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ALTRUISTIC GROWTH ECONOMIES#*
PART I. EXISTENCE OF BEQUEST EQUILIBRIA

by

Douglas Bernheim** and Debraj Ray#*#

I. Introduction

In this paper, we study an aggregative growth model with intergen-
erational altruism. Each generation is active for a single period. At
the beginning of this period it receives an endowment of a single homo-
géneous good which is the‘output from a 'bequest investment' made by the
previous generation. It divides the endowment between consumption and
investment. The return from this investment constitutes the endowment
of the next generationml/ Each generation derives utility from its own
consumption and that of its immediate successor. However, since alt-
ruism is limited, in the sense that no generation carés about later
successors, the Iinterests of distinct agents come into conflict.

Models of this type have been used to analyze a number of issues
concerning intergenerational resource allocation. One line of research,
pursued by Arrow [1973] and Dasgupta [19Tha], elucidates the implica-
tions of Rawls' principle of just savings. These authors were primarily
concerned with the characterizing optimal érowth under a particular
welfare criterion.

Others have addressed the question of how an 'altruistic growth
econony ' might actually evolve over time. This literature, initiated by
Phelps and Pollak [1968],2/ makes extensive use of the Nash equilibrium

concept. BSeveral interesting issues emerge.
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First, is the resulting intertemporal allocation Pareto-
efficient? Phelps and Pollak [1968] and Dasgupta [197ka,b] reply in the
negative. However. Lane and Mitra [1987] argue that the traditional
definition of Pareto-efficiency is inappropriate in this context. They
demonstrate that when the set of feasible programs is properly re-
stricted, Nash Equilibrium programs within a certain class are indeed
Pareto-efficient (in a model involving special functional forms).

Second, how do capital stock and level of consumption behave over
time? In particular, how does the equilibrium program compare to that
which would be selected by an omniscient plannef? Although this ques-
tion has received some attention from Phelps and Pollak [1968] and
Kohlberg [1976], it remains largely unanswered.

There are important practical issues to be stressed in this con-
text. Barro [197h] has argued that under certain special conditions,
intergenerational altruism neutralizes the real effects of Social Secur-
ity and deficit financing. If these conditions are not met, such gov-
ernment policies could be employed as strategic instruments in instances
of intergenerational conflict.

The framework of intergenerational altruism is also useful for
analyzing how bequests effect the distribution of wealth in an inter-
temporal context. For a discussion of such issues, see Loury [1981].

Many of the theoretical issues which arise in this framework are
closely related to the literature on 'consistent plans', pioneered by
Strotz [1956) and Pollak [1968]. The postulate of a sequence of 'plan-
ners' with conflicting goals bears strong formal resemblance to that of
a single planner with changing tastes. Consequently, some of the
general results obtained in this literature may be applicable to altru-

istic growth models.
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The purpose of this paper and its sequel is to address three

important theoretical issues which remain open: the existence of equi-
librium, the normative properties of equilibrium programs, and the
asymptotic behavior of capital stocks in an altruistic growth economy.

It is perhaps surprising that no satisfactory existence theorem
has been exhibited for this important and useful class of modelshif
Authors studying altruistic growth equilibria (see, for example, Phelps
and Pollak [1968], Dasgupta [197_ha,b] , Kohlberg [1976]|, Lane and Mitra
[1981]), while aware of the existence problem, have typically concerned
themselves with the properties of equilibria.

The lack of an existence proof is particularly troubling in the
light of a counterexample due to Kohlberg [1976] for a particularly
simple model,.&/ which demonstrates that Nash equilibria with certain
reasonable properties (stationarity and continuous differentiability of
the equilibrium strategies) may not, in general, exist. Lane and Mitra
[1981] suggest that a proof of existence (for non-stationary equilibria)
appeafs in the literature on consistent plans (Peleg and Yaari
[1973] ). However, the notion of equilibrium adopted there restricts all
agents to select linear consumption functions. This is clearly unsatis-
factory. In particular, when an agent contemplates deviations from his
equilibrium strategy, he envisions later generations selecting actions
which do not in general, maximize their utility. Thus the equilibrium
is not perfect, in the sense of Selten [1965]. Furthermore, Peleg and
Yaari do not address the question of whether stationary equilibria
exist. Goldman [1980] supplies an existence proof for perfect equi-

libria, but this is applicable only to models with finite time
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horizons. Moreover, such truncation prevents him from considering the
existence of stationary equilibria.

In this paper, we provide two results on the existence of equili-
bria in altruistic growth models. First, under very general conditions,
perfect Nash equilibria always exist in reasonably well-behaved strate-

gies (equilibrium consumption functions are upper semicontinuous, con-

tinuous from the left, with limits on the right). Furthermore, if the

model is itself stationary, then a stationary eguilibrium will exist as
well. Consequently, Kohlberg's counterexample results from the restric-
tion that consumption functioné must be continucusly differentiable.

In the sequel to this paper, we investigate the positive and
normative aspects of equilibrium programs for altruistic growth
economies. One question addressed there concerns the asymptotic

ior of capital stocks. In particular, will the long run capital stock
which arises from intergenerational conflict be higher or lower than the
'tﬁrnpike' associated with the solution to the optimal planning

problem? On a priori grounds, the answer is not clear. Agents who take
only a limited interest in the future will tend to bequeath less than
those who are far-sighted. However, since each generation views its
children's bequest as pure waste, it must bequeath a larger sum to
obtain the same consumption value.

In the sequel, we obtain steady-state results for equilibrium
capital stocks completely analogous to the well-known optimal planning
results. By comparing 'steady-states', we show that no limit point of
equilibrium capital stocks can exceed the planning turnpike. Conse-

quently, limited intergenerational altruism may provide the basis for a




theory of chronic capital shortages.

A second set of questions addressed in the sequel concern norma-
tive issues. In particular, are equilibrium programs efficient? If so,
are they Pareto optimal in the traditional sense, or modified Pareto
optimal in the sense of Lane and Mitra [1981]? Although previous
authors have addressed these questions, their analyses have been con-
fined either to particular.parametric specifications of the model, or to
the class of Nash Equilibria characterized by linear consumption
functions (Dasgupta [19T4a,b], Lane and Mitra [1981]). We have already
mentioned the shortcomings of adopting the second approach. In the
sequel, we extend existing results to the class of perfect equilibria.

The current paper is organized as follows. BSection 2 displays the
model, basic assumptions, and definitions of equilibria. In Section 3,
we show that, regardless of the strategies adopted by future genera-
tions, the optimal consumption function for the current generation
displays a 'marginal propensity to cornsume' out of endowment which does
not exceed unity. That is,.each generation's bequest is a normal
good. Besides being of independent interest, this result is used exten-
sively to establish our central theorems. Existence of equilibria is
established in Section 4. All proofs are deferred to Section 5. Sec-

tion 6 discusses additional open questions.

