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We consider the properties of equilibrium behaviour in an aggregative growth model with 
intergenerational altruism. Various positive properties such as the cyclicity of equilibrium pro- 
grams, and the convergence of equilibrium stocks to a steady state, are analyzed. Among other 
normative properties, it is established that under certain natural conditions, Nash equilibrium 
programs are efficient and "modified Pareto optimal", in a sense made clear in the paper, but 
never Pareto optimal in the traditional sense. 

1. INTRODUCTION 

In this paper, we study the properties of equilibria in an aggregative growth model with 
intergenerational altruism.' In this model, each generation is active for a single period. 
At the beginning of this period, it receives an endowment of a single homogeneous good 
which is the output from a "bequest investment" made by the previous generation. It 
divides the endowment between consumption and investment. The return from this 
investment constitutes the endowment of the next generation. Each generation derives 
utility from its own consumption and that of its immediate successor. However, since 
altruism is limited, in the sense that no generation cares about later successors, the interests 
of distinct agents come into conflict. 

Models of this type have been used to analyze a number of issues concerning 
intergenerational altruism. One line of research, pursued by Arrow (1973) and Dasgupta 
(1974a) elucidates the implications of Rawls' principle of just savings. Others, beginning 
with Phelps and Pollak (1968), have addressed the question of how an "altruistic growth 
economy" might actually evolve over time. Topics of subsequent investigation have 
included the efficiency and optimality of equilibrium programs, and the implications of 
intergenerational altruism for the distribution of wealth. 

Unfortunately, the positive features of equilibrium programs have received little 
attention from previous authors. Aside from a few comments by Kohlberg (1976), virtually 
nothing is known about the asymptotic behaviour of capital stocks in these models. In 
particular, will the long-run capital stock which arises from intergenerational conflict be 
higher or lower than the "turnpike" associated with the solution to the optimal planning 
problem? On a priori grounds, the answer is not clear. Agents who take only a limited 
interest in the future will tend to bequeath less than those who are far-sighted. However, 
since each generation views its children's bequest as pure waste, it must bequeath a larger 
sum to obtain the same consumption value. 

In this paper, we obtain steady-state results for equilibrium capital stocks completely 
analogous to the well-known optimal planning results. By comparing "steady-states", we 
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show that no limit point of equilibrium capital stocks can exceed the planning turnpike. 
Under slightly more restrictive conditions, we show that the equilibrium capital stock 
never exceeds the planning stock in any period. 

We also address a number of normative issues which have been raised by other 
authors. In particular, Dasgupta (1974b) has shown that, for a specific parameterization 
of the general model, equilibrium programs are never Pareto optimal. Nevertheless, Lane 
and Mitra (1981) have established (under appropriate conditions) the existence of equili- 
brium programs which are Pareto optimal in a modified sense. Unfortunately, their study 
employs a restrictive notion of equilibrium, which typically implies a certain amount of 
myopic behaviour. In general, the equilibria which they consider correspond to subgame 
perfect equilibria only under very specific parametrizations of the model. In this paper, 
we establish that, under very general conditions, the set of Markov perfect equilibrium2 
programs for this class of altruistic growth economies are always efficient and modified 
Pareto optimal, but never Pareto optimal in the traditional sense. These results do not 
depend upon parametric forms. 

The current paper is organized as follows. Section 2 displays the model, basic 
assumptions and definitions of equilibria, and reviews some important results which 
appear in Bernheim and Ray (1983) and Leininger (1983). Positive aspects of equilibrium 
programs are considered in Section 3; normative aspects are discussed in Section 4. All 
proofs are deferred to Section 5. 

2. THE MODEL 

The model is closely related to those of Arrow (1973), Dasgupta (1974a, b), Kohlberg 
(1976), Lane and Mitra (1981), and Leininger (1983), and is a special case of the stationary 
altruistic growth economy described in Bernheim and Ray (1983). There is one commodity, 
which may be consumed or invested. The transformation of capital stock into output 
takes one period, and is represented by a production function f In the following sections, 
certain results require only one weak assumption about f: 

Assumption 1. f: R+ -> R+ is increasing, continuous and f(O) = 0. 

