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This Appendix provides supplementary material to accompany the main text. Section A dis-
cusses the psychological foundations for our approach. Section B provides full arguments for
all the results in the main text concerning history-dependent equilibria; essentially, up to and in-
cluding Proposition 4. Section C proves our assertions for the simplified model of Section 5.4 in
the paper, and provides associated computational results. Section D provides detailed arguments
for results involving Markov perfect equilibria. Section E describes the algorithm for computing
subgame-perfect equilibrium values, and the parameter choices for the examples in the main text.
Section F provides computed examples with and without poverty traps. Section G shows that a
poverty trap is present even when a MPE is used as punishment. Finally, Section H presents the
details of the model with taste shocks and lockbox saving regimes. Referenced equations that
appear in this Appendix are labeled as (a.1), (a.2), etc. Other equation references are to equations
in the main text.

APPENDIX A. PSYCHOLOGICAL FOUNDATIONS

The defining feature of the self-control mechanisms that we model in this paper is that people in-
tentionally create and execute plans for self-reinforcement, establishing incentives by punishing
themselves for deviations from (or rewarding themselves for conformity with) desired behav-
ior.1 Psychological foundations for this mechanism are found in the literatures on self-regulation
and behavior modification. For example, in one early study of self-regulation, Bandura and
Kupers (1964) observed, “[b]y contrast [to rats or chimpanzees], people typically make self-
reinforcement contingent on their performing certain classes of responses which they have come
to value as an index of personal merit. They often set themselves relatively explicit criteria of

1 Certainly, one can frame any form of self-reinforcement as either a reward or a punishment; it is the difference
in outcomes that creates incentives. Psychologists do not, however, view this framing as neutral, and there is some
evidence that people can achieve self-control more effectively by framing self-administered consequences as rewards
rather than as punishments; see, e.g., Mahoney, Moura, and Wade (1973). Such framing effects are beyond the scope
of our investigation.
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achievement, failure to meet which is considered undeserving of self-reward and may elicit self-
denial or even self-punitive responses; on the other hand, they tend to reward themselves gener-
ously on those occasions when they attain their self-imposed standards.”2 Rehm (1977) notes that
“[s]elf-reinforcement has been a major focus of self-control research and many clinical uses of
self-administered reward and punishment programs have been described.”3 Likewise, according
to Kazdin (2012), “Self-reinforcement and self-punishment techniques have been incorporated
into intervention programs and applied to a wide range of problems. . . ”

As explained in the Introduction, we model the decisions of a time-inconsistent individual by
studying a dynamic game played by his successive incarnations. In that setting, the individ-
ual engages in self-reinforcement by deploying history-dependent strategies, which specify con-
tingent patterns of behavior that serve as rewards and/or punishments, as in the psychological
literature. Subgame perfection takes this a step further: it ensures that self-reinforcement is
credibly implementable. With this interpretation, the scope for exercising self-control through
self-punishment/reward is sharply defined by the set of outcomes that can arise in subgame-
perfect Nash equilibria.

Not surprisingly, psychologists do not typically employ the language of game theory or the for-
mal logic of subgame perfection. Yet they have long recognized that credibility problems limit
the scope for effective self-reinforcement. Ainslie (1975) succinctly summarizes the problem
thus: “Self-reward is an intuitively pleasing strategy until one asks how the self-rewarding be-
havior is itself controlled. . . ”4

The logic of using history-dependent strategies to overcome the credibility problem is a recurring
theme in Ainslee’s work. In particular, he observes that people often successfully adopt personal
rules (e.g., “always go to bed early”), which they enforce by construing local deviations to have
global significance (e.g., “if I go to bed late today, then I will go to bed late every night”); see
Ainslie (1975, 1991). Viewed through our game-theoretic lens, a personal rule is an equilibrium

2 Similarly, Mischel (1973) observes:“The essence of self-regulatory systems is the subject’s adoption of contingency
rules that guide his behavior in the absence of, and sometimes in spite of, immediate external situational pressures.
Such rules specify the kinds of behavior appropriate (expected) under particular conditions, the performance levels
(standards, goals) which the behavior must achieve, and the consequences (positive and negative) of attaining or
failing to reach those standards.” See also Bandura (1971, 1976).
3Similarly, Bandura (1976) notes that “[a]mong the various self-regulator phenomena that have been investigated
within [the social learning] framework, self-reinforcement occupies a prominent position. In this process, individ-
uals regulate their behavior by making self-reward conditional upon matching self-prescribed standards of perfor-
mance. . . [C]ontrol is vested to a large extent in the hands of individuals themselves: they set their own goals, they
monitor and evaluate their own performances, and they serve as their own reinforcing agents.”
4 He goes on to argue: “A subject does not actually recruit additional reward by planning to delay a cigarette until he
has finished a difficult task. On the contrary, he sets himself a second task: He must both defer smoking and work on
his original task on the basis of the same differential reward that has always confronted him.” See also Rachlin (1974)
and Kazdin (2012).
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path for a dynamic intrapersonal game, and the global consequences that support it are the off-
equilibrium paths triggered by deviations.5

Our interpretation of Ainslie’s writings differs from that of both Benabou and Tirole (2004)
and Ali (2011). They interpret an individual’s contingent beliefs about his own future actions
as evidence-based forecasts rather than deliberately contrived arrangements. Some passages in
Ainslie’s writings are consistent with this interpretation.6 Yet in other passages, he emphasizes
that people intentionally create this conditionality. Ainslie (1991) is particularly instructive on
this point. For example, he writes that “. . . insofar as [the individual] has become aware of this
phenomenon, he will be able to induce it where it has not occurred spontaneously, by arbitrar-
ily defining a category of gratification-delaying behaviors that will thereafter prevail or not as
a set.” Accordingly, he describes personal rules as the mechanism by which “...the person can
arrange consistent motivation” (emphasis added) for a “prolonged course of action.” Indeed,
after describing the choices of a time-inconsistent decision maker as involving an “intertemporal
prisoner’s dilemma,” he characterizes personal rules as “a solution to the bargaining problem”
between an individual’s “successive motivational states.” Moreover, citing Klein and Leffler
(1981), he notes that “[t]he same logic is the basis for what is called a ‘self-enforcing contract’
between individuals.” To illustrate the use of a personal rule, he examines a simple numerical
model of a hyperbolic discounter who, in each of a succession of periods, decides whether to stay
up late or go to bed early. Because his model involves no uncertainty concerning preferences,
it entails no inference problem. Yet he informally describes a subgame-perfect equilibrium in
which the individual exercises self-discipline (going to bed early every night) by contriving a
conditional self-punishment (staying up late for ten consecutive nights), and he describes this so-
lution in game theoretic terms: “Insofar as [the individual] sees his current choice as a precedent
and not an isolated incident, he will face the incentives of a repeated prisoner’s dilemma.”

Portions of Ainslie (1991), including the aforementioned numerical example, appear to invoke
Nash (or, more generally, Markov) reversion as a solution to the credibility problem. Yet Ainslie
(1975) also describes more complex patterns of self-reinforcement. For instance, he discusses the
case of an individual who, in order to keep his shoes shined, adopts a personal rule specifying
that he must shine them before breakfast (otherwise he will refrain from shining them in the
future). Ainslie posits that, upon oversleeping, the subject might be tempted not only to skip this
chore, but also to skip the punishment. A secondary punishment is required for that contingency;
Ainslie suggests that the subject might skip breakfast (and thereby conform to the letter of his

5 Laibson (1997), Bernheim, Ray, and Yeltekin (1999), and Benhabib and Bisin (2001) have previously adopted this
interpretation.
6 For example, Ainslie (1991) writes, “If [an individual] makes an impulsive choice, he will have little reason to
believe he will not go on doing so, and if he controls his impulse, he has evidence that he may go on doing that.”
However, in context, one can also read this passage as a reference to the expectations that prevail in a particular
intrapersonal equilibrium.
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rule). Thus, according to Ainslie (1975), complex patterns of self-reinforcement simply require
“skill at private side bets.”

The literature also provides insight into the processes by which people arrive at credible schemes
of self-reinforcement. Ainslie (1991) discusses trial and error, but there a broader literature
emphasizes social learning. For example, one classic experiment shows that “children’s patterns
and magnitude of self-reinforcement closely matched those of the model to whom they had been
exposed. Adults generally served as more powerful modeling stimuli than peers in transmitting
self-reinforcing responses” (Bandura and Kupers (1964); see also Bandura (1971, 1976)).

Finally, the psychological literature offers an interesting alternative perspective on the issue of
renegotiation-proofness. As this literature notes, an individual may initially arrive at an equilib-
rium strategy by modeling others. In that event, any subsequent effort to change that strategy
may be viewed by later selves as a deviation. Ainslie (1975) certainly recognizes this point; he
notes that a decision to call off a “private side bet” might lead the individual to “perceive the bet
as having been lost,” and thereby jeopardize “the credibility of any similar private side bets.”

Ainslie (1975) nevertheless describes one potentially feasible form of renegotiation in the con-
text of his shoe-shining example: the individual can modify his rule for shining shoes as long
as he does not do so “just before he was due to shine them again.” The principle appears to
be that one is always free to revise a personal rule, but not for the current period; to avoid
confounding revisions and deviations, any changes must be arms-length and limited to plans
for subsequent behavior. Plainly, a continuation equilibrium that reverts to H (·) after a single
period is immune to revisions according to this criterion; indeed, it satisfies a strong form of
“renegotiation-proofness” (given that the continuation is unimprovable within the entire equilib-
rium set). Moreover, Ainslie’s reasoning arguably implies that reasonable self-punishments must
have this structure, else they would be revised.

In this context, it is therefore noteworthy that, with an appropriate interpretation of cases in which
the continuation value lies above H−(A) but strictly below H(A), the worst self-punishment
equilibria have this property. To see this, we adopt a slightly different interpretation from the
one offered in Proposition 3. Under this interpretation, the agent binges for one period only, and
provided there is some noise in asset returns or she can arrange small side bets (not necessarily
fair to her, so that any risk-neutral second party would accept such a bet), she can return to the
highest continuation value function in the very next period.7

7As an example, the equilibrium strategy might specify that, in addition to consuming slightly more than A− Y
α

, the
individual also makes a small wager with another party, leaving her with continuation assets of either Y or Y − ε,
with appropriate probabilities. The wager need not be fair. One can also smooth out expected continuation values by
introducing a small amount of noise in the return α. While we do not formally consider a stochastic model, the same
arguments in the proof of Proposition 3 go through.



5

APPENDIX B. PROOFS OF RESULTS CONCERNING HISTORY-DEPENDENT EQUILIBRIA

LEMMA 1. Let V be an equilibrium value at A, with associated asset choice x. Then

V ≥
[
u

(
A− B

α

)
+ δL(B)

]
+

1− β
αβ

u′
(
A− B

α

)
(x−B)

≥
[
u

(
A− B

α

)
+

δ

1− δ
u

(
α− 1

α
B

)]
+

1− β
αβ

u′
(
A− B

α

)
(x−B).

Proof. The equilibrium payoff associated with V is (1− β)u
(
A− x

α

)
+ βV , so

(1− β)u
(
A− x

α

)
+ βV ≥ u

(
A− B

α

)
+ βδL(B).

Given that u is concave, it follows that

V ≥
[
u

(
A− B

α

)
+ δL(B)

]
+

1− β
β

[
u

(
A− B

α

)
− u

(
A− x

α

)]
≥

[
u

(
A− B

α

)
+ δL(B)

]
+

1− β
αβ

u′
(
A− B

α

)
(x−B).(a.1)

By (5) and At ≥ B at any date t, we have u(ct) ≥ u(υB) for any ct at date t, so that L(A) ≥
(1 − δ)−1u(υB) > −∞. Now, by applying (a.1) to A = B and V = L(B), or (if needed) a
sequence of equilibrium values in V(B) that converge down to L(B),

(a.2) L(B) ≥ u
(
B − B

α

)
+ δL(B).

Combining (a.1) and (a.2), the proof is complete.

Proof of Observation 1. This is an immediate consequence of Lemma 1.

Proof of Proposition 1. Claim: if W is nonempty, has closed graph, and satisfies (8), then
it generates W ′ with the same properties (plus convex-valuedness). We first prove that W ′ is
nonempty-valued. Consider the function HW on [B,∞) defined by HW(A) ≡ maxW(A) for
all A ≥ B. It is easy to see that HW is usc. It follows that maxx∈[0,α(1−υ)A] u (A− x/α) +

βδHW(x) is well-defined and admits a (possibly non-unique) solution for every A ≥ B. Let
x(A) denote some solution at A, and define

w ≡ u
(
A− x(A)

α

)
+ δHW(x(A)).

Clearly, w is supported at A byW . (9) is satisfied: pick x = x(A) and V = HW(x(A)). And
(10) is satisfied: for each alternative x′, take V ′ to be any element ofW(x′).
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Claim: W ′ has closed graph. Take any sequence {An, wn} such that (i) wn is supported at An
byW for all n, and (ii) (An, wn)→ (A,w) (finite) as n→∞; then w is supported at A byW .
To see this, note that for each n, there is xn feasible for An and value Vn ∈ W(xn) such that (9)
and (10) are satisfied. Obviously {xn, Vn} is a bounded sequence; pick any limit point (x, V ).
Then x is certainly a feasible asset choice at A, and V ∈ W(x) (becauseW has closed graph by
assumption). Using the continuation (x, V ) at A, it is immediate that (9) is satisfied for w. To
prove (10), let x′ be any feasible asset choice at A. Then there is {x′n}, with x′n feasible for An
for all n, such that x′n → x′. Because wn is supported at An byW , and (xn, Vn) satisfies (10),
there is V ′n ∈ W(x′n) such that

(a.3) u
(
An −

xn
α

)
+ βδVn ≥ u

(
An −

x′n
α

)
+ βδV ′n

for every n. Let V ′ be any limit point of {V ′n}. Then, becauseW has closed graph, V ′ ∈ W(x′).
Choose an appropriate subsequence of n such that {x′n, V ′n} converges to (x′, V ′). Passing to the
limit in (a.3), we must conclude that (10) holds for (A,w) at x′.

These arguments prove the claim that the limit value w is supported at A byW . With the claim
in hand, by taking suitable convex combinations it is easy to prove that the correspondenceW ′

generated byW has closed graph. It is trivially convex-valued.

Now, consider the sequence {Vk}. Because V0 is nonempty-valued with closed graph, and satis-
fies (8), the same is true of the Vk’s. Moreover, for each t ≥ 0 and all A ≥ B,

Vk(A) ⊇ Vk+1(A).

Take infinite intersections of these nested compact sets (at each A) to argue that

V∗(A) ≡
∞⋂
t=0

Vk(A)

is nonempty for every A. Furthermore, because Vk(A) is convex for all k ≥ 0, so is V∗(A).
Moreover, V∗ has compact graph on any compact interval [B,D],8 and therefore it has closed
graph everywhere. We will show that V∗ generates itself. To this end, we first show for each A,
every w supported at A by V∗ lies in V∗(A). Pick such a value w at A. Then there is a feasible
continuation asset choice x atA and V ∈ V∗(x) such that (9) holds, and for every feasible choice
x′ at A, there is V ′ ∈ V∗(x′) such that (10) holds. But these continuations are available in Vk
for every k, which means that w is supported at A by every Vk. It follows that w ∈ Vk+1(A) for
every k, so that w ∈ V∗(A).

8 On any compact interval, the (restricted) graphs of the Vk’s are compact and their infinite intersection is the graph
of V∗ on the same interval, which must then be compact.
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We complete the argument by showing that for every A, maxV∗(A) and minV∗(A) are sup-
portable at A by V∗.9 The same argument works in either case, so we show this for maxV∗(A).
Because V∗(A) =

⋂∞
t=0 Vk(A), the sequence of values wk ≡ maxVk(A) converges to H(A).

Moreover, wk cannot be a proper convex combination of other values in Vk(A), sowk is support-
able atA by Vk, for every k. That is, for each k, there is xk feasible forA and value Vk ∈ Vk(xk)
such that (9) and (10) are satisfied for wk. It is easy to see that {xk, Vk} is a bounded sequence.
Pick any limit point (x, V ) of {xk, Vk}. Then x is a feasible choice at A, and V ∈ V∗(x).10

Using the continuation (x, V ) at A, then, (9) is satisfied for w = maxV∗(A) (under V∗).

Now, let x′ be any feasible asset choice at A. Because wk is supported at A by Vk, and (xk, Vk)

has been chosen such that (10) is satisfied, there exists V ′k ∈ Vk(x′) such that

(a.4) u
(
A− xk

α

)
+ βδVk ≥ u

(
A− x′

α

)
+ βδV ′k

for every k. Let V ′ be any limit point of {V ′k}. Then, by the argument already used (see footnote
10), V ′ ∈ V∗(x′). Choose an appropriate subsequence of n such that {x′n, V ′n} converges to
(x′, V ′). Passing to the limit in (a.4), we see that (10) holds for (A,w) at x′.

This shows that V∗ generates V∗. It is immediate that V∗ contains every correspondence that
generates itself,11 so it is the same as our equilibrium correspondence V .

Given Proposition 1, let H(A) and L(A) be the maximum and minimum values of the equi-
librium value correspondence V . Because the graph of V is closed, H is usc and L is lsc. In
what follows we take care to account for possible discontinuities in L, which are unfortunately
endemic. Let x be a feasible choice of continuation asset at A. Consider all limits of sequences
of the form {L(xn)}, where xn ∈ [B,α(1 − υ)A] for all n and xn → x. Each limit is an equi-
librium value at x, because V has closed graph. Moreover, the collection of all such limits at x
(given A) is compact, so a largest value M(x,A) exists. That defines the function M(x,A) for
A ≥ B and x ∈ [B,α(1−υ)A]. An individual can guarantee herself a continuation value that is
arbitrarily close to M(x,A), starting from A (by making an asset choice arbitrarily close to x).

LEMMA 2. For given A, M(x,A) is usc in x, and for given x, it is nondecreasing in A, and
independent of A as long as x < α(1− υ)A.