II. The Model
The model is a generalization of Kohlberg's (Kohlberg [1976]).

There is one commodity, which may be consumed or invested. The trans-



—6-

formation of capital stock into output takes one period, and is repre-

sented by a sequence of production functions <ft>3 . We assume, for

each t 2 0,

(A.1) ft: R, * R, is continuous and increasing

In each time period, decisions concerning production and con-
sumption are made by a fresh generation. Thus, generation t is end-
owed with some initial outpﬁt (yt), which i£ divides between consump-
tion (ct)’ and investment (kt =¥yt - ct)' Each generation derives
utility from its own consumption, and the consumption of the generation
immediately succeeding it. Preferences are represented by a sequence of

utility functions <ut>g . We assume, for t > O,

(A.2) Uy ﬂ{i + TR is continuous, increasing and strictly concave. jd

] ' ' i > ¢! > > o' >
(A.3) For all Cer Ctr Spa1t Stal with e, 2 cf o , Cesl > Cil o ,
_ ' > ' _ t oAt .
uplegsep ) —uglepie, i) > uplepeg ) - legie )
Remark: (A.3) is simply an assumption of weak complementarity. 6/

. . cr s R 2
3 3 3 > .
For ut differentiable, it is equivalent to ut/ ct ct+l 0 Note

that (A.3) subsumes the case analyzed by Kohlberg (1976):

ut(ct’ct+l) = v(ct) + 6v(ct+l) , where & 1is positive and v(.) is

continuous, increasing and concave.

Assumptions (A.1)-(A.3) will be maintained throughout the paper.
We take the historically given initial output at time zero, y, to lie in
is

some compact interval [0.Y], Y >0 . A program <yt,ct,kt>;




feasible from y € [0,Y] if

(2.1) Yo =V

(2.2) yt = ct + kt , t >0
(2.3) Vi1 = ft(kt) , t20
(2.4) (yt,ct,kt) >0 , t>0

Denote by < the corresponding feasible consumption

>m
€t70

program. The pure accumulation program is a sequence <§t,€t,it>; with

c = T P v = P v = ’
e, 0 for all t » O, ¥, Kt for all t > 0, Yes1 ft(Et) for all

t » 0, and io =Y .
Define Cy as the set of functions C: [0,§t] > [O,y;], with

) =

< v . i
Cly) <y forall y € [O,yt] Define Ut(c,y, Cis1

u, (e,C

t

t+l(ft(y - c))) for all Copp € Cpyy » and (c,y) > 0

with ¢ €y < ;;.
We will impose the behavioral assumption that all generations

select perfect Nash stategies (see Selten [1965]). Formally,

\

* *
Definition: The sequence <Ct>’ Ct € Ct’ t » 0, is a bequest

equilibrium (or simply, equilibrium) if for all t > 0 and y € [O,it],

* *
¢, (y)€ arg max U, (c,y. C...) .
t 0<csy t t+1l

Note that we have restricted attention to the class of strategies
for which consumption depends only upon initial endowment. In general,

it is possible for agents to condition their choices upon the entire



-8-

history of the game. We will refer to these as 'endowment dependent',
and 'history dependent' strategies respectively. Clearly, one cannot
rule out the existence of equilibria in history dependent strategies
which are not simply endowment dependent (see, for example, Goldman
(1980]). However, it is easy to verify in our model that if genera-
tion t + 1 chooses an endowment dependent strategy, there exists an
endowment dependent best response for generation t. It follows that
although we have restricted attention to endowment dependent strategies,
our bequest equilibria continue to be equilibria when no restrictions on
strategic choice are imposed. Furthermore, since Cz must maximize the
utility of generation +t for all initial endowments, any bequest

equilibrium must in addition be perfect.

We shall often refer to this model as an altruistic growth economy.

An altruistic growth economy is stationary if uy =u and
ft =f for all t 2 O. Finally, a bequest equilibrium is stationary

if the altruistic growth economy is stationary, and the equilibrium con-

*

t+l(y) for all

* *
sumption functions <C > satisfy Ct(y) =C

yE[O,}_'t],t>0-

IITI. The Marginal Propensity to Consume

Kohlberg [1976] has shown that any stationary continuously differ-
entiable equilibrium C(+) of a stationary alruistic growth model
satisfies 0O < C' < 1 . That is, the marginal propensity to consume out
of endowment is positive, but does not exceed unity. Equivalently, both

consumption and bequests are normal goods. In this section, we estab-

TR R YR




lish that regardless of the strategies adopted by succeeding genera-
tions, the optimal consumption function for any particular generation
exhibits a marginal propensity to consume not greater than unity.
Henceforth, we shall (for obvious reasons) refer to this as the
‘Keynesian property'. Thus, Theorem 3.1 generalizes half of Kohlberg's
result. Although the theorem is interesting in its own right, it is

also essential for the analysis which follows.

Theorem 3.1: Suppose that for some consumption function

Cir1 € Ceua

used by generation t + 1, an optimal consumption function

for generation +t, Ct € Ct , given by

C,(y) € arg max U (e,y; C,), ¥y € [0,y,]
O<c<y

is well defined. Then for all y,, y, € [0, ¥, ] with
¥y <Y, Cly,) -C(v)) <y, -y

An intuitive understanding of this result can be obtained by
consulting Figure 1. We suppose that points A and D 1lie in the
graph of the consumption function, and that the slope between them
exceeds 1. Notice that the bequest associated with each point is given
by the vertical distance between that point and the 45° line. Let
points B and C be defined as follows; at B, agent t has the same
endowment as at D, but bequeaths an amount equal to his bequest at
A, at C, agent t has the same endowment as at A, but bequeaths an
amount equal to his bequest at D. Notice that the lines between A

and B and between C and D have slopes of one.
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Now we observe that agent t (weakly) prefers moving from B
to D. How should he then feel about moving from A to C? The
'future' is identical for A and B (his bequest is the same);
similarly for C and D. Thus moving from A to C differs from
moving from B to D only in that initial consumption is lower -- the
inecremental exchange of future consumption for current consumption is
the same. If marginal utility of current consumption is decreasing,
then C mst be strongly‘preferred to A -- a contradiction. Note that
this reasoning is wvalid only if the reduction in ¢y does not raise the

marginal utility of ¢y, too much (i.e., cy and cy,, are not

substitutes).

Figure 1

s ©
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Two qualifications are in order. First, this result depends upon
weak complementarity (A.3). Second, we doubt that a similar theorem
could be obtained in a disaggregated model. Consequently, it may be
difficult to generalize the existence theorems proven in the next
section to other interesing models by using the techniques employed

there. These cases are left as open questions.

IvV. Existence Theorems

Although much is now known about the properties of equilibria for
models such as that presented in Section 2, previous investigations have
failed to produce a completely satisfactory existence theorem. In this
section, we present two theorems which establish the existence of
perfect equilibria for the altruistic growth model described in section
2. These results may be summarized as follows. For the most general
version of our model, non-stationary equilibria in well-behaved
strategies always exist (Theorem 4.1). If in addition, the model is
stationary, then at least one such equilibrium is stationary as well

(Theorem 4.2). Formally,

*
Theorem 4.1: There exists a bequest equilibrium <Ct> where for

*
all t > O, Ct € Ct is upper semi-continuous, continuous from the left,

with limits on the right.