To establish other results, we strengthen this assumption by adding combinations of 
the following additional restrictions: 

Assumption 2. f is continuously differentiable, and limk,of'(k)> 1. 

Assumption 3.1. f is concave. 

Assumption 3.2. f is strictly concave. 

In each time period, decisions concerning production and consumption are made 
by a fresh generation. Thus, generation t is endowed with some initial output (y,), which 
it divides between consumption (c,) and investment (k, = y, - c,). Each generation derives 
utility from its own consumption, and the consumption of the generation immediately 
succeeding it. Preferences are represented by a common utility function, w. We assume 
that w satisfies certain relatively weak conditions:3 

Assumption 4. w: R -> R is increasing and continuous. Moreover, given 
(ct, c', c,+1)-> 0 with c'> c', if, for some (?, ) >> 0, w(c', c,+,) w(c + c, c,+1 - ), then 
w(c,, c,+1) < w(c, + , ct+1 -) 
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In most of the relevant literature, a stronger version of Assumption 4 is employed. 
At some points, we adopt this more restrictive formulation, in part for technical reasons, 
and in part to facilitate a comparison of equilibrium and planning programs. Specifically, 

Assumption 5. There exists an increasing, continuously differentiable, strictly con- 
cave function v: R+ -> R with v(c) -> oo as c -> oo and a discount factor 8>0 such that 
w(c,, c,+1) = v(c,) + 8v(c,+1) for (c,, c,+l) e R+. 

For certain results (particularly those concerning comparisons between equilibrium 
and planning programs) it will be convenient to assume that agents discount the future 
at some positive rate. In these cases, we will impose one of the following restrictions on 
8. 

Assumption 5.1. 8 E (0, 1]. 

Assumption 5.2. 8 E (0, 1). 

Finally, to prove certain results, we employ the following assumption concerning 
the relationship between production and utility. 

Assumption 6. limkoof'(k) < 8-. 

Remark. A sufficient condition for Assumption 6 under either Assumption 5.1 or 
Assumption 5.2 is that the production function eventually cross (and stay below) the 450 
line. This assumption rules out the case, limkoof'(k)> 81, but for most of the results 
presented here, our techniques are readily applicable to that situation.4 See Kohlberg 
(1976) for a partial analysis of the "utility-productive" case when f is linear.5 

We take the historically given initial output at time zero, y, to lie in some compact 
interval [0, Y], Y> 0. A program (yt, ct, kt)o is feasible from y E [0, Y] if 

Yo = Y 

yt = ct + kt, t 0 O 

Yt+1=f(kt), t _O_ 
(yt, ct, kt)-'O, t0. 

Denote by (ct)0 the corresponding feasible consumption program. The pure accumula- 
tionprogram is a sequence (yt, c, k,)o with it = 0 for all t 0 O, yt = kt for all t 0 ?, Yt+1 =f(kt) 
for all t?0 _O and y0 = y. 

Define St as the set of savings functions s :[0, y] [0, y], with s(y) - y for all 
y E [0, yt]. Define W(y, k; st+,) = w(y - k,f(k) - st+i(f(k))) for all st+1 E St+,, and (y, k) _ 
0 with k'y'yt. 

We will impose the behavioural assumption that all generations select subgame 
perfect Nash strategies (see Selten (1975)). Formally, 

Definition. The sequence (s*)0, s* E St, t _, is a bequest equilibrium (or simply, 
equilibrium) if for all t ' 0 and y E [0, yt], 

s*(y) C arg max W(y, k; s*+1) 
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A bequest equilibrium is stationary if the equilibrium savings functions (s*)0 satisfy 
s*(y) = s*+I(y) for all y E [0, y,], t ' 0. 

The reader should be aware that although we have restricted attention to the class 
of strategies for which consumption depends only upon initial endowment (Markov 
perfect equilibria), our bequest equilibria continue to be perfect equilibria when all 
restrictions on strategic choice are removed. See Bernheim and Ray (1983) for a more 
complete discussion. 

