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PART II. Properties of Bequest Equilibria

1. Introduction

In this paper, we study the properties of equilibria in a station-
ary version of the aggregative growth model with intergenerational
altruism introduced in Bernheim and Ray [1983].2J In this model, each
generation is active for a single period. At the beginning of this
period it receives an endowment of a single homogeneous good which is
the output from a 'bequest investment' made by the previous generation.
It divides the endowment between consumption and investment. The return
from this investment constitutes the endowment of the next generation.
Each generation derives utility from its own consumption and that of its
immediate successor. However, since altruism is limited, in the sense
that no generation cares about later successors, the interests of dis-
tinct agents come into conflict.

Models of this type have been used to analyze a number of issues
concerning intergenerational altruism. One line of research, pursued by
Arrow [1973] and Dasgupta [19Tka] elucidates the implications of Rawl's
principle of just savings. Others, beginning with Phelps and Pollak
[1968]. have addressed the question of how an 'altruistic growth econ-
omy' might actually evolve over time. Topics of subsequent investiga-
tion have included the asymptotic behavior of capital stocks, the effi-
ciency and optimality of equilibrium programs, and the implications of
intergenerational altruism for the distribution of wealth.

In previous efforts to characterize the properties of altruistic
growth economies, one of two approaches has been adopted. The first,

employed by Phelps and Pollak [1968] and Dasgupta [19Tka,b], is to
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simplify the basic structural model by assuming special functional
forms. Generality is sacrificed to assure tractability. The second
approach, adopted by lane and Mitra [1981], is to only consider equilib-
ria belonging to a specific class--generations are restricted to choose
their strategies from the set of linear cbnsumption functions. As
Goldman [1980] has pointed out, in such an equlibrium, agents need not
act in their own best interests off the equilibrium path. In general,
the set of equilibria in linear strategies and the set of perfect equi-
libria (in the sense of Selten [1975]) are entirely disjoint. Conse-
quently, this second approach is unsatisfactory.

This previous emphasis on parametric specifications and restricted
strategy spaces can perhaps be explained in part by the fact that, until
quite recently, no general proof of the existence of perfect equilibria
had been exhibited for such models. Indeed, the available existence
theorems, adopted from the literature on consistent plans (Peleg and
Yaari [1973]), applied only to models where agents were restricted to
choose linear strategies, as in lane and Mitra. Furthermore, Kohlberg
[1976] exhibited a disturbing counterexample, for which he demonstrated
that no stationary, perfect equilibrium existed in differentiable
strategies.

In Bernheim and Ray [1983], we established the general existence
of perfect 'bequest equilibria' in a reasonably well behaved class of
consumption functions (upper semicontinuous, continuous from the left,
with limits on the right). Since this is inherently the most interest-

ing class of equilibria, it is important to characterize the properties
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of associated programs. We concern ourselves here with two classes of
properties-~'positive' and 'normative'.

The positive features of equilibrium programs have received little
attention from previous authors. Aside from a few comments by Kohlberg
[1976], virtually nothing is known about the asymptotic behavior of
capital stocks. In particular, will the long-run capital stock which
arises from intergenerational conflict be higher or lower than the
'turnpike' associated with the solution to the optimal planning problem?
On a priori grounds, the answer is not clear. Agents who take only a
limited interest in the future will tend to bequeath less than those who
are far-sighted. However, since each generation views its children's
bequest as pure waste, it must bequeath a larger sum to obtain the same
consumption value.

In this paper, we obtain steady-state results for equilibrium
capital stocks completely analogous to the well-known optimal planning
results. By comparing 'steady-states', we show that no limit point of
equilibrium capital stocks can exceed the planning turnpike. Under
slightly more restrictive conditions, we show that the equilibrium
capital stock never exceeds the planning stock in any period. Conse-
quently. limited intergenerational altruism may provide the basis for a
theory of chronic capital shortages.

A second set of questions addressed here concern normative issues.
In particular, Dasgupta [19T4b] has argued that equilibrium programs are
never Pareto optimal. lane and Mitra [1981] demonstrated that, never-

theless, in some cases there exist equilibrium programs which are
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Pareto-optimal in a modified sense. However, as discussed above, these
results are not entirely satisfactory, in that they apply only to
specific parametrizations of the general model, or require that agents
select strategies which imply implausible behavior outside of
equilibrium.

In this paper, we extend these previous results to the set of
perfect equilibria for altruistic growth economies. Our method of proof
differs substantively from that employed in previous work. Other
authors have assured tractability by considering equilibria in extremely
well behaved strategies (Lane and Mitra [1981] take consumption func-
tions to be linear; Kohlberg [1976] takes them to be differentiable).
Since we have established existence in a significantly less tractable
class of strategies, this approach is unsatisfactory. Nevertheless, we
obtain our results without restricting the class of admissible
strategies.

The current paper is organized as follows. Section 2 displays the
model, basic assumptions and definitions of equilibria, and reviews some
important results presented in Bernheim and Ray [1983]. Positive
aspects of equilibrium programs are considered in Section 3; normative
aspects are discussed in Section 4. All proofs are deferred to

Section 5.

2. The Model
The model is closely related to that of Kohlberg [1976], and

corresponds to the stationary altruistic growth econonmy described in
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Bernheim and Ray [1983]. There is one commodity, which may be consumed
or invested. The transformation of capital stock into output takes one

period, and is represented by a production function f. In the follow-

ing sections, certain results require only one weak assumption about f:

(A1) £ R, * R, is increasing, continuous, and £(0) = o.

To establish other results, we strengthen this assumption by adding

either or both of the following restrictions:

(A.2) f is continuously differentiable and strictly concave.

(A.3) 1lim £'(x) > 1
k+0

In each time period, decisions conerning production and consump-
tion are made by a fresh generation. Thus, generation t 1s endowed
with some initial output (y;), which it divides between consumption

(ct) and investment (kt =y, - ¢ ). Each generation derives utility

t
from its own consumption, and the consumption of the generation immedi-~
ately succeeding it. Preferences are represented by a common utility

function, u. We assume that u satisfies certain relatively weak

conditions:

(A4) u: IRE + R is increasing, continuous, and strictly

] [} 4
concave. Further, for all ct, ct, ct+l’ ct+l with
2 c! » !
Cy cy 0, Crel ’ Ciil » 0,
- nulea! 1 RTY N |
u(ct, ct+l) u(ct, ct+l) > u(ct, ct+l) u(ct, ct+l) .
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Remark: The second half of (A.4) is simply an assumption of weak

complementarityﬁg/ For u differentiable, it is equivalent to

2
39 u/actact+l > 0.