Theorem 4.2: For stationary models, there exists a stationary

is upper semicontinuous,

* * *
bequest equilibrium <Ct>’ Ct = Ct’ where Ct

continuous from the left, with limits on the right, for all t 2 0 .




-12-

As the proofs of these theorems are rather intricate, we provide
here a sketch of the arguments employed. The behavioral assumption
underpinning the perfect Nash concept is that agent +t chooses his best
strategy (Ct) by ‘maximizing his utility for every possible initial
level of endowment, taking Ct+l as given. Whether or not the solution
to this maximization problem is well defined clearly depends upon the
properties of Ct+l' We show that, in particular, if Ct+l is upper
semicontinuous, then t's best responses are well-defined for every
initial level of endowment, and form an upper hemicontinuoué
correspondence. Ct may then be any function selected from this
correspondence.

It is, of course, possible to select Ct such that it is not
upper-semicontinuous. In this case, Cy_; Will not necessarily be well-
defined. However, it 1s always possible to select Ct to be upper-
semicontinuous, in which case this problem is not encountered.
Consequently, we can without loss of generality look for equilibria in
upper semicontinuous strategies (notice that, unlike Peleg and Yaari, we
have not restricted agents to a subset of strategies, since each
generation will always have a globally best response which lies in the
desired subset).

Next, we observe that the upper hemicontinuous correspondence
which forms t's best responses must satisfy the Keynesian property
(Theorem 3.1). It is easy to see that there is always one and only one
upper-semicontinuous selection from such a correspondence, formed by

taking the maximum value of consumption for each level of endowment.
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Consequently . for every upper-semicontinuous strategy Ct+l chosen by
generation t + 1, generation t has one and only one upper-semicontin-
uous best response.

‘Our next step is to determine the properties of this best response
mapping. In particular, we must verify continuity. To do so, we must
endow the space of upper semicontinuous consumption functions with an
appropriate topology. In practice, it is much easier to identify
consumption functions with upper hemicontinuous correspondences from
which they are selected, and to work in terms of the latter space. We
know that for every upper hemicontinuous correspondence satisfying the
Keynesian property, we can select one and only one upper semicontinuous
function. Knowing the upper semicontinuous function, can we reconstruct
the correspondence from which it is selected? The answer is, in
general , no. However, it is true that there is one and only one convex
valued upper hemicontinuous correspondence (with a technical restriction
on the upper end point) satisfying the Keynesian property from which the
function could have been selected. We call the process of going from
upper semicontinuous functions to such correspondences 'filling' the
function. This is illustrated in Figures 2(a) and (b). Filling the
function C 1in 2(a) yields the correspondence h in 2(b); the only
permissible (upper semicontinuous) selection from h is C.

This reasoning allows us to take agents strategy spaces as
consisting of convex valued upper-hemicontinuous correspondences satis-

fying the Keynesian property. The best response mapping then works as

follows. For any strategy hy,; chosen by generation t + 1, let
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Ct+1 be the unique upper semicontinuous selection. We obtain t's

best response by filling the correspondence which takes t's endowments
into his optimum consumption levels (call this hy). This mapping is
single valued. Furthermore. the unique upper semicontinuous selection
from hy is a best response to the unique upper semicontinuous
selection from hy,q- We endow the space of 'filled' upper-semi-
continuous correspondences with the Hausdorff topology; that is, we take
the distance between two correspondences to be the Hausdorff distance
between their graphs. As long as endowments have an upper bound
(clearly. they are bounded by the pure accumilation path), strategy
spaces are compact in this topology. Finally., we show that the best
response mapping (taking correspondences to correspondences) is
continuous for this topology.

The equilibria mentioned in Theorem 4.1 may now be constructed by
successive deletion of strategies. Consider generation t. First
construct the set of strategies for +t which are best responses to some
strategy for t+l. This set is necessarily compact by the above topo-
logical arguments. Next consider the set of strategies for t which
are best responses to some strategy for t + 1, which is in turn a best
response to some strategy for t + 2. This set is also compact, and
lies within the first set. We continue this process, forming an
infinite sequence of compact nested sets; their intersection is non-
empty. By constructing these sets for each t, and by appropriately
selecting a member from each set, we construct an equilibrium.

If we know in addition that the model is stationary, a stronger

result {Theorem 4.2) can be obtained. First consider the case where the
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production function crosses the 45° line. We can, without loss of
generality, choose a common upper bound on the domain (endowments) in
every period, and consider only strategies consisting of correspondences
defined over this common domain. The best response mapping for each
agent will then be identical., and any fixed point of this mapping will
be a stationary equilibrium. We know the mapping is continuous, and
that it maps a compact space into itself. Unfortunately, the space is
not linear, so convexity cannot be verified. However, it is possible to
show that the space is both contractible and locally contractible.
Figure 3 illustrates the argument for contractibility. We define a
homotopy between the identity map and the constant map (with value equal
to the horizontal axis) by simply 'shrinking' the vertical axis. A
similar argument applies for local contractibility. The existence of a
fixed point follows immediately.

To extend this analysis to cases where the production function
need not cross the 45° line, we consider a sequence of economies where
we truncate the production function at successively higher levels. An
equilibrium for the original economy can be constructed as the limit of

equilibria in these artificial economies.

V. Proofs

Proof of Theorem 3.1: Suppose, on the contrary, that there

exists y,, v, € [0,§t], ¥, < ¥y, vith

(5.1) Ct(yQ) - Ct(yl) >Yy = ¥y




-17-

Figure 3
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Define C2 = Ct(yl) + y2 = yl cl Ct(yz) + yl - ye .

By (5.1), we have Y, > 32 > 0.y, > El > Ct(yl) ? 0 . Bince

~ ~

: i >
u, (C (yl)‘yl’ C ) > U (cl,yl, C ), we have, using c Ct(yl)

t 7t t+1 t t+1 1
and A.2.,
(5.2) Ct+1[ft(yl - ct(yl))l > Cipp [ft(yl - cl)]

Ciaa [ft(y2 - Ct(ye))]

Using (5.2) and A.3.,

Ut(c2' Yo3 Ct+l) - Ut(Ct(yl). Yi Ct+l)

= u (€, (yy) * ¥, = e Cypy 18,0y = Oy D) = u(Culyy) Cppq £, (v, - C lr ))])

v

ut(Ct(yl) Y, - Yy Ct+l[ft(y2 - Ct(yg))]) - ut(Ct(yl), Ct+l[ft(y2 - Ct(yz))H
ut(Ct(yz), Ctﬂ[ft(y2 - Ct(ye))l) - ut(Ct(yg) YT Yoo Ct+l[ft(y2 -C (yg))H

this last inequality following from A.2 and the fact that

Ct(y2) ¥, -V Ct(yl) . Therefore, rearranging terms,
(5.3) U ey ¥ps Cpuy) - Ul ) wps Cpyy)
> U (Coly)wys Cppg) = Uplegys Cuyy)

By definition of Cy(.), the left-hand side of (5.3) mst be non-
positive, while the right hand side must be nonegative. But this

contradicts the inequality in (5.3). Q.E.D.




