t i r e ly  d i s jo in t .  Conse- 

quently, t h i s  second approach is  unsat isfactory.  

This previous emphasis on parametric specif icat ions  and r e s t r i c t ed  

s t ra tegy spaces can perhaps be explained in  par t  by the  f ac t  t h a t ,  u n t i l  

qu i te  recently,  no general proof of t he  existence of perfect  equ i l ib r ia  

had been exhibited for  such models. Indeed, the  avai lable  existence 

theorems, adopted from the  l i t e r a t u r e  on consistent  plans (peleg and 

Yaari [1973]),  applied only t o  models where agents were r e s t r i c t ed  t o  

choose l i nea r  s t r a t eg i e s ,  as in  Lane and Mitra. Furthermore, Kohlberg 

[1976) exhibited a disturbing counterexample, for  which he demonstrated 

t h a t  no s ta t ionary,  perfect  equilibrium exis ted i n  d i f fe ren t iab le  

s t ra tegies .  

In Bernheim and Ray I19831, we es tabl ished the  general existence 

of perfect  'bequest equ i l ib r ia '  i n  a reasonably well behaved c lass  of 

consumption functions (upper semicontinuous, continuous from the l e f t ,  

with limits on the  r i g h t ) .  Since t h i s  is  inherently the  most in t e r e s t -  

ing c lass  of equ i l ib r ia ,  it i s  important t o  characterize the  properties 



of associated programs. We concern ourselves here with two classes  of 

properties-- 'posit ive1 and 'normative'. 

The posi t ive  features of equilibrium programs have received l i t t l e  

a t tent ion from previous authors. Aside from a few comments by Kohlberg 

[1976], v i r tua l ly  nothing is known about the  asymptotic behavior of 

cap i ta l  stocks. In par t i cu la r ,  w i l l  the  long-run cap i t a l  stock which 

a r i s e s  from intergenerational conf l ic t  be higher o r  lower than the  

' turnpike'  associated with the solution t o  the  optimal planning problem? 

On a p r i o r i  grounds, the  answer i s  not c lear .  Agents who take only a 

l imited i n t e r e s t  in  the  future  w i l l  tend t o  bequeath l e s s  than those who 

a r e  far-sighted. However, since each generation views i ts  chi ldren 's  

bequest as  pure waste, it m s t  bequeath a larger  sum t o  obtain the  same 

consumption value. 

In t h i s  paper, we obtain steady-state r e su l t s  fo r  equilibrium 

cap i t a l  stocks completely analogous t o  the  well-known optimal planning 

r e su l t s .  By comparing ' s teady-s ta tes ' ,  we show t h a t  no l i m i t  point of 

equilibrium cap i t a l  stocks can exceed the  planning turnpike. Under 

s l i gh t ly  more r e s t r i c t i v e  conditions, we show t h a t  t he  equilibrium 

cap i t a l  stock never exceeds the planning stock in  any period. Conse- 

quently. l imited intergenerational a l t ruism m y  provide the  basis fo r  a 

theory of chronic cap i ta l  shortages. 

A second s e t  of questions addressed here concern normative issues.  

In par t i cu la r ,  Dasgupta (1974bI has argued t h a t  equilibrium programs a r e  

never Pareto optimal. Lane and Mitra [lg81-] demonstrated t h a t ,  never- 

the less ,  in some cases there  ex i s t  equilibrium programs which a r e  



Pareto-optimal i n  a m d i f i e d  sense. However, a s  discussed above, these  

r e su l t s  a r e  not en t i r e l y  sa t i s fac to ry ,  i n  t h a t  they apply only t o  

spec i f i c  parametrizations of t he  general model, o r  require t h a t  agents 

s e l ec t  s t r a t e g i e s  which imply implausible behavior outside of 

equilibrium. 

In t h i s  paper, we extend these  previous r e s u l t s  t o  the  s e t  of 

perfect  equ i l i b r i a  fo r  a l t r u i s t i c  growth economies. Our method of proof 

d i f f e r s  substantively from t h a t  employed i n  previous work. Other 

authors have assured t r a c t a b i l i t y  by considering equ i l i b r i a  in  extremely 

wel l  behaved s t r a t eg i e s  (Lane and Mitra [19811 take  consumption func- 

t i ons  t o  be l i nea r ;  Kohlberg [1976] takes  them t o  be d i f f e r en t i ab l e ) .  

Since we have es tabl ished existence i n  a s ign i f i can t ly  l e s s  t r a c t ab l e  

c lass  of s t r a t eg i e s ,  t h i s  approach i s  unsat is factory .  Nevertheless, we 

obtain our r e s u l t s  without r e s t r i c t i n g  t he  c l a s s  of admissible 

s t r a t eg i e s .  

The current  paper is  organized a s  follows. Section 2 displays the  

model, basic assumptions and def in i t ions  of equ i l i b r i a ,  and reviews some 

important r e su l t s  presented in  Bernheim and Ray [19831. Posit ive 

aspects  of equilibrium programs a r e  considered in  Section 3; normative 

aspects  a r e  discussed i n  Section 4. A l l  proofs a r e  deferred t o  

Section 5 .  

2. The Model 

The model i s  c losely  re la ted  t o  t h a t  of Kohlberg [19761, and 

corresponds t o  the  s ta t ionary a l t r u i s t i c  growth econoqy described i n  



Bernheim and Ray [1983]. There is  one commodity, which my  be consumed 

or invested. The transformation of capi ta l  stock into output takes one 

period, and is represented by a production function f .  I n  the follow- 

ing sections, certain resul ts  require only one weak assumption about f : 

( A . 1 )  f  : IR, + IR+ is increasing, continuous, and f ( 0 )  = 0. 

To establish other resu l t s ,  we strengthen t h i s  assumption by adding 

ei ther  or both of the following res t r ic t ions :  

( ~ . 2 )  f is continuously differentiable and s t r i c t l y  concave. 

In each time period, decisions conerning production and consump- 

t ion are made by a fresh generation. Thus, generation t is  endowed 

with some i n i t i a l  output (y t ) ,  which it divides between consumption 

( c t )  and investment (k - - yt - c t ) .  Each generation derives u t i l i t y  

from i t s  own consumption, and the consumption of the generation immedi- 

a tely succeeding it. Preferences are  represented by a common u t i l i t y  

function, u. We assume tha t  u s a t i s f i e s  certain relat ively weak 

conditions: 

2 ( A . 4 )  u: IR+ +IR - i s  increasing, - - continuous, and s t r i c t l y  

c w i t h  concave. Further, for a l l  c t ,  c i ,  c ~ + ~ ,  t+l 



Remark: The second half  of ( A . 4 )  i s  simply a n  assumption of weak -- 

complementarity 9 For u d i f fe ren t iab le ,  it i s  equivalent t o  

In m s t  of the  relevant l i t e r a t u r e ,  a stronger version of ( A . 4 )  i s  

employed. In pa r t i cu l a r ,  u t i l i t y  i s  taken t o  be separable in ct and 

C t + l  9 and t o  have a ra ther  spec i f i c  form. A t  some points,  we adopt t h i s  

more r e s t r i c t i v e  formulation, in  par t  f o r  technical  reasons, and i n  pa r t  

t o  f a c i l i t a t e  a comparison of equilibrium and planning programs. Speci- 

f i c a l l y ,  we occasionally strengthen (A.  4 )  t o  

(A.5) There ex i s t s  an increasing, continuously d i f fe ren t iab le ,  

s t r i c t l y  concave function v:  IR+ + IR -- with v ( c )  + - a s  c + and a 

discount fac tor  6 > 0 such t ha t  u (c ,  c '  ) = v(c )  + 6v(c1 ) fo r  - 
2 ( c ,  c ' )  E l l+ .  