9 Because V∗(A) is convex, it equals [minV∗(A),maxV∗(A)]. We’ve shown that all w supportable at A by V∗
must indeed lie in V∗(A). So, provided we can show that maxV∗(A) and minV∗(A) are supportable at A by V∗, it
must follow that V∗(A) is the convex hull of all values supported at A by V∗.
10 To see why, pick any n in the sequence. Then for k ≥ n, Vk ∈ Vk(xk) ⊆ Vn(xk), so that V ∈ Vn(x) by the
closed-graph property of Vn. It follows that V ∈ Vn(x) for every n, so that V ∈ V∗(x) as asserted.
11 Let V ′ be any self-generating correspondence. Then if V ′ ⊆ Vk, we have V ′ ⊆ Vk+1. But V ′ ⊆ V0, so it follows
that V ′ ⊆ Vk for every k, which implies V ′ ⊆ V∗.
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Proof. Pick xn feasible forA such that xn → x ∈ [B,α(1−υ)A] and a corresponding sequence
Mn = M(xn, A). Suppose without loss of generality that Mn → M . For each n, there is
yn ∈ [B,α(1 − υ)A] such that |yn − xn| < 1/n, and |L(yn) −Mn| < 1/n. It is then easy to
see that yn → x and L(yn) → M . So M is a limit value at x, which implies M(x,A) ≥ M .
Therefore M(x,A) is usc in x. To prove that M(x,A) is nondecreasing in A, observe that
every sequence of the form {L(xn)}, where xn ∈ [B,α(1− υ)A], is fully available at A′ > A,
whenever it is available at A. It is also obvious that for any x, exactly the same limit values of
{L(xn)} are available when x < α(1−υ)A, so that M(x,A) is then unchanging in A whenever
the strict inequality holds.

Lemma 2 implies that the following “best deviation payoff” at A is well-defined:

(a.5) D(A) = max
x

u
(
A− x

α

)
+ βδM(x,A),

where it is understood that x ∈ [B,α(1−υ)A]. Lemma 2 also implies thatD(A) is an increasing
function. Note that D does not necessarily use worst punishments everywhere, but nonetheless
a deviant can get payoff arbitrarily close to D(A). That implies:

LEMMA 3. The pair (x, V ) is an equilibrium continuation atA if and only if x ∈ [B,α(1−υ)A],
V ∈ V(x) and

(a.6) u
(
A− x

α

)
+ βδV ≥ D(A).

Proof. Sufficiency: if (x, V ) is not an equilibrium continuation, then there exists y 6= x such that
u(A− x/α) + βδV < u(A− y/α) + βδL(y). But L(y) ≤M(y,A), so u(A− x/α) + βδV <

u(A− y/α) + βδM(y,A) ≤ D(A).

Necessity: if (x, V ) is an equilibrium continuation atA, then x ∈ [B,α(1−υ)A] and V ∈ V(x).
Moreover, for every feasible y, and sequence of feasible {yn} with yn → y,

u
(
A− x

α

)
+ βδV ≥ u

(
A− yn

α

)
+ βδL(yn),

where the inequality holds trivially for yn = x (because V ≥ L(x)) and by incentive compati-
bility for yn 6= x. Passing to the limit in that inequality, we must conclude that

u
(
A− x

α

)
+ βδV ≥ u

(
A− y

α

)
+ βδM(y,A).

Maximizing the right hand side of this inequality over y, we obtain the desired result.

LEMMA 4. If d solves (a.5), then {d,M(d,A)} is an equilibrium continuation at A.

Proof. Because V has closed graph, M(d,A) ∈ V(d). Now apply Lemma 3.
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LEMMA 5. L(A) is increasing on [B,∞).

Proof. Let A′′ > A′ ≥ B. Consider the equilibrium that generates value L(A′′) starting from
A′′, with associated continuation {A′′1, V ′′}. By Lemma 3,

(a.7) u

(
A′′ − A′′1

α

)
+ βδV ′′ ≥ u

(
A′′ − x

α

)
+ βδM(x,A′′)

for x ∈ [B,α(1− υ)A′′]. It follows that V ′′ > M(x,A′′) for all x < A′′1 , which implies

(a.8) L(A′′) = u

(
A′′ − A′′1

α

)
+ δV ′′ > u

(
A′′ − x

α

)
+ δM(x,A′′)

for all x < A′′1 . Now construct an equilibrium from A′: the choice A′′1 (if feasible) is followed
by V ′′, while each x ∈ [B,α(1− υ)A′] is followed by M(x,A′).12 Note that

u

(
A′ − A′′1

α

)
+ βδV ′′ > u

(
A′ − x

α

)
+ βδM(x,A′′)

≥ u
(
A′ − x

α

)
+ βδM(x,A′),(a.9)

for x ∈ (A′′1, α(1 − υ)A′] (assuming this set is non-empty), where the first inequality uses the
strict concavity of u, A′ < A′′ and (a.7), and the second uses Lemma 2.

To complete the description of equilibrium, we must choose a particular continuation at A′: pick
continuation {y, V } to maximize payoff over the specified continuations above. Given (a.9), that
is tantamount to choosing from the greatest of the payoffs

u
(
A′ − x

α

)
+ βδM(x,A′)

for x ∈ [B,min{α(1− υ)A′, A′′1}], and the payoff at x = A′′1 (if feasible), which is

u

(
A′ − A′′1

α

)
+ βδV ′′,

and a solution is well-defined, because M is usc in x, and the replacement of M(A′′1, A) by V ′′

at A′′1 (if feasible for A′) only increases payoff. The chosen continuation {y, V } must be an
equilibrium, and by (a.9), y ≤ A′′1 . If y < A′′1 , then by (a.8) and Lemma 2,

L(A′′) > u
(
A′′ − y

α

)
+ δM(y,A′′) > u

(
A′ − y

α

)
+ δM(y,A′) ≥ L(A′),

and if y = A′′1 , then again

L(A′′) = u

(
A′′ − A′′1

α

)
+ δV ′′ > u

(
A′ − y

α

)
+ δV ′′ ≥ L(A′).

So in both cases, L(A′′) > L(A′), as desired.

12 Recall that M(x,A′) is indeed an equilibrium value at x because V has closed graph.
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Lemma 5 makes it easy to visualize M(x,A). With L increasing, let L+(A) denote the right
hand limit of L at A; i.e., the common limit of all sequences {L(An)} as An ↓ A, with An > A

for all n. Clearly, L+ is an increasing, right-continuous function.

LEMMA 6. For any A and x ∈ [B,α(1− υ)A), M(x,A) equals L+(x). At x = α(1− υ)A, it
equals L(x).

Proof. Obvious, given Lemma 5 and the definitions of L and M .

LEMMA 7. (a) Let d(A) solve (a.5). If A1 < A2, then d(A1) ≤ d(A2). Moreover, a largest
solution d∗(A) is well-defined for each A, and it is nondecreasing in A.

(b) d∗(A) is right-continuous at any A such that limn d
∗(An) < α(1− υ)A for An ↓ A.

Proof. Let xi ≡ d(Ai) for i = 1, 2. Suppose, on the contrary, that x1 > x2. Notice that x1 is
feasible at A2 (because A1 < A2 and x1 is feasible at A1), and that x2 is feasible at A1 (because
x2 < x1). Therefore

u
(
Ai −

xi
α

)
+ βδM(xi, Ai) ≥ u

(
Ai −

xj
α

)
+ βδM(xj , Ai)

for i = 1, 2 and j 6= i. Combining these two inequalities, and using Lemma 2 to conclude that
M(x1, A2) ≥M(x1, A1), while M(x2, A2) = M(x2, A1),13[

u
(
A2 −

x2

α

)
− u

(
A2 −

x1

α

)]
≥
[
u
(
A1 −

x2

α

)
− u

(
A1 −

x1

α

)]
.

But the above inequality contradicts the strict concavity of u. So x1 ≤ x2, as desired.

Next we show that a largest maximizer d∗(A) exists at each A. Let dn each solve (a.5) at A, and
say that dn → d. Because M(x,A) is usc in x (Lemma 2),

lim
n→∞

u

(
A− dn

α

)
+ βδM(dn, A) ≤ u

(
A− d

α

)
+ βδM(d,A),

but the left-hand side of this inequality is the maximized value of (a.5) for every n, so the right-
hand side must have the same value, which shows that d also solves (a.5). That proves the
existence of a largest maximizer d∗(A) at every A, and the arguments so far show that d∗(A) is
nondecreasing, so the proof of part (a) is complete.

For part (b), fix A and let d ≡ limn d
∗(An) < α(1 − υ)A for An ↓ A (noting that {d∗(An)} is

monotone). Clearly, d is feasible at A. To prove the right continuity of d∗ at A, we show that d
maximizes (a.5) at A. Suppose not. Let d′ maximize (a.5) at A; then

(a.10) u

(
A− d′

α

)
+ βδM(d′, A) > u

(
A− d

α

)
+ βδM(d,A).

13 Note that x2 < x1 ≤ α(1− υ)Ai for i = 1, 2. By Lemma 2, M(x2, A2) = M(x2, A1).



11

Notice that d′ ≤ d (by part (a), already proved), so d′ < α(1− υ)A ≤ α(1− υ)An for all n. So
by Lemma 2, M(x,A) is independent of A at (d′, A), and an analogous assertion is true of An.
Therefore, not only is d′ feasible for all An, we also have

(a.11) lim
n
u

(
An − d′

α

)
+ βδM(d′, An) = u

(
A− d′

α

)
+ βδM(d′, A).

Define dn ≡ d∗(An), and note that for n large, dn < α(1 − υ)A ≤ α(1 − υ)An. Using the
independence of M in An and recalling that M(x,A) is usc in x (Lemma 2),

(a.12) lim
n
u

(
An − dn

α

)
+ βδM(dn, An) ≤ u

(
A− d

α

)
+ βδM(d,A).

Combining (a.10)–(a.12), we must conclude that for n large,

u

(
An − d′

α

)
+ βδM(d′, An) > u

(
An − dn

α

)
+ βδM(dn, An),

which contradicts the fact that dn maximizes (a.5) for all n.

Define the maintenance value of an asset level A by V s(A) ≡ 1
1−δu

(
α−1
α A

)
, and the mainte-

nance payoff by P s(A) ≡
[
1 + βδ

1−δ

]
u
(
α−1
α A

)
. Say that an asset level S is sustainable if there

is a stationary equilibrium path from S, or equivalently (by Lemma 3) if P s(S) ≥ D(S).

LEMMA 8 (Observation 2 in main text). Let S > B be a sustainable asset level, and µ ≡ S/B.
Then, if {A∗t } is an equilibrium path from A0:

(a) {µA∗t } is an equilibrium path from µA0.

(b) For all t with µA∗t > S and for every A < S,

u

(
µA∗t −

µA∗t+1

α

)
+ β

∞∑
s=t+1

δs−tu

(
µA∗s −

µA∗s+1

α

)
> u

(
µA∗t −

A

α

)
+ βδM(A,A∗t ).

Proof. Part (a). Let policy φ sustain {A∗t } from A0. Define a new policy ψ:

(i) For any ht = (A0 . . . At) with As ≥ S for s = 0, . . . , t, let ψ(ht) = µφ
(
ht
µ

)
.

(ii) For ht with Ak < S for some smallest k ≤ t, define h′t−k = (Ak . . . At). Let ψ(ht) =

φ`(h
′
t−k), where φ` is the equilibrium policy with value L(Ak) at Ak.

For any history ht with As ≥ S for s = 1, . . . , t, the asset sequence generated through subse-
quent application of ψ is the same as the sequence generated through repeated application of φ
from ht

µ , but scaled up by the factor µ. It follows that

(a.13) Pψ(ht) = µ1−σPφ

(
ht
µ

)
and Vψ(ht) = µ1−σVφ

(
ht
µ

)
.
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We now show that ψ is an equilibrium. First, consider any ht such that Ak < S at some first
k ≤ t. Then as of period k the policy function ψ shifts to the equilibrium with value L(Ak). So
ψ(ht) is optimal given the continuation policy function.

Next consider any ht such that As ≥ S for all s ≤ t. Consider, first, any deviation to A ≥ S.
Note that ht/µ is a feasible history under the equilibrium φ, while the deviation to (A/µ) ≥
(S/µ) = B is also feasible. It follows that

Pφ

(
ht
µ

)
≥ u

(
At
µ
− A

µα

)
+ βδVφ

(
ht.A

µ

)
.

Multiplying through by µ1−σ and using (a.13), we see that

(a.14) Pψ(ht) ≥ u
(
At −

A

α

)
+ βδVψ(ht.A),

which shows that no deviation to A ≥ S can be profitable.

Now consider a deviation to A < S. Because S is sustainable,

(a.15) P s(S) ≥ D(S) ≥ u
(
S − A

α

)
+ βδM(A,S)

by Lemma 3. At the same time, (a.14) applied to A = S implies

(a.16) Pψ(ht) ≥ u
(
At −

S

α

)
+ βδVψ(ht.S).

Using (a.13) along with L(B) ≥ V s(B) (see Observation 1), (a.16) becomes

Pψ(ht) ≥ u

(
At −

S

α

)
+ βδµ1−σVφ

(
ht
µ
.B

)
≥ u

(
At −

S

α

)
+ βδµ1−σL(B)

≥ u

(
At −

S

α

)
+ βδµ1−σV s(B)

= u

(
At −

S

α

)
+ βδV s(S)

=

[
u

(
At −

S

α

)
− u

(
S

(
1− 1

α

))]
+ P s(S).(a.17)

Combining (a.15) and (a.17),

Pψ(ht) ≥
[
u

(
At −

S

α

)
− u

(
S

(
1− 1

α

))]
+ u

(
S − A

α

)
+ βδM(A,S)

=

[
u

(
At −

S

α

)
− u

(
S − S

α

)]
−
[
u

(
At −

A

α

)
− u

(
S − A

α

)]
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+u

(
At −

A

α

)
+ βδM(A,S)

≥ u

(
At −

A

α

)
+ βδM(A,S)(a.18)

where the second inequality follows from the concavity of u and the fact that A < S ≤ At. But,
because M(A,S) ≥ L(A) = Vψ(ht.A), the right hand side of (a.18) is at least as large as the
payoff from the deviation, which is u (At − [A/α]) + βδVψ(ht.A). It follows that the deviation
A is unprofitable, so that ψ is an equilibrium.

Part (b). The second inequality in (a.18) holds strictly when At > S and A < S, by the strict
concavity of u. Apply (a.18) (with strict inequality) at date t, with ht equal to the history on the
equilibrium path and setting M(A,S) = M(A,A∗t ) (Lemma 2).

LEMMA 9. For any asset level A and any path {At} with At ≤ A for all t ≥ 0,

(a.19) V s(A)−
∞∑
t=0

δtu

(
At −

At+1

α

)
≥ u′

(
α− 1

α
A

)(
δ − 1

α

)
(A−A1) ≥ 0.

Proof. Let ∆ stand for the left hand side of (a.19); then

∆ =
∞∑
t=0

δt
[
u

(
α− 1

α
A

)
− u

(
At −

At+1

α

)]

≥ u′
(
α− 1

α
A

) ∞∑
t=0

δt
[
A− A

α
−At +

At+1

α

]

= u′
(
α− 1

α
A

) ∞∑
t=0

δt
[
(A−At)−

A−At+1

α

]

= u′
(
α− 1

α
A

)[
(A−A0) +

(
δ − 1

α

) ∞∑
t=0

δt (A−At+1)

]

≥ u′
(
α− 1

α
A

)(
δ − 1

α

)
(A−A1) ≥ 0,

where the first inequality uses the concavity of u and the last uses δα > 1.

Let X(A) be the largest and Y (A) the smallest equilibrium asset choice at A.

LEMMA 10. X (A) and Y (A) are well-defined and non-decreasing, and X is usc.
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Proof. By Lemma 3, X(A) (resp. Y (A)) is the largest (resp. smallest) value of A′ ∈ [B,α(1−
υ)A] satisfying

(a.20) u

(
A− A′

α

)
+ βδH(A′) ≥ D(A)

X(A) and Y (A) are well-defined because H is usc.

To show that X(A) is nondecreasing, pick A1 < A2. (a.20) implies that

u

(
A1 −

X(A1)

α

)
+ βδH(X(A1)) ≥ u

(
A1 −

y

α

)
+ βδL(y)

for all y ∈ [B,α(1− υ)A]. It follows from the concavity of u that

(a.21) u

(
A2 −

X(A1)

α

)
+ βδH(X(A1)) ≥ u

(
A2 −

y

α

)
+ βδL(y)

for all y ∈ [B,X(A1)]. If the inequality extends to all y ∈ [B,α(1− υ)A], the claim would be
established. Otherwise there is x′ ∈ (X(A1), α(1− υ)A2] such that

(a.22) u

(
A2 −

X(A1)

α

)
+ βδH(X(A1)) < u

(
A2 −

x′

α

)
+ βδL(x′).

Combine (a.21) and (a.22) to see that

u

(
A2 −

x′

α

)
+ βδL(x′) > u

(
A2 −

X(A1)

α

)
+ βδH(X(A1))(a.23)

≥ u
(
A2 −

y

α

)
+ βδL(y)

for all y ≤ X(A1). We now construct an equilibrium starting from A2 as follows: any choice
A < X(A1) is followed by the continuation equilibrium generating L(A), and any choice A ≥
X(A1) is followed by the continuation equilibrium generating H(A). Because H is usc, there
exists some z∗ that maximizes u

(
A2 − z

α

)
+βδH(z) on [X(A1), α(1−υ)A2]; in light of (a.23)

and the fact that u
(
A2 − x

α

)
+ βδH(x) ≥ u

(
A2 − x

α

)
+ βδL(x), all choices A < X(A1) are

strictly inferior to z∗. Thus z∗ is an equilibrium choice at A2, so that X(A2) ≥ z∗ ≥ X(A1).

To show that Y (A) is non-decreasing, pick A1 < A2. If Y (A2) ≥ α[1 − υ]A1, we’re done,
so suppose that Y (A2) < α[1 − υ]A1. Construct an equilibrium from A1 as follows. For any
A ∈ [B, Y (A2)], assign the continuation value H(A), and for A ∈ (Y (A2), α[1− υ]A1], assign
the continuation value L(A). Finally, for the equilibrium asset choice at A1, assign A′, where A′

solves

max
A∈[B,Y (A2)]

u

(
A1 −

A

α

)
+ βδH(A)

(Because H is usc, a solution exists.) We claim that A′ maximizes payoff over all the above
specifications, so that {A′, H(A′)} is an equilibrium continuation. It certainly does so over
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choices in [B, Y (A2)], by construction. For A ∈ (Y (A2), α[1− υ]A1],

u

(
A2 −

Y (A2)

α

)
+ βδH(Y (A2)) ≥ u

(
A2 −

A

α

)
+ βδM(A,A2),

so by the concavity of u and Lemma 2,

u

(
A1 −

Y (A2)

α

)
+ βδH(Y (A2)) ≥ u

(
A1 −

A

α

)
+ βδM(A,A2)

≥ u

(
A1 −

A

α

)
+ βδM(A,A1),

which proves the claim. Because A′ ≤ Y (A2), it follows that Y (A1) ≤ Y (A2).