In most of the relevant literature, a stronger version of (A.4) is
employed. In particular, utility is taken to be separable in Cy and
Cy41> and to have a rather specific form. At some points, we adopt this
more restrictive formlation, in part for technical reasons, and in part
to facilitate a comparison of equilibrium and planning programs. Speci-

fically, we occasionally strengthen (A.4) to

(A.5) There exists an increasing, continuously differentiable,

strictly concave function v: R _~ R with vic) *®was ¢+ » and a

discount factor 6 > 0 such that ule, ¢') = v(c) + év(e') for

(c, ¢") Ejﬁi.

For certain results (particularly those concerning comparisons
. between equilibrium and planning programs) it will be convenient to
assume that agents discount the future at some positive rate. In these

cases, we will impose one of the following restrictions on 6.

»

(A.5.1) & € (0,1]

(A.5.2) & € (0,1)

(A.5.1) and (A.5.2) can be thought of as the discounted, and strictly
discounted cases, respectively.
Finally, to prove certain results, we employ the following assump-

tion concerning the relationship between production and utility.
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(A.6) 1lim £'(k) < 6%

koo

Remark: A sufficient condition for (A.6) under either (A.5.1) or
(A.5.2) is that the production function eventually cross (and stay
below) the 45° line. This assumption rules out the case,

lim £'(k) > G_l, but for most of the results presented here, our

o0
techniques are readily applicable to that situationméf See Kohlberg
[1976] for a partial analysis of the 'utility-productive' case when f

is linearrﬁj

We take the historically given initial output at time zero, y, to
lie in some compact interval [0,Y], Y > 0. A program <yt,ct,kt>; is

feasible from y € [0,Y] if

Yo =¥
Vg T eyt Ky » +20
Yea1 = f(kt) ,t >0
(yi» cp» k) 20 ,, £20
Denote by <ct>3 the corresponding feasible consumptioqurogram.

The pure accumulation program is a sequence <§t,6t,it>g with Et =0

for all t > O, it =k, for all t >0, it+l = ft(Et) for all

t
t > 0, and io =Y,

Define Ct as the set of functions C: - [0, it] + [0, it]’ with

C(y) <y forall y€ [o,it]. Define U(e,y, €, ;) = ule,Cy  (f (y - ¢)))

t+1
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€ > i <y <y,
for all C, ., (%+l’ and (c,y) » 0 with ¢ <y < Vs
We will impose the behavioral assumption that all generations

select perfect Nash strategies (see Selten (1965)). Formally,

Definition: The sequence <C€>Z, Cg € Ct’ t > 0 1is a bequest
equilibrium (or simply, equilibrium) if for all t > 0 and

y € 10,7,1,

Cz(y) € arg max U(c, y; C¥* .)

*
0%e< y t+1

The reader should be aware that although we have restricted atten-
tion to the class of strategies for which consumption depends only upon
initial endowment, our bequest equilibria continue to be perfect equili-
bria when all restrictions on strategic choice are removed. See
Bernheim and Ray (1983] for a more complete discussion.

A bequest equilibrium is stationary if the equilibrium consumption

- -]

] i <C¥*>
funct}ons Ct 0

In Bernheim and Ray [1983], we established the existence of a

satisfy C¥(y) =C (y) for all y € [0,it], t > 0.

§+1
bequest equilibrium under assumptions (A.l) and (A.4), without imposing
stationarity on the underlying structure of the model. In addition, we
proved that when the underlying model is stationary (the case considered
here), a stationary bequest equilibrium exists. Existence is guaranteed
within the class of consumption functions which are upper semicontinu-
ous, continuous from the left, with limits on the right.
As an important step in establishing existence, we proved that

equilibrium consumption functions satisfy the 'Keynesian property'--the
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marginal propensity to consume out of endowment never exceeds unity.

Formally,

Definition: A consumption function Ct € Ct satisfies the

Keynesian property if for all y,, ¥, [0, ft], with

Yy <¥p Clry) -Cvy) sy, -y

Theorem 2.1: Suppose that for some consumption function

Ct+1 € Ct+l used by generation t + 1, an optimal consumption function

for generation t, Ct € Ct’ given by

C.(y) € arg max Ule,y; Ciy) » v € [0,y,]
(014 c(y

is well defined. Then, under (A.1) and (A.4), C. satisfies the

Keynesian property.

This theorem is used extensively throughout the current paper.
Its proof is omitted--the reader is referred to Bernheim and Ray [1983].
Note that Theorem 2.1 does not rule out the possibility that the
marginal propensity to consume out of endowment exactly equals unity.
Due to severe technical problems associated with this case, several of
our results apply only to equilibrium programs which are 'strictly
Keynesian', in the following sense. Define, for each Ct‘e Ct’ y >0,

and € > 0,

2 1
Ct(y ) - Ct(y ) 1 2
X(Ct,y,e) = supl y2 - yl |(y"y") >0
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and y ~ € < yl < y2_< y + €}

Clearly, if Ct is an equilibrium consumption function, X(Ct,y,s) < 1

for all y <0 and € > 0. We wish to rule out the case of equality.

Definition: Suppose that for some C, € C%, y € [O,it], there

t
exists € such that A(Ct, y,€) < 1. Then we say that C, is

strictly Keynesian at y. Now suppose that <C*t>g is a bequest equi-
librium, and <yt,ct,kt>3 some equilibrium program originating from

Yo 2 0. Then this program is strictly Keynesian if Cg is strictly

Keynesian at Yy for all t 2 O.

Results which pertain only to strictly Keynesian equlibrium pro-
grams are, of course, limited in scope. However, in cases where we have

been able to solve for interesting bequest equilibria explicitly, this

condition has been satisfied.

3. Positive Behavior

In intertemporal optimal planning models, an important character-
istic of optimum capital stocks and consumption levels is that these
converge, over time, to some stationary input-output-consumption config-
uration. In this section, we establish some analogous results for the
limiting behavior of capital stocks under a bequest equilibrium.