For ce r ta in  r e su l t s  ( ~ a r t i c u l a r l y  those concerning comparisons 

between equilibrium and planning programs) it w i l l  be convenient t o  

assume t h a t  agents discount the  future a t  some posi t ive  ra te .  I n  these 

cases,  we w i l l  impose one of the following r e s t r i c t i ons  on 6 .  
b 

(A.5.1) and (A.5.2) can be thought of a s  the  discounted, and s t r i c t l y  

discounted cases,  respectively.  

Final ly ,  t o  prove ce r ta in  r e su l t s ,  we employ the  following assump- 

t ion  concerning the  re la t ionship  between production and u t i l i t y .  



Remark: A suf f ic ien t  condition for  (A.6) under e i t h e r  (A.5.1) or  

(A-5-21 is tha t  the  production function eventually cross (and s tay  

below) the  45" l ine .  This assumption rules  out the  case, 

l i m  f  ' (k )  > 6-' , but for most of the  r e su l t s  presented here, our 
k+= 
techniques a re  readily applicable t o  t h a t  s i t u a t i 0 n . a  See Kohlberg 

(19761 for  a  p a r t i a l  analysis of the  'ut i l i ty-productive '  case when f  

We take t he  h i s to r i ca l l y  given i n i t i a l  output a t  time zero, y ,  t o  

l i e  in som compact in te rva l  1 0  ,Y  1 , Y > 0. A program <yt ,ct , k>OD i s  

feas ib le  from y  E [ o , Y ]  i f  

w 
Denote by < c ~ > ~  the  corresponding feas ib le  consumption - program. 

- - The pure accumulation program is  a  sequence - -- E >w with Et = 0 < Y t ' C t '  t 0  
f o r  a l l  t > 0, f t  = - Et fo r  a l l  t - > 0, ft+l = f t (E t )  for  a l l  

t > 0, and yo = Y. - 
Define C t  a s  the  s e t  of functions C :  [ O ,  f t  1 + [ O ,  f t  1 ,  with 

~ ( y )  < y  - fo r  a l l  y E  [ O , Y t ] .  Define ~ ( c , y ,  Ct+l = u ( c , C ~ + ~ ( ~ ~ ( Y  - c ) ) )  



f o r a l l  Ct+lE Ct+l. and ( c , y )  > O w i t h  c < y  - < y t .  - 
We w i l l  impose t he  behavioral assumption t h a t  a l l  generations 

se lec t  perfect  Nash s t ra teg ies  (see Selten (1965) 1. Formally, 

OD 
Definit ion: The sequence < C t > O ,  CZ E C t  , t - > 0 is a -- bequest 

equilibrium (or  simply, equilibrium) i f  fo r  a l l  t > - 0 and 

Y E [0'Ytl, 

~;(y)  E arg  max U(c, Y ;  C t + l )  
o<c< y 

The reader should be aware t ha t  although we have r e s t r i c t ed  a t ten-  

t i on  t o  the c lass  of s t ra teg ies  for  which consumption depends only upon 

i n i t i a l  endowment, our bequest equ i l ib r ia  continue t o  be perfect  equi l i -  

b r ia  when a l l  r e s t r i c t i ons  on s t r a t eg i c  choice a r e  removed. See 

Bernheim and Ray (19831 for  a more complete discussion. 

A bequest equilibrium is s ta t ionary i f  the  equilibrium consumption 

functions <c*>OD satis* C;(Y) = C:+~(Y) for  a l l  y E (0 ,yt] , t > 0. t o  - 
In Bernheim and Ray [1983], we established the  existence of a 

bequest equilibrium under assumptions (A. 1) and (A.  41, without imposing 

s t a t i ona r i t y  on t he  underlying s t ructure  of the  model. In addi t ion,  we 

proved tha t  when the  underlying model is s ta t ionary ( the  case considered 

here ) ,  a s ta t ionary bequest equilibrium ex i s t s .  Existence is guaranteed 

within the  c lass  of consumption functions which a r e  upper semicontinu- 

ous, continuous from the  l e f t ,  with l im i t s  on the  r ight .  

A s  an important s tep in  es tabl ishing existence,  we proved t h a t  

equilibrium consumption functions satisf'y the  'Keynesian property1--the 



marginal propensity t o  consume out of endowment never exceeds unity. 

Fo rml ly  , 

Definition: A consumption function Ct E Ct s a t i s f i e s  the  

Keynesian property i f  fo r  a l l  yl, y2 10, ? t l  , with 

Y, < Y2,  Ct(y2) - c t (y l )  5 Y 2  - Y1' 

Theorem 2.1: Suppose t h a t  fo r  some consumption function 

Ct+l Ct+l used by generation t + 1, an optimal consumption function 

f o r  generation t ,  Ct E C t ,  given by 

c t ( y )  E arg mrx U ( C , Y ;  Ct+l)  , Y E [ o , Y ~ I  
o< c<y 

i s  well defined. -- Then, under ( A . 1 )  and ( A . 4 ) ,  Ct s a t i s f i e s  the  

Keynesian property. 

This theorem i s  used extensively throughout t he  current paper. 

I t s  proof is omitted--the reader is referred t o  Bernheim and Ray [1983]. 

Note t h a t  Theorem 2.1 does not ru le  out the  poss ib i l i ty  t ha t  t he  

marginal propensity t o  consume out of endowment exactly equals unity.  

Due t o  severe technical  problems associated with t h i s  case, several  of 

our r e su l t s  apply only t o  equilibrium programs which a re  ' s t r i c t l y  

Keynesian', in  t h e  following sense. Define, fo r  each Ct E C t ,  y 2 0, 

and E > 0, 



and y  - ~ < y ' < ~ * < y + r )  - - 

Clearly.  i f  Ct i s  an equilibrium consumption function, A (ct ,Y,E  ) - < 1 

f o r  a l l  y  < 0 and s > 0. We wish t o  rule  out t he  case of equali ty.  - 

Definit ion:  Suppose t ha t  f o r  some Ct E Ct, y  E [O,Ft 1 , the re  

e x i s t s  s such t h a t  A(ct, Y , B )  < 1. Then we say t h a t  Ct i s  

s t r i c t l y  Keynesian at  y. Now suppose t h a t  <C* >OD i s  a  bequest equi- t o  
l ibrium, and <y k  >OD some equilibrium program or iginat ing from tyct.  t 0 

yo > 0. Then t h i s  program i s  s t r i c t l y  Keynesian i f  C* i s  s t r i c t l y  t 
Keynesian a t  yt f o r  a l l  t > 0. 

Results which per ta in  only t o  s t r i c t l y  Keynesian equlibrium pro- 

grams a r e ,  of course, l imited in  scope. However, in  cases where we have 

been able  t o  solve fo r  in te res t ing  bequest equ i l i b r i a  exp l i c i t l y ,  t h i s  

condition has been s a t i s f i ed .  

3. Posit ive Behavior 

In intertemporal optimal planning models, an important character- 

i s t i c  of optimum cap i t a l  stocks and consumption leve l s  is t h a t  these  

converge, over time, t o  some s ta t ionary input-output-consumption config- 

uration.  In t h i s  sect ion,  we es tab l i sh  some analogous r e su l t s  f o r  t he  

l imi t ing  behavior of c ap i t a l  stocks under a  bequest equilibrium. 