Finally, we show that X is usc. For any A∗ ≥ B, limA↑A∗ X(A) ≤ X(A∗) because X(A) is
nondecreasing. Now consider any decreasing sequence Ak ↓ A∗, and let X∗ denote the (well-
defined) limit of X(Ak). For each k, u

(
Ak −X(Ak)/α

)
+ βδH(X(Ak)) ≥ D(Ak). Because

H is usc andD(A) is nondecreasing, u (A∗ −X∗/α)+βδH(X∗) ≥ limk→∞D(Ak) ≥ D(A∗).
That implies X(A∗) ≥ X∗ = limA↓A∗ X(A). (In fact, because X(A) is non-decreasing,
X(A∗) = limA↓A∗ X(A).)

LEMMA 11. If X(A) = A, then A is sustainable.

Proof. Let A1 = A along with some value V1 be an equilibrium continuation at A. Then

u

(
α− 1

α
A

)
+ βδV1 ≥ D(A)

by Lemma 3. By Lemmas 9 and 10, V1 ≤ (1 − δ)−1u
(
α−1
α A

)
. Using this in the inequality

above, we see that P s(A) ≥ D(A), so that A is sustainable.

LEMMA 12. In the nonuniform case, βδ(α− 1)/(1− δ) < 1.

Proof. If βδ(α − 1)/(1 − δ) ≥ 1, then by Proposition 6, part (i), there exists a linear Markov
equilibrium policy function φ(A) = kA with k ≥ 1, which implies uniformity, a contradiction.

LEMMA 13. Under nonuniformity, the problem

max
x∈[0,α(1−υ)A]

[
u
(
A− x

α

)
+ βδV s(x)

]
.

has a unique solution x(A) with x(A) = ΓA, where 0 < Γ < 1. Moreover, the maximand is
strictly decreasing in x for all x ≥ x(A).

Proof. The maximand is a continuous, strictly concave function, so it has a unique, continuous
solution x(A) for each A. Moreover, by strict concavity, the maximand must strictly decline in
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x for all x ≥ x(A). Define ξ = βδ(α− 1)/(1− δ). By nonuniformity and Lemma 12, we have
ξ < 1. Routine computation reveals that x(A) = ΓA, where

Γ =
α

1 + ξ−
1
σ (α− 1)

which (given σ > 0 and ξ < 1) implies Γ < 1.

LEMMA 14. For any A0 ≥ B, maximize
∑∞

t=0 δ
tu
(
At − At+1

α

)
, subject to At+1 ∈ [B,α(1 −

υ)At], and At+1 ≤ X(At) for all t ≥ 0. Then a solution exists, and any solution path {A∗t } is
also an equilibrium path starting from A0, generating the value H(A0).

Proof. u is continuous andX(At) is usc (Lemma 10), so a solution {A∗t } exists. Let {V ∗t } be the
sequence of continuation values associated with {A∗t }. Consider an equilibrium path from date
t, call it {Aτ}, sustaining X(A∗t ) at A∗t and providing continuation value H(X(A∗t )) thereafter.
This path necessarily satisfiesAτ+1 ≤ X(Aτ ) for all τ ≥ t, so the definitions of {A∗t } and {V ∗t }
imply that

(a.24) u

(
A∗t −

A∗t+1

α

)
+ δV ∗t+1 ≥ u

(
A∗t −

X(A∗t )

α

)
+ δH(X(A∗t ))

Also, because A∗t+1 ≤ X(A∗t ) and β < 1, we have

(a.25)
(

1

β
− 1

)
u

(
A∗t −

A∗t+1

α

)
≥
(

1

β
− 1

)
u

(
A∗t −

X(A∗t )

α

)
Adding (a.24) to (a.25) and multiplying through by β, we obtain

(a.26) u

(
A∗t −

A∗t+1

α

)
+ βδV ∗t+1 ≥ u

(
A∗t −

X(A∗t )

α

)
+ βδH(X(A∗t )) ≥ D (A∗t ) ,

where the second inequality follows from the fact that {X(A∗t ), H(X(A∗t )} is supportable atA∗t .
Because (a.26) holds for all t ≥ 0, {A∗t } is an equilibrium path.

Because it is obvious that any equilibrium path must satisfy the constraints of the maximization
problem in the statement of the lemma, it follows that the value of this path must be H(A0).

LEMMA 15. Suppose that for some A∗ ≥ B, X(A) > A for all A ≥ A∗. Then starting from
any A ≥ A∗, there is an equilibrium path with monotonic and unbounded accumulation, so that
strong self-control is possible. Moreover, some such equilibrium path maximizes value among
all equilibrium paths from A.

Proof. We first claim that for any A > A∗ with limA′↑AX(A′) = A, there is ε > 0 with

(a.27) X(A′) = A for A′ ∈ (A− ε, A).
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Suppose on the contrary that there is A > A∗ and η > 0 such that A′ < X(A′) < A for all
A′ ∈ (A− η,A). Because X(A) > A, Lemma 14 and δα > 1 together imply

(a.28) H(A) > V s(A) + γ

for some γ > 0.14 Consider any equilibrium continuation {X(A′), V1} from A′ ∈ (A − η,A).
BecauseA

′′
< X(A

′′
) < A for allA′′ in that interval,A′t < A for the resulting equilibrium path.

It follows from Lemma 9 that V s(A) > V1. Combining this inequality with (a.28) and noting
that X(A′)→ A as A′ → A,

u

(
A′ − A

α

)
+ βδH(A) > u

(
A′ − X(A′)

α

)
+ βδV1 ≥ D(A′)

for all A′ < A but close to A. So all such A′ possess an equilibrium continuation of {A,H(A)},
which contradicts X(A′) < A′, and establishes the claim.

We now complete the proof by claiming that any path {At} from A ≥ A∗ which solves the
problem of Lemma 14 involves monotonic and unbounded accumulation. Suppose this assertion
is false. Then at least one of the following must be true:

(i) there exists some date τ such that Aτ ≥ Aτ+1 ≤ Aτ+2, and/or

(ii) the sequence {At} converges to some finite limit.

Let {ct} be the consumption sequence generated by {At}. In case (i), cτ ≥ cτ+1. Recalling that
δα > 1, we therefore have

(a.29) u′(cτ ) < δαu′(cτ+1).

Moreover, because X(Aτ ) > Aτ and Aτ ≥ Aτ+1, we have

(a.30) Aτ+1 < X(Aτ ).

In case (ii), there exists T such that, for τ > T , (a.29) again holds because cτ and cτ+1 are close.
As far as (a.30) is concerned, there are two subcases to consider:

(a) There is τ > T with Aτ+1 ≤ Aτ . Here, (a.30) holds because X(Aτ ) > Aτ ≥ Aτ+1.

(b) For t > T , At is strictly increasing with limit Ā <∞. If limt→∞X(At) > Ā, (a.30) plainly
holds for some τ sufficiently large. Otherwise limt→∞X(At) = Ā. But in this case, we know
from the first claim above that for some τ , X(Aτ ) = Ā > Aτ+1, so that (a.30) holds yet again
for some τ sufficiently large.

In short, (a.29) and (a.30) always hold (for some τ ). Now alter the path {At} by increasing the
period-(τ + 1) asset level from Aτ+1 to Aτ+1 + η, leaving asset levels unchanged for all other

14 If δα > 1 and X(A) > A, then the problem of Lemma 14 isn’t solved by the stationary path from A: a small
increase in assets followed by asset maintenance would achieve greater value.
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periods. Because X(A) is non-decreasing, Aτ+2 ≤ X(Aτ+1 + η), and for small η we have
Aτ+1 +η < X(Aτ ) by (a.30); thus, the new path is feasible and also satisfies the constraints that
define the value-maximizing path {At}. Taking the derivative of period-τ value with respect to
η,

dVτ
dη

= δτ
[
−u′(cτ )

1

α
+ δu′(cτ+1)

]
> 0,

where the inequality holds as a consequence of (a.29). This contradicts the definition of {At} as
a path that solves the problem in Lemma 14, and so establishes the lemma.

Proof of Proposition 2. Part (i) is obvious. “Only if” in part (ii) is also obvious, while “if”
follows from Lemma 15. Likewise, the “only if” part of part (iii) is obvious, while the “if” part
is a consequence of the fact that X is usc. Part (iv) once again is obvious.

We set the stage for Proposition 3 by establishing thatH is increasing, so thatH− is well-defined:

LEMMA 16. H(A) is increasing on [B,∞).

Proof. Recall that H(A) is the value of the maximization problem in Lemma 14, with A0 = A.
Because X is nondecreasing, It follows that H is increasing in A.15

Proof of Proposition 3. Let Y be the smallest equilibrium choice of continuation asset at A, and
let V be the lowest value such that (Y, V ) is a continuation equilibrium from A. By Lemma 3,
we have

(a.31) u

(
A− Y

α

)
+ βδV ≥ D(A).

If (a.31) is slack, it is easy to show that Y must equal B and that V can be set equal to L(B).16

That generates the lowest possible equilibrium value at A and there is nothing left to prove; see
the first inequality in Observation 1.

Otherwise (a.31) is binding for Y . In this case,

(a.32) u

(
A− Y

α

)
+ βδV = D(A) ≤ u

(
A− A′

α

)
+ βδV ′.

15 Starting from any higher asset level, it is feasible to choose the continuation asset A1 (and then continuing with
the earlier path {A1, A2, A3 . . .}).
16 If strict inequality holds in (a.31), reduce continuation assets, always using a continuation on the upper envelope of
the value correspondence, and sliding down the vertical portion of H at any point of discontinuity. (Public random-
ization allows us to do this.) Note that payoffs and continuation values change continuously as we do this. Eventually
we come to Y = B with continuation value L(B).
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for any other equilibrium continuation {A′, V ′} at A. Because A′ ≥ Y by definition, (a.32)
shows that V ′ ≥ V . It follows that

(a.33) u

(
A− Y

α

)
+ δV ≤ u

(
A− A′

α

)
+ δV ′,

so that once again, {Y, V } implements minimum value at A.

To complete the proof of part (i), suppose that Y > B while at the same time, V < H−(Y ).
Then it is obviously possible to reduce Y slightly while increasing continuation value at the
same time.17 Moreover, the new continuation has higher payoff, so it must be supportable as an
equilibrium. Yet it has a lower continuation asset, which contradicts the definition of Y .

For part (ii), we adopt public randomization. Punish atA using Y , and implement the equilibrium
continuation value V , which lies between H−(Y ) and H(Y ) (by part (i)), by randomizing over
two specific continuation values: (a) H(Y ), and (b) the value obtained by choosing the lowest
equilibrium continuation asset at Y — call it Z — and following up with H(Z).

For this randomization to work, two conditions must be met. First, (Z,H(Z)) must be an equi-
librium continuation at asset level Y . Second, the value V must lie between the value generated
by (Z,H(Z)), and H(Y ). The first condition is trivially met, because Z is the lowest equilib-
rium continuation at Y , and can certainly be supported by the highest continuation value H(Z).
For the second condition, we will now verify that

(a.34) H−(Y ) ≥ u
(
Y − Z

α

)
+ δH(Z).

LEMMA 17. Z < (1− υ)αY .

Proof. Proposition 6 in the main text shows that there is always a Markov equilibrium policy φ
with φ(A) < (1− υ)αA for every A ≥ B.18 Because Z ≤ φ(Y ), the Lemma follows.

LEMMA 18. For each ε > 0, there is γ > 0 and η > 0 such that ifA′ ∈ [Y −γ, Y ] and (A′′, V ′′)

is a continuation from A′ with A′′ ≥ Z − η, then Z is a feasible choice at A′, and the condition

(a.35) u

(
A′ − A′′

α

)
+ βδV ′′ ≥ u

(
A′ − Z

α

)
+ βδH(Z)

implies

(a.36) u

(
A′ − A′′

α

)
+ δV ′′ ≥ u

(
A′ − Z

α

)
+ δH(Z)− ε.

17 Because V < H−(Y ), there exists Y ′ < Y and V ′ ∈ V(Y ′) such that V ′ > V .
18 We should, of course, point out that Proposition 6 is established using separate arguments that rely on none of the
lemmas in this Section.
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Proof. Given ε and invoking Lemma 17, choose γ and η positive but small enough so that Z is
feasible for Y − γ (and therefore for all A′ ≥ Y − γ), and so that

(a.37) ∆ ≡ u
(
Y − γ − Z − η

α

)
− u

(
Y − γ − Z

α

)
≤ βε

1− β
.

If (a.35) holds for some A′ ∈ [Y − γ, Y ] and continuation (A′′, V ′′) with A′′ ≥ Z − η, then

βδ[H(Z)− V ′′] ≤ u

(
A′ − A′′

α

)
− u

(
A′ − Z

α

)
≤ u

(
A′ − Z − η

α

)
− u

(
A′ − Z

α

)
≤ u

(
Y − γ − Z − η

α

)
− u

(
Y − γ − Z

α

)
= ∆,(a.38)

where the third inequality follows from the concavity of u. But (a.35) also implies that

(a.39) u

(
A′ − A′′

α

)
+ δV ′′ ≥ u

(
A′ − Z

α

)
+ δH(Z)− δ(1− β)[H(Z)− V ′′].

Combining (a.37), (a.38) and (a.39), we see that

u

(
A′ − A′′

α

)
+ δV ′′ ≥ u

(
A′ − Z

α

)
+ δH(Z)− (1− β)∆

β

≥ u

(
A′ − Z

α

)
+ δH(Z)− ε,

which establishes (a.36), as required.

With Lemma 18 in hand, we return to the verification of (a.34). Let An be any sequence of
assets, with An < An+1 for every n and with An → Y . For every n, choose an equilibrium
continuation (Zn, V n) to maximize equilibrium payoff from An:

u

(
An − Zn

α

)
+ βδV n,

where Zn ∈ [B, (1− υ)αAn] and V n ∈ V(Zn) for every n.

Fix ε > 0, and look at all indices n with An ≥ Y − γ, where γ is given by Lemma 18. We claim
that

(a.40) Zn ≥ Z − η for all but finitely many n.

where η is given by Lemma 18. For suppose that (a.40) is false along some infinite subsequence.
We know that

u

(
Ak − Zk

α

)
+ βδV k ≥ u

(
Ak − Z

α

)
+ βδH(Z)



21

for k along that subsequence. Letting (Z∗, V ∗) denote a limit point of (Zk, V k), we have:

u

(
Y − Z∗

α

)
+ βδV ∗ ≥ u

(
Y − Z

α

)
+ βδH(Z).

It follows that (Z∗, V ∗) is an equilibrium continuation at Y . But Z∗ ≤ Z − η, which contradicts
the fact that Z is the lowest equilibrium asset choice at Y . Therefore (a.40) holds. Moreover, for
all such n, (a.35) holds for A′ = An, A′′ = Zn and V ′′ = V n. By Lemma 18, (a.36) must hold
as well, so that

(a.41) u

(
An − Zn

α

)
+ δV n ≥ u

(
An − Z

α

)
+ δH(Z)− ε

for all n large enough. But H is nondecreasing by Lemma 16, so

(a.42) H−(Y ) ≥ H(An) ≥ u
(
An − Zn

α

)
+ δV n.

for all n. Combining (a.41) and (a.42) and passing to the limit in n, we must conclude that

H−(Y ) ≥ u
(
Y − Z

α

)
+ δH(Z)− ε.

Because ε > 0 is arbitrary, (a.34) is established.

It follows that the public randomization described above works to implement the worst punish-
ment at A. Notice that such an implementation returns the individual to her highest continuation
value function after at most two periods.

Proof of Proposition 4, part (i). First suppose that there is ε > 0 with X(A) ≥ A on [B,B + ε].
By nonuniformity, X(A′) < A′ for some A′. X is nondecreasing, so X(S) = S for some
S > B, with X(A′) < A′ for some A′ ∈ (S, S + ε′), for every ε′ > 0.19 By Lemma 11, S is
sustainable. Define µ ≡ S/B. By Lemma 8 (a), µX(A′/µ) is an equilibrium choice for every
A′ ∈ [S, S + µε]. But then X(A′) ≥ µX(A′/µ) ≥ A′ for all such A′, a contradiction.

It follows immediately that X(B) = B, and for all ε > 0, there exists Aε ∈ (B,B+ ε) such that
X(Aε) < Aε. But if the result is false, there is also A′ε ∈ (B,Aε) with X(A′ε) ≥ A′ε. Because
X(A) is nondecreasing, these observations imply the existence of Sε ∈ (B,B + ε) such that
X(Sε) = Sε. By Lemma 11, Sε is sustainable for all ε > 0. But for ε sufficiently small,

D(Sε) ≥ u
(
Sε −

B

α

)
+ βδL(B) ≥ u

(
Sε −

B

α

)
+ βδV s(B) > P s(Sε)

where the first inequality follows from the definition of D, the second from Lemma 1, and the
third from Lemma 13. This is a contradiction.

19 Take S to be the infimum of all A with X(A) < A.
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LEMMA 19 (Observation 3 in main text). Suppose that asset levels S1 and S2, with S1 < S2,
are both sustainable, and that X(A) > A for all A ∈ (S1, S2). Then there exists A∗ ≥ B such
that X(A) > A for all A > A∗.

Proof. Let µi ≡ Si/B for i = 1, 2; then µ1 < µ2. We claim that there is A∗ ≥ B such that for
all A > A∗, there are Ã ∈ (S1, S2) and integers (m,n) ≥ 0 with A = µn1µ

m
2 Ã.

We first show that there is A∗ such that for all A > A∗, A ∈ (µk1S1, µ
k
2S2) for some k. Because

µ1 < µ2, there is an integer ` with µk+2
1 < µk+1

2 for all k ≥ `. For all such k, (µk1S1, µ
k
2S2) =

(µk1S1, µ
k+1
2 B) overlaps with (µk+1

1 S1, µ
k+1
2 S2) = (µk+2

1 B,µk+1
2 S2). So ∪∞k=`(µ

k
1S1, µ

k
2S2) =(

µ`1S1,∞
)
. Take A∗ to be any number greater than µ`1S1.

Next we show that for each integer k ≥ 1 and A ∈ (µk1S1, µ
k
2S2), there is Ã ∈ (S1, S2) along

with an integer m ∈ {0, . . . , k} such that A = µm1 µ
k−m
2 Ã. Divide the interval (µk1S1, µ

k
2S2)

(which is the same as the interval (µk+1
1 B,µk+1

2 B)) into a sequence of semi-open sub-intervals
(preceded by an open interval) that coincide at their endpoints: (µk+1

1 B,µk1µ2B), [µk1µ2B,µ
k−1
1 µ2

2B),
. . . , [µ1µ

k
2B,µ

k+1
2 B). Amust lie in one of these intervals; call it [µm+1

1 µk−m2 B,µm1 µ
k−m+1
2 B),

which we can rewrite as [µm1 µ
k−m
2 S1, µ

m
1 µ

k−m
2 S2). (The left edge is open if it is the first inter-

val.) Thus, setting Ã = Aµ−m1 µm−k2 , we have Ã ∈ (S1, S2) and A = µm1 µ
k−m
2 Ã, as desired.