To prove Theorem 4.1, we will need a number of preliminaries.

First define, for all t > 0 , M_ = {(x,y}[0 < x < Y,» 0<y<x}. For

t
any function or correspondence g(*)}, define its graph by
G(g) = {(x,y)|y € g(x)} . For any set G in &2, denote by Hy(G)
its projection onto the y-axis.

For a uhc correspondence g:[0,a] :ﬁ}[o,a], a > o, with
0<c<y forall c € gly), define Fil(g) by Fillg)(y) = convex
hull of gly). for all y € [0,a), and Fil(g)(a) = [0,max g(a)l. If
a = », ignore this last requirement. Fil(g) is the filler of g it is
uhc and maps [0.a] to [0,a]l. A correspondence g 1is filled if
Fil(g) = g.

Next, we attach a name to the property established in Theorem 3.1.

2

Definition: A set E C R satisfies the Keynesian property if

there does not exist (x',y'), (x",y") € E, with x" > x', , such
that y" - y' > x" - x'. A correspondence with graph in RS satisfies

the Keynesian property if its graph does.

If a consumption correspondence satisfies the Keynesian property,
then the associated 'marginal propensity to consume' can never exceed
one.

Define for ¢ > 0, Hy to be the set of graphs of filled, uhc

correspondences h_: [O. §£] :§>[0,§£], such that G(ht) C M_, and

t >

such that hy satisfies the Keynesian property.
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Similarly define for t » O, ﬁt as the set of graphs of uhc
correspondences h, : [0,yt] <§>[0,yt] , with G(ht) C M, , and such
that Et has the Keynesian property.

Often we shall refer to Et & ﬁt (or h

e .
N Ht), at the risk of

some harmless notational abuse.
We wish to endow Ht and ﬁt with a suitable topology. Distance
between correspondences will be defined as the Hausdorff distance

between their graphs. Formally,

Definition: For every two subsets E and F of a metric space

(M,d), let the Hausdorff distance &(E,F) (with respect to the metriec

d on M) be given by
8(E,F) = inf{e € [0.=] | ECB_(F), F C B_(E)}

where Be(X), X C M, denotes the e-neighborhood of X, i.e., |
B.(X) = {x eM | dist (x,X) < el.

Lemma 5.1: Let (M,d) be a compact metric space. Then the set M

of nonempty closed subsets of M together with the Hausdorff distance

§ on M 1is a compact metric space. Further, for any sequence

<E%>, E® € M, define

Li(<E°>) = {x € M| there is <x®>, x°€ E°, lim x® = x}
t
t _ . t t t .
Ls(<E®>) = {x € M | there is <x'>, x' € E”, with a convergent

subsequence converging to x}

. Then <E®> converges to E in (M,8) iff Li(<E%> ) = E =
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Ls(<Et>).

Proof: See Hildenbrand [19Th].

Lemma 5.2: Suppose that h, h' € Ht , with G(n) € G(h'). Then

h =h'.

Proof: Define P = G(h'NG(h) . Suppose P is nonempty. Then
there is (y,c) € P , such that either c¢ > max h(y) , or ¢ < min h(y).
Assume the first. Then clearly y > 0 . Since G(h) is closed and
Keynesian, there is (y™,c™) € G(h) , with y® 4 y and
lim(y™,c™) = (y,max(y)). But then for m sufficiently large,

y -y" <c-c®, so that P UG(h) = G(h') violates the Keynesian
property, a contradiction. Now assume the second. Then, by definition
of a filled graph, y < ;; . Since G(h) is closed and Keynesian,
there is (y%,e™) € G(n) with y® + y and 1lim(y™,e™) = (y,min h(y)).
But then for n sufficiently large, yn -y < e - ¢, so that
PU G(h) = G(h') violates the Keynesian property, a contradiction.

| Q.E.D.

Lemma 5.3: Let h Dbe a convex~valued uhc mapping from some

compact interval I +to subsets of a compact interval [bL,bU]. Take

(y,e)s (y',c') € G(h), with y' >y . Then for all c € [min(c,c'),

max(c,c')], there exists y € [y,y'] such that c¢ € h(y).

Proof: Let PY be the preimage of [e,by] and Pl be the
. . ' pl U
preimage of [bL,c] in [y,y']l. Both and P- are closed.

Further, PY UPU = [y,y']. Thus, PL N PU is nonempty. So there



oo

L

exists 7, &, &' such that y € PP N PY, 5, &' € h(F), S >, o' < c .

Since h is convex valued, c € h(¥). Q.E.D.
Now we establish

Lemma 5.4: Hy and ﬁt endowed with the Hausdorff topology are

compact metric spaces.

Proof: Let H denote Hy, or ﬁt. It is well-known that each
G(h) € H is closed (by uhc of h). Hence H C My, the set of all closed
subsets of M. To establish that Ht and ﬁt are closed, pick
<h™> in ﬁt with G(h™) » G(n). The projection of G(h") onto the
first co-ordinate is [O,?t]; we check first that this is also true of
G(n). Fix y € [0,5.]. We can choose (y,c®) € G(n") for all n.
Since %€ [O’§t] for all n, <y, c¢'> has some convergent subsequence
with limit (y,c*). By Lemma 5.1, (y,c*) € G(h), hence G(h) has the
required projection property. Similarly, using Lemma 5.1, it is easy to
check that G(h) has the Keynesian property. Also G(h) € M.,
since Mt is closed (Lemma 5.2). Thus h 1is a uhc correspondence
with the Keynesian property, with G(h) C M. This establishes
closedness of ﬁt .

Finally, note that G(h) is filled if G(n") € Hy. To see this,
pick any (y,c), (y,c') €G(h) with ¢ > ¢' . Consider any c"
€ [c',e]. We will show that there exists (y; ,c;) + (y,c"), where
(yg,cg) € h" for all n. By Lemma 5.1, there exists (yn,cn),
(yg,cé) € h" for all n, with (yn,cn) + (y,c), (yé,cg) + (y,c').
Pick N such that for all n » N,'cn > c" > cg. By Lemma 5.3, there

exists, for such n, (y;,c;) € n" with c; = ¢", and




—23-

yp € [min(y ,¥!), max(yn,yr'l)]. Clearly, as n + =, (yr,c!) » (y",e").
By Lemma 5.1, (y",c") € G(h). Also, note that (¥,.0) € ¢(n") for
all n. Hence (it,o) € G(h). By the previous argument,
h(it) = [0,max h(it)]. So h is filled.
This establishes that H 1is closed. Consequently, since H - Mt’

which is compact, H is compact. Q.E.D.

Let S, be the set of all s: [o,}&] > [o,ié], S upper-semi-

continuous (usc), with G(s) C M;, and satisfying the Keynesian property.