Under Assumptions 1 and 4, existence of a stationary equilibrium is guaranteed 
within the class of monotonic (non-decreasing) lower semicontinuous savings functions; 
furthermore, equilibrium policy functions are always monotonic, regardless of whether 
they are associated with stationary or nonstationary equilibria (see Bernheim and Ray 
(1983) and Leininger (1983)). Since we use this monotonicity property extensively 
throughout the current paper, we restate the relevant theorem here, without proof. 

Theorem 2.1. Suppose that for some savings function s,+1 E S,+l, and optimal savings 
function for generation t, st E St, given by 

s,(y) E arg maxOlkly W(y, k; s,+1), y E [0, yJ,] 
is well defined. Then under Assumptions 1 and 4, st is monotonic. 

Remark. This theorem establishes that t's best response to any policy function for 
t's successor is monotonic, regardless of whether t's successor employs a monotonic 
function. Monotonicity of equilibrium policy functions follows as an immediate corollary. 

Finally, define, for each st E St, yt ' y ? 0 and E > 0, 

A (st, y, E) inf{ 2_ 1 | (y,y) 0 and y -?y <y_y+}. 

Clearly, if s, is an equilibrium savings function, A (st, y, E) 0 for all y E [0, y,] and ? > 0. 
For one result, we will wish to rule out the case of equality. 

Definition. Suppose, for some st E St and y E [0, yt], there is E such that A (st, y, ?) > 0. 
Then we say that st is strictly monotonic at y. 

Surprisingly, it is difficult to guarantee that equilibrium policy functions are strictly 
monotonic at all y. Specifically, Leininger (1983) has established that if any equilibrium 
savings schedule is discontinuous, then all previous savings schedules have intervals over 
which they are not strictly monotonic. This observation is important, since no one has 
yet been able to establish existence within the class of continuous savings schedules. 
Fortunately, strict monotonicity plays a small role in the following sections. 

3. POSITIVE BEHAVIOUR 

In intertemporal optimal planning models, an important characteristic of optimum capital 
stocks and consumption levels is that these converge, over time, to some stationary 
input-output-consumption configuration. In this section, we establish some analogous 
results for the limiting behaviour of capital stocks under a bequest equilibrium. 

In stationary models, stationary equilibria always exist (Bernheim and Ray (1983), 
Leininger (1983)). Of course, this does not preclude the existence of non-stationary 
equilibria in such models. Of particular interest for asymptotic stock behaviour are 
periodic non-stationary equilibria. 
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Definition. An equilibrium (s*)0 is periodic if there exists an integer T and T 
functions (, ., ST) such that S*+Tn = S, n = 0, 1, 2, ...; t = 1, ..., T The integer T is 
the period of the equilibrium. 

When equilibria are non-stationary, the intertemporal behaviour of stocks is governed 
by a non-stationary process, even though the underlying model is stationary. In these 
situations, while limiting stocks may not exhibit convergence, a bound on their oscillatory 
behaviour may be obtained. 

Theorem 3.1. Suppose that (s*)? is a periodic equilibrium (with period T). Then under 
Assumptions 1 and 4 the sequence of equilibrium stocks has at most Tlimitpoints in R u {+o1}. 

Theorem 3.1 immediately yields a steady state result for stationary equilibria.6 

Corollary 3.1 (Steady State Theorem for Stationary Bequest Equilibria). Suppose 
that (s*)? is a stationary equilibrium with equilibrium stocks (k*)o. Then under Assumptions 
1 and 4 capital stocks are monotonic in time, and limto k* k* exists in R u {+oo}. 

Remark. The steady state theorem has been obtained without assuming separability 
or concavity of the utility functions, or convexity of the technology. In these respects, 
compare the results to that obtained by Mitra and Ray (1984) for planning models. 

