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ALTRUISTIC GROWTH ECONOMIES* 
PART I. EXISTENCE OF BEQUEST EQUILIBRIA 

by 

Douglas Bernheim** and Debraj Ray** 

I. Introduction 

In t h i s  paper, we study an aggregative growth model with intergen- 

era t ional  altruism. Each generation i s  act ive  for  a  single period. A t  

the  beginning of t h i s  period it receives an endowment of a  single homo- 

geneous good which i s  the output from a 'bequest investment' mde by the  

previous generation. It divides the  endowment between consumption and 

investment. The return from t h i s  investment cons t i tu tes  the endowment 

of the next generation.l /  Each generation derives u t i l i t y  from i t s  own 

consumption and tha t  of i t s  immediate successor. However, since a l t -  

ruism i s  l imited,  i n  the  sense t h a t  no generation cares about l a t e r  

successors, the i n t e r e s t s  of d i s t i nc t  agents come in to  conf l ic t .  

Models of t h i s  type have been used t o  analyze a  number of issues 

concerning intergenerational resource a l locat ion.  One l i ne  of research, 

pursued by Arrow [1973] and Dasgupta [1974a], e lucidates  the implica- 

t ions  of Rawls' pr inciple  of jus t  savings. These authors were primarily 

concerned with the  characterizing optimal growth under a  par t i cu la r  

welfare c r i t e r ion .  

Others have addressed the question of how an ' a l t r u i s t i c  growth 

econoqy' might actual ly  evolve over time. This l i t e r a t u r e ,  i n i t i a t e d  by 

Phelps and Pollak 119681 2/ makes extensive use of the  Nash equilibrium 

concept. Several in te res t ing  issues emerge. 
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F i r s t ,  i s  the  resu l t ing  intertemporal a l loca t ion  Pareto- 

e f f i c i e n t ?  Phelps and Pollak 119683 and Dasgupta [1974a,b] reply i n  t h e  

negative. However. Lane and Mit,ra :19811 argue t h a t  the  t r a d i t i o n a l  

de f in i t ion  of Pareto-ef f  iciency is  inappropriate in  t h i s  context. They 

demonstrate t h a t  when the  s e t  of feas ib le  programs i s  properly re- 

s t r i c t e d ,  Nash Equilibrium programs within a  c e r t a i n  c l a s s  a r e  indeed 

Pareto-ef f  i c i en t  ( i n  a  model involving spec ia l  functional  forms ) . 
Second, how do cap i t a l  stock and leve l  of consumption behave over 

time? In pa r t i cu l a r ,  how does the  equilibrium program compare t o  t h a t  

which would be se lected by an omniscient planner? Although t h i s  ques- 

t i o n  has received some a t t en t ion  from Phelps and Pollak (19681 and 

Kohlberg [1976], it remains largely  unanswered. 

There a r e  important p r ac t i c a l  i ssues  t o  be s t ressed  in  t h i s  con- 

t e x t .  Barro [1974] has argued t ha t  under c e r t a i n  spec ia l  condit ions,  

in tergenerat ional  a l t ru ism neutra l izes  the  r e a l  e f f e c t s  of Social  Secur- 

i t y  and d e f i c i t  financing. I f  these conditions a r e  not met, such gov- 

ernment po l ic ies  could be employed as  s t r a t eg i c  instruments i n  instances 

of in tergenerat ional  conf l i c t .  

The framework of in tergenerat ional  a l t ru ism i s  a l s o  useful  f o r  

analyzing how bequests e f f ec t  the  d i s t r ibu t ion  of wealth in an i n t e r -  

temporal context. For a  discussion of such i s sues ,  see Loury [1981]. 

Many of the  theore t i ca l  issues which a r i s e  in t h i s  framework a r e  

c losely  re la ted  t o  the l i t e r a t u r e  on 'consis tent  p lans ' ,  pioneered by 

Strotz  11956) and Pollak [1968]. The postula te  of a sequence of 'plan- 

ners '  with conf l i c t ing  goals bears s t rong formal resemblance t o  t h a t  of 

a  s ingle  planner with changing t a s t e s .  Consequently, some of t he  

general  r e su l t s  obtained in t h i s  l i t e r a t u r e  may be applicable t o  a l t r u -  

i s t i c  growth models. 



The purpose of t h i s  paper and i t s  sequel is t o  address three  

important t heo re t i ca l  issues which remain open: the  existence of equi- 

librium, the normative properties of equilibrium programs, and the  

asymptotic behavior of cap i t a l  stocks i n  an a l t r u i s t i c  growth econoqy. 

It i s  perhaps surprising tha t  no sa t i s fac tory  existence theorem 

has been exhibited fo r  t h i s  important and useful c lass  of models./ 

Authors studying a l t r u i s t i c  growth equi l ib r ia  (see,  f o r  example, Phelps 

and Pollak 119681 , Dasgupta [1974a,b] , Kohlberg [19761 , Lane and Mitra 

[1981]),  while aware of the existence problem, have typical ly  concerned 

themselves with the  properties of equi l ibr ia .  

The lack of an existence proof i s  par t i cu la r ly  troubling in  the  

l i gh t  of a counterexample due t o  Kohlberg [19761 fo r  a par t icular ly  

simple model, G/ which demonstrates that  Nash equi l ib r ia  with cer ta in  

reasonable properties ( s t a t i ona r i t y  and continuous d i f f e r en t i ab i l i t y  of 

the equilibrium s t r a t eg i e s )  may not, in  general, ex i s t .  Lane and Mitra 

\1981-] suggest t ha t  a proof of existence ( fo r  non-stationary equ i l i b r i a )  

appears i n  the  l i t e r a t u r e  on consistent plans (peleg and Yaari 

[1973] ) . However, t he  notion of equilibrium adopted there  r e s t r i c t s  a l l  

agents t o  se lec t  l i nea r  consumption functions. This is c lear ly  unsatis-  

factory. In par t i cu la r ,  when an agent contemplates deviations from h is  

equilibrium st ra tegy,  he envisions l a t e r  generations select ing actions 

which do not i n  general, maximize t h e i r  u t i l i t y .  Thus the equilibrium 

i s  not perfect ,  in  the sense of Selten (19651. Furthermore, Peleg and 

Yaari do not address the  question of whether s ta t ionary equi l ib r ia  

ex is t .  Goldman (19801 supplies an existence proof fo r  perfect  equi- 

l i b r i a ,  but t h i s  is applicable only t o  models with f i n i t e  time 



horizons.  Moreover, such t runca t ion  prevents  him from considering t h e  d 9 
exis tence  of s t a t i o n a r y  e q u i l i b r i a .  .i 

i 
In  t h i s  paper,  we provide two r e s u l t s  on t h e  ex is tence  of e q u i l i -  i 

b r i a  i n  a l t r u i s t i c  growth models. F i r s t ,  under very genera l  cond i t ions ,  
1 

per fec t  Nash e q u i l i b r i a  always e x i s t  i n  reasonably well-behaved s t r a t e -  4 
i 

g i e s  (equi l ibr ium consumption funct ions  a r e  upper semicontinuous, con- 

t inuous  from t h e  l e f t ,  wi th  l i m i t s  on t h e  r i g h t ) .  Furthermore, i f  t h e  

model is  i t s e l f  s t a t i o n a r y ,  then a s t a t i o n a r y  equi l ibr ium w i l l  e x i s t  as 

well .  Consequently, Kohlberg' s counterexample r e s u l t s  from t h e  r e s t r i c -  

t i o n  t h a t  consumption funct ions must be continuously d i f f e r e n t i a b l e .  

I n  t h e  sequel  t o  t h i s  paper,  we i n v e s t i g a t e  t h e  p o s i t i v e  and 

normative a spec t s  of equi l ibr ium programs f o r  a l t r u i s t i c  growth 

economies. One quest ion addressed t h e r e  concerns the  asymptotic 

i o r  of c a p i t a l  s tocks .  I n  p a r t i c u l a r ,  w i l l  t h e  long run c a p i t a l  s tock  

which a r i s e s  from in t e rgene ra t iona l  c o n f l i c t  be higher  o r  lower than t h e  

' t u rnp ike '  a s soc ia t ed  with t h e  so lu t ion  t o  t h e  optimal planning 

problem? On --- a p r i o r i  grounds, t h e  answer is not c l e a r .  Agents who t ake  

only a l imi t ed  i n t e r e s t  i n  the  fu tu re  w i l l  tend t o  bequeath l e s s  than  

those  who a r e  far-s ighted.  However, s ince  each generat ion views i t s  

c h i l d r e n ' s  bequest as pure waste,  it must bequeath a l a r g e r  sum t o  

obta in  t h e  same consumption value. 

I n  t h e  sequel ,  we obta in  s teady-s ta te  r e s u l t s  f o r  equi l ibr ium 

c a p i t a l  s tocks  completely analogous t o  t h e  well-known optimal planning 

r e s u l t s .  By comparing ' s t eady- s t a t e s ' ,  we show t h a t  no l i m i t  po in t  of 

equi l ibr ium c a p i t a l  s tocks can exceed t h e  planning turnpike.  Conse- 

quent ly ,  l imi t ed  in t e rgene ra t iona l  a l t r u i s m  m y  provide t h e  b a s i s  f o r  a  



theory  of chronic  c a p i t a l  shortages.  