In s ta t ionary models, s ta t ionary equ i l i b r i a  always ex i s t  (~e rnhe im  

and Ray 119831 ). Of course, t h i s  does not preclude the  existence of 

nonstationary equ i l ib r ia  in such models. Of pa r t i cu l a r  i n t e r e s t  f o r  

asymptotic stock behavior a re  periodic nonstationary equ i l ib r ia .  



Definit ion.  . - . . . - - An equilibrium <C*t>O i s  - periodic . - -- - - i f  there  ex i s t s  

an integer T and T functions ( E l ,  ..., eT ) such tha t  

'F+T~ = C t ,  n = 0,1,2,  ..., t = 1, ..., T . The integer T i s  the 

period- of the  equilibrium. 

When equi l ib r ia  a r e  nonstationary, the intertemporal behavior of 

stocks i s  governed by a nonstationary process, even though the  underly- 

ing model i s  stat ionary.  I n  these s i tua t ions ,  while l imit ing stocks my 

not exhibit  convergence, a bound on t h e i r  osc i l l a to ry  behavior may be 

obtained. 

Theorem - - -- - 3.1 Suppose t ha t  - <c*>- t 0 i s  a periodic equilibrium 

(with period T ) .  Then under ( A . 1 )  and ( A . 4 )  the  sequence of - - - - - - - - - - - - - - -- -- - - - - - - - - - - - - -- - -- - - - - -- - - --- 
equilibrium stocks has a t  most T l i m i t  points in  R U I+-) . - - - - - - - - - - - - - -- - - - -- - - - - -- - - - - - 

Theorem 3.1 i s  in te res t ing  because it t e l l s  us tha t  an upper l i m i t  

on the  osc i l l a t ion  of -- stocks i s  given by the  number of d i f fe ren t  

functions which const i tu te  the  periodic equilibrium. It a l so  immedi- 

a t e ly  yie lds  a steady s t a t e  resu l t  for  s ta t ionary equi l ibr ia .  

Corollary 3.1 (steady State  Theorem for  Stationary Bequest Equi- - p --- - 

l i b r i a ) :  Suppose tha t  <c*>= i s  a s ta t ionary equilibrium with equi- t o  
l ibrium stocks -- Then -- under (A .1 )  - and (A.4)  

ex i s t s  i n  R U I+-).  
p- 

( i )  Corollary 3.1 does not preclude the  poss ib i l i ty  tha t  

l i m  k* = OD , which is not,  s t r i c t l y  speaking, a steady s t a t e  property. 
t- t 



However, k* < " i n  a large c l a s s  of s i tua t ions  ( a t  l e a s t ,  in  a l l  

s i tua t ions  where t he  corresponding optimal growth ' turnpike'  i s  f i n i t e  - 
see below). 

(ii) By continuity of f (  ) ,  it is  c l ea r  t h a t  equilibrium con- 

sumptions and outputs a l s o  converge t o  some l imit ing values whenever 

equilibrium stocks do. 

(iii) The steady s t a t e  theorem has been obtained - without assuming 

separabi l i ty  of the  u t i l i t y  functions, or  convexity of the  technology. 

In these respects,  compare the  r e su l t  t o  t ha t  obtained by Mitra and Ray 

[1983] for planning models. 

We now turn t o  a comparison of l imi t ing  cap i t a l  stocks for  bequest 

equilibrium with turnpike l eve l s  obtained i n  aggregative planning 

models. An omniscient planner who takes i n to  account the  i n f i n i t e  

stream of u t i l i t i e s  of a l l  generations is  c lear ly  act ing more fars ighted 

than a s ingle  generation which only cares about the  consumption of i t s  

successor. On t h a t  score,  one would expect a l a rger  stock t o  be gener- 

a ted i n  the  long-run, under planning. However, while each generation 

cares only about i ts  successor, it - recognizes -- t h a t  i t s  successor w i l l  do 

t h e  same, and, in  an t ic ipa t ing  bequests t o  be made by the  successor, 

w i l l  compensate by bequeathing a la rger  amount. This tends t o  -~ increase 

t h e  l imi t ing c a p i t a l  stock under a bequest equilibrium. The question of 

which steady s t a t e  is  l a rger ,  is, therefore ,  nontr iv ia l .  

To f a c i l i t a t e  comparison, assume t h a t  ( ~ . 5 )  holds. In t he  corres- 

ponding planned econoqy version of the model, a 'planner'  seeks a feas- 
* w i b l e  consumption program < C t ' ~  such t h a t  fo r  a l l  f eas ib le  consumption 



03 
programs <Ct>O , 

t * l i m  i n f  1 6 (v (c t )  - v ( c t ) ]  > - 0 ,  
T- t = O  

o r ,  i f  a l l  feas ible  u t i l i t y  sums converge, the  planner maximizes, sub- 

ject  t o  f e a s i b i l i t y  constra ints ,  

Call  such a maximizing program an optimal program. 

That t h i s  maximization process adequately represents the corres- 

ponding planned economy may be rationalized i n  two ways. F i r s t ,  we m y  

simply envisage a . f o r m 1  -- comparision between two economies, iden t ica l  i n  

technology and one-period u t i l i t i e s ;  the  one governed by two-period 

bequest motives, the other by an omniscient planner whose socia l  welfare 

function i s  expressible a s  (3 .2) ,  o r  the form implic i t  in (3.1). 

Secondly, we can imagine a l l  consumption choices in  the a l t r u i s t i c  

growth econorqy being l e f t  t o  the  planner who has the  same discount 

factor  6 a s  each generation. In t h i s  case, the planner replaces the  

mximization of (3.2) by 5/ 

- 
m x  
03 t = O  

<ct >O feas ible  

( the  inclusion of v(co) separately s ign i f ies  t ha t  the planner a l so  

cares for the u t i l i t y  of generation -1). But t h i s  i s  simply a sca la r  

multiple of (3.3). 



We now s t a t e  a well-known turnpike theorem f o r  t h e  planning prob- 

lem ((3 .1)  o r  ( 3 = 2 ) ) . / 0  

Theorem 3.2. (l'urnpike Theorem under Optimal planning) : 

Under (A. l ) ,  (A.2), (A. 5 ) ,  (A.5.1), and (A.6), an optimal pro- -- with 

stocks --- e x i s t s .  -- The - sequence of stocks 
e. 

converges, -- a s  

t + OD , t o  a l i m i t  s tock k E [ O  .-1. - I f  k > 0 , - it solves t h e  equa- - 
A A 

t i o n  6 f f ( k )  = 1 . - I f  6 l i m  f f ( k )  > 1 , then k > 0. 
kSO 

Theorem 3.3 es tab l i shes  a general r e s u l t  on t h e  r e l a t i v e  asympto- 
3t OD A OD 

t i c  behavior of <k > and <kt>0 . For s t a t ionary  bequest e q u i l i b r i a ,  t o  
A 

t h e  comparison between k and k* is then obtained a s  an immediate 

corol lary .  

Theorem 3.3: Under ( A . 1 1 ,  (A.21, ( A . 5 1 ,  (A.5.1), and ( ~ - 6 ) ~  - 
* OD * OD 

suppose t h a t  <Ct>O -- is a bequest equilibrium - with stocks <kt>O . 
Then l i m  sup k t  < k , t h e  planning turnpike. - 

t- 

Corollary 3.2: - -- Under (A. l ) ,  (A.2), (A.5), (A.5.1), - and (A.6), a 
s ta t ionary  bequest equil ibrium with l imi t ing  c a p i t a l  stock k* has t h e  

J C A  
property k < k . - 

* 
Remark: Whether o r  not t h e  s t r i c t  inequal i ty  k < k holds,  
A 

when k > 0 , remains an open question. 