Lemm 5.5: If s €S,, then for all y*¢€ [o,i;l, lim s(y) =
yty¥

s(y*). Also, lim s(y) exists.
yty*

Proof: Suppose, on the contrary, that there is y¥*, and
y© ot y* with s = lim s(ym) < s(y*) (by usc of s(+), it cannot be
greater). Then, for m sufficiently large, we have
v* - y2 < (1/2)s(y*) - 5], and s(y®) - 5 < (1/2)[s(y*) - 5].
Rearranging, y* - y© < s(y*) - s(y™), which violates the Keynesian
property.

To establish that lim* s{y) exists, assume on the contrary that
there are y*, and two si;iences Y v oy, Yy v y* with Ym> Yo > v*,
and lim s(y™) > lim s(y™). Then define & = (1/3)[lim s(y™) - lim s(y™)]

m n : m n

and M , N with

8

A

(a) 1lim s(y™ - s(yM)

m
(b) s(yN) - lim s(y™) < & and
n

(e) yM > yN, with y" - yN < 8.

It is easily seen that such M, N exist. Then
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. N
s(yM) - s(yN) > [1im s(y™) - lim s(y")] - 26 = 6 > yM -y,
m n
which violates the Keynesian property. Q.E.D,

Lemma 5.6 relates elements of Hy to those of Sy.

Lemma 5.6: PFor hE€ Hy, let s(*) be defined by

s(y) = max

(a)

{n(y)} . Then

s(*) is well defined.

(b) s(e) €8
(¢) s(+) is the unique selection from h such that s(s) € S-
Proof:
(a) This follows from the fact that h is uhc and maps into a
compact set.
(b) Pick any sequence y=" + y € [O,§t]. Then
s = 1lim sup s(y™) € nly), by uhc of h. Thus
s € m:x {n(y)} = s(y). Verification of the Keynesian
property is trivial.
(c) Lemma 5.5, along with part (b), implies, for
y* > 0, that lim* s(y) = s(y*) = max{h(y*)}. Consequently
choosing s(y*g Z max{h(y*)} violates usc. For y* = O,
{h(y*)} = {0}, and there is nothing to be proved. Q.E.D.
Let s = 8(h) be the unique selection (in S¢) from h € H,.
We prove

Lemma 5.7: Consider <nh™ in Hg, K » he Ht' Define G =

{limit points of all sequences (y™,c™), where (yT,c™) € G(s(h™)) for all

m}.
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b

Then s(y) = max{c|(y,c) € 8} is well defined for all y € [0,5;]

and s( ) = s(n).

Proof: It is easy to verify that ¢ is closed, that its projec-
tion into the first co-ordinate is [0,§t], and that G S;Li({G(hm)}) C G(h).
Hence s(y) is well defined for all y € [O,it]. Moreover, it is easy
to verify that G  has the Keynesian property. Given this, and the
fact that G is the graph of some uhc correspopdence ﬂ < Ht’ s € St’
by Lemma 5.6(b). But s is a selection from G(h), hence by Lemma

5.6(c), s = s(h). Q.E.D.
Next, we establish two lemmas concerning the model itself.

Lemmz 5.8: For any St4l € St+1’

define for y € IO,ft],

(5.4) h(y) = arg max U_(c,y; s, .)

0<c<y t t+1

Then Fil(h) € Hy, »

Proof: By definition of H,, Fil(+), and Theorem 3.1, it
suffices to show that h is well defined and uhc, and that Fil(h)
satisfies the Keynesian property. This last step follows once we show
h 1s well-defined and uhc. For suppose that Fil(h) does not have the
Keynesian property; then there exists (yl,cl), (ye,ce) € G(Fil(n)),
with y <y,, such that 52- ¢, > Y- ¥y- Let el = min{Fil(n)(y,)},
max{Fil(h)(y,)}. Clearly (yj,ci), (y,,ch) € G(n), and

] - ]
5 ¢l

" el! > - - . +hi : . .
5 ¢y c2 ¢y > Yo yl But this violates Theorem 3.1, which

asserts that h possesses the Keynesian property.



26—

So it remains to verify that h is well-defined and uhc.

Since s is usc and uy 1is continuous and increasing, Uy 1is

t+1
usc. A usc function reaches a maximum on a compact set; hence h(y) is
well-defined for all y € [O,ft].

To verify uhc of h, consider some sequence <ym> in [O,it] with
yo > y* € [0,§t], and <c™ with c¢™ € h(y™) for all m, where
™ > o, We will show that c* € h(y*). Suppose that this is not

true.

Sin is us we have
ce St+l is c, h

(5.5) lim sup Ut(cm.ym; )

m

) < Ut(C*,Y*

St+1 > Se41

By our assumption that c* ¢& h(y*), there exists ¢ with y* > c>0

and
o k. % *.
(5.6) Ut(c,y ; St+1) > Ut(c , Y st+l)
Define <c™ by oo = max(0,y" + ¢ - y*) for all m > 0. Note
that y™ > ¢ > 0, and that ¢ + ¢. Recall that
~m _m _ ~m m ~m
U (ehhy s sy ) =ulets I8 (v - e)])

Now note that ym - o™ 4 y® - E, and so, since fy 1is

increasing, ft(ym - e 4 ft(y* - ¢). By Lemma 5.5,
i m_~myy *_ 1. . —
l;é Sp1 [ft(y c ] St41 [ft(y c)l Using the continuity of
u;, we have
(5.7) lim Ut(gm,ym; Sp4q) = Ut(z,y*; Sg41)

m>oe
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But (5.5), (5.6) and (5.7) together imply that for m

.. m._m ~m _m s
sufficiently large, Ut(c R St+l) < Ut(c Y St+l) contradicting,
for such m, c™ € h(y™). Q.E.D.

Now we introduce some additional notation. For st+l € St+l’

define wt(st+l) =h by (5.4) and ¢t(5t+1) = Fil(wt(st+l)). Then,

by Lemma 5.8, ¢t: S Next, define

g41 T Hye

¢t: Ht+l > Ht by ¢t(ht+l) = ¢t(S(ht+l)) for each hy 4 (S Ht+1'
Finally, for BCH,_ ., let ¢t(B) = ;;B ¢t(h)-

A central result in the proof of Theorem 4.2 is

Lemma 5.9: ¢ ,: H > H is continuous for all t » 0.

t t+1 t

Proof: Consider any sequence <h€+l> in Ht+l’
h€+l > hog € Ht+l' We show that for any limit point hy of
hy = ¢ (hp,,), hy = 0 (h ).

Clearly, h? = Fil(ﬁ?), where ﬁ? = ¢t(s$+l) S ﬁt for
S€+l S(h?+l)° Define G = {limit points of all sequences
(y™,c™), where (y™,c™) € G(S?+l)}' and s, ¢ [0’§t+l] > [O’§t+l] by
st+l(y) = max {c|(y,c) €G} for all y € [O,§t+l]. Then by Lemma 5.7,
sge1 = Sy ).