A second s e t  of ques t ions  addressed i n  t h e  sequel  concern norma- 

t i v e  i s sues .  In  p a r t i c u l a r ,  a r e  equi l ibr ium programs e f f i c i e n t ?  I f  s o ,  

a r e  they  Pare to  opt imal  i n  t h e  t r a d i t i o n a l  sense,  o r  modified Pare to  

opt imal  i n  t h e  sense of Lane and Mitra I19811 ? Although previous 

au tho r s  have addressed t h e s e  ques t ions ,  t h e i r  ana lyses  have been con- 

f i ned  e i t h e r  t o  p a r t i c u l a r  parametr ic  s p e c i f i c a t i o n s  of t h e  model, o r  t o  

t h e  c l a s s  of Nash E q u i l i b r i a  cha rac t e r i zed  by l i n e a r  consumption 

func t ions  ( ~ a s ~ u ~ t a  [1974a,b] ,  Lane and Mitra [19811 ). We have a l r eady  

mentioned t h e  shortcomings of adopting t h e  second approach. I n  t h e  

sequel ,  we extend e x i s t i n g  r e s u l t s  t o  t h e  c l a s s  of p e r f e c t  e q u i l i b r i a .  

The c u r r e n t  paper is  organized as fol lows.  Sec t ion  2 d i sp l ays  t h e  

model, b a s i c  assumptions, and d e f i n i t i o n s  of e q u i l i b r i a .  In  Sec t ion  3, 

we show t h a t ,  r ega rd l e s s  of t h e  s t r a t e g i e s  adopted by f u t u r e  genera- 

t ions ,  t h e  opt imal  consumption func t ion  f o r  t h e  c u r r e n t  gene ra t  ion 

d i sp l ays  a 'marginal  propens i ty  t o  consume' out of endowment which does 

not exceed un i ty .  That is ,  each gene ra t ion ' s  bequest  is a normal 

good. Besides be ing  of independent i n t e r e s t ,  t h i s  r e s u l t  i s  used exten- 

s i v e l y  t o  e s t a b l i s h  our c e n t r a l  theorems. Existence of e q u i l i b r i a  i s  

e s t a b l i s h e d  i n  Sec t ion  4. A l l  proofs  a r e  de fe r r ed  t o  Sec t ion  5 .  Sec- 

t i o n  6 d i scusses  a d d i t i o n a l  open quest ions.  

11. The Model 

The model i s  a g e n e r a l i z a t i o n  of Kohlberg's ( ~ o h l b e r g  [19761). 

There is one commodity, which may be consumed o r  invested.  The t r a n s -  



formation of c ap i t a l  stock in to  output takes one period, and is  repre- 
m 

sented by a sequence of production functions <ft>O . We assume, fo r  

each t > 0, 

( A . 1 )  f t :  R+ + R+ i s  continuous and increasing 

In each time period, decisions concerning production and con- 

sumption are  made by a fresh generation. Thus, generation t i s  end- f 
5 
k, 

E owed with some i n i t i a l  output ( y t ) ,  which it divides between consump- 1 

t i on  (ct ) , and investment (kt = y t  - C t  ) Each generation derives : 

u t i l i t y  from i t s  own consumption, and the  consumption of the  generation 

immediately succeeding it. Preferences a r e  represented by a sequence of 
m 

u t i l i t y  f'unctions cu > t o '  We assume, fo r  t > 0, 

5 / (A.2) ut:  IR: + IR is continuous, increasing and s t r i c t l y  concave. - 

c ' with c (A.3 For a l l  c t ,  ch, c ~ + ~ .  t+l > C; 0 , c ~ + ~  c;+~ > 0  , 

Remark: (A.3) is simply an assumption of - weak complementarity. 61 
2 For u d i f fe ren t iab le ,  it is  equivalent t o  a u /act act+l t t > O .  Note 

t h a t  (A.3) subsumes the  case analyzed by Kohlberg (1976): 

~t ( c t  ' ~ t + l  ) = v(c ) + ~ V ( C ~ + ~ )  , where 6 is  posi t ive  and v( 0 )  is  t 
continuous, increasing and concave. 

Assumptions (A.  1) -(A. 3 )  w i l l  be maintained throughout the  paper. 

We take the h i s t o r i c a l l y  given i n i t i a l  output a t  t i m e  zero, y, t o  l i e  in  

k >m is some compact in te rva l  [ o . Y ]  , Y > 0  . A program <yt ,ct ,  



feas ib le  from y E [ o , Y ]  i f  

Denote by t he  corresponding feas ib le  consumption 

program. The 1 is  a sequence <Ft ,Et ,\ >; with 
- c = 0 f o r  a l l  t > 0, Ft = t Kt f o r  a l l  t > 0,  Ft+, = f (E ) f o r  a l l  t t  
t > 0 ,  and = Y .  0 

Define Ct  a s  the  s e t  of functions C: 1 + [0,y;l, with 

~ ( y )  G y f o r  a l l  y E  [0,ft1 . Define Ut(c,y, C t+ l )  = 

U ~ ( C , C ~ + ~ ( ~ ~ ( Y  - c ) ) )  f o r  a l l  Ct+lE Ct+l , and ( c , ~ )  > 0 

with c ( y ( yt. 
We w i l l  impose t he  behavioral assumption t h a t  a l l  generations 

s e l ec t  perfect  Nash s t a t eg i e s  (see Selten 119651 1. Formally, 

W W 
Definit ion:  The sequence <Ct> ,  C tE  C t ,  t > 0,  is  a bequest 

equil ibrium (o r  simply, equilibrium) i f  fo r  a l l  t > 0 and y E (0  ,Ft 1 , -- 

W W c (y )  E a r g  max ut ( c , Y .  Ct+l)  t OG ccy 

Note t h a t  we have r e s t r i c t e d  a t t en t i on  t o  the  c l a s s  of s t r a t e g i e s  

f o r  which consumption depends only upon i n i t i a l  endowment. In general ,  

it is  possible f o r  agents t o  condition t h e i r  choices upon the  e n t i r e  



his tory of the  game. We w i l l  r e fe r  t o  these a s  'endowment dependent', 

and 'h is tory dependent' s t ra teg ies  respectively. Clearly, one cannot 

ru le  out the  existence of equ i l ib r ia  in  his tory dependent s t r a t eg i e s  

which are not simply endowment dependent (see ,  for  example, Goldman 

[1980] ). However, it is easy t o  verif'y in our model tha t  - i f  genera- 

t ion  t + 1 chooses an endowment dependent s t ra tegy,  there  ex i s t s  an 

endowment dependent best response fo r  generation t. It follows t h a t  

although we have r e s t r i c t ed  a t tent ion t o  endowment dependent s t r a t eg i e s ,  

our bequest equ i l ib r ia  continue t o  be equi l ib r ia  when no r e s t r i c t i ons  on 

s t r a t eg i c  choice are  imposed. Furthermore, since C* must maximize the  t 
u t i l i t y  of generation t for  a l l  i n i t i a l  endowments, any bequest 

equilibrium must in  addition be perfect .  

We sha l l  often re fe r  t o  t h i s  model a s  an a l t r u i s t i c  growth econow. 

An a l t r u i s t i c  growth econoqy i s  s ta t ionary i f  ut = u and 

f  = f  for  a l l  t > 0. Finally,  a bequest equilibrium i s  stat ionary t 
i f  the  a l t r u i s t i c  growth econow i s  s ta t ionary,  and the  equilibrium con- 

* * * 
sumption f'unctions <C > sa t i s fy  c t (y )  = Ct+,(y) for  a l l  t 

Y E  Io,Yt1, t > 0 

111. 3 
Kohlberg I19761 has shown t h a t  any s ta t ionary continuously d i f fe r -  

ent iable  equilibrium C ( *  ) of a s ta t ionary a l r u i s t i c  growth model 

s a t i s f i e s  0 < C '  6 1 . That i s ,  the  marginal propensity t o  consume out 

of endowment i s  posi t ive ,  but does not exceed unity.  Equivalently, both 

consumption and bequests are normal goods. In t h i s  section,  we estab- 



l i s h  t h a t  regardless  of t h e  s t r a t e g i e s  adopted by succeeding genera- 

t i o n s ,  the  optimal consumption function f o r  any p a r t i c u l a r  generat ion 

exh ib i t s  a marginal propensity t o  consume not g r e a t e r  than unity.  

Henceforth, we s h a l l  ( f o r  obvious reasons)  r e f e r  t o  t h i s  as t h e  

'Keynesian proper ty ' .  Thus, Theorem 3.1 genera l izes  ha l f  of Kohlberg's 

r e s u l t .  Although the  theorem is  i n t e r e s t i n g  in  i t s  own r i g h t ,  it i s  

a l s o  e s s e n t i a l  f o r  the  ana lys i s  which follows. 

Theorem 3.1: Suppose t h a t  f o r  some consumption function 

Ct+l C t + l  used by generation t + 1, an optimal consumption fhnction 

f o r  generation t ,  Ct E Ct , given by 

c ~ ( ~ )  E a r g  max Ut(c,y; C t + l ) ,  Y [ O , Y t l  
o<c<y 

i s  wel l  defined. Then f o r  a l l  y y2 E (0,  ytl with 

An i n t u i t i v e  understanding of t h i s  r e s u l t  can be obtained by 

consul t ing  Figure 1. We suppose t h a t  points  A and D l i e  i n  t h e  

graph of the  consumption function,  and t h a t  t h e  slope between them 

exceeds 1. Notice t h a t  the  bequest associa ted  with each point  is  given 

by t h e  v e r t i c a l  d is tance  between t h a t  point  and the  45" l i n e .  Let 

points  B and C be defined as follows; at B, agent t has t h e  same 

endowment as at  D ,  but bequeaths an amount equal t o  h i s  bequest at  

A; at  C ,  agent t has the  same endowment as at A, but  bequeaths an 

amount equal t o  h i s  bequest at D. Notice t h a t  the  l i n e s  between A 

and B and between C and D have slopes of one. 