Theorem 3.3 es tab l i shes  t h a t ,  i n  t h e  l i m i t ,  a planned econoqy must 

accumulate a t  l e a s t  a s  much c a p i t a l  a s  an a l t r u i s t i c  growth econonly. We 

r e i t e r a t e  t h a t  a recognition of t h e  f a c t  of a longer planning horizon 



A * 
does =al low us t o  conclude tha t  k > k . This i s  because the rela- - 
t i v e  'nuropia' i n  a bequest econony i s  o f f se t  by the fac t  that  bequests 

by successors t o  future generations mey induce a larger  bequest ( cap i t a l  

stock) by the present generation. 

I f  we add t o  our l i s t  of assumptions the re la t ively technical  

condition (A.3), and i f  we assume s t r i c t  discounting, then we obtain a 

much stronger resu l t :  bequest equilibrium cap i t a l  stocks do not exceed 

7 / optimal planning stocks i n  any period, given the same i n i t i a l  output.- 

Theorem 3.4: Under (A.11, (A.21, (A.31, (A.51, (A.5.2) & ( ~ . 6 ) ,  
w l e t  <y*, k;, c ; > ~  be a program originating from y E (O,Y), - t 0 

aD 
generated by the bequest equilibrium <Cf>O. Then, fo r  a l l  

A A 

t > - 0 ,  kt3 < kt ,  where <kt>: i s  the sequence of optimal planning - -- 

stocks . 

4. - Normative Behavior ---- 
Although the l i t e r a t u r e  on a l t r u i s t i c  growth economies has ignored 

the posit ive aspects of bequest equlibria discussed in  Section 3 ,  much 

a t ten t ion  has been directed towards understanding normative issues. 

Dasgupta [1974a,b] observed tha t ,  for a par t icular  c lass  of models, 

bequest equi l ib r ia  a r e  never Pareto optimal. Lane and Mitra (19811 

corroborate t h i s  resu l t  for  (possibly non-perfect) equi l ib r ia  i n  a 

somewhat more general c lass  of models. However, they introduce a concept 

of Pareto-optimality, modified in  an in te res t ing  way (see below). For 

par t icu la r  forms of the u t i l i t y  and production functions, they provide 

suff ic ient  conditions for  the existence of equi l ib r ia  which a r e  modified 



Pareto o p t i m l .  

Unfortunately, these exis t ing r e su l t s  a r e  not en t i re ly  sa t i s fac-  

tory.  Dasgupta considered only a  par t i cu la r  parametrization of the  

general model. Lane and Mitra r e s t r i c t ed  a t ten t ion  t o  Nash equi l ib r ia  

consisting of l inear  consumption functions. As Goldman [ 19801 has 

pointed out,  i n  such an equilibrium agents need not ac t  in  t h e i r  own 

best in te res t s  off the  equilibrium path. When an agent contemplates 

deviations from h i s  equilibrium st ra tegy,  he envisions l a t e r  generations 

selecting actions which do not maximize t h e i r  u t i l i ty-- the  Nash Equilib- 

rium i s  not dynamically consis tent ,  o r  'perfect '  i n  the  sense of Selten 

[1975] . Aside from the par t icu la r  parametrization analyzed by Dasgupta, 

the  s e t s  of Linear Nash Equil ibria and perfect  Nash Equil ibria ( 'bequest 

equ i l ib r ia1  ) are ,  i n  general, en t i re ly  d i s jo in t .  

I n  t h i s  section,  we obtain stronger versions of the  r e su l t s  pre- 

sented in Lane and Mitra and Dasgupta for  perfect  equ i l ib r ia  (bequest 

equ i l ib r ia )  in  a  m r e  general model. 

Following the  exis t ing l i t e r a t u r e ,  we consider three  normative 

notions: efficiency,  Pareto optimality, and modified Pareto o p t i m l i t y .  

Formal def ini t ions  follow : 

OD 
Definition: A feas ible  program cyt,kt,ct>O from yo E ( 0 , ~ )  i s  

e f f i c i en t  i f  there  does not ex i s t  a  feas ible  program <yi  ,kt c  > with t '  t 0 

CC I Ct f o r a l l  t > 0 ,  and c 1  > c  for  some s > 0 .  - S S - 
OD 

Definition: A feasible  program < Y ~ , ~ ~ , c ~ > ~  from Y E ( 0 .  Y) 0 
i s  --- Pareto-optimal i f  there  does not ex i s t  a  feas ible  program <yi,k;,c;>; 



with u ( c t  c 1  ) > u(ct ,  c ~ + ~ )  f o r  a l l  t > 0,  and t '  t+l - - 
' ) > U ( C ~ , C , + ~ )  f o r  some s > 0. u(c; ,Cs+l - 

Defini t ion:  A f eas ib le  program <y k c >- from y o€ ( 0 , ~ )  i s  t' t '  t 0 
modified-Pareto-optimal i f  t h e r e  does not e x i s t  a f e a s i b l e  program 

w 
, k t  c > with U ( C ( , C ~ + ~  ) > u(ct , c ~ + ~ )  fo r  a l l  < Y t  t t o  - 

t > - 0, U ( C ~ , C ~ + ~ )  > U ( C ~ , C ~ + ~ )  f o r  some s - > 0, and c; = co. 

The de f in i t ions  of ef f ic iency and Pareto optimali ty a r e  standard. 

The notion of modified Pareto optimali ty is  due t o  Lane and Mitra 

119811. The r e s t r i c t i o n  t h a t  co = c;J f o r  any comparison program 
00 

< y i ,  k i ,  c l >  r e f l e c t s  t h e  recognition t h a t  time 0 i s  not t h e  begin- t o  - 
ning of a l l  mankind, and the re fo re ,  in  considering Pareto dominance, t h e  

u t i l i t y  of generation -1 (which depends on co)  must not be tampered 

with. 

Given Theorem 3.3, it is  possible t o  e s t a b l i s h  t h e  e f f i c iency  of 

equilibrium program by applying known r e s u l t s .  

Theorem4.1: Under (A. l ) ,  (A.2), (A.3), (A.5), (A.5.2),=d- 

k >= i s  a feas ib le  program from yo generated by some 6 ,  <Yt ,C t ,  , 0 

bequest equilibrium <c*>= , then it is e f f i c i e n t .  t o  

Since t h e  u t i l i t y  of each generation depends on i t s  own consump- 

t ion  a s  well as t h a t  of i t s  successor, e f f ic iency i n  consumption does 

not guarantee Pareto optimali ty.  In  f a c t ,  a s  long a s  t h e  marginal 

propensity t o  consume of generation 1 is  l e s s  than uni ty ,  a t r a n s f e r  of 

consumption from generation 0 t o  generation 1 always y i e l d s  a Pareto 



dominating al location.  In t h i s  way, we es tab l i sh  

Theorem 4.2: Under ( A . 1 ) ,  (A.2), and (A.51, assume -- 
00 

<yt7kt,ct>0 i s  a feas ible  program from yo generated by a bequest 

equilibrium <c*>- Then i f  C r  i s  s t r i c t l y  Keynesian at  yl ,  and i f  t 0' 
w 

ko > 0, cO > 0, <yt ,kt 7ct>0 is  not Pareto optimal. 

Of course, a scheme for  dominating t he  equilibrium program by 

lowering co leaves generation -1 s t r i c t l y  worse off .  I f  we rule  out 

a l t e rna t ives  which a re  damaging t o  t h i s  pre-historic generation, it 

becomes impossible t o  dominate e f f i c i en t  equilibrium programs. The 

eff ic iency of these programs alone is suf f ic ien t  t o  guarantee modified 

Pareto optimality. This is s ta ted  i n  

Theorem 4.3: Let cy k ,c >OD be a feas ib le ,  s t r i c t l y  Keynesian t ' t  t o  -- 
00 

program from yo associated with some bequest equilibrium <Ce>O.  