We shall demonstrate that ht = ¢t(st+l).

Without loss of generality, assume that hﬁ > h, and
Ks > ﬁt S ﬁ¥ (this last step is possible, by Lemma 5.4). It is obvious

that G(h ) C G(n.), and hence G(Fil(h )) C G(n ). But since

Fil(ﬁt), h, € Ht, we have Fil(ﬁt) =h,, by Lemma 5.2. Therefore it

t t°
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* ~
; € (0,7 * *.

suffices to show that for each y [O,yt] and c ht(y), Ut(c,y ; St+l)

is maximized at c*. In that case, G(Ht) E_G(¢(S }). so that

))) = 6(¢(s

t+1

)). But since

t+1

G(n,) = 6(Fil(h,)) CG(Fil(¥(s

) € Hy» Ve have h by Lemma 5.2.

hes ¢lsyyy e = ¢(sg,)s

Therefore, pick y¥* € [O,§£] and c¥* € ﬁt(y). By Lemma 5.1,
there exists (y™,c™) € G(ﬁ?) with (y™,c™) + (y*,c*). Since

= s(h we have

= 8(n t+1

m m
St41 t+1) for all m, and s t+l)’

.1 [ft(y* - c*)].

t

m m m
i - <
llmhsup st+l [ft(y c )] S

(y* - c*) = max{h_ _(y* - c*)}).

(This comes from the fact that
t+1

St+1

Consequently, since u is increasing in its second argument,

t

(5.8) lim sup ut(cm,s$+l[ft(ym - ™) < ut(c*,st+l[ft(y* - c*¥)])
m

Now suppose, on the contrary, that there exists = [0,y*] with

~ * _ o) * ® _ ok
(5.9) u (eysy [E, % - o)1) > u (e 3844 L% = e*)])
By construction of Ste1 there exists a sequence
m m m . m _m m * _ * _
<X ,st+1(x )> with (x ,st+l(x )) » (ft(y c)’st+l[ft(y c)l).

Define <o = max(y™ - fgl(xm),o) for all m. Then, clearly,

~m

c® < y™. Note that as m + =, ft(ym -ch) + ft(y* - ¢). Now pick

0<c¢c

€ > 0, and integer M* sgsuch that for all m > M¥,

|ft(ym - - ™| <e. Since y® - 3K f;l(xm), we have, using the

Keynesian property of s that

m
t+1°

(5.10) sy (£,07-CM) > sp,, () - e
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Letting € + 0 in (5.10), we have

m m ~m m m ~
im i - > 1i = * _ .
lim inf s (£, (v c)) > lims, . (x7) Sy4q (FL (¥ c))
m m
Consequently, using the fact that ut is increasing,
s ~m m m ~m ~ ~
. - b * _
(5.11) lim inf ut(c ’St+1[ft(y cH) ut(c’st+1[ft(y c)l)

m
But (5.8), (5.9) and (5.11) imply that for sufficiently large m,

u, (c™,s™ (£, (

O E S I DI Ll R E S ) D

which contradicts (y™,c®) € G(ﬁ:).

This establishes the lemma. Q.E.D.

Proof of Theorem L.l

Define, for each (t,t) » O

t,T -
(5.12) Q z ¢t o ¢t+l O eee O ¢t+T(Ht+T+l)

It is easy to verify that Qt’T is compact, using Lemmas S.4 and

5.9. Further, for all (t,t) » O, Qt’T D Qt’T+1. Therefore
.2k,
(5.13) Q= ng®t
=0

is nonempty.

We claim that for each h, € Qt, (¢t)-l(ht) N Qt+l is nonempty.

. - -1 . .
(S = .

Clearly, since h, Qt(Ht+1)’ P (@t) (ht) is nonempty. Also P is

closed, by continuity of @t. Therefore, if P N Qt+1 is empty, there

exists T » 0 such that P N Qt+l’T is empty. But then
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}H;E ¢t(Qt+l’T) = Qb7 2 Qt, a contradiction.

We now construct the equilibrium. Pick h0 c QO. Generation 0's
consumption strategy is CS = S(ho). Now pick hl_e (@O)-l(ho) N Ql,
and define Generation 1's strategy as CI = S(hl)' In general, having

picked ht in this recursive fashion, define Generation t's strategy by

-1 t+1
* =
C* = S(ht)’ and choose h, ., € (¢t) (h,) NQ"" .

t t

For any t » 0, and given C€+l according to this contruction,

= Fi h h = #* . v
h Fll(ht) for h wt(ct+l) Therefore, for each y € [O,yt],

S(ﬂt) (y) € arg max U_(c,y; C* ).

*
0<c<y t t+1

But the unique construction of S(°*) (see Lemma 5.6) easily yields

).

Finally, since C: c St for all t » O, Lemma 5.5 assures us

H h = e * = h
S(Fll(ht)) S(ht). Hence ct s(ht

that <C€> has all the properties claimed in the statement of the

theoremn. Q.E.D.

Now we turn to the proof of Theorem L.2. Observe that the pure

accumulation program <§t> is monotone, by A.l. Hence 1lim it = ;

t
exists in R' U {+ »}. Consider two cases:
(1) y<e
(2) y = =,

We will first focus on Case 1. Define ¥ = max<yo,;). Let
M= {(y,c)|y € [0,¥], c€ [0,y]}. Let H be the space of (graphs of)
all uhe, filled, correspondences h: [0,¥] <»[0,7], with

G(h) C M, such that h has the Keynesian property.
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Lemma 5.10: Take any h'. There exists a mapping

x: #x[0,1] + { such that

(5.14) x(h, 0) =h for all h€EH
(5.15) x(h, 1) = h' for all heH
(5.16) X is continuous

(5.17)  8(h,h') < € implies &(x(h,A), h') < /5 for all A € [0,1]
Proof We explicitly construct the mapping x.

Glx(h,A)] = {(y,e) | XA max{h'(y)} + (1 - ) max{h(y)}

> ¢ > A min{h'(y)} + (1 - 1) min{h(y)}}.

First we prove that for all h, h' € H, A € [0,1], x(h,X) € H
This is accomplished in several steps.

(i) For all y € [0.¥]. x(h,A)(y) 1is nonempty, convex, and
closed. Nonemptiness follows from h(y) and h'(y) being nonempty;
convexity and closedness are true by construction. Noting that
h(y) = h'(y) we conclude that x(h,\) is a filled correspondence.

(ii) G(x(n, 1)) CM. From (1) and the fact that h, h' are not
defined outside of [0,y], we know that ﬂyG(x(h,A)) = [0,y]. We need
only show that for all y € [0,¥], x(h,A)(y) C [0,y]. But this follows
immediately from the fact that min x(h,A)(y) » min{min{h(y)},
min{h'(y)}}, and max x(h,A)(y) € {max{h(y)}, mx{h'(y)}} coupled with

the observation that min{h(y)}, min{h'(y)} > 0 and max{h(y)},
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max{h'(y)} < y.