We now turn to a comparison of limiting capital stocks for bequest equilibrium with 
turnpike levels obtained in aggregative planning models. An omniscient planner who 
takes into account the infinite stream of utilities of all generations is clearly acting more 
farsighted than a single generation which only cares about the consumption of its successor. 
On that score, one would expect a larger stock to be generated in the long-run, under 
planning. However, while each generation cares only about its successor, it recognizes 
that its successor will do the same, and, in anticipating bequests to be made by the 
successor, may compensate by bequeathing a larger amount. This tends to increase the 
limiting stock under a bequest equilibrium. The question of which steady state is larger, 
is, therefore, non-trivial. 

To facilitate comparison, assume that Assumption 5 holds. In the corresponding planned 
economy version of the model, a "planner" seeks a feasible consumption program (c^,) 
such that for all feasible consumption programs (ct)0 , 

lim infToo T=0 8t[v(,) - v(ct)] 0, (3.1) 

or, if all feasible utility sums converge, the planner maximizes, subject to feasibility 
constraints, 

zt=0 8tv(c,). (3.2) 

Call such a maximizing program an optimal program. 
That this maximization process adequately represents the corresponding planned 

economy may be rationalized in two ways. First, we may simply envisage a formal 
comparison between two economies, identical in technology and one-period utilities; the 
one governed by two-period bequest motives, the other by an omniscient planner whose 
social welfare function is expressible as (3.2), or the form implicit in (3.1). Secondly, we 
can imagine all consumption choices in the altruistic growth economy being left to the 
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planner who has the same discount factor 8 as each generation. In this case, the planner 
replaces the maximization of (3.2) by7 

max(c)o feasible v(co)+Et=O [V(C,)+8v(c,+1)]t6 (3-3) 
(the inclusion of v(c0) separately signifies that the planner also cares for the utility of 
generation -1). But this is simply a scalar multiple of (3.2). 

We now state, without proof, a well-known turnpike theorem for the planning problem 
((3.1) or (3.2)).8 

Theorem 3.2 (Turnpike Theorem Under Optimal Planning). Under Assumptions 
1, 2, 3.2, 5, 5.1, and 6, an optimalprogram with stocks (ktoX exists. The sequence of stocks 
(k)oX converges, as t - oo, to a limit stock k E [0, oo). If k > 0, it solves the equation 8f'(k) = 1. 
If 8 liMk4Of'(k) > 1, then k > O. 

Theorem 3.3 establishes a general result on the relative asymptotic behaviour of 
(k*toX and (kto. For stationary bequest equilibria, the comparison between k and k* is 
then obtained as an immediate corollary. 

Theorem 3.3. Under Assumptions 1, 2, 3.2, 5, 5.1, and 6, suppose that (s*)? is a 
bequest equilibrium with stocks (k*)o. Then lim sup,,X k*-' k, the planning turnpike. 

Corollary 3.2. Under Assumptions 1, 2, 3.2, 5, 5.1, and 6, a stationary bequest 
equilibrium with limiting capital stock k* has the property k*-' k. 

Theorem 3.3 establishes that, in the limit, a planned economy must accumulate at 
least as much capital as an altruistic growth economy (whether it accumulates strictly 
more remains an open question). If we assume strict discounting, then we obtain a much 
stronger result: bequest equilibrium capital stocks do not exceed optimal planning stocks 
in any period, given the same initial output.9 

Theorem 3.4. Under Assumptions 1, 2, 3.2, 5, 5.2 and 6, let (y*, k*, c be a 
program originatingfrom Yo E (0, Y], generated by the bequest equilibrium (s*o?. Then, for 
all t _ O,k*- k,, where (ktoX is the sequence of optimal planning stocks. 

4. NORMATIVE BEHAVIOUR 

Following the existing literature, we consider three normative notions: efficiency, Pareto 
optimality, and modified Pareto optimality. Formal definitions follow: 

Definition. A feasible program (yt, kt, ct)' from yo E (0, Y] is efficient if there does 
not exist a feasible program (y', k', c',? with c't ' ct for all t-' 0, and c' > c, for some s ' 0. 

Definition. A feasible program (yt, kt, ct)' from yo E (0, Y] is Pareto-optimal if there 
does not exist a feasible program (y', k', c',? with w(c,, c',,+) ? w(ct, ct+1) for all t ', 
and w(c', c'+1) > w(cs, cs+1) for some s ? 0. 