In stationary models, stationary equilibria always exist (Bernheim
and Ray [1983]). of course, this does not preclude the existence of
nonstationary equilibria in such models. Of particular interest for

asymptotic stock behavior are periodic nonstationary equilibria.
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o0

Definition. An equilibrium <C*t>0

is periodic if there exists

an integer T and T functions (C C such that

l""a T )

* = = = P . i i
Ct+Tn Ct’ n=0,1,2,ce., t =1, ,T The integer T is the

period of the equilibrium.

When equilibria are nonstationary, the intertemporal behavior of
stocks is governed by a nonstationary process, even though the underly-
ing model is stationary. In these situations, while limiting stocks mey

not exhibit convergence, a bound on their oscillatory behavior may be

obtained.

o0

Theorem 3.1 Suppose that <C§>O

(with period T). Then under (A.1) and (A.4) the sequence of

is a periodic equilibrium

equilibrium stocks has at most T 1limit points in R U {+=} .

Theorem 3.1 is interesting because it tells us that an upper limit
on the oscillation of stocks is given by the number of different
functions which constitute the periodic equilibrium. It also immedi-

ately yields a steady state result for stationary equilibria.

Corollary 3.1 (Steady State Theorem for Stationary Bequest Equi-

o0

libria): Suppose that <Cjc">O is a stationary equilibrium with equi-
librium stocks <k:>°°. Then under (A.1) and (A.4) 1lim k¥ = k*
t >

exists in R U {+=}.

Remarks:
(i) Corollary 3.1 does not preclude the possibility that

1lim k*¥ = @ | which is not, strictly speaking, a steady state property.
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However., k¥ < = in a large clasé of situations (at least, in all
situations where the corresponding optimal growth 'turnpike' is finite -
see below).

(ii) By continuity of f(+), it is clear that equilibrium con-
sumptions and outputs also converge to some limiting values whenever
equilibrium stocks do.

(iii) The steady state theorem has been obtained without assuming
separability of the utility functions, or convexity of the technology.
In these respects, compare the result to that obtained by Mitra and Ray
[1983] for planning models.

We now turn to a comparison of limiting capital stocks for bequest
equilibrium with turnpike levels obtained in aggregative planning
models. An omniscient planner who takes into account the infinite
stream of utilities of all generations is clearly acting more farsighted
%han a single generation which only cares about the consumption of its
successor. On that score, one would expect a larger stock to be gener-
ated in the long-run, under planning. However, while each generation
cares only about its successor, it recognizes that its successor will do
the same, and, in anticipating bequests to be made by the successor,
will compensate by bequeathing a larger amount. This tends to increase
the limiting capital stock under a bequest equilibrium. The question of
which steady state is larger, is, therefore, nontrivial.

To facilitate comparison, assume that (A.5) holds.. In the corres-
ponding planned economy version of the model, a 'planner' seeks a feas-

* o
>

ible consumption progrdm <ct 0

such that for all feasible consumption
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T %
(3.1) lim inf ] 87 [v(e,) - v(e, )] >0,
T+ £=0

or, if all feasible utility sums converge, the planner maximizes, sub-

Jject to feasibility constraints,

(3.2) E GtV(ct)
=0

Call such a maximizing program an optimal program.

That this maximization process adequately represents the corres- .
ponding planned economy may be rationalized in two ways. First, we may
simply envisage a formal comparision between two economies, identical in
technology and one-period utilities; the one governed by two-period
bequest motives, the other by an dmniscient planner whose social welfare
function is expressible as (3.2), or the form implicit in (3.1).
Secondly, we can imagine all consumption choices in the altruistic
growth economy being left to the planner who has the same discount
factor & as each generation. In this case, the planner replaces the

maximization of (3.2) by 5/

(3.3) max vic,.) + E [v(c,) + &v(c
0 £=0 t

t
t+l) s

o
<e, > i
ct 0 feasible

(the inclusion of v(co) separately signifies that the planner also
cares for the utility of generation ~1). But this is simply a scalar

multiple of (3.3).
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We now state a well-known turnpike theorem for the planning prob-

lem ((3.1) or (3.2)).8/.

Theorem 3.2. (Turnpike Theorem under Optimal Planning):

Under (A.1), (A.2), (A.5), (A.5.1), and (A.6), an optimal program with

stocks <kt>; exists. The sequence of stocks <kt>; converges, as

t +* , toa limit stock k€[0,»). If k >0 , it solves the equa-

tion § f'(kx) =1 . If & lim £'(kx) >1 , then k > O.
k+0

Theorem 3.3 establishes a general result on the relative asympto-

* ~
tic behavior of <kt>g and <kt>g . For stationary bequest equilibria,

~

the comparison between k and k* is then obtained as an immediate

corollary.

Theorem 3.3: Under (A.1), (A.2), (A.5), (A.5.1), ggg_(A.6),

*
is a bequest equilibrium with stocks <kt>g .

t 0

* oo
suppose that <C, >

i .
Then 1lim sup kt < k , the planning turnpike.

1, »oo

Corollary 3.2: Under (A.1), (A.2), (A.5), (A.5.1), and (A.6), a

stationary bequest equilibrium with limiting capital stock k* has the

* )
Progertz k < k .

* ~
Remark: Whether or not the strict inequality k < k holds,

when k > 0 , remains an open question.

Theorem 3.3 establishes that, in the limit, a planned economy must

accumulate at least as much capital as an altruistic growth economy. We

reiterate that a recognition of the fact of a longer planning horizon
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does not allow us to conclude that i > K . This is because the rela-
tive 'myopia' in a bequest economy is offset by the. fact that bequests
by successoré to future generations may induce a larger bequest (capital
stock) by the present generation.

If we add to our list of assumptions the relatively technical
condition (A.3), and if we assume strict discounting, then we obtain a
much stronger result: bequest equilibrium capital stocks do not exceed

1/

optimal planning stocks in any period, given the same initial output.—

Theorem 3.4: Under (A.1), (A.2), (A.3), (A.5), (A.5.2) and (A.6),

let <y¥, k:, c§>; be a program originating from Yo € (0,Y),

generated by the bequest equilibrium <Cg>z. Then, for all

t >0, kg < kt’ where <kt>g is the sequence of optimal planning
stocks.
L. Normative Behavior

Although the literature on altruistic growth economies has ignored
the positive aspects of bequest equlibria discussed in Section 3, much
attention has been directed towards understanding normative issues.
Dasgupta [19Tha,b] observed that, for a particular class of models,
bequest equilibria are never Pareto optimal. Lane and Mitra [1981]
corroborate this result for (possibly non-perfect) equilibria in a
somewhat more general class of models. However, they introduce a concept
of Pareto~optimality, modified in an interesting way (see below). For
particular forms of the utility and producﬁion functions, they provide

sufficient conditions for the existence of equilibria which are modified
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Pareto optimal.