Now we observe t h a t  agent t (weakly) prefers  moving from B 

t o  D. How should he then f ee l  about moving from A t o  C ?  The 

' fu tu re1  is  iden t ica l  fo r  A and B ( h i s  bequest is the  same); 

similarly for  C and D. Thus moving from A t o  C d i f f e r s  from 

moving from B t o  D only in  t h a t  i n i t i a l  consumption is lower -- t he  

incremental exchange of future  consumption for current  consumption i s  

t he  same. I f  marginal u t i l i t y  of current  consumption is decreasing, 

then C must be strongly preferred t o  A -- a contradiction.  Note t h a t  

t h i s  reasoning is val id  only i f  the  reduction in ct does not r a i s e  the  

marginal u t i l i t y  of c ~ + ~  too much ( i .e . ,  ct and c ~ + ~  are  not 

subs t i t u t e s ) .  

Figure 1 



Two qua l i f i ca t ions  a r e  in order. F i r s t ,  t h i s  r e su l t  depends upon 

weak complementarity ( ~ . 3 ) .  Second, we doubt t ha t  a similar theorem 

could be obtained in  a disaggregated model. Consequently, it may be 

d i f f i c u l t  t o  generalize the  existence theorems proven in  the  next 

section t o  other in te res ing  models by using the  techniques employed 

there.  These cases a re  l e f t  as open questions. 

I V .  Existence Theorems 

Although much is  now known about the  propert ies of equ i l ib r ia  for  

models such as t h a t  presented in Section 2, previous investigations have 

f a i l ed  t o  produce a completely sa t i s fac tory  existence theorem. In t h i s  

section,  we present two theorems which es tab l i sh  the  existence of 

perfect  equ i l i b r i a  for the  a l t r u i s t i c  growth model described in  section 

2. These r e s u l t s  may be summarized as follows. For the  most general 

version of our model, non-stationary equ i l i b r i a  in  well-behaved 

s t r a t eg i e s  always ex i s t   h he or em 4.1). I f  in addit ion,  the  model i s  

s ta t ionary,  then at l e a s t  one such equilibrium is s ta t ionary as well 

 h he or em 4.2). Formally, 

* 
Theorem 4.1: There ex i s t s  a bequest equilibrium <Ct> where fo r  

* 
a l l  t > 0 ,  C E C i s  upper semi-continuous, continuous from the  l e f t ,  - - t t 
with l imi t s  on the  r ight .  

Theorem 4.2: For s ta t ionary models, the re  e x i s t s  a s ta t ionary 
* * * 

bequest equilibrium <Ct> ,  Ct E ct, where C i s  upper semicontinuous, t 
continuous from the  l e f t ,  with l im i t s  on the  r i g h t ,  f o r  a l l  t > 0 . 



A s  t he  proofs of these  theorems a r e  ra the r  i n t r i c a t e ,  we provide 

here a sketch of the arguments employed. The behavioral assumption 

underpinning the  perfect  Nash concept is  t h a t  agent t chooses h i s  best 

s t ra tegy ( C t )  by'maximizing h i s  u t i l i t y  for  every possible i n i t i a l  

l eve l  of endowment, taking Ct+l a s  given. Whether o r  not the  solut ion 

t o  t h i s  maximization problem is well defined c lea r ly  depends upon the  

proper t ies  of Ct+l. We show t h a t ,  i n  pa r t i cu l a r ,  i f  Ct+l i s  upper 

semicontinuous, then t l s  best responses a re  well-defined fo r  every 

i n i t i a l  l eve l  of endowment, and form an upper hemicontinuous 

correspondence. Ct may then be any function se lected from t h i s  

correspondence. 

It is ,  of course, possible t o  s e l ec t  Ct such t ha t  it is  - not 

upper-semicontinuous. In t h i s  case,  Ct-l w i l l  not necessari ly be well- 

defined. However, it is always possible t o  s e l ec t  Ct t o  be upper- 

semicontinuous, in which case t h i s  problem is not encountered. 

Consequently, we can without l o s s  of general i ty  look f o r  equ i l i b r i a  in  

upper semicontinuous s t r a t eg i e s  (not ice  t h a t ,  unlike Peleg and Yaari, we 

have not r e s t r i c t ed  agents t o  a subset of s t r a t eg i e s ,  s ince each 

generation w i l l  always have a globally best response which l i e s  in  t he  

desired subset ) . 
Next, we observe t h a t  the upper hemicontinuous correspondence 

which forms t l s  best responses must s a t i s f y  the  Keynesian property 

(Theorem 3.1). It is easy t o  see t h a t  there  i s  always one and only one 

upper-semicontinuous se lect ion from such a correspondence, formed by 

taking the  mximum value of consumption fo r  each l eve l  of endowment. 



Consequently. f o r  every upper-semicontinuous s t ra tegy Ct+l chosen by 

generation t + 1, generation t has one and only one upper-semicontin- 

uous best  response. 

Our next s t ep  i s  t o  determine the  propert ies of t h i s  best  response 

mapping. In pa r t i cu l a r ,  we must verify continuity.  To do so ,  we must 

endow the  space of upper semicontinuous consumption mnctions with an 

appropriate topology. In p rac t ice ,  it i s  much eas ie r  t o  identif'y 

consumption mnctions with upper hemicontinuous correspondences from 

which they a re  se lec ted ,  and t o  work in  terms of the  l a t t e r  space. We 

know t h a t  fo r  every upper hemicontinuous correspondence satisf 'ying t he  

Keynesian property,  we can se lec t  one and only one upper semicontinuous 

function. Knowing t h e  upper semicontinuous mnct ion ,  can we reconstruct 

the correspondence from which it i s  se lected? The answer i s ,  i n  

general ,  no. However. it i s  t r u e  t ha t  the re  i s  one and only one convex 

valued upper hemicontinuous correspondence (with a technical  r e s t r i c t i on  

on t he  upper end po in t )  sa t i s fy ing  the  Keynesian property from which the  

function could have been selected.  We c a l l  the  process of going from 

upper semicontinuous functions t o  such correspondences ' f i l l i n g '  the  

function. This i s  i l l u s t r a t e d  in Figures 2 ( a )  and (b ) .  F i l l i ng  t h e  

mnction C i n  2 ( a )  y ie lds  the  correspondence h in 2 (b)  ; the  only 

permissible (upper semicontfnuous) se lect ion from h i s  C. 

This reasoning allows us t o  take agents s t ra tegy spaces a s  

consist ing of convex valued upper-hemicontinuous correspondences s a t i s -  

fying the  Keynesian property. The best response mapping then works as  

follows. For any s t ra tegy ht+l chosen by generation t + 1, l e t  



Figure 2 

(a) Y Y  



Ct+l be the  unique upper semicontinuous selection.  We obtain t '  s 

best response by f i l l i n g  the correspondence which takes t ' s  endowments 

i n t o  h i s  optimum consumption l eve l s  ( c a l l  t h i s  ) This mapping is  

s ingle  valued. Furthermore. the  unique upper semicontinuous se lect ion 

from kt i s  a best  response t o  the  unique upper semicontinuous 

se lect ion from ht+l. We endow the  space of ' f i l l e d '  upper-semi- 

continuous correspondences with the  Hausdorff topology; t h a t  i s .  we take 

the distance between two correspondences t o  be the Hausdorff distance 

between t h e i r  graphs. A s  long as endowments have an upper bound 

(c lea r ly .  they a re  bounded by the  pure accurmilation p a t h ) ,  s t ra tegy 

spaces are  compact i n  t h i s  topology. Final ly .  we show t h a t  the  best  

response mapping (taking correspondences t o  correspondences) is  

continuous fo r  t h i s  topology. 

The equ i l i b r i a  mentioned i n  Theorem 4.1 m y  now be constructed by 

successive delet ion of s t r a t eg i e s .  Consider generation t. F i r s t  

construct  t he  s e t  of s t r a t eg i e s  fo r  t which a r e  bes t  responses t o  some 

s t ra tegy for  t+l. This s e t  is necessari ly compact by the above topo- 

log ica l  arguments. Next consider the  s e t  of s t r a t eg i e s  fo r  t which 

a re  best responses t o  some s t ra tegy for  t + 1, which is in  turn a best  

response t o  some s t ra tegy for  t + 2. This s e t  is a l so  compact, and 

l i e s  within the  f i r s t  s e t .  We continue t h i s  process,  forming an 

i n f i n i t e  sequence of compact nested s e t s ;  t h e i r  in tersect ion is non- 

empty. By constructing these s e t s  for  each t ,  and by appropriately 

se lec t ing  a member from each s e t ,  we construct an equilibrium. 

I f  we know i n  addit ion t ha t  the model is s ta t ionary ,  a stronger 

r e su l t  (Theorem 4.2) can be obtained. F i r s t  consider the  case where the  



production function crosses the  45" l i n e .  We can,  without l o s s  of 

genera l i ty ,  choose a common upper bound on the  domain (endowments) i n  

every period. and consider only s t r a t eg i e s  consist ing of correspondences 

defined over t h i s  common domain. The best  response mapping for  each 

agent w i l l  then be i den t i ca l .  and any fixed point of t h i s  napping w i l l  

be a s ta t ionary  equilibrium. We know the  mapping is  continuous, and 

t h a t  it maps a compact space i n to  i t s e l f .  Unfortunately, t he  space is 

not l i n e a r ,  so convexity cannot be ver i f ied .  However, it is  possible t o  

show t h a t  t he  space i s  both contract ib le  and l oca l l y  contract ib le .  