To complete the proof, pick any A > A∗ along with some Ã ∈ (S1, S2), integer k ≥ 1 and
m ∈ {0, . . . , k} for which A = µm1 µ

k−m
2 Ã. By repeated application of Lemma 8 (a), we see

that X(A) ≥ µm1 µ
k−m
2 X(Ã); noting that X(Ã) > Ã, we have X(A) > A.

Let us refer to the assertion of Proposition 4, part (ii), as the Conclusion. Lemma 19 (together
with Lemma 15) implies the Conclusion, provided that the supposition of Lemma 19 is satisfied.
Via Lemma 19, several other situations also imply the Conclusion. Define E(A) ≡ P s(A) −
D(A).

LEMMA 20. E(A) > 0 for some A > B implies the Conclusion.

Proof. Because u is continuous and D is increasing, there is an interval [S1, S2] such that
E(A′) > 0 for all A′ ∈ [S1, S2] (e.g., take S2 = A and S1 to be an asset level slightly be-
low S2). Clearly, S1 and S2 are both sustainable (indeed, every A′ ∈ [S1, S2] is).

For each A′ ∈ [S1, S2), define z(A′) as the largest value in [S1, S2] satisfying

(a.43) u

(
A′ − z(A′)

α

)
+ βδV s(z(A′)) ≥ D(A′).

Because E(A′) > 0, we have z(A′) > A′. Moreover, because E(z(A′)) > 0, we know that
z(A′) is sustainable. So (a.43) and Lemma 3 imply the existence of an equilibrium starting from
A′ in which assets increase to z(A′) immediately and then remain at z(A′) forever. It follows
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that X(A′) ≥ z(A′) > A′ for all A′ ∈ (S1, S2). Therefore the condition of Lemma 19 is
satisfied: there are assets S1 and S2 with S1 < S2, both sustainable, with X(A′) > A′ for all
A′ ∈ (S1, S2). The Conclusion follows.

Say that a sustainable asset S is isolated if there is an interval around S with no other sustainable
asset in that interval.

LEMMA 21. If S is sustainable and not isolated, then the Conclusion is true.

Proof. Assume that S is sustainable and not isolated. By nonuniformity and Lemma 8, there
is A∗ > S with X(A∗) > A∗. If X(A′) > A′ for all A′ ≥ A∗, the Conclusion follows
(Lemma 15). Otherwise, X(A′) ≤ A′ for some A′ > A∗. Because X is nondecreasing, there is
S∗ > A∗ such that X(S∗) = S∗, and X(A′) > A′ for all A′ ∈ [A∗, S∗).20 By Lemma 11, S∗ is
sustainable.

Because S isn’t isolated, for every ε > 0 there is sustainable S′ with |S′−S| < ε. Let µ ≡ S/B
and µ′ ≡ S′/B. By Lemma 8 (a), S1 ≡ µS∗ and S2 ≡ µ′S∗ are sustainable. Remember that
X(A′) > A′ for all A′ ∈ [A∗, S∗). Using this information, it is easy to see that if S and S′ are
close enough, then X(A) > A for all A ∈ (S1, S2),21 because all such A can then be written in
the form µ′A′ for some A′ ∈ (A∗, S∗). But now all the conditions of Lemma 19 are met, so that
the Conclusion follows.

A special case of a sustainable asset level is what we will refer to as an upper sustainable asset
level Ŝ, one for which X(Ŝ) = Ŝ, while X(A) > A over an interval of the form [Ŝ − θ, Ŝ) for
some θ > 0. (Note that by Lemma 11, Ŝ is sustainable.)

LEMMA 22. Let Ŝ be upper sustainable. Then there is ε > 0, such that for every A ∈ [Ŝ, Ŝ+ ε],
there is an equilibrium which involves first-period continuation asset A1 < Ŝ, and has value
V (A) < V s(Ŝ).

Proof. Using Lemma 13 and the fact that Ŝ is upper sustainable, there are ζ > 0 and ε1 > 0

such that for every A ∈ [Ŝ, Ŝ + ε1],

(a.44) u

(
A− Ŝ − ζ

α

)
+ βδV s(Ŝ − ζ) ≥ u

(
A− A1

α

)
+ βδV s(A1)

whenever A1 ≥ Ŝ, while at the same time,

(a.45) X(A′′) > A′′ for all A′′ ∈ [Ŝ − ζ, Ŝ).

20 To see this, pick S > A∗ such that X(S) = S, and now take the infimum over all such values of S; call it S∗.
Clearly, S∗ > A∗ because X(A∗) > A∗ and X is nondecreasing.
21 We presume that S < S′ without loss of generality.
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By part (i) of this proposition, there is Ã > B such that every equilibrium from A ∈ [B, Ã)

monotonically descends to B. By Lemma 8 (a) and the fact that Ŝ is sustainable, there must be
a corresponding equilibrium which monotonically descends from A to Ŝ for every A ∈ [Ŝ, µ̂Ã),
where µ̂ = Ŝ/B. Define ε2 ≡ min{ε1, µ̂Ã− Ŝ}.

Using the first inequality in (a.19) of Lemma 9,

V s(Ŝ) ≥
∞∑
t=0

δtu

(
At −

At+1

α

)
+ u′

(
α− 1

α
Ŝ

)(
δ − 1

α

)
ζ

for any path {At} starting from Ŝ with the property that At ≤ Ŝ for all t ≥ 0, and A1 ≤ Ŝ − ζ.
But then there exists ε3 > 0 such that

(a.46) V s(Ŝ) >

∞∑
t=0

δtu

(
At −

At+1

α

)
for any path {At} with At ≤ Ŝ for all t ≥ 1, A1 ≤ Ŝ − ζ, and A0 ≤ Ŝ + ε3. Define
ε ≡ min{ε2, ε3}.

Pick any A ∈ [Ŝ, Ŝ + ε], and consider any “descending equilibrium” as described just after
(a.45), with payoff P (A). Suppose that it has continuation (A1, V1). By Lemma 9, we know that
V1 ≤ V s(A1), so

(a.47) u

(
A− A1

α

)
+ βδV s(A1) ≥ P (A).

Combining (a.44) and (a.47), we must conclude that

(a.48) u

(
A− Ŝ − ζ

α

)
+ βδV s(Ŝ − ζ) ≥ P (A).

Now observe that (a.45), coupled with Lemma 14, implies that H(Ŝ − ζ) ≥ V s(Ŝ − ζ). Using
this information in (a.48), we must conclude that

(a.49) u

(
A− Ŝ − ζ

α

)
+ βδH(Ŝ − ζ) ≥ P (A).

So the continuation {Ŝ−ζ,H(Ŝ−ζ)} is an equilibrium from everyA ∈ [Ŝ, Ŝ+ε]. To complete
the proof, note that any path {At} associated with this equilibrium satisfies At ≤ Ŝ for all
t ≥ 1,22 A1 ≤ Ŝ − ζ, and A0 ≤ Ŝ + ε ≤ Ŝ + ε3. Therefore (a.46) applies.

Recall the definition of d∗(A) as the largest maximizer of (a.5).

22 This follows from X(Ŝ) = Ŝ and the fact that X is nondecreasing.
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LEMMA 23. If d∗(A) = A and d∗(A′) ≤ A′ over A′ ∈ [A,A + ε] for some ε > 0, then A is
sustainable.23

Proof. We first show that

(a.50) L+(A) ≤ V s(A).

By Lemma 5, L is increasing. So there is a sequence {An} with An ↓ A and L(An) (and
L+(An)) converging to L+(A). For each n, consider an equilibrium with the lowest value
V (An) among those that implement Y (An).24 Then

(a.51) (1− β)u

(
An −

Y (An)

α

)
+ βV (An) ≥ D(An),

for all n. If strict inequality holds along a subsequence of n, then it’s easy to see that L(An) ≤
V (An) = u(An−B/α)+δL(B) along that subsequence.25 Passing to the limit,L+(A) ≤ u(A−
B/α) + δL(B) ≤ V s(A), where the second inequality comes from part (i) of the Proposition,
already proved, which yields L(B) = V s(B), together with Lemma 9. So (a.50) holds in this
case. In the other case, we may presume that

(a.52) (1− β)u

(
An −

Y (An)

α

)
+ βV (An) = D(An)

for all n. But in turn,

(a.53) D(An) = u

(
An −

d∗(An)

α

)
+ βδM(d∗(An), An).

Combining (a.52) and (a.53), we see that for every n,

(a.54) (1− β)u

(
An −

Y (An)

α

)
+ βV (An) = u

(
An −

d∗(An)

α

)
+ βδM(d∗(An), An).

Now we pass to the limit in (a.54). By assumption, d∗(An) ≤ An for all n large, so limn d
∗(An) <

α(1−υ)A.26 By Lemma 7, d∗ is right continuous at A, and so d∗(An) converges to d∗(A) = A.
By Lemma 6, M(d∗(An), An) = L+(d∗(An)) for all n large enough, which converges to
L+(d∗(A)) = L+(A). Letting (Y, V ) denote any limit point of {Y (An), V (An)}, we there-
fore have

(a.55) (1− β)u

(
A− Y

α

)
+ βV = u

(
α− 1

α
A

)
+ βδL+(A).

23 In fact, a stronger property holds: if d∗(A) ≥ A, then A is sustainable. That result follows directly from the exis-
tence of an everywhere-non-accumulating Markov-perfect equilibrium. Because we do not use the stronger property,
nor do we focus on Markov equilibrium, we omit the proof.
24 In line with Proposition 3, this value equals L(An), but we do not use this fact anywhere in the proofs.
25 Follow the same argument as in Footnote 16.
26 That follows from α(1− υ) > 1, given αδ > 1 and 1− υ > γ, where γ is the Ramsey rate of saving.
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It follows that

β(1− δ)L+(A) ≤ βV − βδL+(A)

= u

(
α− 1

α
A

)
− (1− β)u

(
A− Y

α

)
≤ u

(
α− 1

α
A

)
− (1− β)u

(
α− 1

α
A

)
= β(1− δ)V s(A),(a.56)

where the first inequality uses V (An) ≥ L(An) for all n, so that V ≥ L+(A), the equality
follows from transposing terms in (a.55), and the second inequality uses d∗(An) ≥ Y (An) for
all n, and d∗(An)→ A, so that A ≥ Y . But (a.56) again implies (a.50).

With (a.50) in hand, we must conclude that

u

(
α− 1

α
A

)
+ βδV s(A) ≥ u

(
α− 1

α
A

)
+ βδL+(A)

= u

(
α− 1

α
A

)
+ βδM(A,A)

= D(A)

(where the last equality follows from d∗(A) = A), which means that A is sustainable.

In the rest of the proof, we make the assumption (by way of ultimate contradiction) that the
Conclusion is false. Note that because many of the steps to follow are based on this presumption,
they cannot all be regarded as relationships that truly hold in the model.

LEMMA 24. Suppose that the Conclusion is false. Then

(a) d∗(Ŝ) < Ŝ for any upper sustainable asset level Ŝ, and

(b) d∗(A) ≤ A for all A ≥ B, with strict inequality whenever X(A) 6= A.

Proof. Part (a). Suppose not; then, since X(Ŝ) = Ŝ (by the upper sustainability of Ŝ), it follows
from Lemma 4 that d(Ŝ) = Ŝ. We know that M(Ŝ, Ŝ) = L+(Ŝ) (see footnote 26 and recall
Lemma 6), but by Lemma 22,

M(Ŝ, Ŝ) = L+(Ŝ) < V s(Ŝ).

Invoking (a.5) along with d(Ŝ) = Ŝ, we must therefore conclude that

D(Ŝ) = u

(
α− 1

α
Ŝ

)
+ βδM(Ŝ, Ŝ) < u

(
α− 1

α
Ŝ

)
+ βδV s(Ŝ) = P s(Ŝ),

or E(Ŝ) = P s(Ŝ)−D(Ŝ) > 0. By Lemma 20, the Conclusion follows, a contradiction.

Part (b). If false, then d∗(A) > A for some A ≥ B, or d∗(A) ≥ A for some A ≥ B with
X(A) 6= A. By Lemma 4, X(A) ≥ d∗(A), so in either case X(A) > A. Note that there
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is A′ > A such that X(A′) ≤ A′, otherwise Lemma 15 assures us that the Conclusion holds.
Define Ŝ by the infimum value of such A′. Then it is immediate that Ŝ is upper sustainable, and
that X(A′′) > A′′ for all A′′ ∈ [A, Ŝ).

Recall that d∗(A) ≥ A, that d∗ is nondecreasing and that d(Ŝ) < Ŝ by the upper sustainability
of Ŝ and part (a) of this lemma. So there is S ∈ [A, Ŝ) with d∗(S) = S and d∗(S′) ≤ S′ for all
S′ in an interval to the right of S.27 By Lemma 23, S is sustainable.

Set S = S1 and Ŝ = S2. Recall that X(A′′) > A′′ for all A′′ ∈ [A, Ŝ), so the inequality holds in
particular on (S1, S2). Now all the conditions of Lemma 19 are satisfied. Together with Lemma
15, we see that the Conclusion must hold, a contradiction.

Part (i) of the proposition, along with some of the foregoing lemmas, generates the following
construction, on the assumption that the Conclusion is false. X(A) starts out below A near B
(there is a poverty trap by part (i)). By nonuniformity, X(A) > A for some A; let A∗ be the
infimum value. X(A) > A on an interval to the right of A∗; if not, sustainable stocks cannot
all be isolated, and the Conclusion would follow from Lemma 21.28 Moreover, by Lemma 15, if
the Conclusion is false, there is S∗ < ∞, defined as the supremum of all asset levels S greater
than A∗ such that X(A) > A for all A ∈ (A∗, S). Note that S∗ is upper sustainable. (Also note
that X(A∗) > A∗, otherwise the Conclusion is implied by setting S1 = A∗ and S2 = S∗, and
applying Lemma 19.)

Part (i) of the proposition also tells us that d∗(B) = B. Let S∗ be the largest asset level in [B,S∗]

for which d∗(S) = S.

LEMMA 25. S∗ is well-defined, with B ≤ S∗ < S∗, and X(S∗) = S∗.

Proof. By Lemmas 21 and 24, there is a finite set of points in [B,S∗], all strictly smaller than
S∗, for which d∗(S) = S. (B is one such point.) So S∗ is well-defined and B ≤ S∗ < S∗. That
X(S∗) = S∗ follows from part (b) of Lemma 24 and d∗(S∗) = S∗.

Figure A.1 summarizes the construction as well as the properties in Lemma 25. Panel A illus-
trates a case in which S∗ > B, and Panel B, a case in which S∗ = B. (Note: it is possible
that X(A) = A to the right of S∗ and before S∗, though by Lemma 21, this can only happen at
isolated points if the Conclusion is false.)

27 To make this entirely clear, let S ≡ sup{S′ ∈ [A, Ŝ)|d∗(S′) > S′}. Because d∗ is nondecreasing, d∗(S) ≥ S.
Moreover, d∗(S) > S violates the definition of S (again, because d∗ is nondecreasing).
28 By definition of A∗, there is {A′n} converging down to A∗ with X(A′n) > A′n. If the assertion in the text is
false, there is {A′′n} also converging down to A∗ along which X(A′′n) ≤ A′′n. But then, using the fact that X is
nondecreasing, there must be a third sequence along which equality holds, which proves that non-isolated sustainable
assets must exist.
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A

A'

B S*

X(A)

A* S*

(A) S∗ > B

A

A'

B =S*

X(A)

A* S*

(B) S∗ = B

FIGURE A.1. THE TWO SUSTAINABLE ASSETS S∗ AND S∗.

Define Y +(A) as the limit of Y (An) as An converges down to A. Given Lemma 10, Y +(A) is
well-defined and Y +(A) ≥ Y (A).

LEMMA 26. If the Conclusion is false, Y +(S∗) ≥ S∗.

Proof. If S∗ = B the result is trivially true, so assume that S∗ > B. Suppose, on the contrary,
that Y +(S∗) < S∗. We first establish a stronger version of (a.50); namely, that

(a.57) L+(S∗) < V s(S∗).

By part (b) of Lemma 24, d∗(A) ≤ A in a neighborhood to the right of S∗ (indeed, strict
inequality holds). With this in mind, carry out exactly the same argument as in the proof of
Lemma 23, starting right after (a.50) and leading to (a.56), with S∗ in place of A. We need two
modifications to ensure that strict inequality in (a.50) holds. First, in case strict inequality holds
in (a.51) along a subsequence, then Y (An) = B and continuation values equal L(B) along that
subsequence, just as in the proof of Lemma 23, with the additional observation that (a.50) must
indeed hold strictly, giving us (a.57). Otherwise, equality holds in (a.51), and (a.56) follows as
before, with the additional implication that the second inequality in (a.56) — again, with S∗ in
place of A — must hold strictly, because S∗ > Y +(S∗) ≥ Y (S∗). We must therefore conclude
that (a.57) holds, and therefore that

u

(
α− 1

α
S∗

)
+ βδV s(S∗) > u

(
α− 1

α
S∗

)
+ βδL+(S∗)

= D(S∗),
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A
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B S*

X(A)

A* S* S** S**

FIGURE A.2. OUTLINE OF THE PROOF STARTING FROM LEMMA 27.

where the equality follows from d∗(S∗) = S∗ < α(1 − υ)S∗, so that L+(S∗) = M(S∗, S∗)

by Lemma 6. In other words, we have E(S∗) > 0. But then Lemma 20 assures us that the
Conclusion must follow, which is a contradiction.

Let µ ≡ S∗/B, and ρ ≡ S∗/B; then µ > ρ ≥ 1. Let S∗∗ ≡ µS∗, and S∗∗ ≡ µS∗. Note that
S∗∗ = µS∗ = ρS∗, so S∗∗ is also a scaling of S∗ by the factor ρ. (By Lemmas 11 and 25, S∗
is sustainable, so Lemma 8 applies with both the scalings µ and ρ.) Here is an outline of the
remainder of the proof. Refer to Figure A.2. By Lemma 8 (a), equilibria at assets to the right
of S∗ and to the left of S∗ can be “scaled up” to assets beyond S∗∗, using the factor µ. Asset
choices for such equilibria are partly indicated by the upper line to the right of S∗∗ and the lower
line to the left of S∗∗. But S∗∗ is also a scaling of S∗ (using ρ), so other equilibrium scalings
are possible. In particular, Lemmas 8 and 22 tell us that equilibria with even lower values (and
lower continuation assets) are achievable just above S∗∗; see the lower segment to the right of
S∗∗. These values serve as punishments for deviations from even higher assets, and so support,
in turn, larger asset choices near S∗∗ relative to the earlier set of scaled equilibria; see the upper
line around S∗∗. That creates a zone beyond S∗∗ in which X(A) > A. If X(A) > A for all
A > S∗∗, Lemma 15 applies and the proof is complete. Otherwise, there is a first asset level
beyond S∗∗ at which X(A) = A yet again. Now Lemma 20 applies, and contradicts the starting
point of this entire construction: that the Conclusion is false.