Unfortunately, these existing results are not entirely satisfac-
tory. Dasgupta considered only a particular parametrization of the
general model. Lane and Mitra restricted attention to Nash equilibria
consisting of linear consumption functions. As Goldman [1980] has
pointed out, in such an equilibrium agents need not act in their own
best interests off the equilibrium path. When an agent contemplates
deviations from his equilibrium strategy, he envisions later generations
selecting actions which do not maximize their utility--the Nash Equilib-~
rium is not dynamically consistent, or 'perfect' in the sense of Selten
[1975]. Aside from the particular pdrametrization analyzed by Dasgupta,
the sets of Linear Nash Equilibria and perfect Nash Equilibria ('bequest
equilibria’) are, in general, entirely disjoint.

In this section, we obtain stronger versions of the results pre-
sented in Lane and Mitra and Dasgupta for perfect equilibria (bequest
equilibria) in a more general model.

Following the existing literature, we consider three normative
notions: efficiency, Pareto optimality, and modified Pareto optimality.

Formal definitions follow:

Definition: A feasible program Yok e from Yo € (0,Y) is

>oo
t 0
efficient if there does not exist a feasible program <y£,k't,c£>g with

c! >e¢ for all t > O, and ¢' > ¢ for some s > 0.
t -t - s S -

Definition: A feasible program <y, .k, ,c from y, € (0, Y)

>oo
t 0

is Pareto-optimal if there does not exist a feasible program <yé,k%,c%>§
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) for all t > 0, and

+ 1]
with u(c Ciil >0,

'
£ ct"’l) Z u(Cts

u(cé,cé+1) > u(cs,cs+l) for some s > O.

Definition: A feasible program <yt,kt,ct>3 from Yo € (0,Y) is

modified-Pareto-optimal if there does not exist a feasible program

1 1] ] et 3 ] 1
<yt’kt’ct>0 with u(ct,ct+1) > u(ct,ct+l) for all

t > 0, ule!,c!

| -
. s+1) > u(cs,cs+l) for some s >0, and c¢j = cqe

The definitions of efficiency and Pareto optimality are standard.
The notion of modified Pareto optimality is due to Lane and Mitra
[1981]. The restriction that ¢y = ¢ for any comparison program
<y£, ké, c£>; reflects the recognition that time O is not the begin;
ning of all mankind, and therefore, in considering Pareto dominance, the
utility of generation -1 (which depends on co) must not be tampered
with.

Given Theorem 3.3, it is possible to establish the efficiency of

equilibrium programs by applying known results.

Theorem 4.1: Under (A.1), (A.2), (A.3), (A.5), (A.5.2), and

(A.6), if <yt,ct,kt>g is a feasible program from y, generated by some

bequest equilibrium <c:>; , then it is efficient.

Since the utility of each generation depends on its own consump-
tion as well as that of its successor, efficiency in consumption does
not guarantee Pareto optimality. In fact, as long as'the marginal
propensity to consume of generation 1 is less than unity, a transfer of

consumption from generation O +to generation 1 always yields a Pareto
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dominating allocation. In this way, we establish

Theorem 4.2: Under (A.1l), (A.2), and (A.5), assume

<yt’kt’ct>; is a feasible program from Yo generated by a bequest

equilibrium <C:>;. Then if C{ is strictly Keynesian at ¥is and if
-]
> > i i .
ko > 0, CO 0, <yt’kt’ct 0 is not Pareto optimal

Of course, a scheme for dominating the equilibrium program by
lowering cqy leaves generation -1 strictly worse off. If we rule out
alternatives which are damaging to this pre-historic generation, it
becomes impossible to dominate efficient equilibrium programs. The
efficiency of these programs alone is sufficient to guarantee mcdified

Pareto optimality. This is stated in

Theorem 4.3: Let <yt,kt,ct>; be a feasible, strictly Keynesian

program from Yo associated with some bequest equilibrium <C§>3'

Under (A.1), (A.2), and (A.5), <yt,kt,ct>°0° is modified Pareto optimal

if and only if it is efficient.

Notice that the conditions used to guarantee the equivalence of
efficiency and modified Pareto optimality are weaker than those used to
establish the efficiency of equilibrium programs (Theorem 4.1). Coupl-

ing Theorems 4.1 and 4.3, we obtain as an immediate corollary:

be a feasible, strictly

Corollary L4.1: Let <yt’kt’ct>;

Keynesian program from Yo associated with some bequest equilibrium

co
0 .
Tk

<C#>, . Under (A.1), (A.2), (A.3), (A.5), (A.5.2), and (A.6),

t’ct>; is modified Pareto optimal.
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Notice that every result in this section aside from Theorem k4.1
applies only to equilibria satisfying a strict Keynesian property.
Although the property is somewhat stronger than that actually needed to
establish the results, we have not yet discovered an interesting way to
weaken it. Although experience suggests that equilibrium programs are
characteristically strictly Keynesian, violations of this property
cannot be dismissed lightly. Normative behavior in such cases remains
an important open question for further research.

To i1llustrate the complexities involved when the strict Keynesian

property is violated, we present the following hypothetical situation.

[- -}

0 are strictly Keynsian

Suppose equilibrium consumption functions <C€>
along the equilibrium program for all t, except for t = 1. Due to the
concavity of the parametric functions, it is then impossible to Pareto
dominate (in the traditional sense) the equilibrium plan by transferring
resources from generation O to generation 1, as in the proof of
Theorem 4.2. This effectively leaves us with only the class of alterna-
tive programs admitted under the definition of modified-Pareto optimal-
ity. By Corollary k4.1, it is impossible to arrange a dominating alloca-

tion belonging to this class. Consequently, the hypothetical equilib-

rium is Pareto optimal in both the traditional and modified senses.