Figure 3 i l l u s t r a t e s  the  argument for  con t r ac t i b i l i t y .  We define a 

homotopy between t h e  iden t i ty  map and t h e  constant map (with value equal 

t o  the  horizontal a x i s )  by simply 'shrinking'  the  ver t i ca l  axis .  A 

s imi la r  argument applies fo r  l oca l  con t r ac t i b i l i t y .  The existence of a 

fixed point follows immediately. 

To extend t h i s  analysis  t o  cases where t he  production function 

need not cross the 45" l i n e ,  we consider a sequence of economies where 

we t runcate  t he  production function a t  successively higher l eve l s .  An 

equilibrium fo r  the  or iginal  econoqy can be constructed as the  l i m i t  of 

equ i l i b r i a  in  these  a r t  i f  i c i a l  economies. 

V. Proofs 

Proof of Theorem 3.1: Suppose, on the  contrary,  t h a t  there  

e x i s t s  Y,. ye E [ o Y T t I ,  y1 < y g Y  with 



Figure 3 



- - Define c C (y ) + y 2  - y l  cl a C t ( ~ 2 )  + Y 1  - Y 2  ' 2 t 1  - - 
BY ( 5 . 1 ) ,  we have y2 > c > 0 .  Yl > c > Ct(y l )  > . 1 

Since 
2 - - 

ut (c t (y l )  Y1' c ~ + ~ )  > u t ( c l q ~ l y  Ct+l ) ,  we have, using c 1 > Ct(yl) 

and A.2. , 

Using (5.2) and A.3.. 

- 
Ut(cn y2 ;  C t + l  ) - ut (c, (Y, ) .  Y1 C t + l )  

= U ( C  (y ) + y2 - yl. C t + l l f t ( ~ l  - Ct (y l ) ) ! )  - u t ( c t ( y l ) .  ~ ~ + ~ l f ~ ( ~ ~  - Ct(rl))l t t l  

> U t t l  ( C  (y ) + y2 - yl. Ct++ft(y2 - Ct(y2))1)  - u t ( c t ( y l ) .  Ct+Jft(y2 - c t (y2 ) ) I  

> u (c  (y 1, Ct+Jft(y2 - Ct(y2))1)  - ut(c t (y2)  + Y1 - Y 2 .  Ct+1[ft(y2 - c t (y2) ) I  t t 2  

t h i s  l a s t  inequali ty following from A.2 and the  fac t  t h a t  

c ~ ( ~ ~ )  + y1 - yp> Ct(yl) . Therefore, rearranging terms,  

- 
> u t t l  ( C  (Y ) J l ;  C t+ l )  - Ut(cl,yl; C t + l )  

By def ini t ion of C t ( .  ) , the  left-hand s ide  of (5.3) must be non- 

pos i t ive ,  while the  r igh t  hand side must be nonegative. But t h i s  

contradic ts  the  inequali ty i n  (5.3 ) . Q.E.D. 



TO prove Theorem 4.1,  we w i l l  need a number of p r e l i m i n a r i e s .  

F i r s t  de f ine ,  f o r  a l l  t > 0 ,  Mt = { ( x , Y ) ~ o  < x < y  0 < y < . For t '  
any func t ion  o r  correspondence g ( ) , de f ine  i t s  graph by 

G ( ~ )  z { ( X , ~ ) \ ~  E g ( x ) l  . For any set G i n  lR2. denote by ll ( G )  
Y 

i t s  p ro j ec t ion  onto  t h e  y-axis. 

For  a uhc correspondence g : [ o , a l  3 [ 0 , a l ,  a > o ,  w i th  

0 < c < y f o r  a l l  c E g ( y ) ,  de f ine  F i l ( g )  by ~ i l ( ~ ) ( ~ )  = convex 

h u l l  of  g ( y ) .  f o r  a l l  y E [ 0 , a ) ,  and F i l ( g ) ( a )  = [0,max g ( a ) ] .  ~f 

a = -, ignore  t h i s  last requirement.  ~ i l ( ~ )  is t h e  f i l l e r  of g it is 

uhc and m p s  [0.a] t o  [ 0 , a ]  . A correspondence g i s  -- f i l l e d  if 

~ i l ( ~ )  = g. 

Next, we a t t a c h  a name t o  t h e  proper ty  e s t a b l i s h e d  in  Theorem 3.1. 

Def in i t ion :  A set E c IR2 satisfies t h e  Keynesian property if - 
t h e r e  does not e x i s t  ( x '  , y '  ) ,  (x",Y") E E, wi th  xt' > x ' ,  , such 

t h a t  yw - y t  > - x'  . A correspondence with graph in  JR2 satisfies 

t h e  Keynesian proper ty  i f  i t s  graph does. 

~f a consumption correspondence satisfies t h e  Keynesian proper ty ,  

t hen  t h e  a s s o c i a t e d  'marginal propensi ty  t o  consume' can never exceed 

one. 

Define f o r  t > 0 ,  fft t o  be t h e  s e t  of graphs of f i l l e d ,  uhc 

correspondences ht : 10, Ytl ~ [ O , Y ~ ] ,  such t h a t  G(ht) 5 M t ,  and 

such t h a t  satisfies t h e  Keynesian property.  



Similar ly  define f o r  t > 0 ,  ?it a s  t h e  s e t  of graphs of uhc 
N 

correspondences ht : lo,?, 1 3 [O,yt] , with G ( K % )  - C Mt , and such 

t h a t  $ has t h e  Keynesian property. 

Often we s h a l l  r e f e r  t o  % E gt ( o r  ht E lit) ,  a t  t h e  r i s k  of t 
some harmless nota t ional  abuse. 

N 

We wish t o  endow lit and lit with a s u i t a b l e  topology. Distance 

between correspondences w i l l  be defined a s  t h e  Hausdorff distance 

between t h e i r  graphs. Formally, 

Defini t ion:  For every two subsets  E and F of a metric space 

( ~ , d ) ,  l e t  the  Hausdorff distance 6 ( E , F )  (with respect  t o  the  metric 

d on M )  be given by 

where B€( x ) ,  X C - M ,  denotes t h e  €-neighborhood of X ,  i.e. , 

B,(x)  I {x E M I d i s t  ( x , ~ )  < €1. 

L e m  5.1: - Let ( ~ , d )  be a compact metric space. Then t h e  s e t  M 

of nonempty closed subsets  of M together  with t h e  Hausdorff distance 

6 - on M is a compact metric space. Further,  f o r  any sequence 

<Et>, Et E M, define 

t t t t  L ~ ( < E  >) = { x E  M I  the re  is <x >, x E E , l i m  xt = x} 
t 

t t t  LS(<E >)  = {x E M ( the re  is <x >, x E Et ,  with a convergent 

subsequence converging t o  x) 

t t 
v Then <E > converges t o  E in ( M , 6 )  i f f  L ~ ( < E  > ) = E = - 



Proof: See Hildenbrand [1974]. 

Lemma 5.2 : Suppose t ha t  h, h1 E Ht , with ~ ( h )  C ~ ( h '  ). Then - 
h = h ' .  

Proof: Define P E G(hl)\ ~ ( h )  . Suppose P i s  nonempty. Then 

the re  i s  (y , c )  E P , such t h a t  e i t he r  c > max h(y)  , or c < min h (y ) .  

Assume the  f i r s t .  Then c lea r ly  y  > 0 . Since G(h) i s  closed and 

Keynesian, the re  is (ym,cm) E ~ ( h )  , with ym f y and 

m m lim(y ,c ) = (y,max(y) ). But then fo r  m su f f i c i en t l y  l a rge ,  

y  - ym < c - cm , so t h a t  P  U ~ ( h )  = G(h l )  v io la tes  the  Keynesian 

property,  a  contradict ion.  Now assume the  second. Then, by def in i t ion  

of a f i l l e d  graph, y  < yt . Since ~ ( h )  is closed and Keynesian, 

the re  is (yn , cn )  E ~ ( h )  with yn f y and , cn )  = (y ,min h (y)  ) . 
n But then fo r  n  su f f i c i en t l y  l a rge ,  yn - y < c - c ,  so  t h a t  

P  U ~ ( h )  = G(hl ) v io l a t e s  t he  Keynesian property,  a  contradict ion.  

Q.E.D. 

Lemm 5.3: - Let h  be a  convex-valued uhc mapping from some 

compact i n t e rva l  I t o  subsets  of a compact i n t e rva l  [bL,bU]. Take 

( Y , c ) ,  ( y i , c f )  E ~ ( h ) ,  with y 1  > y . Then fo r  a l l  C E  [min (c , c l ) ,  

max(c,ct ) 1 ,  the re  e x i s t s  E [y ,y l  ] such t h a t  c  E h (y) .  

Proof: Let pU be the  preimage of [c,bU] and $ be the  

preimage of [bL,c]  in  [y , y l  1.  Both $ and pU a r e  closed. 

Further,  pL U pU = [y ,y ' 1 .  Thus, pL r7 pU is  nonempty. So the re  



N N N  N N 

ex i s t s  y,  c ,  c1  such t h a t  ; E pL n P', F, Z' E h(y"), c > c ,  c '  < c . 
Since h is  convex valued, c E h(F) .  Q.E.D. 

Now we es tab l i sh  

Lemma 5.4: and - endowed with t he  Hausdorff topology a r e  

compact metric spaces. 

N 

Proof: Let ff denote H t ,  o r  Ht. It i s  well-known t h a t  each 

~ ( h )  E ff i s  closed (by uhc of h) .  Hence H C - M t ,  t he  s e t  of a l l  closed 
.. 

subsets of Mt. To es tab l i sh  t ha t  Ht  and H t  a r e  closed, pick 
.. 