Recall the definition of L+(x), and Lemma 6, which states that M(x,A) = L+(x) when x <
α(1− υ)A. This property will play a more active role now.
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LEMMA 27. Suppose that the Conclusion is false. (a) For all x ≥ B,

(a.58) L(µx) ≤ µ1−σL(x).

and in particular,

(a.59) M(µx, µA) ≤ µ1−σM(x,A),

for all A ≥ B and x ∈ [B,α(1 − υ)A]. (b) For every A > S∗ with Y (µA) < S∗∗ and for all
A′ ∈ [S∗, A),

(a.60) L+(µA′) < µ1−σL+(A′).

Proof. It is easy to see that Lemma 8 (a) implies (a.58). (a.59) follows for x ∈ [B,α(1 − υ)A)

by taking right-hand limits of L, and for x = α(1 − υ)A by applying (a.58) directly. To prove
part (b), pick A > S∗ with Y (µA) < S∗∗. Let Ã ∈ (S∗, A]. Because Y +(S∗) ≥ S∗ (by
Lemma 26), any equilibrium from Ã that implements L(Ã) has continuation {Ã1, Ṽ1} with
Ã1 ≥ S∗ (by Lemma 10). By Lemma 8 (a), {µÃ1, µ

1−σṼ1} is an equilibrium continuation at
Ã′′ ≡ µÃ > S∗∗. So

(a.61) u

(
Ã′′ − µÃ1

α

)
+ βδµ1−σṼ1 ≥ D(Ã′′),

and

(a.62) µÃ1 ≥ µS∗ = S∗∗.

Consider an equilibrium with the lowest continuation value — call this V — among those that
implement Y (Ã′′) from Ã′′. Then

(a.63) u

(
Ã′′ − Y (Ã′′)

α

)
+ βδV ≥ D(Ã′′).

If (a.63) does not bind, then we know that Y (Ã′′) = B and V = L(B) (see footnote 16).
Recalling that Ã′′ = µÃ, we must therefore have

L(µÃ) ≤ u

(
µÃ− B

α

)
+ δL(B)

≤ u

(
µÃ− µÃ1

α

)
+ δµ1−σṼ1 −

1− β
αβ

u′
(
µÃ− B

α

)
(µÃ1 −B)
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≤ u

(
µÃ− µÃ1

α

)
+ δµ1−σṼ1 −

1− β
αβ

u′
(
µA− B

α

)
(S∗∗ −B)

= µ1−σL(Ã)− 1− β
αβ

u′
(
µA− B

α

)
(S∗∗ −B),(a.64)

where the first inequality uses the definition of L, the second inequality uses Lemma 1, and the
third inequality invokes (a.62) and Ã ≤ A. On the other hand, if (a.63) does bind, then using
(a.61) and noting that Ã′′ = µÃ,

(a.65) u

(
µÃ− µÃ1

α

)
+ βδµ1−σṼ1 ≥ u

(
µÃ− Y (µÃ)

α

)
+ βδV .

Let ζ ≡ S∗∗ − Y (µA). Because Y is nondecreasing, we have Y (µÃ) ≤ S∗∗ − ζ ≤ µÃ1 − ζ.
Using this information in (a.65) and observing that µÃ ≤ µA, we must conclude that there exists
η1 > 0 with µ1−σṼ1 ≥ V + η1, where η1 might depend on A but can be chosen independently
of Ã. Therefore, using (a.65) again, there is η2 > 0 such that

u

(
µÃ− µÃ1

α

)
+ δµ1−σṼ1 ≥ u

(
µÃ− Y (µÃ)

α

)
+ δV + η2,

or equivalently, µ1−σL(Ã) ≥ L(µÃ) + η2. Combining this inequality with (a.64) and defining
η ≡ min{η2, [(1− β)/αβ]u′ (µA−B/α) (S∗∗ −B)}, we have

(a.66) µ1−σL(Ã) ≥ L(µÃ) + η

for all Ã ∈ (S∗, A]. Taking right-hand limits as Ã ↓ A′ ∈ [S∗, A) in (a.66) then implies that
L+(µA′) < µ1−σL+(A′) for all A′ ∈ [S∗, A).

LEMMA 28. Suppose that the Conclusion is false, and that for some A ≥ B,

(a.67) L+ (d∗(µA)) < µ1−σL+ (d∗(µA)/µ) .

Then

(a.68) D(µA) < µ1−σD(A).

Proof. By Lemma 24, d∗(A′) ≤ A′ for all A′ ≥ B, so by Lemma 6, M(A′, A′) = L+(A′).
Using this observation along with (a.67), we see that

D(µA) = u

(
µA− d∗(µA)

α

)
+ βδM(d∗(µA), µA)

= µ1−σu

(
A− d∗(µA)

µα

)
+ βδM(d∗(µA), µA)
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= µ1−σu

(
A− d∗(µA)

µα

)
+ βδL+ (d∗(µA))

< µ1−σ
[
u

(
A− d∗(µA)

µα

)
+ βδL+

(
d∗(µA)

µ

)]
≤ µ1−σ

[
u

(
A− d∗(A)

α

)
+ βδL+ (d∗(A))

]
= µ1−σ

[
u

(
A− d∗(A)

α

)
+ βδM (d∗(A), A)

]
= µ1−σD(A),

where the second equality uses the constant-elasticity form of u, the strict inequality invokes
(a.67), and the weak inequality follows from the definition of d∗(A).

LEMMA 29. If the Conclusion is false, L+(µA) < µ1−σL+(A) for all A ∈ [S∗, S
∗].

Proof. Because S∗ is upper sustainable, Lemma 22 applies, so there is ε′ > 0 such that for every
A′ ∈ (S∗, S∗ + ε′], Y (A′) < S∗. Because S∗∗ = ρS∗, Lemma 8 (a) implies that Y (ρA′) < S∗∗

for all such A′. In turn, this implies that for every A′′ ∈ (S∗, S∗ + ε], where ε ≡ ρε′/µ, we have
Y (µA′′) < S∗∗. By part (b) of Lemma 27, L+(µA) < µ1−σL+(A) for all A ∈ [S∗, S∗ + ε).

Suppose, by way of contradiction, that L+(µA) = µ1−σL+(A) for some A ∈ [S∗, S
∗]. Let A∗

be the infimum over such A. Then A∗ ≥ S∗ + ε (by the conclusion of the last paragraph), and
by the right-continuity of L+,

(a.69) L+(µA∗) = µ1−σL+(A∗).

Define A′ ≡ µA∗. There are now two cases to consider. First, if d∗(A′)/µ > d∗(A∗),

D(µA∗) = D(A′) = u

(
A′ − d∗(A′)

α

)
+ βδM(d∗(A′), A′)

= µ1−σu

(
A∗ − d∗(A′)

µα

)
+ βδM(d∗(A′), A′)

≤ µ1−σ
[
u

(
A∗ − d∗(A′)

µα

)
+ βδM

(
d∗(A′)

µ
,
A′

µ

)]
< µ1−σD(A∗),(a.70)

where the weak inequality invokes (a.59), and the strict inequality the fact that d∗(A∗) is the
largest maximizer of u (A∗ − x/α) + βδM (x,A∗), while d∗(A′)/µ > d∗(A∗).

In the second case, d∗(A′)/µ ≤ d∗(A∗). Notice that (a.60) fails at A = A∗, so using part (b) of
Lemma 27, Y (µA) ≥ S∗∗ for all A > A∗. At the same time, d∗(µA) ≥ Y (µA) for all A (by
Lemma 4). Combining these two observations, d∗(µA) ≥ S∗∗ for all A > A∗.

By part (b) of Lemma 24, d∗(µA) ≤ µA for all A, so limA↓A∗ d
∗(µA) ≤ µA∗ < α(1− υ)µA∗.

So Lemma 7 (b) applies, and d∗ is right continuous at µA∗. Passing to the limit in the last
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inequality of the previous paragraph as A ↓ A∗, it follows that S∗∗ ≤ d∗(µA∗) = d∗(A′), or
S∗ ≤ d∗(A′)/µ. So in this second case,

(a.71) S∗ ≤ d∗(A′)/µ ≤ d∗(A∗) < A∗,

the last inequality following part (b) of Lemma 24, along with the fact that A∗ > S∗, the latter
being the largest value of A ∈ [B,S∗] with d∗(A) = A.

In particular, (a.71) along with the definition ofA∗ allows us to verify condition (a.67) of Lemma
28 with A set equal to A∗. It follows that (a.68) holds at A∗. Recalling (a.70), we see then that
in both cases

(a.72) D(µA∗) < µ1−σD(A∗).

Let {A1, V1} be the equilibrium continuation that implementsL(A∗). By Lemma 8 (a), {µA1, µ
1−σV1}

is an equilibrium at µA∗, it has value equal to µ1−σL(A∗), and moreover, by the incentive con-
straint for {A1, V1} coupled with (a.72),

u

(
µA∗ − µA1

α

)
+ βδµ1−σV1 ≥ µ1−σD(A∗) > D(µA∗).

This strict inequality, along with the fact that µA1 > B, proves that one can lower equilibrium
value at µA beyond the value created by scaling {A1, V1}, which shows that

L(µA∗) < µ1−σL(A∗).

This contradicts the definition of A∗, and so completes the proof.

Proof of Proposition 4, part (ii). Assume the Conclusion is false. We claim that

(a.73) E(S∗∗) = P s(S∗∗)−D(S∗∗) > 0.

There are three possibilities to consider. First, d∗(S∗∗)/µ ≥ S∗. We verify condition (a.67) of
Lemma 28 with S∗ in place of A. To do so, note that d∗(S∗∗)/µ = d∗(µS∗)/µ ≥ S∗, and also
that d∗(µS∗)/µ ≤ S∗ by part (b) of Lemma 24. So we may apply Lemma 29 toA = d∗(µS∗)/µ,
and conclude that (a.68) is true for A = S∗. It follows that

(a.74) D(S∗∗) < µ1−σD(S∗).

Because P s(S∗∗) = µ1−σP s(S∗) and P s(S∗) ≥ D(S∗), (a.74) immediately implies (a.73).

The second possibility is that d∗(S∗∗)/µ < B, so that d∗(S∗∗) < µB = S∗. Now apply part
(b) of Lemma 8 by setting the path {µA∗t } in that lemma to the constant path with asset level
S∗∗ = µS∗ at every date.29 It follows right away that P s(S∗∗) > D(S∗∗), which establishes
(a.73).

29 This is our only use of part (b) of Lemma 8.
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So the only remaining possibility is that

(a.75) S∗ > d∗(S∗∗)/µ ≥ B.

Let d be a generic continuation asset choice that solves (a.5) at S∗. By Lemma 7 and the fact
that d∗(S∗) = S∗, it must be the case that d ≥ S∗. Because S∗ is upper sustainable and so
sustainable, and d ≥ S∗ > d∗(S∗∗)/µ ≥ B, we see that if we define A1 ≡ d∗(S∗∗)/µ, then

(a.76) P s(S∗) ≥ D(S∗) > u

(
S∗ − A1

α

)
+ βδM(A1, S

∗).

Keeping in mind that S∗∗ = µS∗ and d∗(S∗∗) = µA1, we must conclude that

P s(S∗∗) = µ1−σP s(S∗) > µ1−σ
[
u

(
S∗ − A1

α

)
+ βδM(A1, S

∗)

]
= u

(
S∗∗ − d∗(S∗∗)

α

)
+ βδµ1−σM(A1, S

∗)

≥ u

(
S∗∗ − d∗(S∗∗)

α

)
+ βδM(d∗(S∗∗), S∗∗)

= D(S∗∗),

where the first inequality uses (a.76) and the second inequality uses (a.59). That gives us (a.73)
again.

By Lemma 20, this immediately precipitates a contradiction, because (a.73) implies that the
Conclusion follows, while we have been working with the presumption that the Conclusion is
false.

APPENDIX C. THE SIMPLIFIED EXAMPLE

Proof of Proposition 5. Here we verify several technical claims which, when paired with the
arguments in the main text, constitute a complete proof. Throughout, we remain on the grid
(A0, A1, A2, . . .), where A0 ≡ B, and Ak+1 = λAk for all k ≥ 0.

LEMMA 30. There exists λ̄1 > 1 such that, for all λ ∈ (1, λ̄1), the unique value-maximizing
asset trajectory for the simplified model is (Ak, Ak+1, . . .), and the unique value-minimizing
asset trajectory is (Ak, Ak−1, . . . , A1, A0, A0, . . .).

Proof. Consider first the alternative problem max
∑∞

t=0 δ
tu(ct) for any given A0, subject to the

constraints ct = At − (At+1/α) ≥ 0, At ≤ A0λ
t, and At ≥ max

{
A0λ

−t, A0
}

, but do not

restrict assets to lie on the grid. We will show that, for λ ∈
(

1, (αδ)1/σ
)

, the unique solution

is At = A0λ
t for all t ≥ 0, with the associated consumption path ct =

(
1− λ

α

)
At. Consider
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any other asset path A′0, A
′
1, ... and the associated consumption path c′0, c

′
1, ...; we will show that

it does not maximize value. (Standard results assure us that a solution exists, so the desired
conclusion then follows.) Clearly, there must be a first period, s, in which c′s 6=

(
1− λ

α

)
A0λ

s,
and plainly we have c′s >

(
1− λ

α

)
A0λ

s (else A′s+1 > A0λ
s+1, in violation of the constraint).

Let r be the first period after s in which c′r <
(
1− λ

α

)
A0λ

r. (From the intertemporal budget
constraint, we know that such a period exists.) Plainly, A′t < A0λ

t for t = s+ 1, ..., r. Consider
an alternative asset pathA′′0, A

′′
1, ... such thatA′′t = A′t for t ≤ s and t > r, andA′′t = A′t+α

t−sx

for t = s + 1, ..., r. For the associated consumption path c′′0, c
′′
1, ..., we have c′′s = c′s − x,

c′′r = c′r +αr−sx, and c′′t = c′t otherwise. Note that this path is feasible for small x. Let V (x) be
the associated value. Then, provided λ < (δα)

1
σ ,

V ′(0) = δrαr−s(c′r)
−σ − δs(c′s)−σ

> δrαr−s
((

1− λ

α

)
A0λ

r

)−σ
− δs

((
1− λ

α

)
A0λ

s

)−σ
= δs

((
1− λ

α

)
A0λ

s

)−σ [(δα
λσ

)r−s
− 1

]

≥ δs
((

1− λ

α

)
A0λ

s

)−σ [( δα

(δα)
1
σ
σ

)r−s
− 1

]
= 0.

Because V ′(0) > 0, we know A′0, A
′
1, ... is not value maximizing, which is what we set out to

show.

For the simplified model, the set of feasible paths is a subset of the corresponding set for the
alternative problem, and it always contains the trajectory withAt = A0λ

t for all t. Consequently,
that trajectory also maximizes value in the simplified model, which is the first half of the lemma.

To prove the second half of the lemma, we will consider the alternative problem min
∑∞

t=0 δ
tu(ct)

with an initial asset level of A0 = Ak for some k, subject to the same constraints. We will
show that there exists λ̄1 ∈

(
1, (αδ)1/σ

)
such that, for all λ ∈

(
1, λ̄1

)
value is uniquely min-

imized with the asset trajectory At = max
{
A0, A

k

λt

}
, along with the consumption trajectory

ct =
(
1− 1

λα

)
At for t < k and ct =

(
1− 1

α

)
A0 for t ≥ k. Consider any other asset path

A′0, A
′
1, ... and the associated consumption path c′0, c

′
1, ...; we will show that it does not minimize

value. (Standard results assure us that a solution exists, so the desired conclusion then follows.)
Clearly, there must be a first period, s, in which c′s 6= cs, and plainly we have c′s < cs (else
A′s+1 < max

{
A0, Ak

λs+1

}
, in violation of the constraint). Notice that

c′s ≥
(

1− λ

α

)
As
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and

c′s+1 ≤
(

1− 1

λα

)
λAs

so that
c′s+1

c′s
≤
λ− 1

α

1− λ
α

.

Define

λ̄1 ≡ (αδ)1/σ

(
α+ (αδ)−1/σ

α+ (αδ)1/σ

)
.

Clearly, λ̄1 < (αδ)1/σ. Using the last inequality, it is easy to check that λ ∈
(
0, λ̄1

)
implies

c′s+1

c′s
< (αδ)1/σ.

Consider an alternative asset path A′′0, A
′′
1, ... such that A′′t = A′t for t 6= s + 1, and A′′s+1 =

A′t−αx. For the associated consumption path c′′0, c
′′
1, ..., we have c′′s = c′s+x, c′′s+1 = c′s+1−αx,

and c′′t = c′t otherwise. Note that this path is feasible for small x. Let V (x) be the associated
value. Then

V ′(0) = δs(c′s)
−σ − δs+1α(c′s+1)−σ

< δs
(
c′s
)−σ − δs+1α

(
(αδ)1/σ c′s

)−σ
= 0.

Because V ′(0) < 0, we know A′0, A
′
1, ... is not value minimizing, which is what we set out to

show.

For the simplified model, the set of feasible paths is a subset of the corresponding set for the
alternative problem, and it always contains the asset trajectory with At = max

{
A0, A

k

λt

}
for

all t. Consequently, that trajectory also minimizes value in the simplified model, which is the
second half of the lemma.

LEMMA 31. There exists βD > 0 such that a Markov-perfect equilibrium with decumulation
exists iff β ≤ βD.

Proof. In the equilibrium, the individual chooses decumulation regardless of the asset level or
history by which the asset level was reached. Let A0 = Ak. Then the value of the decumulation
path is

Dk ≡
k−1∑
t=0

δt

[(
1− 1

λα

) (
1
λ

)t
Ak
]1−σ

1− σ
+

δk

1− δ

[(
1− 1

α

) (
1
λ

)k
Ak
]1−σ

1− σ
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=

(
Ak
)1−σ

1− σ

(1− 1

λα

)1−σ
(

1−
(

δ
λ1−σ

)k
1− δ

λ1−σ

)
+

δk

1− δ

[(
1− 1

α

)(
1

λ

)k]1−σ
 .