5. Proofs: In proving Theorem 4.1, we require the following result.

*
Lemma 5.1: Suppose that <Ct>; is an equilibrium, and let

Yoo yé be two initial output levels. Let <kt>:, <k

corresponding sequence of capital stocks. Then, if
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] 1
< .
Yo <Y, (or kO < ko), kt kt for all t > 0

. * ! * J '
Proof: Since y, < vy, ky =¥~ Co(yo) Sy - Co(yo) = kg, by
]
Theorem 2.1. Now proceed by induction. Let k,II < kT for some T > 0.

] t
Then, since fp is increasing, = fT(kT) < fT(kT) = Yp,1- Using

Y41

T+1°
This establishes the lemma. Q.E.D.

=k

. % ' * t
Theorem 2.1 again, kp,; = ¥qu; = Cpey Opyq) € ¥y = Cpuq Oipyq)

Remark: Lemma 5.15 establishes an analogue of the Brock 'monoton-
icity' result (Brock, [1971]) when initial stocks are changed. Note,

moreover, that it holds for a nonstationary model.

Proof of Theorem 3.1: We establilsh that the T subsequences

* 00

<kt+nT>n=O’ t =0,s0e, T - 1 are each monotone. Suppose that

* *
kT > ko. Given a period of T, we can invoke Lemma 5.1 to claim that

*

* * *
kt+T >k for all t > 0. (A similar argument applies if k_ < kO).

This immediately yields monotonicity of the relevant subsequences, and

proves the theorem. Q.E.D.

Remark: We have established a stronger result: that the T

* o0

' >
subsequences <kt+nT n=0’

t =0,e0., T = 1, are either all monotone

nonincreasing, or all monotone nondecreasing./

Proof of Corollary 3.1l: Specialize to T = 1 in Theorem k4.1.

Q.E.D.

In proving Theorem 3.3, we consider two cases. In the first case,

* *
lim sup kt =k <o, We will take the pure accumulation program
t

<§t>g in this case to be unbounded (the analysis of lim it < ® ig
t
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*
similar and easier to handle, and is omitted). In case 1, <kt>g is a

~

bounded sequence. Choose € > 0, and define y

*
f(lim sup y,) + €.
£ t
At this point, we require some terminology and notation to des-
cribe correspondences and their properties. Let h:[0, y] » [0, y] ©be

some correspondence. G(h) denotes the graph of h. We say that h

satisfies the Keynesian property if, for all (y,c), (y'c') € G(h), with

y' >y, we have c¢' - c <y' - y. We say that h is filled if it is
convex valued, and if 0 € h(&) . Define H as the set of all upper
hemicontinuous, filled correspondences h:[O,&] > [O,;] with 0°< ¢ <y
for all ¢ € h(y), where h satisfies the Keynesian property.

We recall two results from Bernheim and Ray [1983]. First, H
endowed with the Hausdorff topology is compact. (We induce this topology
on correspondences by placing the Hausdorff topology on their graphs).
Second, there is a unique upper semicontinuous selection C satisfying
the Keynesian property from any h€ H.

For any upper hemi-continuous correspondence h, we define the

filled correspondence as follows:
{c € [0,y] | there exists c', ¢" € h(y)

such that c¢' < c < c¢"} for y [0,y]
Fil(h)(y) =
{c € [0,y] | there exists c¢" € h(y)

such that 0 < ¢c € ¢"} for y =y

For any consumption function C:[0,y] + [0,y] satisfying the

Keynesian property, let h(C) be the uhc correspondence whose graph is
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the filled closure of that of C. Then h € H.
Let T Dbe an integer such that i{ >y for all t > T. For
~ ~ ~ ~ * A
t > T, define C.:[0,y] » [0,y] by C (y) = ¢, (y), ¥y € [0y].

We now establish

Lemma 5.2: There exists a subsequence <t > of <t> , With
_— — - qQ g=0 — t=0> ——
t, 2 T, such that
(1) k* *
> \
1 t k as g+ =
q
() k* E *
ii v .1 T K S k as q+ =
s . * . *
(1i1) kt a’ kas g+ », with k <k
) m(c, ,)>n
(iv hic, ) h as q + «,
Proof: It is easy to obtain a subsequence <tm>;=0 such that
ke >k 51 in Case 1, k. d k.
[~ 3
+ as m + oo, ince we are in Case 1, £ .1 @an £ 41 ore
m m m
bounded sequences. Hence there is a subsequence <t > of <t >
n n=0 m m=0
h that k. +k .k . +k, k . +E ith £ <k >k
such that " kTR R as n + o, Wi < > k.
n n n
~ L 3 -
The sequence {h(ctn+l)}n=0 1§ in H for all t, > T. By the
compactness of H, there is a subsequence <tq>:=0 with to > T, and

~ *
h(Ct +l) + h € H. The subsequence tq clearly has all the required

properties of the lemma. Q.E.D.

- *
Define ¥ = f(K) and let C be the unique usc selection from

*
h € H with the Keynesian property.

Lemma 5.3: k maximizes V(¥,k) = v(§ - k) + 6v(C (£(k))).
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Proof: Note that there exist T' > T such that for all

tq >T', ¥y, < f-l(y). Therefore it is meaningful to write that for all
q
t > T, k maximizes
q - t
q -~
viy, - k) + 8 v (C. (£(x)))
Qq q
- *
over k. As q * =, h(Ct ) +h € #H, by construction, and (yt ,kt )+ (i,k*).

q q
Using continuity arguments along similar lines as those in the proof of

Lemma 5.9 of Bernheim and Ray [1983], it is easy to see that the state-

ment of the present lemma mist be true. Q.E.D.
Using lemmas 5.2 and 5.3, we can now prove

* * ® o~
Lemma 5.4: If 1im sup k. =k <=, then k < k.
t

-~

*
Proof: Suppose, on the contrary, that k > k. Then we claim

that

1im 6 [c¥(e(x")) - c*(r(x))]

* *
ktk K - X

(5.1)

exists, and equals unity.
*
Assume this is not true; then there exists k" ¢+ k with

1im s[c*(s(x")) - c*(e(x™)]

¥*
n»e k - kn

(5.2)

where A is defined in the extended reals.

Case 1: A > 1.