Under ( A . l ) ,  (8 .2) ,  -- and (A.5), q t , k t , c t > i  is  modified Pareto optimal 

i f  and only i f  it is e f f i c i en t .  

Notice t ha t  the  conditions used t o  guarantee t he  equivalence of 

efficiency and modified Pareto optimality a r e  weaker than those used t o  

es tab l i sh  the  eff ic iency of equilibrium programs  heor or em 4.1).  Coupl- 

ing Theorems 4.1 and 4.3, we obtain as an immediate corol lary:  

Corollary 4.1: Let <y k ,c >OD be a feas ib le ,  s t r i c t l y  t ' t  t o  
Keynesian program from yo associated with some bequest equilibrium 

<c*>"' Under ( ~ . 1 ) ,  ( ~ . 2 ) ,  ( ~ . 3 ) ,  (A.51, (A=5.2), and ( A . 6 1 ,  t 0 ' --- 
w 

<Yt ,kt 7ct>0 is  modified Pareto optimal. 



Notice t h a t  every resu l t  in  t h i s  section aside from Theorem 4.1 

applies only t o  equi l ib r ia  sa t i s fy ing  a s t r i c t  Keynesian property. 

Although the  property Is somewhat stronger than t h a t  actual ly  needed t o  

es tabl ish  the r e su l t s ,  we have not yet  discovered an in te res t ing  way t o  

weaken it. Although experience suggests tha t  equilibrium programs are  

charac te r i s t i ca l ly  s t r i c t l y  Keynesian, violations of t h i s  property 

cannot be dismissed l igh t ly .  Normative behavior i n  such cases remains 

an important open question for  fur ther  research. 

To i l l u s t r a t e  the  complexities involved when the  s t r i c t  Keynesian 

property is violated,  we present the following hypothetical s i tuat ion.  

Suppose equilibrium consumption functions <c*>- a r e  s t r i c t l y  Keynsian t o  
along the equilibrium program for  a l l  t ,  except fo r  t = 1. Due t o  the  

concavity of the parametric functions, it i s  then impossible t o  Pareto 

dominate ( i n  t he  t r ad i t i ona l  sense) the  equilibrium plan by t ransfe r r ing  

resources from generation 0 t o  generation 1, as in  the proof of 

Theorem 4.2. This effect ively  leaves us with only the  c lass  of a l terna-  

t i v e  programs admitted under the def ini t ion of modified-Pareto optimal- 

i t y .  By Corollary 4.1, it i s  impossible t o  arrange a dominating alloca- 

t ion  belonging t o  t h i s  c lass .  Consequently, the hypothetical equil ib- 

rium is Pareto optimal i n  both the  t r ad i t i ona l  and modified senses. 

5 Proofs: In proving Theorem 4.1, we require the following resu l t .  

* OD 
Lemma 5.1: Suppose t ha t  <Ct>O is an equilibrium, and l e t  

Q) O D  
yo, y;) be two i n i t i a l  output levels.  Let <kt>0, be the  

corresponding sequence of cap i t a l  stocks. Then, i f  



1 I 
yo 5 yo (E ko - < kg) ,  kt 6 k; fo r  a l l  t > 0. 

* * 1 1 
Proof: Since y < y ko = yo- C (Y ) < Y;) - Co(y0) = ko, by 0 - 0 0 

I 
Theorem 2.1. Now proceed by induction. Let kT 6 kT for  some T > 0. - 
Then, since fT i s  increasing, yT+l = f T (k T ) < - fT(k$) = Y;+~. Using 

This es tabl ishes  the  lemma. Q.E.D. 

Remark: L e m  5.15 establishes an analogue of the  Brock 'monoton- 

i c i t y '  r e su l t   rock, [1971] ) when i n i t i a l  stocks are  changed. Note, 

moreover, tha t  it holds for  a nonstationary model. 

Proof of Theorem 3.1: We e s t ab l i l sh  t ha t  the  T subsequences 
* m 

< k t + n ~ > n = ~  ' t = O , . . . ,  T - 1 are  each monotone. Suppose t ha t  
* < 3 ko. Given a period of T, we can invoke Lemma 5.1 t o  claim t h a t  

* * * * 
kt+T ) kt fo r  a l l  t > 0. ( A  similar argument applies i f  kT < - kg) .  

This immediately yie lds  monotonicity of the relevant subsequences, and 

proves the  theorem. Q.E.D. 

Remark: We have established a stronger resu l t :  t h a t  the  T 
* m 

subsequences <kt +nT >n =O ' t = O , . .  ., T - 1, are  e i t he r  - a l l  monotone 

nonincreas ing , or  - a l l  monotone nondecreas ing .,i 

Proof of Corollary 3.1: Specialize t o  T = 1 in Theorem 4.1. 

Q.E.D. 

I n  proving Theorem 3.3, we consider two cases. In the f i r s t  case,  
* * 

l i m  sup kt k < m. We w i l l  take the  pure accumulation program 
t 

<y in  t h i s  case t o  be unbounded ( the  analysis of l i m  7 < i s  t o  t t 



s imilar  and eas ie r  t o  handle, and i s  omitted). I n  case 1, <k:>; i s  a 
A Y 

bounded sequence. Choose E > 0, and define y E f(1im sup y ) + E. 
t t 

A t  t h i s  point ,  we require some terminology and notation t o  des- 
A A 

cr ibe correspondences and t h e i r  properties. Let h: [0 ,  y ]  + [0,  y ]  be 

some correspondence. ~ ( h )  denotes the  graph of h. We say t ha t  h 

s a t i s f i e s  the  Keynesian property i f ,  for  a l l  (y , c ) ,  (y ' c '  ) E ~ ( h ) ,  with 

y '  > y,  we have c '  - c - < y'  - y. We say t ha t  h i s  f i l l e d  i f  it i s  
A 

convex valued, and i f  0 E  h (y )  . Define ff a s  t he  s e t  of a l l  upper 
A A 

hemicontinuous, f i l l e d  correspondences h: [0,y] + [0,y] with 0 < c < y - - 
fo r  a l l  c E h ( y ) ,  where h s a t i s f i e s  the  Keynesian property. 

We r e c a l l  two r e su l t s  from Bernheim and Ray [1983]. F i r s t ,  H 

endowed with the Hausdorff topology i s  compact. (we induce t h i s  topology 

on correspondences by placing the  Fausdorff topology on t h e i r  graphs). 

Second, there  is a unique upper semicontinuous selection C sa t i s fy ing  

the  Keynesian property from any h E  H .  