We will rewrite this as

(a.77) Dk =

(
Ak
)1−σ

1− σ

[(
1− 1

λα

)1−σ
(

1

1− δ
λ1−σ

)
+ Γ(k)

]
,

where

(a.78) Γ(k) =

(
δ

λ1−σ

)k [(1− 1
α)1−σ

1− δ
−
(
λ− 1

α

)1−σ
λ1−σ − δ

]
.

It will be important to know how Γ(k) varies with k. Because we have assumed δ
λ1−σ < 1, the

absolute value of Γ(k) declines with k. Whether it increases or decreases depends on the sign of

(1− 1
α)1−σ

1− δ
−
(
λ− 1

α

)1−σ
λ1−σ − δ

≡ Φ(λ).

Notice that Φ(1) = 0. Let’s calculate Φ′(λ) for λ ≥ 1:

Φ′(λ) = −

[
(1− σ)

(
λ− 1

α

)−σ
(λ1−σ − δ)− (1− σ)λ−σ

(
λ− 1

α

)1−σ
(λ1−σ − δ)2

]

= − (1− σ)

(
λ− 1

α

)−σ
(λ1−σ − δ)2

((
λ1−σ − δ

)
− λ−σ

(
λ− 1

α

))

= (1− σ)

(
λ− 1

α

)−σ
(λ1−σ − δ)2

(
δ − λ−σ 1

α

)
.

Clearly, λ − 1
α > 0, and we have assumed δ

λ1−σ < 1, so λ1−σ − δ > 0. Furthermore, we have
assumed λ < (δα)1/σ and λ > 1, so δ > λ−σ 1

α . Thus, the derivative has the same sign as 1−σ.
Accordingly, for λ > 1, Φ(λ) > 0 if σ < 1, which means Γ(k) is positive and shrinks with k,
and Φ(λ) < 0 if σ > 1, which means Γ(k) is negative and increases with k.

Now let’s determine when decumulation is a Markov-perfect equilibrium, beginning with states
k ≥ 1. Assuming decumulation will always occur in the future, the payoff from decumulation
is:

Dk
β =

(
Ak
(
1− 1

λα

))1−σ
1− σ

+ βδDk−1

while the payoff from accumulation (which is followed by decumulation given how future selves
play) is:

Ekβ =

(
Ak
(
1− λ

α

))1−σ
1− σ

+ βδDk+1.
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Deviating to accumulation is not profitable iff Dk
β ≥ Ekβ , or

βδ
(
Dk−1 −Dk+1

)
≥
(
Ak
)1−σ

1− σ

[(
1− λ

α

)1−σ
−
(

1− 1

λα

)1−σ
]
.

The right-hand side is negative. Clearly, Dk−1 < Dk+1, so the term multiplying β on the left-
hand side is also negative. Accordingly, we can rewrite the condition as β ≤ βDk, where

(a.79) βDk =
1

1− σ

[(
1− 1

λα

)1−σ
−
(

1− λ

α

)1−σ
][

δ
(
Dk+1 −Dk−1

)
(Ak)

1−σ

]−1

.

Notice that the right-hand side is now a strictly positive number.

Next we observe that

Dk+1 =

(
λAk

(
1− 1

λα

))1−σ
1− σ

+ δ

(
Ak
(
1− 1

λα

))1−σ
1− σ

+ δ2Dk−1,

so

Dk+1 −Dk−1

(Ak)
1−σ =

λ1−σ (1− 1
λα

)1−σ
1− σ

+ δ

(
1− 1

λα

)1−σ
1− σ

−(1− δ2)
λσ−1

1− σ

[(
1− 1

λα

)1−σ ( 1

1− δλσ−1

)
+ Γ(k − 1)

]
.

From the analysis above, we know that 1
1−σΓ(k − 1) declines with k. Therefore, βDk, which

depends on k only through this term, also declines with k. Because we need the inequality to
hold for all k, it must hold in the limit as k →∞. Using the fact that limk→∞ Γ(k− 1) = 0, we
obtain

lim
k→∞

βDk ≡ βD∞ =
1

δ

[(
1− 1

λα

)1−σ
−
(

1− λ

α

)1−σ
][(

1− 1

λα

)1−σ (λ1−σ − λσ−1

1− δλσ−1

)]−1

,

which is strictly positive.

Now we turn to the case of k = 0. Deviating to accumulation only changes consumption in
periods 0 and 1, and is not profitable as long as

β ≤ βD0 =
1

δ

[(
1− 1

α

)1−σ
−
(

1− λ

α

)1−σ
][

λ1−σ
(

1− 1

λα

)1−σ
−
(

1− 1

α

)1−σ
]−1

,

which is also strictly positive. From the preceding analysis, the necessary and sufficient condition
for a Markov-perfect equilibrium with decumulation is β ≤ βD ≡ min {βD0, βD∞}.

LEMMA 32. For k ≥ 1, the inequality Skβ ≥ Dk
β is equivalent to the condition β ≥ βk, where

βk is strictly positive and decreasing in k.
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Proof. The value from the continual accumulation stream, starting with assets Ak, is

(a.80) Sk =
∞∑
t=0

δt

1− σ

[(
1− λ

α

)
λtAk

]1−σ
=

(
Ak
)1−σ

1− σ

(
1− λ

α

)1−σ
1− δλ1−σ .

The payoff from the same stream is

Skβ =
1

1− σ

[(
1− λ

α

)
Ak
]1−σ

+ βδSk+1.

Similarly, we can write

Dk
β =

1

1− σ

[(
1− 1

λα

)
Ak
]1−σ

+ βδDk−1.

Thus we can rewrite the condition Skβ ≥ Dk
β as

βδ
(
Sk+1 −Dk−1

)
≥
(
Ak
)1−σ

1− σ

[(
1− 1

λα

)1−σ
−
(

1− λ

α

)1−σ
]
.

The right-hand side is positive. Clearly, Dk−1 < Dk+1, and Lemma 30 tells us that Sk+1 >

Dk+1. Therefore, the term multiplying β on the left-hand side is also positive. Accordingly, we
can rewrite the condition as β ≥ βk, where

(a.81) βk ≡
1

1− σ

[(
1− 1

λα

)1−σ
−
(

1− λ

α

)1−σ
][

δ
(
Sk+1 −Dk−1

)
(Ak)

1−σ

]−1

> 0.

Next we demonstrate that βk is decreasing in k. Notice that

Sk+1

(Ak)
1−σ =

λ1−σ

1− σ

((
1− λ

α

)1−σ
1− δλ1−σ

)
,

which is independent of k. Moreover,

Dk−1

(Ak)
1−σ =

λσ−1

1− σ

[(
1− 1

λα

)1−σ ( 1

1− δλσ−1

)
+ Γ(k − 1)

]
.

In the proof of Lemma 31, we showed that Γ(k−1)
1−σ decreases with k. It follows that βk also

declines with k, as claimed.

LEMMA 33. There exists λ̄2 > 1 such that for every λ ∈ (1, λ̄2), βD > β∞.

Proof. The proof proceeds in two steps. The first is to show that there exists λ̄′ > 1 such that,
for every λ ∈ (1, λ̄′), βD0 > βD∞, so that βD = βD∞.30 In the formula for βD∞, the numerator

30 In all of the numerical cases we have considered, λ̄ is no less than the Ramsey growth rate.
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and denominator converge to 0 as λ→ 1. Applying L’Hospital’s rule, we obtain:

lim
λ→1

βD∞ =
2
α(1− σ)

(
1− 1

α

)−σ
2(1− σ)

(
1− 1

α

)1−σ ( δ
1−δ

)
=

1− δ
αδ − δ

.

In the formula for βD0, the numerator and denominator also converge to 0 as λ → 1, so again
we apply L’Hospital’s rule:

lim
λ→1

βD0 =
1
α(1− σ)

(
1− 1

α

)−σ
δ
[
(1− σ)

(
1− 1

α

)1−σ
+ 1

α(1− σ)
(
1− 1

α

)−σ]
=

1

δα
.

Accordingly,

lim
λ→1

(βD0 − βD∞) =
1

δα
− 1− δ
αδ − δ

=
1

δα

[
1− αδ − δ(αδ)

αδ − δ

]
> 0,

where the final line uses our assumption that αδ > 1, which plainly implies αδ−δ(αδ)
αδ−δ < 1.

The second step is to show that there exists λ̄′′ > 1 such that, for every λ ∈ (1, λ̄′′), βD∞ > β∞.
From a comparison of (a.79) and (a.81), we know that βDk > βk for all k > 1, because Sk+1 >

Dk+1 (Lemma 30). To show that the difference is preserved in the limit, so that βD∞ > β∞,
we must demonstrate that limk→∞ S

k+1/
(
Ak
)1−σ

> limk→∞D
k+1/

(
Ak
)1−σ. From (a.77),

(a.78), and (a.80), we have

lim
k→∞

Sk+1

(Ak)
1−σ =

λ1−σ

1− σ

((
1− λ

α

)1−σ
1− δλ1−σ

)
and

lim
k→∞

Dk+1

(Ak)
1−σ =

λ1−σ

1− σ

((
1− 1

λα

)1−σ
1− δ

λ1−σ

)
.

Define

Q(x) =
λ1−σ

1− σ

((
1− x

α

)1−σ
1− δx1−σ

)
.
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Taking the derivative and simplifying, we obtain:

Q′(x) = λ1−σ (1− x
α)−σ

(1− δx1−σ)2

[
δx−σ − 1

α

]
.

For x < (δα)
1
σ , this expression is strictly positive. Thus, setting λ̄′′ = (δα)

1
σ , we have

lim
k→∞

Sk+1

(Ak)
1−σ = Q(λ) > Q

(
1

λ

)
= lim

k→∞

Dk+1

(Ak)
1−σ .

The desired conclusion follows for λ̄2 = min{λ̄′, λ̄′′}.

LEMMA 34. There exists λ̄3 > 1 such that if λ ∈
(
1, λ̄3

)
and β < β1, there is no equilibrium of

the simplified model in which the consumer accumulates wealth from A0.

Remark: It follows from the previous claims that, when β < βk, there is no equilibrium of the
simplified model in which the consumer accumulates wealth from A1, ..., Ak. Lemma 32 does
not, however, cover the case of k = 0, and consequently we must deal with it separately.

Proof. With β < β1, the consumer necessarily decumulates from A1. We claim that, for
λ ∈

(
1, λ̄1

)
, Aa = (A0, A1, A0, A1, ...) (i.e., where alternation between A0 and A1 contin-

ues forever) is the unique value maximizing asset trajectory starting fromA0. Consider any asset
trajectoryA′0, A

′
1, A

′
2, ... other than Aa. If that trajectory were value-maximizing, we would have

a contradiction: contrary to Lemma 30, Ac = (A0, A0, A0, ...) (i.e., where assets are constant
at A0 forever) would also be value-maximizing. To see why, observe that there must be some
s such that A′s = A′s+1 = A0. Define the sequence A1 such that A1t = A′t+s. Plainly, A1

is also a value-maximizing trajectory (otherwise, we could substitute a continuation path with
greater continuation value starting from period s of the original trajectory, thereby increasing its
value). If this new trajectory is Ac, then we are done, so assume it is not. Then there is a first
period r1 > 0 in which A1r1 = A0 and A1,r1+1 = A1. Construct a new asset trajectory A2 such
that A2t = A1t for t ≤ r1, and A2t = A1,t−r1 for t > r1. Plainly, A2 must also be a value-
maximizing trajectory. Iterating this step, we generate a series of value-maximizing trajectories,
where the asset level for the k-th trajectory isA0 through period rk, and where limk→∞ rk =∞.
Because the transversality condition holds, these trajectories must generate the same value as
Ac. Therefore, Ac must also be a value-maximizing trajectory, as claimed.

In light of what we have just shown, accumulation is sustainable from A0 if and only if the
payoff associated with Aa (which provides the highest-value continuation path for a candidate
equilibrium with initial accumulation) is no less than the payoff associated with Ac (which serves
as the worst possible punishment path in light of Lemma 32).
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The payoff associated with trajectory Aa is

Pa =
(
A0
)1−σ [

u

(
1− λ

α

)
+

(
βδ

1− δ

)(
u
(
λ− 1

α

)
+ δu

(
1− λ

α

)
1 + δ

)]
.

The payoff associated with trajectory Ac is

Pc =
(
A0
)1−σ [

u

(
1− 1

α

)
+

βδ

1− δ
u

(
1− 1

α

)]
.

Accumulation is sustainable from A0 iff Pa ≥ Pc, or equivalently (after some manipulation):

β ≥ β′0 =

(
1− δ
δ

)
u
(
1− 1

α

)
− u

(
1− λ

α

)(
u(λ− 1

α)+δu(1− λ
α)

1+δ − u
(
1− 1

α

)) .
As λ approaches unity, both the numerator and the denominator converge to zero. Applying
L’Hospital’s rule, we obtain:

lim
λ→1

β′0 =

(
1− δ
δ

) 1
αu
′ (1)

u′(1)− δ
α
u′(1)

1+δ

=

(
1− δ
δ

)
1 + δ

α− δ
.

To establish the claim, we must show that limλ→1 β
′
0 ≥ limλ→1 β1. The formula for the latter

can be written as follows:

β1 =

(
1− δ
δ

)
u
(
1− 1

αλ

)
− u

(
1− λ

α

)
1−δ

1−δλ1−σ u
(
λ− λ2

α

)
− u

(
1
λ −

1
αλ

) .
Once again, as λ approaches unity, both the numerator and the denominator converge to zero.
Applying L’Hospital’s rule and simplifying, we obtain

lim
λ→1

β1 =

(
1− δ
δ

) 2
αu
′ (1− 1

α

)(
1− 2

α

)
u′
(
1− 1

α

)
+
(
1− 1

α

)
u′
(
1− 1

α

)
+ δ (1− σ) 1

1−δu
(
1− 1

α

)
=

(
1− δ
δ

)
2(1− δ)

2α+ 2δ − αδ − 3
.

We note in passing that 2α+ 2δ − αδ − 3 = 2(α− 1)(1− δ) + (αδ − 1) > 0.

Now observe that

lim
λ→1

β′0 − lim
λ→1

β1 =
1 + δ

α− δ
− 2(1− δ)

2α+ 2δ − αδ − 3

=
(3− δ)(αδ − 1)

(α− δ) (2α+ 2δ − αδ − 3)
> 0.
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FIGURE A.3. EXAMPLE: β VALUES AND RATIOS, α = 1.3, δ = 0.8.

Consequently, there is some λ̄3 ∈ (1, λ̄1) for which the lemma holds.

Remark: For the purpose of the proposition, λ̄ = min
{
λ̄2̄,λ3

}
.

Numerical Examples. Although the claims in Lemma 30-34 are proved for λ close to unity, a
wide range of numerical simulations support the claims for all λ ∈ (0, (αδ)1/σ). Figure A.3
shows the values of β

′
0, βD, β1 and β∞ for 20 different σ ranging between 0.25 and 4, and 50

different λ values with λ ∈ (0, (αδ)1/σ).31 The left panel of Figure A.3 confirms that for the
full range of λ ∈ (0, (αδ)1/σ), β1 > β∞, β

′
0 > β1 (Lemma 34). The right panel shows that

βD0 > βD∞, and the two panels combined together confirm that βD = βD∞ > β∞ (Lemma
33).

APPENDIX D. MARKOV EQUILIBRIA

Proof of Proposition 6, part (i). We will show that there exists a linear Markov equilibrium
policy function φ(A) = kA with k ≥ 1. To this end, assume that all “future selves” employ the
policy function φ(A) = kA with k ∈ [1, α] for all A ≥ B. That yields the value function

V (A) =
Q

1− σ
A1−σ,

where

(a.82) Q ≡ (α− k)1−σ

α1−σ (1− δk1−σ)
.

31 In these examples, δ and α are fixed at 0.8 and 1.3 respectively, as in the other numerical examples in this appendix
and the main text. Changes in α and δ do not alter the qualitative nature of these pictures.
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The individual’s current problem is therefore to solve

max
x∈[B,α(1−υ)A]

1

1− σ

[(
A− x

α

)1−σ
+ βδQx1−σ

]
.

The corresponding necessary and sufficient first-order condition is

1

α

(
A− x

α

)−σ
= βδQx−σ.

After some manipulation, we obtain

(a.83)
A

x
=

1

α
+

(
1

αβδQ

)1/σ

≡ 1

k∗

Note that x = k∗A. Accordingly, the policy function is an equilibrium if k∗ = k. Substituting
(a.82) into (a.83) and rearranging yields

(a.84) kσ = αβδ + (1− β) δk.

Define Λ(k) ≡ kσ and Φ(k) = αβδ + (1− β) δk. Notice that Λ(1) ≤ Φ(1) (given that
βδ(α − 1)/(1 − δ) ≥ 1), and Λ(α) > Φ(α) (given the transversality condition δα1−σ < 1).
By continuity, it follows that there exists a solution on the interval [1, α), which establishes the
proposition.

Proof of Proposition 6, part (ii). The proof proceeds in two steps.

Step 1. An individual best-responds to a stationary Markov policy, subject to an additional
(artificial) constraint A′ ≤ A, where A′ is the continuation asset choice. For this modified
game, there exists a non-decreasing usc Markov policy function.

To establish this step, we construct a sequence of policy functions {φn} and value functions
{V n} as follows:

φ0(A) = B for all A ≥ B and V 0(A) = u
(
A− B

α

)
+ βδ

1−δu
(
B
(
1− 1

α

))
, and for n > 0,

(a.85) φn(A) = max Φn(A)

where

Φn(A) = arg max
A′∈[B,A]

[
u

(
A− A′

α

)
+ βδV n−1(A′)

]
,

and

(a.86) V n(A) = u

(
A− φn(A)

α

)
+ δV n−1 (φn(A)) .

We claim that, for all n, φn and V n are well-defined and usc, and φn is non-decreasing. Clearly,
φ0 and V 0 have these properties. Now suppose φn−1 and V n−1 have these properties; we will
show that φn and V n also have them. Because u is continuous and V n−1 usc, we know that
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Φn(A) is a nonempty-valued, compact-valued correspondence.32 Therefore φn(A) ≡ max Φn(A)

is well-defined. The fact that φn is non-decreasing follows from a standard single-crossing argu-
ment that relies on the strict concavity of u. It remains to prove that φn and V n are usc.

To this end, consider a sequence Ak → A with φk ≡ φn(Ak) converging to some asset level
φ. We claim that φn(A) ≥ φ. If not, then in particular, φ is not optimal at A, and there exists
another continuation asset x < φ with

u
(
A− x

α

)
+ βδV n−1(x) > u

(
A− φ

α

)
+ βδV n−1(φ).