In this case, there is Yy > 1 and integer N such that for all
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n > N,
(5.3) slc(e(x™) - M (e ™)) > vk~ k™)

% -
Since k > k, and f is continuocusly differentiable and concave, we

have, by Theorem 3.2, € > 0 and M > N such that for all n > M,

(5.4) £k7) - £(6™) < £ (kM) (K - k7)< Y—G'—E (x'- %) .

Combining {5.3) and (5.4), we have, for n > M,

CT(e(x")) - ¢ (e > F "= > Y (06T - ™)

b

which contradicts the Keynesian property of C*.

Case 2: A < 1.

In this case, there exists u < 1 and integer N such that for

all n > N,

(5.5) slc™(e(x™) - ¥ (e™N] < ulx*- xk®)
Now, for all n,
(5.6) V(F.X") - V(7,k) = [vF - ¥") - v(7 - k)]

+ 8wt (£ (™)) - vicT(ex)))]

Using the mean value theorem, there exists o

€EF -x), F-x"] and 8" [minic (£(x™), C (£(x )} ,

max{C (£(™)), ¢ (£(x ))}] such that
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(5.7) V(7,kD) = V(F,k") = v' (a®) (k" - kP) + v' (8M)[64C*(£(x™)) - c*(£(x™))}]

Using (5.5), (5.7) yields, for n > N ,

(5.8) V(F.kD) - V(FkT) > [vi (™) - wvr (8M)] (k" - k)

* - *
n sk , and so o> Y - k , Dby continuous differentiabil-

As n + =, k

ity of v. Also, since c* is continuous from the left (this follows
*

from our usc selection of C* from h , and the Keynesian property),

* * * *
and f£(x") < £f(k ) for all n, C (£(x™)) + C (f(kx )), so that

* *
8™ » ¢ (£(k )).
* *
Actual consumption along the sequence tq *1l,c (k') - k
q

as q * © (see Lemma 5.2). By the usc of c*, and the fact that

h(é ) + h(C*),

t +1
q
(5-9) C*(f(k*)) _>_ f(k*) - l_{_ Z f(E) - k* = y'. - k*
Hence,
(5.10) lim v'(a”) > 1lim v'(8")

n->° n°

But using (5.8), (5.10), and u < 1, it follows that
vy, k) - V(7, k*) > 0 for large n, which contradicts Lemma 5.3.
Therefore our claim, given by (5.1), is indeed true. Denoting by

¥*_ * * %*
C (f(k )) the left-hand derivative of- C (+) at f(k ), one has
*_ * *
(5.21) 8C T(f(k M)k ) =1

*  %_ *
By the Keynesian property of C , € ~(f(k )) < 1. Hence



-70-

(5.12) 8! (k

~

*
But this, along with our assumption that k > k, contradicts
Theorem 3.2. Q.E.D.

In the second case, we have the possibility that

* *
lim sup kt =k =, This is ruled out in
t

* *
Lemma 5.5: It is impossible for 1lim sup kt = k to equal+ o,
t

*
Proof: Suppose, on the contrary, that k = . Then we claim

Y

* * *
that there exists T such that k., > k and Crpl > Cp

T Suppose
* -
not. Then for all T with kT > k (such T exist since k = 0 or

- * *
§f'(k) = 1, and (A.6) holds), ¢ < ¢, . Forall t with
T+1 - °T
*

* ~ ~
kt < k, < f(k). It follows, therefore, that for all

t+1

c
* #*
t > 0, ct < B < », (Consider a sequence <Tn> with kT + =, Observe
n

that for each n, cTn+l maximizes
(5.13) Wity ), ¢) = vie) + 6vicy (£(£(i ) - ¢))]
5.13 kp ), ) = vic) + v[cT ol ffley ) - c
n n n
B (r(x, ), " (B)(1 + 68), si * 1
ut W (f T , C Tn+£ < v(B){1 +8), since c <B forall t.
*
Since kT + ®©, 50 does f(k; ). By (A.5), there exists n such
n n
that
*
(5.14) v(f(kT )) + Sv{o) > v(B)}(1 + §) .
n

For such n, using (5.13) and (5.14),

W(f(k; ), f(k; )) > W(f(k; )
n n

),

’cT +]1
n
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a contradiction. So our claim is true, and there exists T with

~ * #*

(5.15) k, >k , and Cpey > Cp

*
Further, kT maximizes

Viygs ¥) = viyg - k) + 6v(Cp, (£(0)))

*

and clearly, cx (f(k )) = Cogq®

T+1

Now we simply retrace the steps in the proof of Lemma 5.4, sub-

* * * - * *
stituting CT+l for C , Yo for y, and k for k We obtain a

To

*
contradiction by demonstrating that for no sequence k? 4 kT does

(f(k )) - c (f(k“))l
*
kp - K"

slc.,

lim

n->o

T+1

exist in the extended reals. The cases A > 1 and A < 1 are ruled
out in exactly the same way. To eliminate A = 1, assume, on the con-
trary that A = 1. We first observe that (5.10) holds with strict

inequality, since

( ( * * *
Cpyp TNK )) cT 41 > Cp = Vp - Kp

n * * n
and o =+ Yp = kp > B T+l(f(k )).

Now pick u > 1 such that v'(a™) - u v'(B%) > 0 for
sufficiently large n. For this u, there exists M such that for all

n > M,

81Cy, 1 (£(kp)) = Cp,y (£G™)] < nlky, - k)
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Following the steps leading up to (5.8), we obtain
¥ n * % , N ' (oD * n
V(yg, K') = V(yg, kp) > [v' (") = uv' (8M)1 0k, - &™),

and by our choice of 4y, this contradicts, for large n, the fact that

*

ko is a maximizer of V(y;, k). Q.E.D.

Proof of Theorem 3.3: Combine Lemmas 5.4 and 5.5. Q.E.D.

>

A

Proof of Theorem 4.1: By Theorem 3.3, lim sup kt < k , where k

1 >0

is the planning-turnpike. If k > 0, it solves § f'(k)

1, by Theo-

rem 3.2. In this case, 1lim inf f'(kt) > £'(k) = 1/6 > 1, by (A.5.2).

tr

If k =0, lim k_ = 0, and so again, 1im in? f'(kt) = f'(0) > 1, by

t oo v e

(A.3). Define a sequence <p,> by P, = 1/f'(f—l(y)), and

= 1 e s . . oas
Piq Pt/f (kt)’ t > 0. Then it is easily verified that

1lim ptkt = 0, so by a well-known criterion for efficiency (see, for
£ >
example, Mitra (1979, Corollary 1)), <yt,ct,kt>3 is efficient. Q.E.D.