For any upper hemi-continuous correspondence h, we define t he  
1 

f i l l e d  correspondence as follows: 
I 

{c E [ o , Y ]  I there  ex i s t s  c '  , c" E h(y)  

A 

such tha t  c '  < c < c"} for  y [0,y] 

~ i l ( h ) ( y )  Z 

{c E ( o , ~ ]  1 there  ex i s t s  cf' E h(y)  

such t h a t  0 < c < c"} for  y = y 

* A 

For any consumption function C :  [0 ,y]  + [0,y] sa t isfying the  

Keynesian property, l e t  h ( ~ )  be the  uhc correspondence whose graph i s  
I 
I 



the  f i l l e d  closure of t ha t  of C. Then h E H.  
A 

Let T be an integer such tha t  y e  > y for  a l l  t > T. For t -  - 

We now establ ish  

OD Lemma 5.2: There ex i s t s  a subsequence <t >* ---------- with of <t' t ,09 - q q=o - 
to > T,  such tha t  - ----- 

* * 
(ii) kt -1 + E < k  as q + -  - 

9 
* * 

(iii) kt +l + g a p  q +  - with k < k - - -  
9 

00 Proof: It is easy t o  obtain a subsequence <tm>m=O -- such tha t  
* * * 

k + k* a s  m + 00. Since we a r e  in  Case 1, kt -1 and 
tm XI 

kt +1 are 
m 

00 00 bounded sequences. Hence there  i s  a subsequence <tn>n=O Of <tm>m=O 

* * * * * 
such tha t  k 

+ kt -1 + k ,  kt +1 + E as  n + -, with E - < k - > - k. 
t n  n n 

A 

The sequence (h(ct +l ) 1" n=O i s  in  H for  a l l  tn > T. By the  - 
n 

compactness of H , there  i s  a subsequence <t >OD with to > T ,  and 
q=o - 

A * 
h(ct + h E H . The subsequence 

tq 
c lear ly  has a l l  the  required 

9 
properties of the  lemma. Q.E.D. 

* 
Define 7 2 f (E) and l e t  C be the unique usc select ion from 

h* E H with the Keynesian property. 

* * 
Lemma 5.3: k maximizes ~ ( y , k )  - v(y - k)  + 6v(C ( f ( k ) ) ) .  



Proof: Note t h a t  t h e r e  e x i s t  T' > T such t h a t  f o r  a l l  - 
-1 A < f (y ) .  Therefore it i s  meaningful t o  wr i t e  t h a t  f o r  a l l  t > T 1 , Y t  - Q - Q 

t > T, kt maximizes 
9 - P 

A 

A * * 
over  k. A s  q + =, h(ct ) + h E H ,  by construct ion,  and (yt ,kt ) + ( j , k  ). 

Q Q Q 
Using cont inui ty  arguments along s imi la r  l i n e s  a s  those  in  t h e  proof of 

Lemm 5.9 of Bernheim and Ray [ 19831 , it is easy t o  see t h a t  t h e  s t a t e -  

ment of t h e  present  lemma must be t rue .  Q.E.D. 

Using lemmas 5.2 and 5.3, we can now prove 

* * * A  

L e m  5.4: I f  l i m  sup k r k < =, then  k < k. t - t 
* - '  

Proof: Suppose, on the  cont rary ,  t h a t  k > k. Then we claim 

t h a t  

l i m  6 [ c * ( f ( k x ) )  - c * ( f ( k ) ) ]  

e x i s t s ,  and equals  unity.  

Assume t h i s  is - not t r u e ;  then t h e r e  e x i s t s  kn f 2 with 

l i m  6 [ ~ * ( f  (k*) )  - c * ( f ( k n ) ) ]  - A + 

~ + O D  * k - kn 

where A i s  defined in  t h e  extended r e a l s .  

Case 1: X > 1. 

In t h i s  case ,  t h e r e  is  y > 1 and in tege r  N such t h a t  f o r  a l l  



* - 
Since  k  > k ,  and f  i s  cont inuous ly  d i f f e r e n t i a b l e  and concave, we 

have, by Theorem 3.2, s > 0 and M > N such t h a t  f o r  a l l  n  > M ,  - 

(5 .4)  f  (k*) - f  (k") < f '  ( kn ) (k*  - k n )  < s-2 (k*- k") . 
Combining (5.3) and (5 .4 ) ,  we have, f o r  n  - > M ,  

* 
which c o n t r a d i c t s  t h e  Keynesian proper ty  of  C . 

C a s e 2 :  X < l .  

I n  t h i s  c a s e ,  t h e r e  e x i s t s  LJ < 1 and i n t e g e r  N such t h a t  f o r  

a l l  n  > N,  - 

Now, f o r  a l l  n ,  

Using t h e  mean va lue  theorem, t h e r e  e x i s t s  an 

E [ ( y  - k*),  (F - k n ) ]  and 8" E [min{c* ( f (kn ) ) ,  c X ( f ( k * ) ) }  , 

m x { c * ( f ( k n ) ) ,  c * ( f ( k * ) ) } ]  such t h a t  



Using (5 .5 ) ,  (5.7) yie lds ,  f o r  n > N , - 

* * 
A s  n + -, kn + k , and so an+ y - k , by continuous d i f fe ren t iab i l -  

i t y  of v. Also, since C* i s  continuous from the  l e f t  ( t h i s  follows 
* 

from our usc selection of C* from h , and the Keynesian property),  

and f ( k n )  < f (k*)  fo r  a l l  n, C*(f(kn))  + c X ( f ( k * ) ) ,  so t h a t  

fin + c* ( f (kX) ) .  
* * 

Actual consumption along the sequence t + 1, ct +1 -- + f ( k  ) - k 
9 - 

n 
'i 

as  q + -  (see  Lemma 5.2). By the  usc of c*, and the  fac t  tha t  

Hence, 

(5.10) l i m  v' (an)  > - l i m  v'  ( f l n )  
n+ao n* 

But using (5.8),  (5.10) , and P < 1, it follows tha t  
* ~ ( 7 ,  kn) - V ( f ,  k ) > 0 for  large n, which contradicts Lemma 5.3. 

Therefore our claim, given by ( 5 . 1 ) ~  i s  indeed t rue .  Denoting by 
* * 

c*-(f(k ) )  the left-hand derivative of c*(*)  a t  f ( k  ), one has 

* * 
By the Keynesian property of C , C*-(f(k 1) < 1. IIence - 



n - -  
But t h i s ,  along with our assumption t h a t  k > k,  contradic ts  

Theorem 3.2. Q.E.D. 

I n  the second case,  we have the  pos s ib i l i t y  t h a t  - - 
* n  

l i m  sup k - k = -. This i s  ruled out in  
t t 

n  t 
Lemma 5.5: It i s  impossible fo r  l i m  sup k r k t o  equal+ -. 

t t 

t 
Proof: Suppose, on the  contrary,  t ha t  k = -. Then we claim 

n - -  * n  
t h a t  the re  ex i s t s  T such t ha t  k > k and c ~ + ~  > cT . Suppose T * - -  A 

not. Then for  a l l  T with kT > k (such T e x i s t  s ince k = 0 o r  
A * n  

6f '  ( k )  = 1, and ( A . 6 )  holds) ,  cTcl 5 cT . For a l l  t with 
n - - *  1 

k < k,  c ~ + ~  < f ( k ) .  I t  follows, therefore ,  t h a t  f o r  a l l  t -  - 
* 

t > 0, ct < B < -. Consider a sequence <Tn> v i t h  + -. Observe - - 
n  n 

t h a t  f o r  each n ,  cT maximizes 
n 

n  n  n  
< v ( ~ ) ( 1  + 6 ) ,  s ince c < B fo r  a l l  t. But W ( f (kT ), c +I - t -  

n n  * 
Since kT + -, so does f (kT ). By ( ~ . 5 ) ,  the re  e x i s t s  n such 

n n 
t h a t  

For such n, using (5.13) and ( 5 - 1 4 ) ,  



a contradiction. So our claim is t rue ,  and there  ex i s t s  T with 

* A * * 
kT > k , and c T+l > C~ 

* 
Further, kT maximizes 

* * * 
V(yT9 k )  v(yT - k)  + 6 ~ ( ~ ~ + ~ ( f ( k ) ) )  , 

Now we simply re t race  t h e  s teps  i n  the  proof of Lemma 5.4, sub- 
* * * * * 

s t i t u t i n g  C ~ + l  f o r  C , yT for  7, and k for  kT. We obtain a 

contradiction by demonstrating t h a t  f o r  - no sequence kn t $ does 

ex i s t  in  t he  extended reals .  The cases X > 1 and X < 1 are  ruled 

out i n  exactly t he  same way. To eliminate X = 1, assume, on the  con- 

t r a r y  t h a t  X = 1. We f i r s t  observe t h a t  (5.10) holds with s t r i c t  

inequal i ty ,  s ince  

n * * * * 
and a + yT - kT , + CT+l(f(kT)). 