At the same time, because V n−1 is usc,

u

(
A− φ

α

)
+ βδV n−1(φ) ≥ lim sup

k

[
u

(
Ak − φk

α

)
+ βδV n−1(φk)

]
,

but these two inequalities allow us to conclude that for k large enough, x < Ak and

u
(
Ak − x

α

)
+ βδV n−1(x) > u

(
Ak − φk

α

)
+ βδV n−1(φk),

which contradicts the optimality of φk at Ak. So we have established that φn(A) is usc, and in
particular, that φn(A) ≥ φ and

(a.87) u

(
A− φn(A)

α

)
+ βδV n−1 (φn(A)) ≥ u

(
A− φ

α

)
+ βδV n−1 (φ) .

Because φn(A) ≥ φ, (a.87) implies that V n−1 (φn(A)) ≥ V n−1 (φ), so that adding (1 −
β)δV n−1 (φn(A)) and (1− β)δV n−1 (φ) respectively to the left- and right-hand sides of (a.87),
we have

(a.88) u

(
A− φn(A)

α

)
+ δV n−1 (φn(A)) ≥ u

(
A− φ

α

)
+ δV n−1 (φ) .

Using (a.88) and the fact that V n−1 is usc, we must conclude that

V n(A) = u

(
A− φn(A)

α

)
+ δV n−1 (φn(A))

≥ u

(
A− φ

α

)
+ δV n−1 (φ)

≥ lim
k→∞

[
u

(
Ak −

φn
(
Ak
)

α

)
+ δV n−1

(
φn(Ak)

)]
= limV n(Ak),

as desired. This completes our inductive claim.

32 It suffices to prove that Φn(A) is closed-valued, which is a standard exercise given that V n−1 is usc.
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Next, for each n > 1, define

θn ≡ sup
{
A ≥ B | φn(A′) = φn−1(A′) for all A′ < A

}
.

Because β < β∗, we have βδ
1−δ (α− 1) < 1, so that θ1 > B and V 1(A) = V 0(A) for A ∈[

B, θ1
)
. Now we argue that if θn > B and V n(A) = V n−1(A) for A ∈ [B, θn), then θn+1 ≥

θn > B and V n+1(A) = V n(A) for A ∈
[
B, θn+1

)
. Recall that

Φn+1(A) = arg max
A′∈[B,A]

[
u

(
A− A′

α

)
+ βδV n(A′)

]
.

But for all A ∈ [B, θn) and A′ ∈ [B,A], we have

u

(
A− A′

α

)
+ βδV n(A′) = u

(
A− A′

α

)
+ βδV n−1(A′),

which implies Φn+1(A) = Φn(A) for such A, and hence φn+1(A) = φn(A). Thus, θn+1 ≥
θn > B. Moreover, for A ∈

[
B, θn+1

)
, we have

V n+1(A) = u

(
A− φn+1(A)

α

)
+ βδV n−1

(
φn+1(A)

)
= u

(
A− φn(A)

α

)
+ βδV n−1 (φn(A))

= V n(A),

as desired.

From the preceding argument, it follows that θn is a non-decreasing sequence. There are two
possibilities: (i) θn increases without bound, and (ii) θn converges to a finite bound, θ∗.

In case (i), we take φR(A) = limn→∞ φ
n(A) for allA. For any finite interval [B, θ], there exists

n′ such that θn > θ for n ≥ n′, which implies φR(A) = φn(A) for such n and all A ∈ [B, θ]. It
follows that φR is well-defined. Defining

V R(A) =

∞∑
k=0

δku

((
φR
)k

(A)−
(
φR
)k+1

(A)

α

)
,

we plainly have V R(A) = V n′(A) for all A ∈ [B, θ]. We know that φn+1(A) solves

max
A′∈[B,A]

[
u

(
A− A′

α

)
+ βδV n(A′)

]
;

in light of the fact that, for n ≥ n′ and A ∈ [B, θ], we have φn+1(A) = φR(A) and V n+1(A) =

V n(A) = V R(A), it follows that φR(A) solves

max
A′∈[B,A]

[
u

(
A− A′

α

)
+ βδV R(A′)

]
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for A ∈ [B, θ]. Because the preceding statement holds for all θ, φR is an equilibrium policy
function.

Now consider case (ii). Define µ = θ∗

B . Consider a sequence of intervals Ik = [µkB,µk+1B)

for k = 0, 1, ... For any A ∈ Ik, we take φR(A) = µk limn→∞ φ
n
(
A
µk

)
. Using precisely

the same argument as in case (i), it follows that, for A ∈ I0, φR(A) is a best choice at A
when future decisions are governed by φR. In the next paragraph, we show that φR(θ∗) =

µ limn→∞ φ
n
(
θ∗

µ

)
= θ∗ is likewise a best choice at θ∗ when future decisions are governed by

φR.

Consider any sequence Ak ↓ θ∗. We claim there cannot exist k and n such that φn+1(Ak) <

θn. Suppose on the contrary that the preceding inequality holds for some k and n. From
the concavity of u, we would then have φn+1(A) < θn for all A ≤ Ak. But that implies
φn+1(A) = φn(A) for all A ≤ Ak (because V n(A) = V n−1(A) for A < θn), so θn+1 > θ∗, a
contradiction, which establishes the claim. It follows that

(
Ak, φk(Ak)

)
converges to (θ∗, θ∗).

Because βδ
1−δ (α− 1) < 1 and all asset trajectories induced by φk are non-increasing, we have

lim
k→∞

sup

[
u

(
Ak − φk(Ak)

µ

)
+ βδV k−1

(
φk(Ak)

)]
(a.89)

≤ lim
k→∞

sup

[
u

(
Ak − φk(Ak)

µ

)
+

βδ

1− δ
u

(
φk(Ak)

(
1− 1

α

))]
=

(
1 +

βδ

1− δ

)
u

(
θ∗
(

1− 1

α

))
Now suppose some A+ < θ∗ is a strictly better choice than θ∗ from θ∗ when future decisions are
governed by φR. For some ∆ > 0, we therefore have

u

(
θ∗ − A+

α

)
+ βδV R(A+) >

(
1 +

βδ

1− δ

)
u

(
θ∗
(

1− 1

α

))
+ ∆.

For k sufficiently large, it must therefore also be the case that

u

(
Ak − A+

α

)
+ βδV R(A+) > u

(
Ak − θ∗

µ

)
+

βδ

1− δ
u

(
θ∗
(

1− 1

α

))
+ ∆.

Taking k large enough so that θk > A+ (which implies V R(A+) = V k(A+)), we then have

u

(
Ak − A+

α

)
+ βδV k−1(A+) > u

(
Ak − θ∗

µ

)
+

βδ

1− δ
u

(
θ∗
(

1− 1

α

))
+ ∆.

Taking limits, we have

(a.90) lim
k→∞

[
u

(
Ak − A+

α

)
+ βδV k−1(A+)

]
≥
(

1 +
βδ

1− δ

)
u

(
θ∗
(

1− 1

α

))
+ ∆
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Combining (a.89) and (a.90) we see that, for sufficiently large k, A+ is a better choice that
φk(Ak) starting from Ak when future decisions are governed by φk−1, a contradiction. Thus,
θ∗ is indeed a best choice at θ∗ when future decisions are governed by φR.

We have established that, for A ∈ I0 ∪ {θ∗}, φR(A) is a best choice at A when future decisions
are governed by φR. Now suppose that, for A ∈

(
∪kn=0I

n
)
∪ {µn+1B}, φR(A) is a best choice

at A when future decisions are governed by φR. We claim that the same statement holds for
A ∈ Ik+1 ∪ {µk+2B}. Take any such A. For a deviation to any A′ ∈ Ik+1, we have by
construction

u

(
A− A′

α

)
+ βδVφR(A′) =

(
µk+1

)1−σ
[
u

(
A

µk+1
− A′

µk+1α

)
+ βδVφR

(
A′

µk+1

)]
≤

(
µk+1

)1−σ
PφR

(
A

µk+1

)
= PφR(A),

which implies that φR(A) is at least as good a choice asA′. Now consider anyA′ ∈ [B,µk+1B).
Recalling that φR

(
µk+1B

)
= µk+1B, we have by hypothesis

u

(
µk+1B − A′

α

)
+ βδVφR(A′) ≤ u

(
µk+1B − µk+1B

α

)
+ βδVφR(µk+1B).

But then, by the concavity of u (and using µk+1B ∈ Ik+1), for A ∈ Ik+1 ∪ {µk+2B} we have

u

(
A− A′

α

)
+ βδVφR(A′) ≤ u

(
A− µk+1B

α

)
+ βδVφR(µk+1B)

≤ u

(
A− φR(A)

α

)
+ βδVφR(φR(A)),

which again implies that φR(A) is at least as good a choice as A′. Applying induction, we see
that φR is an equilibrium policy function.

Step 2. Now we construct a Markov equilibrium policy function φ for the original game. There
are two possibilities to consider: (i) φR(A) < A for all A > B, and (ii) φR(A) = A for some
A > B.

For case (i), we simply take φ = φR. For any asset level A, we claim φR(A) solves the
maximization problem maxA′∈[B,α(1−ν)A] u

(
A− A′

α

)
+ βδVφR(A′). Because φR is usc and

we are in case (i), there exists ε > 0 such that φR(A′) < A′ − ε for all A′ ∈ [A,α(1− ν)A].
Divide [A,α(1− ν)A] into N > 1

εA (α(1− ν)− 1) consecutive intervals, I1, ..., IN , of the
same length ` ≡ A(α(1−ν)−1)

N < ε, with In = (A+ (n− 1) `, A+ n`]. Also define I0 =

[B,A].
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We claim that, for any A′ ∈ In with n > 0, there exists A′′ ∈ Im for m < n such that
u
(
A− A′

α

)
+ βδVφR(A′) < u

(
A− A′′

α

)
+ βδVφR(A′′). To see why, simply take A′′ =

φR(A′), observe that u
(
A′ − A′

α

)
+ βδVφR(A′) ≤ u

(
A′ − A′′

α

)
+ βδVφR(A′′), and use the

concavity of u.

From the claim, it follows that, for any A′ ∈ (A,α(1 − υ)A], there exists A′′ ∈ I0 such that
u
(
A− A′

α

)
+ βδVφR(A′) < u

(
A− A′′

α

)
+ βδVφR(A′′). Because φR(A) solves the problem

maxA′∈[B,A] u
(
A− A′

α

)
+ βδVφR(A′) by construction, it therefore also solves the problem

maxA′∈[B,α(1−ν)A] u
(
A− A′

α

)
+ βδVφR(A′).

For case (ii), we define PM (A) =
(

1 + βδ
1−δ

)
u
(
A
(
1− 1

α

))
; this represents the payoff from

maintaining asset level A forever. From Lemma 1 it follows that PφR(A) ≥ u
(
A− B

α

)
+

βδ
1−δu

(
B
(
1− 1

α

))
. Given that βδ

1−δ (α− 1) < 1, there is some A0 such that PM (A) < PφR(A)

forA ∈ (B,A0]. Moreover, for anyA with φR(A) = A, we obviously have PM (A) = PφR(A).
LetA1 = min

{
A > B | φR(A) = A

}
; because φR is usc, we knowA1 exists, and moreover we

plainly haveA1 > A0. Hence we can defineA∗ ≡ sup
{
A | PM (A′) < PφR(A′) for all A′ < A

}
;

clearly, A∗ ∈ (A0, A1].

We now claim that PM (A∗) = PφR(A∗). This is obvious in the case where A∗ = A1. Suppose
A∗ < A1. Then there exists a sequenceAk → A∗ withAk ≥ A∗ such thatPM (Ak) = PφR(Ak),
and limk→∞ φR(Ak) < A∗ (otherwise, because φR is usc, we would have φR(A∗) = A∗ < A1,
a contradiction). Because φR(A∗) is a feasible choice from Ak ≥ A∗, we have, for all k,

u

(
Ak − φR(A∗)

α

)
+ βδVφR(φR(A∗)) ≤ PφR(Ak) = PM (Ak)

Noting that u and PM are both continuous and taking limits, we have PφR(A∗) ≤ PM (A∗).
Also, because φR(Ak) is a feasible choice from A∗ for sufficiently large k, we have6=

PφR(A∗) ≥ u

(
A∗ − φR(Ak)

α

)
+ βδVφR(φR(Ak))

=

[
u

(
A∗ − φR(Ak)

α

)
− u

(
Ak − φR(Ak)

α

)]
+ PφR(Ak)

=

[
u

(
A∗ − φR(Ak)

α

)
− u

(
Ak − φR(Ak)

α

)]
+ PM (Ak)

Noting that u and PM are both continuous and taking limits, we have PφR(A∗) ≥ PM (A∗).
Combining the last two arguments, we have PφR(A∗) = PM (A∗), as claimed.

Define µ ≡ A∗

B , divide [B,∞) into intervals of the form In = [µnB,µn+1B) for n = 0, 1, 2, ...,

and construct the policy function φ as follows: for A ∈ In, let φ(A) = µnφR
(
A
µn

)
. It is easy
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to check that, for any A ∈ In, the path generated by φ starting from A remains entirely within
In, and indeed is the same as the path generated from φ starting from A

µn , scaled up by the factor
µn.

Before establishing that φ is an equilibrium, we prove two claims.

Claim 1: For every A ∈ In, we have Pφ(A) > u
(
A− µn+1B

α

)
+βδVφ(µn+1B). We will show

this for n = 0 (in which case µn+1B = A∗); the argument for n > 0 is essentially identical
(only the scaling changes). We know that[
u

(
A∗ − φR(A∗)

α

)
+ βδVφR(φR(A∗))

]
−
[
u

(
A∗ − A∗

α

)
+ βδVφR(A∗)

]
= PφR(A∗)−PM (A∗) = 0

Because u is concave and φR(A∗) ≤ A∗, we therefore have, for A ∈ I0,[
u

(
A− φR(A∗)

α

)
+ βδVφR(φR(A∗))

]
−
[
u

(
A− A∗

α

)
+ βδVφR(A∗)

]
> 0

But then

Pφ(A) = PφR(A)

≥ u

(
A− φR(A∗)

α

)
+ βδVφR(φR(A∗))

> u

(
A− A∗

α

)
+ βδVφR(A∗)

as desired.

Claim 2: For A ∈ In, we have Pφ(µn+1B) > u
(
µn+1B − A

α

)
+ βδVφ(A). For the case of

n = 0 (for which µB = A∗), the claim follows because, for A ∈ [B,A∗) = I0, we have

u

(
A∗ − A

α

)
+ βδVφ(A) = u

(
A∗ − A

α

)
+ βδVφR(A) < PφR(A∗),

and in addition PφR(A∗) = PM (A∗) = Pφ(A∗). The argument for n > 0 is essentially
identical; only the scaling changes.

Now we show that φ is a Markov equilibrium policy function. Consider anyA ≥ B, and suppose
A lies in In. Observe that, by construction of φ and by Claim 1, for all otherA′ ∈ In∪{µn+1B},
we have

(a.91) u

(
A− φ(A)

α

)
+ βδVφ(φ(A)) ≥ u

(
A− A′

α

)
+ βδVφ(A′).

Suppose that, starting at A, (a.91) holds for all A′ ∈ Im ∪ {µm+1B}, for some m ≥ n. We will
show it also holds for all A′ ∈ Im+1 ∪ {µm+2B}. By construction, Claim 1, and the fact that
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φ
(
µm+1B

)
= µm+1B, we know that for all A′ ∈ Im+1 ∪ {µm+2B},

Pφ(µm+1B) = u

(
µm+1B − µm+1B

α

)
+ βδVφ(µm+1B)

≥ u

(
µm+1B − A′

α

)
+ βδVφ(A′).

Because u is concave and A < µm+1B, it follows that, for all A′ ∈ Im+1 ∪ {µm+2B}, we have

u

(
A− µm+1B

α

)
+ βδVφ(µm+1B) > u

(
A− A′

α

)
+ βδVφ(A′).

Combining this inequality with the premise that (a.91) holds for all A′ ∈ Im ∪ {µm+1B} – and
specifically for A′ = µm+1B – implies that (a.91) holds for all A′ ∈ Im+1 ∪ {µm+2B} as well.
Applying induction on m, we see that, starting at A, there is no A′ > A that yields a higher
payoff than φ(A).

Having already shown that, starting at A ∈ In, (a.91) holds for all other A′ ∈ In, we will now
show that if it holds for all A′ ∈ Im with m ≤ n, then it also holds for all A′ ∈ Im−1. By Claim
2 and the fact that φ (µmB) = µmB, we know that for all A′ ∈ Im−1,

Pφ(µmB) = u

(
µmB − µmB

α

)
+ βδVφ(µmB)

≥ u

(
µmB − A′

α

)
+ βδVφ(A′).

Because u is concave and A > µmB, it follows that, for all A′ ∈ Im−1, we have

u

(
A− µmB

α

)
+ βδVφ(µmB) > u

(
A− A′

α

)
+ βδVφ(A′).

Combining this inequality with the premise that (a.91) holds for all A′ ∈ Im – and specifically
for A′ = µmB – implies that (a.91) holds for all A′ ∈ Im−1 as well. Applying induction on m,
we see that, starting at A, there is no A′ < A that yields a higher payoff than φ(A).

It follows that φ is in fact a Markov equilibrium policy function.

Proof of Proposition 7. By Proposition 6, part (i), when β ≥ β∗ there exists a linear Markov
equilibrium with non-decumulation at all asset levels (and strict accumulation when β > β∗).
Hence, if the proposition is false, it must be that β < β∗, which we will assume throughout the
remainder of this proof, as we work towards a contradiction.33

Step 1. If φ is a Markov equilibrium strategy, then φ is nondecreasing.

33 For σ ≥ 1, we have shown that with β ≤ β∗, there exists no Markov equilibrium with φ(A) > A for any asset
level A. We conjecture that the same is true for σ ∈ (0, 1), and have numerical support for this conjecture, but have
not proven it.
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Suppose on the contrary that for some A1 > A2, we have φ(A1) < φ(A2). Let Vi be the value
of the continuation consumption stream starting from asset level φ(Ai). Then

βδ (V2 − V1) ≥ u

(
A2 −

φ(A1)

α

)
− u

(
A2 −

φ(A2)

α

)
> u

(
A1 −

φ(A1)

α

)
− u

(
A1 −

φ(A2)

α

)
≥ βδ (V2 − V1) ,

where the first inequality follows from the fact that φ(A2) is (weakly) chosen over φ(A1) at asset
level A2, the second inequality follows from the strict concavity of u combined with A1 > A2

and φ(A1) < φ(A2), and the third inequality follows from the fact that φ(A1) is weakly chosen
over φ(A2) at asset level A1. But this sequence of inequalities plainly involves a contradiction.