A feasible program is interior if kg >0 for all t > 0. One
can show that if an equilibrium program is strictly Keynesian, then it

is interior.

-

0

is a bequest equilibrium. Let <yt,ct,kt>z be an equilibrium path

Lemma 5.6: Under (A.1), (A.2), and (A.S5) suppose that <c¥>

* o
generated by <C >, from y € (0,Y). Then, if k, > O,

(5.16) vile ) < 8rt(k) viley ),

t+1

*
If, in addition, for any t > 1, Ct is strictly Keynesian at Vi then,
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for such t, if k¢ 1 > O,
(5.17) vile, 1) <68 (k) vi(e,)

Proof: Suppose, on the contrary to (5.16), that there is some

t > 0, with v'(ct) > Gf'(kt)v'(c ). Then there is n > 0 such that

t+l

(5.18) v(ct+n) - V(ct) > 6v(ct+1) - 6v(ct+1 - f(kt) + f(kt-n)) .

To see this, note that for any n > O, v(ct+n) - v(ct) = v'(E)n,

for some E€ (c,,c,+n), and 8vic, . ,) - év(c

t°7t t+l t+1
= ' ' - -
Sv'(a)f'(B)n, where a € (ct+l f(kt) + f(kt n), ¢

- f(kt) + f(kt -n))

cep)s B € (kg =y k).

As n+0, v'(§) »v'(a) »v'(e ), £'(B) > £'(k. ). So, by our

t+1
hypothesis, there exists n > O such that (5.18) holds.

Now, since by hypothesis, kg > O, pick n € (O,kt), so that

(5.18) holds. Suppose generation t consumes c_ + n instead of c,.

t
Then

*

t’Ct+l )

ufc (f(kt))) = V(ct) + 8vie

t+l

< vie, + n) + &v(c

. cay - £Oe ) + £k~ n))

viey+ n) + 8v(cy, (£l - n))

IA

*
t+1

1}

ue,+ n, C (£(k,- n)))

*
which contradicts the construction of Ct (the weak inequality above

*

follows from the fact that Ct+l(°) satisfies the Keynesian property).
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This establishes (5.16).
To establish (5.17), proceed as above. Suppose, on the contrary,

that the equilibrium program is strictly Keynesian, and

N

' V(1" ' . = * s
v (ct-l) > &f (kt-l)v (ct). Then, defining Xt = X(Ct,yt,et) (with

*
Et given by an interval in which Ct is strictly Keynesian), we claim

that there is n € (0, min (kt_l,et)) such that

(5.19) v(e +n) - v(ct_ ) > Gv(ct) - <5v(ct - At[f(kt_ -n)])

) - f(kt_

t-1 1 1 1l

By an argument exactly analogous to that following (iv), and an

analogous choice of a, B and &, v( +1n) - vie, ;) =v'(E)n, and

Cea1 t-1

Gv(ct) - GV(ct -k, ) + f(kt—l +mn)) = 6v'(a)f'(B)n. Given that

t-1

vi(E) > v'(c ) as n+ 0, and (v'(a),r'(B)) » (v'(ct),f'(k

t-1 £1))

as n > 0, it follows, using Xt <1 and v(e¢) increasing, that (5.19)

must hold for n small enough; in particular, for some n € (O,min(kt_l,et)).

Now suppose that generation t-1 consumes cy + n instead of

Cyo Then, using the strict Keynesian property,

ule, 1» Cp(rlk, 1)) = vie, |) + évle,)

A

vie, +n) +ovle, - A [f(k ) - £k, - )])

+n) + 8 v(C £k, - )

- t-1 -1

u(c + n, C:(f(kt_ -n)))

t-1 1

*
which contradicts the construction of Ct This establishes

l'
(5.17). Q. E. D.
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Lemma 5.7: Under (A.1), (A.2), and (A.5) let <yt.kt,ct>; be
the optimal planning program from y € (0,Y). Then if ¢ > 0 for

any t >0,

~ ~ ~

(5.20) v (c ) v'(c )

t+1

Proof. Suppose, on the contrary, that v'(c ) < 8f'(k_ )v'(c_,;

)9

and cS >0, for some s > O. Then, by an argument similar to that in

-

Lemma 5.6, there is n € (0, cs). such that

(5.21) vie,) - v(e, - m) < dvle, + £k  +n) = £k ) - ov(c ;)

1

Now define <y£,c£,k£>; from y € (0.Y) by

~

% Y = - # -
Yoot Fs 4 loyl f(kS +n), ki =k, t#s, ki k_+ 1, and

y

A

>

| — | - 1 -
el =t # 3.8 +1, cl=c =N ¢l =c o+ f(ks + 1) f(ks).

Clearly this is feasible. Moreover v(cé) = v(ct)~ t #s,s + 1, and

+ £l + ) - £lk)) > v(e,) + Svleg

-

v(cé) + 8v(c! ) = v(cs - 1) + Gv(;s

t+1 +1 +l)'

) A ~

So <yt,kt.ct>o is not optimal. a contradiction.

A

*
Proof of Theorem 3.4 Suppose., on the contrary, that ks > k

S

for some first time period s > O. Then yg < Ygo where <yt>;

*
represents optimal output levels under planning. Clearly, <Ct>: is a

¥ o

* *
bequest equilibrium. and <yt’kt’ct>s is a program generated by this

equlibrium, from y;. Let <y£, ké, °£>: be the program generated by
¥* oo ~

* ~
> . - . ' > . ! -
<Ct s° from Y Then. by Lemma 5.1, kt b kt’ t s So ks > ks

Y

Hence c¢!' < c .
s s

A

1 < c .