Now pick LI > 1 such t h a t  v1  (an) - IJ v1 (0") > 0 fo r  

su f f i c i en t l y  large  n. For t h i s  , there  e x i s t s  M such t ha t  f o r  a l l  

n > M ,  - 



Following the  s teps  leading up t o  (5.8), we obtain 

and by our choice of p ,  t h i s  contradicts,  for  large n ,  the  fac t  t h a t  
* * 

kT is a mximizer of V(Y k) .  T' Q. E. D. 

Proof of Theorem 3 . 3 ~  Combine Lemmas 5.4 and 5.5. Q.E.D. 

I A 

Proof of Theorem 4.1: By Theorem 3.3, l i r n  sup k < k , where k 
I t- t -  

A 

i s  the  planning-turnpike. I f  k > 0, it solves 6 f l ( k )  = 1, by Theo- 
A 

rem 3.2. I n  t h i s  case, l i r n  inf f t ( k t )  > f t ( k )  = 1 1 6  > 1, by (A.5.2). - 
A t- 

I f  k = 0, l i r n  kt = 0, and so again, l i m  inf  f l ( k t )  = f l ( 0 )  > 1, by 
t- t- 

( 3 )  Define a sequence <p > by p = 1 f , and t 0 

P t + l  = pt/f  ( k t ) ,  t > 0. Then it i s  easi ly  ver i f ied t h a t  - 
l i r n  ptkt = 0, so  by a well-known c r i t e r i on  for efficiency (see ,  for  
t- 
example, Mitra (1979, Corollary 1) ) , <yt ,ct ,kt>; is  e f f i c i en t .  Q.E,.D. 

A feas ible  program is in t e r io r  i f  kt > 0 for  a l l  t > 0. One -- - 
can show tha t  i f  an equilibrium program is s t r i c t l y  Keynesian, then it 

is in te r io r .  

m 
Lemma 5.6: Under ( A . 1 1 ,  (A-21, ( A - 5 )  suppose t h a t  <C;j>O 

w 
i s  a bequest equilibrium. Let <yt,ct,kt>O be a n  equilibrium path 

* w 
generated by <Ct>O from y E ( 0 , ~ ) .  Then, i f  kt > 0, 

* 
I f ,  in  addit ion,  for  any t > 1, Ct i s  s t r i c t l y  Keynesian at yt ,  then, 



f o r  such t ,  - i f  kt-l > 0,  

Proof: Suppose, on t h e  contrary t o  (5.16) , t h a t  the re  is some 

t - > 0,  with v'  ( c t )  > d f '  (k t )v l  . Then the re  is n > 0 such t h a t  

To see  t h i s ,  note t h a t  f o r  any n > 0, v(ct+n) - v(ct )  = v '  (E)n, 

f o r  some E E (ct ,ct+n), and ~ v ( c ~ + ~  - 6v(ct+1 - f ( k t )  + f (k t  - '1) ) 

= 6v1 ( a ) f l  (B)n, where a E ( c ~ + ~  - f ( k t )  + f(kt - "9 C t+1  , 0 E (kt - . $1. 

AS n + 0,  v '  ( E )  + v l ( a )  + V ' ( C ~ + ~  ) f l ( 0 ) + f l ( k t ) .  So. by our 

hypothesis,  t h e r e  e x i s t s  n > 0 such t h a t  (5.18) holds. 

Now, s ince  by hypothesis,  4 > 0, pick n € , k t  so  t h a t  

(5.18) holds. Suppose generation t consumes c + n ins tead of ct. t 
Then 

* 
which con t rad ic t s  t h e  const,ruction of C ( t h e  weak inequal i ty  above t * 
follows from t h e  f a c t  t h a t  c ~ + ~ (  ) s a t i s f i e s  t h e  Keynesian property) .  



This e s t a b l i s h e s  (5.16). 

To e s t a b l i s h  (5.17) , proceed as above. Suppose, on t h e  con t ra ry ,  

t h a t  t h e  equi l ibr ium program is s t r i c t l y  Keynesian, and 
-, * 

) > s f '  ( k t - l ) ~ ' ( ~ t ) .  Then, def in ing  v'(ct-l  - At A (  t t t  y , ) (wi th  
* 

E given by an i n t e r v a l  i n  which t Ct i s  s t r i c t l y  ~ e y n e s i a n )  , we c la im 

t h a t  t h e r e  is  n E (0 ,  min (kt l ,€t ) )  such t h a t  - 

By an argument exac t ly  analogous t o  t h a t  fol lowing ( i v ) ,  and an 

analogous choice of a ,  B and 5, v(ct  n )  - V ( C ~ - ~ )  = v '  ( 5  I n ,  and - 
6v(c t )  - 6v(ct - f(kt- l )  + f(kt-l  + d) = 6 v 1 ( a ) f '  (B)n. Given t h a t  

v l ( S )  + v f ( c t  - as n + 0 ,  and ( v ' ( a ) , f f ( f 3 ) )  + ( v l ( c t ) , f ' ( k t - , ) )  

a s  n + 0,  it fol lows,  using X < 1 and v ( * )  inc reas ing ,  t h a t  (5.19) t 
must hold f o r  n small enough; i n  p a r t i c u l a r ,  f o r  some n E ( ~ , m i n ( k ~ - ~  , c t ) ) .  

Now suppose t h a t  genera t ion  t-1 consumes c + n in s t ead  of t 

ct. Then, us ing  t h e  s t r i c t  Keynesian proper ty ,  

* 
which c o n t r a d i c t s  t h e  cons t ruc t ion  of C This  e s t a b l i s h e s  t-1' 



A A A  

L e m  -- . 5.7- Under . . (~ .1 ) ,  (*.PI ,  and ( ~ . 5 )  l e t  -- .. . <yt .kt , c t> i  be  

t he  optimal planning program from y E (0 ,Y) . Then i f  ct > 0 for  - - . . .. - - .-. - - . - - . . . . . . - - . . .. . . .. . - - - - - 

any t > 0 ,  -- - 

A  A  A  

Proof. Suppose, on the  contrary, t ha t  v 1 ( c S )  < 6 f ' ( k S ) ~ ' ( ~ S + 1 ) ,  -- -- 
A  

and c > 0, fo r  some s > 0. Then, by an argument s imilar  t o  t ha t  i n  
S - 

A  

Lemma 5.6, there  i s  T I E  (0 ,  c S ) .  such tha t  

OD 
Now define < y ; . ~ h . k ~ > ~  from y E  (0.Y) by 

Y '  = Yt . t t s + 1. y = f (ks  + T I ) ,  k i  = k t .  t # s .  kb = kst T I -  and 

A  

Clearly t h i s  i s  feasible.  Moreover v(c;) = v ( c t ) .  t f s ,  s + 1, and 
A  A  A  A  A  A  

+ f (ks  + TI)  - f ( k  ) )  > v(cs) + 6v(cs+1)- V ( C ' )  + ~ v ( c { + ~ )  = v(cS - TI)  + 6 v ( c ~ + l  
t s 

A A A  OD 
So <yt ,kt . c ~ > ~  is  not optimal. a contradiction. 