(iii) G(x(h,X)) 1is closed. Take any sequence (yt,c ) € G(x(h,A))

t
with 1limit point (y, c¢). We know

A max{h'(yt)} + (1 = X) max{h(yt)} > c, > X min{h'(y, )}

t t

+ (1 -2A) min{h(yt)}
Passing to the limit as t + «

A lim max{h'(y, )} + (1 - X) lim max{h(y )} > ¢
t t t t

> A lim min{h'(yt)} + (1 - A) lim min{h(y )}

t t t

But since Yy +y and h, h' have closed graphs,

lim max{h'(yt)} Eh'(y), lim max{h(yt)} € h(y), etec. By

t t

definition, lim max{h'(yt)} < max{h'(y)}, lim max{h(yt)} < max{h(yt)},
t t

etc. So

A max{h'(y)} + (1 - 2) mx{h(y)} » ¢ > A min{n'(y)} + (1 - A) min{n(y)}

But then (y,c) € G(x(h,A)). (i) and (iii) together imply that h
is a uhc correspondence on [0,y].
(iv) x(h,A) satisfies the Keynesian property. Take any y',

"

y" such that y" > y' , and c" € x(h,A)(y"), ¢' € x(h,A)(y'). Then
A max{h'(y")} + (1 - A) max{h(y")} > <", and

Amin{h'(y")} + (1 = A) min{n(y")} < ¢

Subtracting,




-33-

Almax{n'(y")} - min{h'(y*)}] + (1 = A)[max{n(y™)} - min{h(y")}] > ¢" - ¢!
But since h' and h satisfy the Keynesian property,
max{h'(y")} - min{h'(y")} < y" - y', and max{h(y")} - min{n'(y")} < y" -

So Aly" -yl + (L -N)[y" -yl =y" -y'2c" - c'.

(1)-(iv) together imply that for all h, h' € H, A € (0,1) we have
x(h,A) € H.

Now we turn to the specific properties of ¥x. For
A =0, Glx(h,A)] = {(y,c) | max{h(y)} » ¢ > min{h(y)}}. Since h is
filled, this is the definition of h. An identical argument establishes
(5.15), so it and (5.14) are verified.

Consider a sequence (ht,kt) converging to (h,\). We wish to
establish that lim(x(ht,At)) = x(h,A) ,i.e., we want to verify
(5.16). Consider any point (y,c) € lim(x(ht,kt)). By Lemma 5.1,
there exists (yt,ct) € x(ht,kt) converging to (y, c¢c). Then
A max{h'(yt)} +(1-1) mx{ht(yt)} 2>y min{h'(yt)} + (1 - A) min h(
Passing to limits, and observing the fact that 1im max h'(yt),
1lim min h'(yt) €h'(y) (6(h') is closed), and lim max ht(yt)’
1lim min ht(yt) € h(y) (G(h) 4is the collection of limit points of all
sequences lying in G(ht) ~— Lemma 5.1), we have
A max{h'(y)} + (1 - A) mx{n(y)} > ¢ > A min{n'(y)} + (L = ) min{n(y)},
which immediately implies (y,c) € G{x(h,A)). That is,
lim x(ht.kt) S.x(h,k) .

Since x(ht,kt) €H and H is compact, lim x(ht,A )E H. We

t




know x(h,\) € H. By then by Lemma 5.2, lim x(ht,kt) = x(h,A).
This establishes (5.16).

Finally, consider property (5.17). We prove this in two steps.
First, we show that G(x(h,})) C BE(G(h')). We do this by showing
that for any (y,c) € G(x(h,X)), there exists (y*,c*) € G(h') such
that d[(y,c), (y*,c*)] < €. Note that for any such (y,c), we have
¢ € [min{min{h(y)}, min{h'(y)}}, max{max{h'(y)}, max{n(y)}}].

We know there exist (y',c'), (y",c") € G(h') such that
dl(y',e"),(y, min{min{h(y)},min{h'(y)}}] < ¢
dl(y",e"),(y, max{max{n(y)},max{h'(y)}})] <€ .

If ¢ < c¢', then d[(y,c), (y',e')] <e. Ifc > c", dl(y,e), (y",c")] < €.
If ¢' <c <'c", then by Lemma 5.3 there exists y* € [min(y',y"), max(y',y")]
such that ¢ € h'(y*). But since |[y* -y| < €, dl(y,c), (y*,c)] < €.
For the second step, we show that G(h') C B  [G(x(h,A))]. Take
= /e
any (y,c) € G(h'). We want to show that there exists
(y*,c*) € G(x(h,A)) such that d[(y,c), (y*,c*)] < ¥5e. Let
(y',c') € G(h) be the closest point in G(h) to {(y.c). Since
8 (h,h') < €, dl{y,c), (y'sc')] < e. Ify' =y, then the result is

trivial to check, so henceforth we assume y' # y. Let

¢" = arg min |c - ¢ .
c%n(y)
First we argue that (c" - c¢) * (¢' - ¢) » 0. Suppose this is not

true. Then by Lemma 5.3, there exists y"€ (min(y,y'), mx (y,y'))
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such that c¢ € h(y). But then d[(y",c), (y,c)] < dl(y',c'), (y,c)l
—-- a contradiction. Consequently, we know that either

(i) y' >y and c¢', c" < ¢

(ii) y' >y and c', c" > c

(iii) y' <y and c', c¢" < ¢
(iv) y' <y and c', c" > c
Case (1): Dby the Keynesian property, since y' -y < g, ¢' ~c" < €.
But we also know that ¢ -~ ¢' < €, so ¢ - ¢" < 2¢, In this case,
min{h(y)} < ¢ = max{h(y)}, min{h'(y)} < ¢ < max{h'(y)}, so for all
A there exists c*€ x(h, A)(y) with |c - c¥*| < 2 €. Case (iv):
completely analogous to Case (i). Case (ii): consider three subcases.
(a) max{n'(y')} < c'. Then for all X , there exist c', ¢"
with ¢" > ¢, ¢' < ¢' with (y,e"™), (y',¢') €G(x(h,r)).
But then by Lemma 5.3 there exists (¥, ¢) € G(x(h, A)) such
that y' » ; >y, ¢c'? ¢ > c . But then
dlly, ¢), 7, &) < dlly, ¢), (v', ¢")] < e.
(b) min h'(y') > ¢'. Then for all X, there exists c' with
c¢' <¢'" < min h'(y') and (y',c') € G(X(h,A)). But by the
Keynesian condition min{h'(y')} <c + (y' - y) <c + ¢ so
dl(y,e), (y',e')] < vze.
(¢) minth'(y")} < ¢' < max{h'(y')}. Then c'€ G(x(h,A)(y'))

for all A.

Case (iii): Completely analagous to case (ii). Q.E.D

Lemma 5.11: H is contractible
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Proof: Take any h € H and construct the corresponding ¥x. By
the properties of X, the identity map on H 1is homotopic to the

constant map (mapping to h), so H is contractible. Q.E.D.