Definition. A feasible program (yt, kt, ct)? from yo E (0, Y] is modified-Pareto-optimal 
if there does not exist a feasible program (y', k', c')? with w(c', c',,+) w(ct, ct+1) for all 
t '-0, w(c', c'+1) > w(cs, cs+1) for some s?_ 0, and cO' co. 
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The definitions of efficiency and Pareto optimality are standard. The notion of 
modified Pareto optimality is due to Lane and Mitra (1981). The restriction that c0o c0 
for any comparison program (y', k', c',) reflects the recognition that time 0 is not the 
beginning of all mankind, and therefore, in considering Pareto dominance, the utility of 
generation -1 (which depends on c0) must not be tampered with, or at least must not be 
reduced. 

Given Theorem 3.3, it is possible to establish the efficiency of equilibrium programs 
by applying known results. 

Theorem 4.1. Under Assumptions 1, 2, 3.2, 5, 5.2, and 6, if (yt, ct, kt)o is a feasible 
program from yo generated by some bequest equilibrium (s*)?, then it is efficient. 

Since the utility of each generation depends on its own consumption as well as that 
of its successor, efficiency in consumption does not guarantee Pareto optimality. In fact, 
as long as the marginal propensity to consume of generation 1 is less than unity, a transfer 
of consumption from generation 0 to generation 1 always yields a Pareto dominating 
allocation. In this way, we establish 

Theorem 4.2. Under Assumptions 1,2, and 5, assume (yt, kt, c is afeasibleprogram 
from yo generated by a bequest equilibrium (s*o?. Then if s* is strictly monotonic at Yl, 
and if ko> 0, co> 0, (yt, kt, ct is not Pareto optimal. 

As mentioned earlier, s* may not be strictly monotonic over certain intervals; 
therefore, we cannot generally guarantee that the equilibrium program is Pareto sub- 
optimal for all initial conditions. However, it is important to note that, while strict 
monotonicity at y1 is a sufficient condition for suboptimality, it is not a necessary condition. 
Indeed, with substantial work, one can obtain a stronger result: if s* is strictly monotonic 
at yt for any odd t, then, under the other conditions stated above, the equilibrium is not 
Pareto optimal. We believe (but have not proven) that this weaker condition is necessary 
as well as sufficient for domination to be possible. 

Of course, a scheme for dominating the equilibrium program by lowering c0 leaves 
generation -1 strictly worse off. If we rule out alternatives which are damaging to this 
pre-historic generation, it becomes impossible to dominate efficient equilibrium programs. 
The efficiency of these programs alone is sufficient to guarantee modified Pareto optimality. 
This is stated in 

Theorem 4.3. Let (yt, kt, ct)' be a feasible program from yo associated with some 
bequest equilibrium (s*)0. Under Assumptions 1, 2, 3.1, and 5, (y,, kt, ct)' is modified 
Pareto optimal if and only if it is efficient. 

Coupling Theorems 4.1 and 4.3, we obtain as an immediate corollary: 

Corollary 4.1. Let (yt, kt, ct)' be a feasible program yo associated with some bequest 
equilibrium (s*)?. Under Assumptions 1, 2, 3.2, 5, 5.2, and 6, (y,, k,, c,)0 is modified Pareto 
optimal. 

5. PROOFS 

Lemma 5.1. Suppose that (s*)? is an equilibrium, and let yo, y' be two initial output levels. 
Let (kt)', (k')o be the corresponding sequence of capital stocks. Then, if yo ' y' (or ko '- k), 
kt _ k', for all t > 0. 
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Proof Since yo-yy', ko=s*(y0) ? s*(y')=kk, by Theorem 2.1. Now proceed by 
induction. Let kT C kT- for some T_ 0. Then, since fT is increasing, YT+1 =f (kT) f (kiT) = 

YT+1. Using Theorem 2.1 again, k,=1 = I +1(YT+1) ' S?+1) = kf +1. This establishes the 
lemma. 11 

Remark. Lemma 5.1 establishes an analogue of the Brock "monotonicity" result 
(Brock (1971)) when initial stocks are changed. 