< h n > i n  fft with G ( h n ) + G ( h ) .  The p ro j ec t i ono f  G(hn) onto the  

f i r s t  co-ordinate i s  [o , J t ]  ; we check f i r s t  t h a t  t h i s  i s  a l so  t rue  of 

G(h). Fix y E [ O , f t ] .  We can choose (y ,cn)  E G(hn) for  a l l  n. 

Since cn E [o,? 1 fo r  a l l  'n, <y, cn> has some convergent subsequence t 
with l i m i t  y c .  By Lemma 5.1, (y,c*) E G(h),  hence G(h) has the  

required projection property. Similarly, using Lermna 5.1, it i s  easy t o  

check tha t  G(h) has the  Keynesian property. Also G ( h )  E Mt , 
since Mt i s  closed ( ~ e m m  5.2). Thus h i s  a uhc correspondence 

with the  Keynesian property, with ~ ( h )  C %. This es tabl ishes  - 
N 

closedness of Ht 
Finally,  note t h a t  ~ ( h )  i s  f i l l e d  i f  G(hn) E Ht. To see t h i s ,  

pick any ( ~ , c ) ,  ( ~ , c ' )  E G ( h )  with c > c '  . Consider any cl' 

c " )  + (y ,c f ' ) ,  where c c .  We w i l l  show tha t  there  ex i s t s  (y: , 
(y'',c:) E hn f o r  a l l  n. By Lemm 5.1, there  ex i s t s  (yn ,cn) ,  

( y ' , c ' )  E hn f o r  a l l  n, with (yn,cn) + ( y , ~ ) ,  (Y;,C;) + ( y Y c 1 ) .  n n 
Pick N such tha t  fo r  a l l  n > N, cn  > c" > c ' .  BY Lemma 5.3, there  n 
ex i s t s ,  for  such n, (y",c:) E hn with c" = c", and n n 



y " ~  n [min(yn,yA), max(yn,yl;)l. Clearly,  a s  n + - ,  (y:,c:) + (yl',c"). 

By Lemma 5.1, (yl',c") E ~ ( h ) .  Also, note t h a t  ( Y t , O )  E ~ ( h " )  fo r  

a l l  n. Hence (yt , O )  E G(h). By t he  previous argument, 

h(Yt ) = [0,max h(yt)  1 .  So h is f i l l e d .  

This es tabl ishes  t h a t  t( is  closed. Consequently, s ince ff C M t ,  - 
which is  compact, ff is  compact. Q.E.D. 

Let St be t he  s e t  of a l l  s: [O,yt 1 + [O,yt 1 , s upper-semi- 

continuous (usc)  , with ~ ( s )  C %, and s a t i s w i n g  t he  Keynesian property. - 

L e n  5.5: I f  s E St, then fo r  a l l  y* E [0,Yt1, l i r n  s ( y )  = 
Y ~ Y *  - - 

s(y*).  Also, l i r n  s ( y )  ex i s t s .  
Y+Y* 

Proof: Suppose, on the  contrary, t h a t  t he r e  is y*, and 
- 

ym t y* with s t l&m s(ym) < s(y*) (by usc of s( 1, it cannot be 

g rea te r ) .  Then, f o r  m su f f i c i en t l y  large ,  we have 
- 

y* - ym < (1 /2) [ s (y*)  - s ] ,  and s(ym) - s' < (1 /2) [ s (y*)  - ; I .  
m Rearranging, y* - y < s(y*) - s (ym) ,  which v io la tes  t he  Keynesian 

property. 

To es tab l i sh  t h a t  l i r n  s ( y )  e x i s t s ,  assume on t h e  contrary t h a t  
* Y+Y* 

the re  a r e  y , and two sequences y + y*, yn + y* with y m m' Yn > Y*, 

and l i r n  s(ym) > l i r n  s ( yn ) .  Then define 6 = (1/3)  [ l i m  s(ym) - l i r n  s ( y n ) ]  
m n m n 

and M , N with 

( a )  l i m  s(ym) - s(yM) < 6 
m 

(b )  s ( y N )  - l i m s ( y n )  < S  and 
n 

( c )  y > yN, with yM - yN < 6. 

It is eas i ly  seen t h a t  such M ,  N ex i s t .  Then 



N m n M N s(yM) - s ( ~  ) > [ l i m  S ( Y  ) - l i m  S (Y  ) ]  - 26 = 6 > y - y , 
m n 

which viola tes  the  Keynesian property. Q.E.D. 

L e m  5.6 r e l a t e s  elements of Ht  t o  those of St .  

Lemma 5.6: h E H t ,  - l e t  s ( * )  be defined by 

s ( ~ )  : max ih (y ) )  . Then 

( a )  s ( * )  is well  defined. 

( c )  s( ) i s  the  unique selection from h such t h a t  s (  ) E St. 

Proof: 

( a )  This follows from the f ac t  t h a t  h i s  uhc and maps in to  a 

compact se t .  
m ( b )  Pick any sequence y + y E [0,Yt]. Then 

s : l i m  sup s(ym) E h (y ) ,  by uhc of h. ~ h u s  
m 

s < max {h(y) )  = s (y ) .  Verification of t h e  Keynesian 

property i s  t r i v i a l .  

( c )  Lemma 5.5, along with par t  (b) , implies, f o r  

y* > 0, t h a t  l i m  s ( y )  = s(y*) = mx{h(y*)). Consequently 
Y+Y* 

choosing s(y*) < max{h(y*)) v io la tes  usc. For y* = 0, 

{h(yw))  = 101, and there  i s  nothing t o  be proved. Q.E.D. 

Let s = ~ ( h )  be the  unique select ion ( i n  St) from h E Ht. 

We prove 

Lemma 5.7: Consider h fit, hm + h E H Define 5 = to  
{l imi t  points of a l l  sequences (ym,cm), where (ym,cm) E G ( s ( ~ ~ ) )  f o r  a l l  rn). 



- Then s ( y  ) r mx{c 1 (y , c )  E a} is well defined for  a l l  y  E [ o , ~ ~ ] ,  
and s (  ) = ~ ( h ) .  

Proof: It i s  easy t o  ver i fy  t ha t  i s  closed, t h a t  i ts  projec- 

t i on  into  the  f i r s t  co-ordinate is [ O . f t ] ,  and t ha t  a C ~ i ( { ~ ( h ~ ) } )  C ~ ( h ) .  - - - Hence s ( ~ )  is well defined for  a l l  y  E [ o , ~ ~ ] .  Moreover, it is easy 

t o  verify t h a t  has the  Keynesian property. Given t h i s ,  and the  
.. 

fac t  t h a t  a is the  graph of some uhc correspondence h  E Ht ,  s  E St, 

by Lemma 5.6(b). But s is a  se lect ion from ~ ( h ) ,  hence by Lemma 

Next, we es tab l i sh  two lemmas concerning the  model i t s e l f .  

L e m  5.8: For any E St+l, define fo r  y  E [0,Yt1, 

Then F i l ( h )  E Ht. 

Proof: By def ini t ion of H t ,  F i l ( * ) ,  and Theorem 3.1, it 

suff ices  t o  show t h a t  h  is well defined and uhc, and tha t  F i l ( h )  

s a t i s f i e s  the Keynesian property. This l a s t  s tep follows once we show 

h i s  well-defined and uhc. For suppose t h a t  F i l ( h )  does not have the  

Keynesian property; then there  ex i s t s  (yl ,cl ) , ,c2) E ~ ( F i l ( h )  ) , 
with y  c y such t h a t  c2- 1 2' C1 > Y2- Y1* Let c i  I min{Fil(h) ( y l ) l ,  

"; - c; I mx{Fi l (h) (y2)} .  Clearly ( y l , c i ) ,  ( y 2 , c a ) E  G(h), and 

C; - C; > c2 - c1 > y2 - yl. But t h i s  v io la tes  Theorem 3.1, which 

a s se r t s  t h a t  h  possesses the  Keynesian property. 



So it remains t o  ver i fy  t h a t  h is well-defined and uhc. 

Since is usc and ut is  continuous and increasing,  Ut is  

usc. A usc function reaches a maximum on a compact s e t ;  hence h(y)  i s  
- 

well-defined fo r  a l l  y E [O,yt]. 

To ver i fy  uhc of h, consider some sequence <ym> in  [ O , j t ]  with 

ym + y* E [ O , Y t ] ,  and <cm> with cm E h(ym) fo r  a l l  m, where 

cm + c*. We w i l l  show t h a t  c* E h(y*). Suppose t h a t  t h i s  is not 

t rue .  

Since s t+l is  USC, we have 

(5.5) m m l i m  sup U (c  .y ; t 1 < ut(c*,y*; st+l) m - 
By our assumption t ha t  c* $E h(y*), there  ex i s t s  c with y* > > 0 

and 

Define <?> by 7 = mx(O,ym + - y*) f o r  a l l  m > 0. Note 
'Y 

t h a t  ym > 7 > 0, and t ha t  ? + c .  Recall t h a t  

m 'Y 

Now note t h a t  ym - c + y* - c ,  and so, since f t  i s  
'Y + f t ( y * - c ) .  increasing,  f t  (Y - c ) By Lemma 5.5, 

m m N 

l i m  s [ f t  (y - c ) ]  = [ f t  (y* - c ) ] .  Using the continuity of 
m t+l 

ut, we have 



~ u t  (5 .5 ) ,  (5.6) and (5.7) together  imply t h a t  f o r  m 

m m. s u f f i c i e n t l y  l a rge ,  u t ( c  ,Y , st+l < u t (c  - .Y m. stcl ) contradic t ing ,  

f o r  such m, cm E h(ym) . Q.E.D. 