Now proceed by induction. Suppose that for some t > s, ey %

and kt < ké. Then. using the strict concavity of v (and/or f), Lemma
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5.6 (noting that k% > 0), and Lemma 5.7 (noting that ;t > 0),

(5.22) Gf'(ké) V'(°£+1)

v

vilel) > v’(;t)

A

Ce+1

v

af-(ﬁt) vi(e, ) > 6 £ (kt) viieg,,) -

t+1

) > v'(; ), so

. . T ! '
Using (5.22), it follows that v (ct+l t+1

~

' . ' . e .
Cii1 < Cr1” Since k! > kt (by hypothesis) and f is increasing,

t
] = 'Y o ot - = . ' .
L f(kt) el > f(kt) Cra1 = Kial Hence, cf < c,, for all
t > s, This establishes the inefficiency of <y%,k£,c%>: from Yg»
which contradicts Theorem k4.1.
Hence Xk < k for all t > 0. Q. E. D,

t t

#*
Proof of Theorem 4.2: Since C1 is strictly Keynesian at y,,

and kg > 0, we have, by Lemma 5.6

(5.23) v'(co) <$ f'(ko) v'(cl) .

So, by a standard argument, (see, e.g., proof of Lemma 5.6), there

is n (0, ¢.) such that

0

(5.24) v(co) - v(co— n) < GV(cl+ f(k0+ n) - f(x.)) - Gv(cl)

0

Now define <y£,k' RN by yé =¥is t #1, k! =k, ,t#0, c] =

t>7t70 t t° t
+ ' = ! = ! = -
t#0, 1, and yj f(ko +m), kjy = ky *+n,ej=cy-n,
' - - L . I3
c] =cgt f(ko + 1) f(ko). Clearly. <y, .k ,c, >, is feasible.

] ] —-—
For t > 2, ut(ct,c ) = u,(

£+l & ct’ct+l)' For t =1,

[} 1] —_ 1) e 3
ut(ct’ct+l) = ut(ct’ct+l) > ut(ct’ct+l)' For t = 0, using (5.2h),



7=
u (co, c; ') = v(c -n)+ Gv(c + f(ko +n) - f(ko))
> v(co) + Gv(cl) = u0<co,c1) .

This proves the theorem. Q. E. D.

Proof of Theorem 4.3: It is completely straightforward to show

that efficiency is a necessary condition for Pareto optimality. For
sufficiency, it suffices to exhibit a strictly positive sequence of

numbers“$<qt>; such that for any feasible program <yt ' t 0 with

' =
¢ = ©o°

(5.25) 1lim 1nf[a G[V(c ) - v(c )]+ Z @ lue!,e!. ) - ule

) <o
T oo t= 1 t’ t+l -

£°C¢+1

This clearly would establish the modified Pareto-optimality of

[~ <)
DAL L

To this end, we first establish the existence of a strictly posi-

@« -

tive sequence <Bt>0’ with 80 > Bl > 82 > 2ee, such that for all

-]

3 ] 1] l

feasible programs <yt’kt’°t>0’

T ot
(5.26) lim inf § B 8" [v(e!) - v(c )] <O

t t t -
T+ =0

Since Cg is strictly Keynesian at Yy forall t >1, and so

0 SR >o is interior, we have, by (5.17)

v (c )
< IF (k )v (e

(5.27) <1 , t>0 .

t+i)
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Now define BO = 1, and, recursively,
v' (e )B
t'"t
(5.28) B ; .
t+1 = 8f (kt)v (ct+l)

Then, by virtue of (5.27), By > B, >B,> ... >0 . Now define
= sta

(5.29) p, = 8 B,V (ct) , t>0.

Then, using (5.28),

P
(5.30) b t >0 ,with py = v'(c))

Piy1 = F » t >
t4l T (K,

Now, by Theorem k4.1, VoK oCy >0 is efficient. Hence, by a

result of Cass and Yaari [19T1],

(5.31) lim inf p, (c! -¢c ) <0
T Z £'% T %’ 2

for all feasible programs <yt k' 0

vy _ ' | I :
But for t > O, v(ct) v(ct) <v (ct)(ct ct), by concavity of
v(e). Multiplying both sides by Btdt, summing over 0 to T, and
using (5.29), one has (5.26).

Note that by (5.26), we also have that for all feasible programs

<Yy ok oy 0 with ¢} = cy,
(5.32) lim inf % B, st [v(c - v(ct)] <0 .
To  t=1 -

Now we show that it is possible to select a strictly positive
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sequence <at>; such that (5.25) and (5.32) are identical. Since the
equilibrium program satisfies (5.32) it will therefore also satisfy
(5.25) (for these particular utility weights). This establishes that
the program is modified Pareto optimal.

Observe that (5.25) and (5.32) are identical if, for all t > O

t
a.qt Gat = G'Bt+1

(This can be verified by rearranging terms). Consequently, if we choose

ao arbitrarily and let a, be defined by

(5.32) = &8, - 8a ,

% £ -1

we will have constructed a sequence <at>; for which (5.25) and (5.26)
are identical. Unfortunately, the sequence may not be strictly posi-

tive. Our task is to select ao appropriately.

Let ¥, = (Byy ., - Byy,p)e Note that, by (5.27) and (5.28),

wt > 0. Define

We know that % > 0. Since <Bt>g is a strictly positive, strictly
decreasing sequence, the series defining o mist converge, and
ao < Bl.

Now we solve the difference equation (5.32) . For t odd, we get
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t

2

(-]

t
G[Bt_

'
t=(t21)/2 T

Since <B >0 is strictly positive and strictly decreasing,

t 0

o

y_ < B, , so a > 0.
t=(t-I)/2 * ¢ t

For t even, we get

R
1}

5% [ay - (B, ~ B,) - (B - B) = oo = (B, 1 - B)]

8

1T wl>o
=t /2

since ¥, > 0 for all t. Q.E.D.
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Footnotes
This model is adapted from Kohlberg [1976], and can be traced to
Dasgupta [19Tha,b].

The validity of our results when there is substitutability between
ct and ¢y remains an open question.

The borderline case 1lim f'(k) = §71 presents more subtle techni-

00
cal problems which wethave not explored.
The definition originally appears in Arrow [1973].

One can, of course, use a similar argument when feasible utility
streams diverge.

The proof is omitted. For a more general version of this result
in an aggregative context, see Mitra and Ray [1983].

Since this result implies Theorem 3.3, and is obtained under only
slightly more restrictive conditions, Theorem 3.3 may appear
redundant. However, Theorem 3.3 is used in the proof of Theorem
4.1. Consequently, it is necessary to state these results sepa-
rately. -
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