Proof of Theorem 3.1. We establish that the T subsequences (k*+ T)n=O, t = 
o, .. ., T- 1 are each monotone in n. Suppose that k* ' k*. Given a period of T, we can 
invoke Lemma 5.1 to claim that k*+T_ k* for all t 0. (A similar argument applies if 
k* ' O.) This immediately yields monotonicity of the relevant subsequences, and proves 
the theorem. 

Remark. We have established a stronger result: that the T subsequences (k*+ nTU= o, 
t=O ... ., T -1, are either all monotone non-increasing in n, or all monotone non- 
decreasing in n. 

In proving Theorem 3.3, we consider two cases. In the first case, limt sup k* k* < oo. 
We will take the pure accumulation program (Yth' in this case to be unbounded (the 
analysis of lim,yt oo is similar and easier to handle, and is omitted). In case 1, (k*)o 
is a bounded sequence. Choose E > 0, and define 9^-f(limt sup y*) + E. 

Define M as the set of all monotonic (non-decreasing) functions s: [0, j^] [0, 9]. 
As is well-known, s E M hai at most a countable number of discontinuities. We endow 
M with the topology of weak convergence. 

Let T be an integer such that y, '9 for all t _ T For t _ T, define s^,: [0,9] - [0,y] 
by s(y) = s*(y), y E [0, 9]. 

Below, Lemmas 5.2-5.6 hold under the assumptions of Theorem 3.3. We assume 
throughout that k* > 0, otherwise there is nothing to prove. First, we establish 

Lemma 5.2. When k* <oo, there exists a subsequence (tq)=o with to0_ T, such that 

(i) k* k*kasaq > ooo 
(ii) k*q_ k =k* as q -> oo 

(iii) k*+I> k as q -> oo, with k k* 
(iv) (sq+i) s* EAl M, for some lower semicontinuous s*. 

Proof. 
By definition of k*, there is a subsequence (tm)0=o such that k* ->k* as 

m -00oo. Since we are in Case 1, k* and k*+1 are bounded sequences. Hence there is 
a subsequence (tn)'n0 of (tm)0=o such that k* -> k*, kV1-4k, k*+->k as n->oo, with 
k?-<k*?i-k 

The sequence {s,+n}r=o is in M for all tn i_ T (Theorem 2.1). By Helly's selection 
theorem, M endowed with the weak topology is sequentially compact (see Billingsley 
(1968), p. 227). Thus, we may take a subsequence (tq)q=o with to_ T, such that s,,+l E 
M. Since the weak topology ignores points of discontinuity, we may take s* to be 
continuous from the left. Since s* is monotonic, it must therefore be lower semicontinuous. 
Now the subsequence tq has all the desired properties. 

Next, define y =f(k). Our immediate objective is to demonstrate that if an agent is 
endowed with y and if his successor's policy is s*, then k* maximizes his well-being 
(Lemma 5.4). This requires a preliminary result. 
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Lemma 5.3. Consider sequences (sn),=0 in M and (xn),=0 in [0, 9]. Suppose sn -> s 
where s is lower semicontinuous and xn -> x. Then 

(i) limn)o 0 s ( -() 

Furthermore, if s is continuous at x, then 

(ii) limn )0o sn(xn) = s(x). 

Proof. Suppose that (i) is false. Then for some E > 0 there exists N such that for 
all n> N, 

sn(xn) < s (x )-2 E 

and 

I -x <8a, 

where 8 > 0 is chosen such that 

S(X-8) > S(X)-E, 

and such that s is continuous at x -8 (this is possible since s is continuous from the left, 
and has only a countable number of discontinuities). Since sn is monotonic, 

Sn(X-a ) _Sn(Xn). 

Combining these statements, we see that 

Sn(X-_ ) < S(X-_ ) _E 

for all n > N. But this contradicts the fact that sn must converge to s at x - 8, a point of 
continuity. 

We establish (ii) through a completely analogous argument, using the fact that s is 
continuous from the right. 