Now we introduce some add i t iona l  notat ion.  For s t+l %+l' 

def ine  .Ut(st+,) - h by (5.4) and + t ( ~ t + l )  ' ~ i l ( $ ~ ( s ~ + ~ ) ) .  Then. 

by Lemma 5.8, Ot: St+l + Ht.  Next, define 

a t :  H + H  by O t ( h t + l ) = O t ( ~ ( h t + l ) )  f o r e a c h  h t+l t t+l % + l o  
F ina l ly .  f o r  B C - H t + l ,  l e t  at ( B )  U at (h )  . 

K B  
A c e n t r a l  r e s u l t  i n  t h e  proof of Theorem 4.2 i s  

Lemm 5.9: a t :  f f t + l  + f /  i s  continuous f o r  a l l  t > 0. 

Proof: Consider any sequence h i n  ff t+l. 
m 

h t + l  + h t + l  " t + l .  We show t h a t  f o r  any l i m i t  point  ht of 

Clear ly ,  7 r l  h: = F i l ( T ) ,  where ht = $t(~:+l) E zt f o r  

m - 
S t+l = ~ ( h : + ~ ) .  Define G E { l i m i t  points  of a l l  sequences 

m m - (y ,c 1, where (ym,cm) E G(S:+~)I. and [ o , Y ~ + ~  1 + [ O , Y ~ + ~  - 1 by 
- 

s ( y )  : max i c l ( y , c ) E E I  f o r  a l l  Y E  [ O , Y ~ + ~  t+l 1. Then by Lemma 5.7, 

S t+l = ~ ( h ~ + ~ ) '  

We s h a l l  demonstrate t h a t  ht = Ot 1. 
+ ht,  and Without l o s s  of genera l i ty ,  assume t h a t  hm 

7 r l  N 

ht + ht E Ht ( t h i s  l a s t  s t e p  is poss ib le ,  by Lemma 5.4). It is obvious 

t h a t  G ( K ~ )  - C G(ht) ,  and hence G(Fi l (Kt) )  - C G(ht). But s ince  
N 

Fi l (Kt ) ,  ht E Ht, we have F i l ( h t )  = ht, by Lemma 5.2. Therefore it 



* 
suf f ices  t o  show t h a t  fo r  each y E [ O , Y t l  and c* E Kt(y), Ut(c,y*, 

i s  maximized a t  c*. In t h a t  case,  G(G ) C G ( $ ( s ~ + ~ ) ) .  SO t ha t  t -  

G(ht) = G(Fil(Kt ) )  5 G ( ~ i l ( l y ( s ~ + ~ )  ) )  = G ( $ ( s ~ + ~ )  ). But since 

- ht ,  E H t ,  We have ht - by L e m  5-20 

Therefore, pick y* E [o,? 1 and c* EKt (y ) .  BY L e m  5-1,  t 
there  ex i s t s  (ym,cm) E G($) with (ym,cm) + (y*,c*). Since 

s = ~ ( h : + ~ )  f o r  a l l  m, and st+l= ~ ( h ~ + ~ ) ,  t+l 
we have 

 h his comes from the  f a c t  t h a t  s  (y* - c*) = mx{h (y* - c*))  ). t+l t+l 
Consequently, s ince u is  increasing i n  i t s  second argument, t 

(5.8) l i m  sup ut ( C ~ , S ; + ~  Ift (ym - cm) I ) < ut ( C * , S ~ + ~  [ f  (Y* - c * ) l )  
m 

'Y 

Now suppose, on the  contrary,  t h a t  there  ex i s t s  c E [0,y*] with 

'Y U 

(5.9) ~ t ( ~ , ~ t + l  [ f  t (y* - c )  1 ) > U ~ ( C * , S ~ + ~  [ f t  (Y* - c*) I ) 

By construction of s  t+l there  ex i s t s  a sequence 

m m U 

(xm)> with (x 
< X  ySt+l (xrn))  + ( f t (y* - C )  ,st+l I f  t (Y* - a I ) 

-1 m Define 7 = max(ym - f t  (x ) ,0)  f o r  a l l  m. Then, c lea r ly ,  
," 

0 < ? < ym. Note t h a t  a s  m +  -, f t (ym - ?) + f t (y* - c ) .  Now pick 

a > 0, and integer M* such t ha t  fo r  a l l  m > M*, 

m m -1 m 
If t(y - C )  - xm 1 < a .  Since ym - Gm < f  t (x ), we have, using the  

Keynesian property of s  m 
t + l '  t ha t  



rrzn m N 

l i m  inf sm (f  (ym - c ) ) > l i m  (xm) = st+l(ft (Y* - C )  ) 
m t+l t m 

Consequently, using the f a c t  t h a t  u t is increasing, 

m m m N 

t If (y* - a1 (5.11) l i m  inf u ( C  , s t+ l l f t (~m - C ) I )  > u t ( ~ ~ s t + l  t m 

But (5 .8) ,  (5.9) and (5.11) i m p l y  t h a t  f o r  suf f ic ien t ly  large m, 

which contradic ts  (ym,cm) E G($). 

This es tab l i shes  the  l e m .  Q.E.D. 

Proof of Theorem 4.1  

Define, fo r  each ( t , ~ )  > 0 

It is easy t o  ver i fy  t h a t  Qt " is compact, using Lemmas 5.4 and 

5.9. Further, f o r  a l l  ( t , ~ )  > 0, ~ ~ ' ~ 3  - Qt'T+l . Therefore 

i s  nonempty. 

We claim t h a t  f o r  each ht E Qt , (at  )-' (ht ) n Qt*l is nonempty. 

Clear ly ,  s ince ht E @ ( H  ), P (at )''(ht) is nonempty. Also P is t t+l 
closed, by cont inui ty  of Qt. Therefore, i f  P n Qt+' is empty, the re  

e x i s t s  T > 0 such t h a t  P n Q t*l'T is empty. But then 



ht E P t ( Q  t + l  ,T  ) = Qt 9 T  3 Qt , a contradiction.  - 
0 We now construct  the  equilibrium. Pick ho E Q . Generation 0 ' s  

consumption s t ra tegy i s  C* s ( h O )  NOW pick h l E  (40)-1(h0) n Q1, 0 

and define Generation 1's s t ra tegy a s  C* ~ ( h  ). In general,  having 1 1 

picked ht i n  t h i s  recursive fashion, define Generation t ' s  s t ra tegy by 

-1 t" I ~ ( h  ), and choose ht+l E ( a t )  (ht ) n Qttl. t 
For any t > 0, and given C t + l  according t o  t h i s  contruction,  - ... 

ht I ~ i l ( h ~  ) fo r  ht = (c;+~ ) . Therefore, fo r  each y E [0  ,y ] , t 

But t he  unique construction of S ( * )  (see  Lemma 5.6) eas i ly  y ie lds  
N s ( ~ i l ( K ~ ) )  = s(Kt). Hence C; = s ( h t ) .  

F ina l ly ,  s ince C e  E St for  a l l  t > 0, Lemma 5.5 assures us 

t h a t  <C*> has a l l  the  propert ies claimed i n  the  statement of the  t 
theorem. Q.E.D. 

Now we turn  t o  the proof of Theorem 4.2. Observe t ha t  the pure 
- N 

accumulation program <Yt> is monotone, by A.1. Hence l i m  yt Z y 
+ L, + e x i s t s  i n  IF, U {+  -1. Consider two cases: 

N 

We w i l l  f i r s t  focus on Case 1. Define 7 E m a x ( ~ ~ , y ) .  Let 

M = { ( y , c ) ) y E  [0 ,y ] ,  c E  [ o , ~ ] ) .  Let H be t h e  space of (graphs o f )  

a l l  uhc, f i l l e d ,  correspondences h: (0 ,?I  [0 ,y]  , with 

~ ( h )  C M ,  such t h a t  h has the  Keynesian property. - 



Lemma 5.10: Take any h ' .  There e x i s t s  a mapping 

X :  ~ x [ 0 , l ]  + ff such t h a t  

( 5  1 4 )  ~ ( h ,  0 )  = h f o r  a11 h E 

(5-15)  ~ ( h ,  1) = h '  fo r  a l L  h E ff 

(5.16) x - is  - - continuous - - - - - . 

Proof We e x p l i c i t l y  cons t ruct  t h e  mapping X. 

F i r s t  we prove t h a t  f o r  a l l  h ,  h' E f f ,  A E [0,11,  x(h,A) E ff 

This is  accomplished i n  severa l  s teps.  

( i )  For a l l  y E [o ,? ] .  x(h,A)(y) is nonempty, convex, and 

closed. Nonemptiness follows from h(y  ) and h '  ( y  ) being nonempty ; 

convexity and closedness a r e  t r u e  by construct ion.  Noting t h a t  

h ( y )  = h'  (7) we conclude t h a t  ~ ( h  , A  ) is  a f i l l e d  correspondence. 