In what follows, φ(A′) > A′ for some A′ ≥ B, as given in the proposition.

Step 2. Suppose there exists A′′ > A′ such that φ(A′′) ≤ A′′. Then there exists A∗ ∈ (A′, A′′]

such that φ(A∗) = A∗ and φ(A) > A for all A ∈ (A′, A∗).

Let A∗ ≡ inf{A ∈ [A′, A′′] | φ(A) ≤ A}. Because φ is non-decreasing, we have φ(A) > A

for A ∈ [A′, φ(A′)), from which it follows that A∗ > A′. By construction, φ(A) > A for all
A ∈ (A′, A∗). If φ(A∗) > A∗, we would have φ(A) > A for some interval above A∗, and
if φ(A∗) < A∗, we would have φ(A) < A for some interval below A∗ (in each case because
φ is non-decreasing); in either case, A∗ would not equal inf{A ∈ [A′, A′′] | φ(A) ≤ A}, a
contradiction. Therefore, φ(A∗) = A∗.

Step 3. For β < β∗, there exists γ1 < 1 such that, for any γ ∈ (γ1, 1), we have(
1 +

βδ

1− δ

)
u

(
1− 1

α

)
< u

(
1− γ

α

)
+

(
βδ

1− δ

)
u

(
γ

(
1− 1

α

))
≡ ψ1(γ).

Observe that

ψ′1(1) = u′
(

1− 1

α

)
1

α

[
(α− 1)

(
βδ

1− δ

)
− 1

]
< 0,

(given β < β∗), from which the desired conclusion follows.

Step 4. There exists γ2 > 1 such that, for any γ ∈ (1, γ2), we have(
1

1− δ

)
u

(
1− 1

α

)
< u

(
1− γ

α

)
+

(
δ

1− δ

)
u

(
γ

(
1− 1

α

))
≡ ψ2(γ).

Observe that

ψ′2(1) = u′
(

1− 1

α

)
1

α

(
αδ − 1

1− δ

)
> 0

(given αδ > 1), from which the desired conclusion follows.

Step 5. φ(A) > A for all A ≥ A′.
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Suppose not. Then, by Step 2, there exists A∗ > A′ such that φ(A∗) = A∗ and φ(A) > A for all
A ∈ (A′, A∗). Starting from A∗, the equilibrium generates a constant asset trajectory.

Now consider A′′ ∈ (A′, A∗) with A′′ > max {γ1, 1/γ2}A∗. Then, starting from A′′, φ gener-
ates a non-decreasing asset trajectory A∗ (strictly increasing as long as it remains below A∗), for
which the asset growth rate is always less than γ2.

By step 3,

(a.92)
(

1 +
βδ

1− δ

)
u

(
A∗
(

1− 1

α

))
< u

(
A∗ − A′′

α

)
+

(
βδ

1− δ

)
u

(
A′′
(

1− 1

α

))
By step 4, for k ≥ 0, we have(

1

1− δ

)
u

(
φk(A′′)

(
1− 1

α

))
≤ u

(
φk(A′′)− φk+1(A′′)

α

)
+

(
δ

1− δ

)
u

(
φk+1(A′′)

(
1− 1

α

))
(with strict inequality when φk(A′′) < A∗, so that φk+1(A′′) > φk(A′′)). By recursively substi-
tuting this inequality into (a.92), we obtain(

1 +
βδ

1− δ

)
u

(
A∗
(

1− 1

α

))
< u

(
A∗ − A′′

α

)
+ βδ

∞∑
k=0

δku

(
φk(A′′)− φk+1(A′′)

α

)
,

from which it follows that the individual would deviate from φ(A∗) to A′′, contradicting the
supposition that φ is an Markov equilibrium.

Step 6. For A ≥ B, let φ̂(A) = φ (µA) /µ, where µ = A′/B. Then (a) φ̂(A) > A for all
A ≥ B, and (b) φ̂ is an Markov equilibrium.

Part (a) follows immediately from Step 3: forA ≥ B, we have µA ≥ A′, so φ̂(A) = φ (µA) /µ >

µA/µ = A. Part (b) follows from the homotheticity of utility, combined with the fact that, if
a continuation asset choice A1 generates the consumption trajectory (c′0, c

′
1, ...) starting from A

under φ̂, then the choice µA1 generates the consumption trajectory (µc′0, µc
′
1, ...) starting from

µA under φ. Thus, if a continuation asset choice A1 yielded a strictly higher payoff than φ̂(A)

starting from A under φ̂, then the choice µA1 would yield a strictly higher payoff than φ(µA1)

under φ, a contradiction.

APPENDIX E. ALGORITHM

This section describes the iterative computational algorithm for obtaining an approximation to
the equilibrium value correspondence V(A) through the sequence of correspondences {Vk} (See
Section 3). Our initial correspondence is

V0(A) =

[
u

(
A− B

α

)
+

δ

1− δ
u

(
α− 1

α
B

)
, R(A)

]



54

in light of Observation 1.

The computational algorithm proceeds in four steps.34 First, we consider a finite grid on the
action and utility spaces. Second, given that continuation payoffs are governed by some corre-
spondence Vk, we determine the best-deviation payoffs at each asset levelA (assuming the worst
feasible punishments in the continuation set, which are well-defined given the discrete grid).

Third, we maximize and minimize value at each A subject to the no-deviation constraint and
constraints on continuation utilities (that they be suitably drawn from Vk). For this optimization
step, we think of the individual as choosing the continuation level of assets rather than current
consumption. This is convenient from a computational perspective.35

Finally, we use public randomization to construct Vk+1 from the maximum and minimum values
in Step 3, and test to see if convergence has occurred. The convergence criterion measures the
largest difference (in the L∞ norm) in utility bounds for each asset level between successive
approximations. We end our iterations when this difference is “small,” or more precisely, when

max
A∈A
{max{ |Lk(A)− Lk+1(A)|, |Hk(A)−Hk+1(A)| }} < ε

for some given precision parameter ε > 0, where A is the discretized, finite action set from Step
1.

More formally, for a given set of parametric assumptions, our computational algorithm repeat-
edly applies the following four steps until convergence is achieved:

Step 1. Initialization.

1.1. Let A be a finite set of assets, chosen suitably fine and with a large upper bound.

1.2. Determine initial utility bounds [L0(A), H0(A)] for each A ∈ A.

Step 2. Best Deviations.

2.1. Let A(Aj) = {Ai ∈ A|Aj ≥ c(Ai, Aj) ≥ νAj} where c(Ai, Aj) = Aj −Ai/α.

2.2. For each Ai ∈ A(Aj) compute

D̃(Ai, Aj) = u(c(Ai, Aj)) + βδLk(Ai).

2.3. For each Aj ∈ A compute D(Aj) = maxAi∈A(Aj) D̃(Ai, Aj).

Step 3. Highest and Lowest Values.

34 This iterative numerical algorithm is a variation of the method of computing equilibria of supergames developed
by Judd, Yeltekin and Conklin (2003).
35 If consumption remains the choice variable, then we would need to discretize the consumption set. Additionally,
the technology would have to be modified to ensure that for each current asset level and consumption choice, next
period’s assets are in the discretized asset set.
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3.1. Compute
Hk+1(Aj) = max

Ai∈A(Aj)
{u(c(Ai, Aj)) + δVi}

subject to the no-deviation constraint:

(a.93) u(c(Ai, Aj)) + βδVi ≥ D(Aj),

and the feasibility condition on continuation value:

(a.94) Vi ∈ Vk(Ai).

3.2. Compute
Lk+1(Aj) = min

Ai∈A(Aj)
{u(c(Ai, Aj)) + δVi}

subject to exactly the same constraints (a.93) and (a.94).

Step 4. Public Randomization and Convergence.

4.1. Set Vk+1(A) = [Lk+1(A), Hk+1(A)] (public randomization). Stop if convergence is
reached; else return to Step 2.

Note that, in the maximization problem of Step 3.1, we must always set Vi = Hk(Ai) as the con-
tinuation utility. After all, if any continuation value satisfies the no-deviation constraint (a.93),
then so does the highest feasible continuation value, and that raises the overall value of the
maximand as well. In contrast, in the minimization problem of Step 3.2, we do not generally
use Lk(Ai) as the continuation utility, because the lowest feasible continuation value does not
necessarily satisfy the no-deviation condition (a.93).36

For the results reported in Figure 1, we set σ = 0.5, so that

u(c) =
1

2
c1/2.

Assets take on 8001 values between [B, Ā]. We set Ā = 200 and B = 0.5.37 For the exercise
depicted in Figure 1, we set the rate of return equal to 30%, the discount factor equal to 0.8,
the hyperbolic parameter (β) equal to 0.4. Figure 1 Panel A plots the highest equilibrium asset
choice, X(A) and lowest equilibrium asset choice, Y (A). Panel B plots the equilibrium value

36 However, Proposition 2 in the main text can be adapted to show that a carrot-and-stick structure obtains, so that
often the highest continuation value (or some minor variant thereof) is also chosen in this problem.
37 The analytical results allow for unbounded asset accumulation. An unbounded state space is not feasible computa-
tionally, but to ensure that the asset bound does not impact the policy and value functions reported in any significant
way, we proceed in the following way. We choose an initial asset bound and note the asset level below this bound
where the value and policy functions converge to the Ramsey solution (β = 0 case). We use the analytical Ramsey
solution to approximate the value and policy functions beyond this intermediate asset value. We repeat this for a
variety of intermediate asset values and initial asset bounds to check the robustness of the results for asset values
below the intermediate asset level.
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correspondence. For this particular exercise, a poverty trap exists below an asset level of 3.47.
For initial asset levels above 3.47, however, there is indefinite accumulation.

APPENDIX F. UNIFORMITY AND NONUNIFORMITY: PARAMETRIC EXAMPLES

Figures (A.4), (A.5) and (A.6) display the continuation asset choices associated with the best SPE
values. With the exception of β, each policy function has been generated by the same parameter-
ization of the intrapersonal game: σ = 0.5, B = 0.5, α = 1.3 and δ = 0.8. The hyperbolic dis-
count factor β takes values from the set {0.1, 0.2, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9, 1.0}.
At high β values, indefinite accumulation can be achieved from any initial A. At low β values,
accumulation is not possible from any initial A. These are the uniform cases. For intermediate
values of β, however, a poverty trap is present, with the threshold level of A dependent on the
value of β. The higher the β (in the range of nonuniform cases), the lower the threshold A that
allows an individual to escape poverty.38
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` = 0.7, 0.8, 0.9,1.0

FIGURE A.4. HIGH β: INDEFINITE ACCUMULATION.

APPENDIX G. MARKOV PUNISHMENTS

Figure A.7 shows the highest equilibrium asset choices possible with reversion to strictly decu-
mulating Markov equilibria (also plotted). It shows that a poverty trap is possible when such
Markov equilibria are used as punishments.

38 Although we only report cases from a specific, {α, δ, B} combination, as long as αδ > 1 (i.e. the Ramsey
problem leads to accumulation), we find regions of uniformity (low and high β) and a region of non uniformity
(intermediate values of β) for other parameterizations of the model.
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FIGURE A.5. INTERMEDIATE β: POVERTY TRAP
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FIGURE A.6. LOWβ: DECUMULATION .

C
on

tin
ua

tio
n 

A
ss

et
s

 

 

Current AssetsB

Markov Equilibrium 
Asset Choice

Highest Equilibrium 
Asset Choice with 
Markov Punishments

FIGURE A.7. MARKOV PUNISHMENTS.
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APPENDIX H. POLICY REGIMES

In this section, we describe in more detail the extended model with taste shocks used in Section
7.3, as well as the policy regimes displayed in Figures 6 and 7. These regimes have a lockbox
feature: assets are kept in an account with a rule specifying when and how much of the funds
can be accessed. Each regime considers a different rule.

When αδ > 1, complete reliance on a lockbox always dominates internal rules provided that all
consumption expenditures are perfectly foreseen; see discussion in main text. For these examples
to have non-trivial solutions, we extend the original model to include an iid taste shock η (with
probability distribution p(η)) that takes values in some finite set N and affects the flow utility in
a multiplicative way. In every period, individuals make their saving/consumption decision after
the realization of the current taste shock.

We first describe the baseline solution of this model without any lockboxes; it is a straightforward
extension of the solution with no taste shocks. Specifically, we can think of an expected value
correspondence V∗(A;B) at the start of any date that defines the set of expected equilibrium
values, the expectation taken over the taste shock which is about to be realized at that date, for
every asset level. (For reasons that will become clear below, we explicitly carry the lower bound
B, to be thought of as unchanging for all dates.) Because η is iid, V∗ is the same at all dates.
Thinking of these as continuation values from, say, date t + 1, we can now define V∗(A, η;B)

as the set of generated values at date t for any individual with asset level A ≥ B, who has just
experienced the taste shock η. The fixed-point logic of equilibrium generation then tells us that

V∗(A;B) =
∑
η∈N

p(η)V∗(A, η;B)

for every A ≥ B, where we define the above convex combination of sets as the collection
of all elements that are themselves the same convex combinations of elements drawn from the
individual sets.39

This value correspondence can be generated by a variation of the same iterated procedure de-
scribed in Appendix E.

Now we consider regimes with lockboxes and thresholds. All the regimes we consider have the
following lockbox properties: interest can always be withdrawn from the lockbox, which pays
the same rate α− 1 as a conventional savings account. No conventional savings is allowed until

39 Under public randomization, each set is an interval and so all we need to do is convexify the best elements, and
likewise the worst elements, and then draw the interval between these two numbers.
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a threshold (AT ) is reached.40 At that point, some or all of the lockbox principal is unlocked and
made available. Let B̂ denote the amount that still remains locked.

Recall that by convention, A includes non-financial labor income assets and an amount B is
always “locked up” by the imperfect credit market. Therefore, we must constrain all our regimes
by the property that AT ≥ B̂ ≥ B.41 In particular, we recover the standard problem by setting
AT = B̂ = B. Note that once past the threshold, the remainder of the problem facing the
individual is exactly as in the standard case, without a lockbox feature, provided we replace the
lower bound on assets by B̂. So we can conceive of the overall problem as follows: at any
date t, an individual is either “free” or “locked”, depending on whether she has ever crossed the
asset threshold AT before date t. If she is free, then her (expected) value correspondence from
that date onwards is governed by V∗(A, B̂). We can use this fact to anchor the construction of
her value correspondence in the locked state. Denote this latter correspondence by V̂ . It is to
be noted that V̂ depends on the three parameters (B,AT , B̂), but we don’t need to carry this
dependence explicitly in the notation and so suppress it.

We can now determine best deviation payoffs (for every realization of the taste shock), as well
as highest and lowest values, in the locked state. For every η and A in the locked state, consider
the problem of finding

(a.95) D̂(A, η) ≡ sup
A′∈[A,α(1−υ)A]

ηu

(
A− A′

α

)
+ βδL(A′),

subject to

(a.96) L(A′) =

{
inf V∗(A′, B̂) if A′ ≥ AT

inf V̂(A′) if A′ < AT

Notice how the constraint in (a.95) requires A′ ≥ A: assets cannot be run down in the locked
state. The second constraint describes where worst punishments following the deviation come
from: if the choice of A′ “frees” the individual, then it is drawn from the equilibrium value
correspondence V∗(A′, B̂) corresponding to the subsequent free state, and if the individual is
still locked, it must come from the lowest value in V̂(A′). As a matter of fact, both infima in
(a.96) can be shown to be attained, while in the discretized, finite computational problem under
consideration, the “sup” in (a.95) can be replaced by “max”.

40 The exercises we conduct are meant to be illustrative, and so we do not allow for contemporaneous savings while
the lockbox is “active”. These more realistic modifications can be easily studied, at least numerically.
41 So, really, the financial assets in the lockbox are given by A− B, and all thresholds and locked amounts must be
reinterpreted accordingly.
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With D̂ in hand, we can turn to the problem of generating values at each A and η in the locked
state. It is possible to generate any value V such that

V = ηu

(
A− A′

α

)
+ δV ′

for some A′ with A′ ≥ A, and V ′ satisfying

V ′ ∈

{
V∗(A′, B̂) if A′ ≥ AT

V̂(A′) if A′ < AT

as long as the no-deviation constraint is also met:

ηu

(
A− A′

α

)
βδV ′ ≥ D̂(A, η).

Let Ĥ(A, η) and L̂(A, η) be the largest and smallest such values,42 and recalling public random-
ization, define

V̂(A, η) ≡ [L̂(A, η), Ĥ(A, η)].

These are the “η-specific” value correspondences, and now we impose the fixed point consider-
ation that

V̂(A) =
∑
η∈N

p(η)V̂(A, η)

for every A ∈ [B,AT ].

From a computational perspective, we discretize the space of assets and proceed exactly as in
Appendix E to calculate V̂ . That is, a two-stage procedure is employed, the first to determine
the standard value correspondence V∗ (for the lower bounds B and B̂), followed by a similar
process to obtain V̂ . We omit the details here.

The text considers four regimes, (a)-(d), all drawn from the class above. In Regime (a), there is
no lockbox. This represents our standard case and corresponds to setting AT = B. In Regime
(b), the principal in the locked account is fully accessible after a specified AT > B is reached;
so B̂ = B.

In Regime (c), the threshold is eliminated. This corresponds to setting AT equal to infinity in
the above problem (the value of B̂ is irrelevant). The individual can always withdraw current
interest, but can never access the principal.

In Regime (d), contributions to the lock-up account stop once the threshold is reached, a conven-
tional account becomes accessible, but the principal in the lock-up account remains out of reach
forever. That is, AT = B̂ > B. In this case, a switch to the standard problem occurs once the

42 Once again, we disregard questions of attaining the maximum and minimum, which are trivial in the current finite
context, but which can be affirmatively settled anyway.
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threshold is passed, but to a different standard problem, one characterized by the lower bound
AT on assets.

For the results displayed in Figures 6 and 7, the taste shock η takes two values, {0.8, 1.1}, with
the associated probabilities p(η = 0.8) = 0.3 and p(η = 1.1) = 0.7. All other parameters
are the same as in the earlier numerical results: the hyperbolic discount factor (β) is 0.4, the
geometric discount factor (δ) is 0.8, the constant elasticity parameter (σ) is 0.5, and B and Ā are
set to 0.5 and 200 respectively. The standard problem with no lockbox features a poverty trap
at low asset values. For η = 0.8, there is a poverty trap for A < 4.42 and for the high shock
η = 1.1, a poverty trap exists when A < 5.35. For the lock-up regimes (b) and (d), AT is set to
5.5, slightly above the poverty threshold for the high taste shock state.
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