* A  

Proof of Theorem 3.4  Suppose. on the  contrary, t ha t  ks > ks --- 
A  

fo r  some -- f i r s t  time period s > 0. Then y; 5 ys,  where - * OD 
represents optimal output l eve l s  under planning. Clearly, <Ct>s i s  a 

* * * O D  

bequest equilibrium. and <yt, k t ,  c > is a program generated by t h i s  
OD 

equlibrium, from y*. Let <y l  t '  k;, c '  > be the  program generated by 
S t s  * OD A  * A  

<Ct>s ,  from ys. Then. by Lemma 5.1, k i  > kt,  t > S o  SokA > k s -  

Hence c; < cs. 

A  

Now proceed by induction. Suppose t ha t  fo r  some t > - s ,  c i  < c t '  
A  

and k < k .  Then. using the  s t r i c t  concavity of v (and/or f )  , Lemma t 



A 

5.6 (noting t h a t  k > 0 and Lemma 5.7 (noting t h a t  c > o ) ,  t 

Using (5.221, it follows t h a t  v ' ( c l  ) > v c t 1  80 t+l 
A A 

C '  < C t + l  t+l' Since kl > kt (by hypothesis) and f is  increasing,  t 
= f )  - c;+~ > f (kt )  - c ~ + ~  - k;+l 

- kt+le Hence, c; < ct , fo r  a l l  

t > s. This es tab l i shes  the  ineff ic iency of - k ~ , c ' > ~  from ys, (Y;, t t s 

which contradic ts  Theorem 4.1. 

Hence k < kt f o r  a l l  t > 0. t -  - Q.. E. D. 

* 
Proof of Theorem 4.2: Since C1 is s t r i c t l y  Keynesian a t  yl, 

a n d  ko > 0, we have, by Lemma 5.6 

So, by a standard argument, (see ,  e.g. , proof of Lemma 5.6), there  

is  n (0 ,  co)  such t h a t  

Now define <yt, ' k '  t ,  c '>-  by y{ = yt,  t f 1, k i  = kt, t f 0, c; = ct ,  

t f 0, 1, and y i  = f (ko + ' I ) ,  k;) = ko + 9. c;) = c0 - n ,  

c '  = c + f (ko  + n )  - f (ko) .  Clearly. cy ,k ,c >w is  feasible.  1 1 t t t o  
For t - > 2, u ( c '  C '  ) = u ~ ( c ~ , c ~ + ~  t t ' t+l . For t = 1, 

U~(C; ,C ;+~)  = ut(c ; ,~t+l  ) > ut kt , c ~ + ~  ) For t = 0, using (5.24), 



This proves t h e  theorem. Q. E. D. 

Proof of Theorem 4.3: It is completely straightforward t o  show 

t h a t  efficiency is a necessary condition for  Pareto optimality. For 

sufficiency,  it suf f ices  t o  exhibi t  a s t r i c t l y  posi t ive  sequence of 
OD 

numbers , <a > such t h a t  fo r  any feasible  program k f  ,cf>OD with t o  < Y t ' t  t 0 

This c lear ly  would es tab l i sh  t he  modified Pareto-optimality of 

qt 'kt ,ct>; 

To t h i s  end, we f i r s t  es tab l i sh  the  existence of a s t r i c t l y  posi- 
OD 

t i v e  sequence < B t > O ,  with Bo > B1 > B2 > .. . , such tha t  fo r  a l l  
OD 

f eas ib le  programs < y { , k i , ~ i > ~ ,  

A t l i m  in f  l Bt6 [v(c;) - v(c t ) ]  - < 0 
T+OD t = O  

Since C t  i s  s t r i c t l y  Keynesian at yt f o r  a l l  t - > 1, and so 

qt ,kt ,ct>;  is  in t e r io r ,  we have, by (5.17) 



Now define Po = 1, and, recursively,  

Then, by v i r t ue  of (5.27), B0 > Bl > B2 > ... > 0 . Now define 

(5.29) t 
P t  = 6 Btvl ( c t )  , t > 0 . - 

Then, using (5.28), 

Now, by Theorem 4.1, <y k c >OD i s  e f f i c i en t .  Hence, by a t '  t' t 0 

r e su l t  of Cass and Yaari [1971], 

T 
(5-31) l i m  inf  p (c  - ct ) < 0 t t  - T- t = O  

OD 
fo r  a l l  feas ib le  programs < ~ i , k i , c i > ~ .  

But fo r  t > 0, v(c() - V(C ) < v l ( c t ) ( c (  - - c t ) ,  by concavity of t -  
v ) Multiplying both s ides  by summing over 0 t o  T, and 

using (5.291, one has (5.26). 

Note t h a t  by (5.26), we a l s o  have t h a t  f o r  a l l  feas ib le  programs 

<y,',k,',ci>; with c;I = coy  

t l i m  in f  Bt6 Iv(cC) - v(ct ) I  2 0 
T- t=l 

Now we show t h a t  it is possible t o  s e l ec t  a s t r i c t l y  posi t ive  



aD 
sequence <a > such t h a t  (5.25) and (5.32) a r e  iden t i ca l .  Since t h e  t o  
equil ibrium program s a t i s f i e s  (5.32) it w i l l  therefore  a l s o  s a t i s f y  

( 5.25 ) ( f o r  these  p a r t i c u l a r  u t i l i t y  weights ) . This es tab l i shes  t h a t  

t h e  program is  modified Pareto optimal. 

Observe that (5.25) and (5.32) a r e  i d e n t i c a l  i f ,  f o r  a l l  t > 0 

(!This can be v e r i f i e d  by rearranging terms). Consequently, i f  we choose 

a a r b i t r a r i l y  and l e t  at be defined by 0 

w 
we w i l l  have constructed a sequence <a > f o r  which (5.25) and (5.26) t o  
a r e  iden t i ca l .  Unfortunately, t h e  sequence may not be s t r i c t l y  posi- 

t i v e .  Our t a s k  is t o  s e l e c t  a. appropriately.  

Let $t ( B 2 t + l  - 132t+2 . Note t h a t ,  by (5.27) and (5.28), 

J l t > O .  Define 

We know t h a t  a > 0. Since < B ~ > ;  is a s t r i c t l y  pos i t ive ,  s t r i c t l y  0 

decreasing sequence, the  s e r i e s  defining a must converge, and 0 

a. < B1. 

Now we solve t h e  d i f ference  equation (5.32) . For t odd, we ge t  



Since <fit>: is s t r i c t l y  posi t ive  and s t r i c t l y  decreasing, 

For t even, we get  

since $ J ~  > 0 fo r  a l l  t. Q.E.D. 



Footnotes 

1/ This model is adapted from Kohlberg [1976] , and can be traced t o  - 
Dasgupta (1974a ,b] . 

21 The val idi ty of our resul ts  when there is  subs t i tu tabi l i ty  between - 
Ct and Ct+l remains an open question. 

3/ The borderline case l i m  f '  (k) = 6-1 presents Inore subtle techni- - 
t- ca l  problems which we have not explored. 

4 /  The definition originally appears in Arrow [1973]. - 
5/ One can, of course, use a similar argument when feasible u t i l i t y  - 

streams diverge. 

6/ The proof is omitted. For a m r e  general version of t h i s  resul t  - 
in  an aggregative context, see Mitra and Ray [1983]. 

7/ Since t h i s  resul t  implies Theorem 3.3, and is obtained under only - 
s l ight ly  more res t r ic t ive  conditions, Theorem 3.3 mey appear 
redundant. However, Theorem 3.3 is used in  the proof of Theorem 
4.1. Consequently, it is necessary t o  s t a t e  these resul ts  sepa- 
rately.  
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