( i i )  G(x(h, A ) )  C M. From ( i )  and t h e  f a c t  t h a t  h,  h '  a r e  not - 
defined outs ide  of [ 0 , y ] ,  we know t h a t  ;G(x(h,A)) = 10,yl. We need 

only show t h a t  f o r  a l l  y E (0,yl , x(h,A) ( y )  C - [0 ,y ] .  But t h i s  follows 

immediately from t h e  f a c t  t h a t  min x(h,A) ( y )  > min{minih(y)), 

min{h' ( Y  ))), and max x(h,A) ( y )  < {max{h(y)), max{hl ( y ) )  coupled with 

t h e  observation t h a t  min{h(y)), min{hl ( y ) )  > 0 and max{h(y)), 



(iii) G(x(h,X)) i s  closed. Take any sequence (yt ,ct ) E ~ ( ~ ( h , . \ ) )  

with l i m i t  point  (y ,  c ) .  We know 

Passing t o  the  l i m i t  as t + 

X l i m  mx{hl  (yt ) I  + ( 1  - A )  l i m  max{h(yt > c 
t t 

> X l i m  min{hl(y t ) )  + (1 - A )  l i m  min{h(yt)} 
t t 

But s ince  yt + y and h, h '  have closed graphs, 

d e f i n i t i o n ,  l i r n  rnax{h1(yt)} < m ~ { h ' ( ~ ) } ,  l i m  max{h(yt)} < max{h(yt)}, 
t t 

e tc .  So 

But then ( y , c )  E G ( x ( h , X ) ) .  ( i )  and (iii) together  imply t h a t  h 

i s  a uhc correspondence on [o,?]. 
( i v )  x(h,X) s a t i s f i e s  the  Keynesian property. Take any y '  , 

y" such t h a t  y" > y 1  , and c" E x ( ~ , X ) ( ~ " ) ,  c '  E x(h ,A)(y1 1. Then 

Subtract ing , 



x [ ~ x { ~ ' ( ~ ~ ~ ) )  - min{hl ( y ' ) ) ]  + (1 - A )  [max{h(y7')) - min{h(yl ) ) I  > c" - c '  . 
But since h' and h s a t i s f y  the Keynesian property, 

I 
I m a ~ { h ' ( ~ ' ~ ) )  - min{h'(y' ) )  < y" - y ' ,  and max{h(yl')) - min{hl(y' 1) < y" - Y '  
I 

so - y ' ]  + (1 - X)[yl' - y ' ]  = y" - y l >  c" - c ' .  

( i ) - ( i v )  together imply t h a t  fo r  a l l  h,  h' E ff , X E ( 0 , l )  we have 

x(h,X) E ff. 

Now we turn  t o  the  spec i f ic  properties of X. For 

A = 0 ,  G[x(h,X)] = ( ( y , c )  I m a ~ { h ( ~ ) )  ) c > min{h(y))) .  Since h i s  

f i l l e d ,  t h i s  i s  the  def ini t ion of h. An iden t ica l  argument es tabl ishes  

(5.15) ,  so it and (5.14)  a re  ver i f ied.  

Consider a sequence (ht , A t )  converging t o  (h,X). We wish t o  

es tab l i sh  t h a t  lim(x(ht , A t ) )  = x(h,X) , i .e . ,  we want t o  ver i fy  

(5.16). Consider any point (y ,c )  E lim(x(ht,At ) ) .  By Lemma 5.1, 

there  ex i s t s  (y ,c ) E x(ht , A t )  converging t o  ( Y ,  c )  Then t t  
\ m ~ { h ' ( ~ ~ ) }  + (1 - x ~ )  mx{h (y 1) ) ct> At min{hl(yt))  + (1 - A t )  min ht(yt)  t t  
Passing t o  limits, and observing the  f ac t  t h a t  l i r n  m x  h' ( y t ) ,  

limmin h l ( y t )  ~ h ' ( y )  ( ~ ( h ' )  i s  c losed) ,  and l i m  max ht(yt) ,  

l i m  min ht ( Y t )  E h (y )  ( ~ ( h )  i s  the  col lect ion of l i m i t  points of a l l  

sequences lying in  G(ht) -- Lemma 5 -  1 1 ,  we have 

X mx{hl ( y ) )  + (1 - A )  mx{h(y) )  ) c ) min{hl ( y ) )  + ( 1  - min{h(y)),  

which immediately implies (y , c )  E ~ ( x ( h , X )  ). That i s ,  

l i m  x(ht . A t )  5 x(h,X) . 
Since x (h t ,X t )EH and ff i s  compact, l i m x ( h  .A ) E H .  We t t  



know x (h ,A)EH.  By then by Lemma 5.2, l imx(h t ,Xt )  =x (h ,X) .  

This es tabl ishes  (5.16). 

F ina l ly ,  consider property (5.17).  We prove t h i s  i n  two steps.  

F i r s t ,  we show tha t  G(x(h.A)) C B ~ ( G ( ~ ' ) ) .  We do t h i s  by showing - 
t ha t  fo r  any (y ,c )  E ~ ( x ( h , X ) ) ,  there  ex i s t s  (y*,c*) E ~ ( h '  ) such 

t h a t  d [ ( y , c ) ,  (y*,c*)]  < E. Note t h a t  for  any such ( y , c ) ,  we have 

c  E [miniminih(y)), minih' ( y ) ) ) ,  mx imxih '  ( y ) ) .  maxih(y)))l .  

We know there  ex is t  ( y '  , c ' ) ,  (y" ,cM) E G(h l )  such t h a t  

I f  c < c ' ,  then d [ ( y , c ) ,  ( y 1 , c ' ) ]  < a. I f  c  , c", d [ ( y , c ) ,  (y",ct ' ) l  < E .  

I f  c '  < c < c", then by Lemma 5.3 there  ex i s t s  y * E  [min(y' ,y"),  ~ l l a x ( y ' , ~ " ) ]  

such t h a t  c  E h f  (y*). But since (y* - yl < E ,  d[  ( y , c ) ,  (y*,c)l  < E .  

For the  second s tep ,  we show tha t  ~ ( h '  ) C B [G(x(h, 1) ) ] . Take 
- 4-78 

any (y  , c )  E ~ ( h '  ). We want t o  show tha t  there  ex i s t s  

(y*,c*) E G(x(h,X)) such tha t  d [ ( y , c ) ,  (y*,c*)] < J. Let 

(y '  , c l )  E ~ ( h )  be the  c losest  point in  ~ ( h )  t o  (y , c ) .  Since 

6 ( h , h l )  < E ,  d [ ( y , c ) ,  ( y ' , c l ) ]  < s. I f  y '  = y, then t he  resu l t  i s  

t r i v i a l  t o  check, so henceforth we assume y '  f y. Let 

C" = arg min J c  - c O J  . 
c 0 W y  

F i r s t  we argue t h a t  (c" - c )  ( c '  - c )  > 0. Suppose t h i s  is not 

t rue .  Then by Lemma 5.3, there  ex i s t s  y t ' E ( m i n ( Y , ~ ' ) ,  m x  ( Y , Y ' ) )  



such t ha t  c  E h(y) .  But then d [ ( y W , c ) ,  (y ,c ) l  < d [ ( y ' , c l ) ,  ( Y , c ) ]  

-- a contradiction.  Consequently, we know t h a t  e i t he r  

(i) y '  > y and c ' ,  c" < c 

(ii) y '  > y and c ' ,  c" > c 

(iii) y '  < y and c ' ,  c" < c 

( i v )  y '  < y  and c ' ,  c" > c . 

Case ( i ) :  by the  Keynesian property, since y '  - y < E ,  c '  - c" < a. 

But we a l so  know t h a t  c  - c '  < a, so c  - c" < 2E. In t h i s  case, 

min{h(y)) < c = m a ~ { h ( ~ ) ) ,  m i n { h l ( ~ ) )  < c < n ~ x { h ' ( ~ ) ) ,  so fo r  a l l  

X t he re  e x i s t s  c*E ~ ( h ,  X)(y) with Ic - c*l < 2 E. Case ( i v ) :  

completely analogous t o  Case (i ) . Case (ii) : consider three  subcases. 

( a )  max{hl (y '  ) )  < c '  . Then for  a l l  X , there  e x i s t  c ' ,  E" 
- 

with c'' > c,  c '  < c '  with ( ~ , c " ) ,  ( y 1 , c ' )  EG(x(h,X)) .  

But then by Lemma 5.3 there  ex i s t s  (;, z )  E G(x(h, A ) )  such 
ry 

t h a t  y '  > y > y, c '  > > c . But then 

d [ ( y ,  c ) ,  (;, ; ) I  < d [ ( y ,  c ) ,  ( y ' ,  c ' ) ]  < E. 

- 
(b )  min h '  (y '  ) > c ' .  Then for  a l l  A ,  t he re  e x i s t s  c '  with 

c '  < c' < min h ' ( y l )  and (y',c') E G ( x ( ~ , x ) ) .  But by t he  

Keynesian condition min{h1(y'))  < c + (y '  - y )  < c + a so  

d [ ( y , c ) ,  ( Y ' , ; ' ) ]  < f i e .  

( c )  min{h'(yl 1) < c '  < max{h'(yl 1). Then c '  E G(x(h,X)(yl 1 )  
f o r  a l l  A.  

Case (iii) : Completely analagous t o  case (ii) . Q.E.D 

Lemm 5.11: ff is con t rac t ib le  --- - 



Proof: Take any h E H and const ruct  t h e  corresponding X. By 

t h e  p roper t i e s  of X ,  t h e  i d e n t i t y  map on H i s  homotopic t o  t h e  

constant  nap (mapping t o  h )  , so  H i s  con t rac t ib le .  Q.E.D. 

-- --- 
12 / Lemm 5.12: H is l o c a l l y  con t rac t ib le .  - -- --.- 

Proof: Choose any h E H, and an open neighborhood U of h. We 

must show t h a t  t h e r e  e x i s t s  a  subneighborhood V such t h a t  V i s  

c o n t r a c t i b l e  over U. 