Lemma 5.12: H 1is locally contractible. 12/

Proof: Choose any h € H{, and an open neighborhood U of h. We
mist show that there exists a subneighborhood V such that V is
contractible over U.

There exists € such that Bs(h) CU. Let V = B€/§ (n) .

Construct X corresponding to h. For all XA € [0,1], h' € V, X(h',)) € U.

Thus the identity map on V is homotopic over U +to a constant map

on V, so H 1is locally contractible. Q.E.D.

Lemma 5.13: If Yy < ®, a stationary equilibrium exists.

Proof: Define &: H + H by @(h) = Fil(h) for h € H, where
h(y) = arg max U (c,y; s8(h)), y € [0,¥]. Then, exactly as in Lemma 5.9,
0<c<y
® is continuous. Moreover, H is compact (as in Lemma 5.k4),

contractible (Lemma 5.11) and locally contractible (Lemma 5.12). There-

fore by Smart ([1974] Corollary 3.1.3) & has a fixed point h*, i.e.

*
there exists h* € H with ®(h*) = h*. Define C* = S(h*), and C € Ct
by Cz (y) =cx(y), y € [O,it]. This is clearly the required

stationary equilibrium. Q.E.D.

Using Lemma 5.13, we have established existence of a stationary

equilibrium in Case (1). Now we use this result to handle Case (2).
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Lemma 5.14: If y = o a stationary equilibrium exists.

Proof: Construct a sequence of 'artifical' economies by altering
the production functions as follows: for a sequence k™ 4 o, with

£0 > v, and £(x®) > k™, define

(k) , k<k°

(k) =

£(k m

m)+%(k-km) , k> K
Let E® be defined by the largest root to the equation f™(k) = k.

By Lemma 6.13, for each economy m with production function fm, there

is a stationary equilibrium. Let H™ be the set of all uhc, Keynesian,

filled correspondences h from [0,E%] to [0,E®], with 0 < ¢ <y

for all ¢ € h(y). Select h™ € H™, for each m, such that s™ = s(h™)

th

produces a stationary equilibrium for the m“" economy. Finally, define

™. H™ + H™ vy
¢™(n) = Fi1(¥™(n)), where
~m —m
#™(h)(y) = arg max U(c,y; S(h)) for y € [0, k|
OLcky
In particular, we know that h™ = ¢™(n™).
Now construct a correspondence hy from [0,®») to [0,®) in the
3 ] = - — > .
following way. Define LO 0, and Ln+l yn, for n 0 Then
Ln 4+ ®», For a correspondence h, let h/[x,y] denote its restriction
to the interval [x,yl. By Lemma 6.4, there is a convergent subse-

m m
quent h l, for which h l/[Lo,Ll] has a limit point, hi, which is a
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correspondence on [LO’Ll]' Recursively, suppose that hg is defined

m
. \ n
on [Ln_l,Ln] as the limit point of some sequence h /[Ln_l,Ln].
T Dh+1
Consider [Ln’Ln+l]' There is a subsequence of h ', h , such that
this converges to some correspondence h2+l on [Ln’Ln+l]' Define

he by h, /L ,L ] = n*, vith the provision that at , it is the
¥ '"n’"n+l

union of points in hﬁ and h2+l. hy is clearly well-defined on

[0,#), since L > ©- We show that for all y € [0,=),

he(y) = Fil(h,(y)), where

E*(y) = arg max U(e,y; S(h,))
O<c<y

If this is so, the selection S(h,) will induce the required
stationary equilibrium in the obvious way.

Choose n such that Ln> ¥, and s such that Lq >E° > k5 > Ln
for some q > n. Consider the sequence hmq/[O,ES] (note that mq > s).
We know that hmq/[O,ES] converges to h*/[O,ES] by the above argu-

ments. Define the following sequence of correspondences on [0,K°]:

~

m
n =9%n Y[0,k°])

~In ~
Take some limit point of h a hg . By the continuity of ¢° (Lemma

5.9), we know that

~

(5.18) hg = ¢°(n,/[0,E%])

~m m
Now we argue that h 3/]0, L]=n 9o, L 1. This follows immediately
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from observing that if y < Ln’

m m m
Fil{arg max u(c, S(h N[y - ¢)])} = Fil{arg mex ulc, s(h V[ Uy - ¢)])
O<c<y O<c<y

The left hand side is just the definition of ﬂmq(y); the right
hand side is the definition of hmq(y) (it is a stationary equilib-
rium). The equality follows because fS/[O,Ln] = fmq/[O,Ln], and
y -c <L. But then, since hmq/[O,Ln] converges to h*/[O,Ln], we

know that ﬁ&/[o,Ln] = h*/[O,Ln]. So, from (5.18), for 0 <y <L,

h(y) = Fillarg max u(c,S(h,/[0,E%])[£%(y - ¢)I N}
O<cRy

But since f° and f agree on [0,Ln], this implies that for

0<y <L,

h,(y) = Fil [arg max u(c,s(h,)(f(y - ¢)])]
O<c<y

Since this can be established for any y (take Ln large enough), this

*

*
implies hs = ®(hy). Define Cy = S(hs) and <C,> by C (y) = Cy(y),

y € [O,?t], t » 0. This is the required stationary equilibrium. Q.E.D.

Proof of Theorem 4.2: Combine Lemmas 5.13 and 5.1k, Q.E.D.

VI. Further Questions

In our opinion, the following questions pose interesting issues

for future analysis.
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(1) The techniques used here to establish existence of bequest
equilibrium does not appear to be applicable in multicommodity models.
The question of existence of bequest equilibria in such models remains
open.

(2) Kohlvberg [1976] established the uniqueness of continuously
differentiable, stationary equilibria, whenever these exist. Is this
true of stationary equilibria when the strategy space is not restricted
(as in the present exercise)?

(3) If the answer to (3) is in the affirmative, the following
conjecture is worth exploring: whenever stationary equilibria exist,
either (i) nonstationary equilibria do not exist, or (ii) all nonsta-

tionary equilibria have the property that the sequence of equilibrium

consumption functions converge to that of the stationary equilibrium.
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Footnotes

Empirical evidence sugggests that a significant fraction of the
U.S. capital stock is transferred to younger generations through
bequests (see, for example, Kotlikoff and Summers [1981]). The
well-being of a particular generation therefore depends, at least
in part, upon the prevalence of altruism amongst its predecessors.

Phelps [1975] extends the original analysis of Phelps and Pollak
[1968].

However, there are certainly serious technical problems
involved. See the discussion in Section IV, or the actual
technique of proof employed (Section V).

The model assumed stationary preferences and a linear, stationary
technology.

The assumption that w; is defined on all pairs of nonnegative real
numbers rules out an analysis of such cases as ut(ct, Ct+15

= lnc, + s1n(t+1), & > 0.

The validity of our results when there is substitutability between
cy and ¢y remains an open question.

H 1is locally contractible if for each h &€ H and neighborhood
U of h, there is a neighborhood V with h&€ VC U,
contractible to a point over U. (See Dugundji [1958]).
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