There e x i s t s  E such t h a t  BE(h) C U . Let V = BE6 ( h )  . - 
Construct x corresponding t o  h. For a l l  A E [ 0 , 1 ] ,  h' E V ,  x ( h l , A )  E U. 

Thus t h e  i d e n t i t y  map on V i s  homotopic over U t o  a  constant  m p  

on V ,  so H i s  l o c a l l y  con t rac t ib le .  Q.E.D. 

Lemma 5.13: If < -, a s t a t ionary  equil ibrium e x i s t s .  

Proof: Define O :  H + H by O(h) = Fil(;) f o r  h E H ,  where 
,., 
h ( y )  I a r g  m x  U (c ,y ;  ~ ( h ) ) ,  y E I o , ~ ] .  Then, exactly a s  i n  Lemma 5-9 ,  

o<c<y 
@ i s  continuous. Moreover, H i s  compact (as i n  Lemma 5.41, 

con t rac t ib le   e em ma 5.11 ) and l o c a l l y  con t rac t ib le   emma ma 5.12 ) . There- 

fo re  by Smart ( [1974] Corollary 3.1.3) @ has a f ixed point  h*, i .e.  
* 

t h e r e  e x i s t s  h* E H wi th  @ ( h X )  = h*. Define C* I ~ ( h * ) ,  and Ct E Ct 

by C t  ( y )  = ~ * ( y ) ,  y E [0,Yt]. This i s  c l e a r l y  t h e  required 

s t a t ionary  equilibrium. Q.E.D. 

Using Lemm 5.13, we have es tabl i shed existence of a  s t a t ionary  

equil ibrium in  Case (1 ) .  Now we use t h i s  r e s u l t  t o  handle Case ( 2 ) .  



Lemma 5.14: - I f  y = w ,  a s ta t ionary equilibrium ex i s t s .  

Proof: Construct a sequence of ' a r t i f i c a l '  economies by a l t e r i ng  

the  production functions as follows: for a sequence km + w,  with 

E' > Y,  and f (km)  > km, define 

Let E~ be defined by the  l a rges t  root t o  the  equation fm(k)  = k. 

By Lemma 6.13, fo r  each econow m with production function fm, the re  

i s  a s ta t ionary equilibrium. Let tlm be t he  s e t  of a l l  uhc, Keynesian, 

f i l l e d  correspondences h from [O,IEm] t o  [0,IEm1, with 0 < c < y 

f o r  a l l  c E h ( ~ ) .  Select  hm E tlm, fo r  each m, such t h a t  sm = s (hm) 

produces a s ta t ionary equilibrium for  t he  mth econow. Final ly ,  define 

(Dm: tlm + tlm by 

om(h) = Fi l (qm(h)  ), where 

P ( h )  ( y )  = arg max ~ ( c , y ;  ~ ( h )  fo r  y E [0, PI 
o<c<y 

In pa r t i cu l a r ,  we know t h a t  hm = (Dm(hm) . 
Now construct  a correspondence h* from [o,-) t o  [ o , w )  i n  t he  

- 
following way. Define Lo = 0, and Ln+l = yn,  fo r  n > 0. Then 

L + -. For a correspondence h,  l e t  h / [ ~ , ~ ]  denote i t s  r e s t r i c t i on  n 

t o  the  i n t e rva l  [x ,y] .  By Lemma 6.4, the re  i s  a convergent subse- 
ml ml 1 quent h , fo r  which h / [ L  ,L ] has a l i m i t  point ,  h,, which is a 0 1 



correspondence on [LO ,L1 1 . Recursively, suppose tha t  h: i s  defined 
m n on ,L ] as  the  l imi t  point of some sequence h / [ L , _ ~ , L , ] .  ILn-1 n 

m m n n+l Consider [L , ,L ,+~] .  There i s  a subsequence of h , h , such tha t  

hn+l t h i s  converges t o  some correspondence , on [ L ~ , L , + ~ ] .  Define 

h, by h,/[L ,Ln+l] = hn*l. with the  provision tha t  a t  h, it i s  the n 
n+l union of points i n  h t  and h, . h* i s  c lea r ly  well-defined on 

I0 ,"), since L + ". We show tha t  fo r  a l l  y E lo,-),  n 

h , ( ~ )  = ~ i l ( G , ( ~ ) ) ,  where 

- 
h,(y) = arg max U ( C , Y ;  ~ ( h , ) )  

o< c< y 

I f  t h i s  i s  so,  the select ion ~ ( h , )  w i l l  induce the  required 

s ta t ionary equilibrium in  the obvious way. 

Choose n such tha t  in> y ,  and s such t h a t  L > lis > ks > Ln 
m 9 

f o r  some q > n. Consider the  sequence h q / ( ~ , ~ S ~  (note t ha t  rn > s ) .  
m 9 * 

We know tha t  h [0 ,kcS I converges t o  h / [0 ,ES ] by the  above argu- 

ments. Define the following sequence of correspondences on (0  ,E'] : 

-m 
Take some l i m i t  point of h ', h: . By the  continuity of 0' (Lemma 

5.9 ) , we know t h a t  

-m m 
Now we argue t h a t  h [o ,  Ln]  = h q/ [o, L,] . This follows immediately 



from observing t h a t  i f  y < L - n' 

m m m 
~ i l { a r ~  max u ( c ,  ~ ( h  [ f S ( y  - c )  1 ) )  = Fi l{a rg  max u ( c ,  S(h [ f  '(Y - c )  1 ) )  

occcy - - o<c<y - - 
-m 

The l e f t  hand s i d e  is  J u s t  t h e  de f in i t ion  of h q ( y ) ;  t h e  r i g h t  
m 

hand s i d e  is  t h e  d e f i n i t i o n  of h '(y) (it is a s t a t ionary  equi l ib-  
m 

rim). The equa l i ty  follows because f s /  (0 ,L ] = f '/ [ O  ,Ln] , n and 
m 

y - c < Ln. But then,  s ince  h [O ,Ln] converges t o  h,/ [0 ,Ln] , we - 
know t h a t  ~ / [ o , L  ] = hr/[0,Ln].  So, from (5*18) ,  f o r  0 < y < Ln, n - - 

h,(y) = ~ i l { a r ~  max U ( C , S ( ~ , / [ O , E ~ ]  ) [ f s (y  - c ) ]  ) I  
occcy 

But s ince  f S  and f agree on [O,Ln], t h i s  implies t h a t  f o r  

0 < - Y < - Ln, 

= F i l  [arg  max u ( c , ~ ( h , ) [ f ( ~  - c ) l ) l  
o<c<y 

Since t h i s  can be es t ab l i shed  f o r  any y ( t ake  Ln l a r g e  enough), t h i s  
* * 

implies hr = 4(hx). Define Cx = ~ ( h , )  and < C t >  by ct (Y) = c,(Y), 

y E [o,? 1 ,  t > 0. This  is t h e  required s t a t ionary  equilibrium. Q.E.D. t 

Proof of Theorem 4.2: Combine L e m s  5.13 and 5.14. Q.E.D. 

V I  . Further  Quest ions 

In  our opinion, t h e  following quest ions pose i n t e r e s t i n g  i s sues  

f o r  fu tu re  analys is .  



(1) The techniques used here t o  es tab l i sh  existence of bequest 

equilibrium does not appear t o  be applicable in  multicommodity models. 

The question of existence of bequest equ i l ib r ia  in such models remains 

open. 

(2)  Kohlberg [1.976] established the  uniqueness of continuously 

dif ferent iable ,  s ta t ionary equi l ib r ia ,  whenever these ex is t .  I s  t h i s  

t r u e  of s ta t ionary equi l ib r ia  when the strategy space i s  - not r e s t r i c t ed  

(as in  the  present exercise)?  

(3)  I f  the  answer t o  (3) i s  i n  the affirmative,  the  following 

conjecture i s  worth exploring: whenever s ta t ionary equi l ib r ia  e x i s t ,  

e i t he r  ( i)  nonstationary equi l ib r ia  do - not e x i s t ,  or  (ii) a l l  nonsta- 

tionary equi l ib r ia  have the  property tha t  the sequence of equilibrium 

consumption f'unctions converge t o  t ha t  of the  s ta t ionary equilibrium. 



Footnotes 

1/ Empirical evidence sugggests t h a t  a s ign i f ican t  f rac t ion  of t he  - 
U.S. c a p i t a l  stock i s  t ransferred t o  younger generations through 
bequests (see,  f o r  example, Kotlikoff and Summers [1981] ) . The 
well-being of a par t i cu la r  generation therefore  depends, a t  l e a s t  
i n  par t .  upon the  prevalence of a l t ru ism amongst i t s  predecessors. 

2/ Phelps 119751 extends the  o r ig ina l  analys is  of Phelps and Pollak - 
119681 . 

3/ However, the re  a r e  cer ta inly  serious technical  problems - 
involved. See the discussion in Section I V ,  or  t he  ac tua l  
technique of proof employed (section V) . 

4 /  The model assumed s ta t ionary preferences and a l inear ,  s t a t ionary  - 
technology. 

5 /  The assumption t h a t  3 is defined on a l l  pa i r s  of nonne a t i v e  r e a l  - 
numbers ru les  out an analysis  of such cases as  %(* 
= lnct + 61n( t+ l ) ,  6 > 0. 

6 /  The va l i d i t y  of our r e su l t s  when there  is  subs t i t u t ab i l i t y  between - 
ct and ct+l remains an open question. 

7 /  ff is loca l ly  contract ib le  i f  fo r  each h E ff and neighborhood - 
U of h, there  is  a neighborhood V with h E V C U, 
con t rac t ib le  t o  a point over U. ( see  Dugundji [1358] ) . 
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