Lemma 5.4. k* maximizes V(y, k) v(y - k) + 8v(f(k) - s*(f(k)). 

Proof Note that there exists T' - T such that for all tq _ T', y*, _f1(Y) Therefore 
it is meaningful to write that for all tq_ T', k* maximizes 

v(yt - k) + 8v(f(k) - s^, + (f(k))) 

over k in [0, yr*]. As q -> oo, s, s*, and (y* , k*) - (y, k*). Thus, by Lemma 5.3(i), 

limqo [v(y* - k*) + 8v(f(k*) - St4+1(f(k*)))] _ v(y - k*) + 8v(f(k*) - 

Now suppose that the lemma is false. Then there exists k' and E > 0 such that 

V(yg k')> V(y, k*)+3E. 

If s* is continuous at f(k'), define k" = k'. If s* is discontinuous at f(k'), we can choose 
k" < k' such that 

V(yg k') - V(y, k") < E 
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(since s* is continuous from the left), and such that s* is continuous at f(k") (since s* 
has at most a countable number of discontinuities). In either case, we have 

V(y, k") > V(y, k*) + 2E, 

and s* continuous at f(k"). 
Now define k' = min (y*, k"). Clearly, f(k') ->f(k"). By Lemma 5.3(ii), 

Stq+i(f(k' q))-s*(f(k")). Thus, for q sufficiently large, we have 

v(y* - kq) + qv(f(k') - s^q+i(f(k )))> v(y - k") + 8v(f(k") - s*(f(k"))) - E 
> v(y - k*) + 8v(f(k*) - s*(f(k*)) + E 
> v(y* - k*) + 6v(f(k*) _ 

St, (f(k*)))9 

which is a contradiction. 

Lemma 5.5. If limt sup k*-k* < oo, then k* ' k. 

Proof Consider any sequence k n 1 k*, k < k*. Now 

V(y, k)- V(y, k*) = [v(y- kn)- v(y- k*)] + 8[v(f(k)n s*(f(kfn)) 
- v(f(k*) - s*(f(k*)))]. (5.1) 

By the mean value theorem, there is a a" E [y - k*, - kn] and 
n3 E [min {f(kn) - s*(f(kn)),f(k*) -s*(f(k*)), 

max {f(kn) - s*(f(kn)),f(k*) -s*(f(k*))] 

such that for all n, 

V(y, k - V(y, k*) = v'(a nf)(k* - kn) + 8v'(,83n)[f(kn) -s*(f(kfn)) 

-f(k*) + s*(f(k*))]. (5.2) 
Define 

An =[f(k*) f(k n)+s*(f(k n))-s*(f(k*))] 

k*-k n 

Then 

V(y, kn )- V(y9 k*) = [v'(ac n -Av(f3 n )] (k* - kn). (5.4) 

Since v(-) is continuously differentiable, a n" Y-k* as n->oo. Also, since s* is 
continuous from the left and f(kfn) <f(k*) for all ni, 3n ->f(k*) - s*(f(k*)) as n -> oo. 

Actual consumption along the sequence tq +1, c*+1 ->f(k*) - k as q -> oo (Lemma 
5.2). Using lower semicontinuity of s*, and Lemma 5.3(i), 

f(k*) - s*(f(k*)) -'f(k*) -k-f(k) - k* V. (5.5) 

As a result, 

limn-o v '(a) n 
limn<,o v (,3 )n (5.6) 

By Lemma 5.4, V(y, kn) - V(y, k*) 0 for all n. Therefore, limn,o inf An - 1, and 
so, by (5.3), 

l [[f(k*) -f(k n)] 8[s*(f(k*)) - s*(f(k n))] (5.7) nim o inf k*-k n k- 
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Using the fact that s* is monotonic 

86[f( k*)fkn] limn--> inf fk* (k )] ' 1 (5.8) 

and so, since f is differentiable, 
8f (k*) ?1. (5.9) 

Combining this with k* > 0, Assumption 3.2, and Theorem 3.2, k* '-= k' 

In the second case, we have the possibility that lim, sup k* -= = oo. This is ruled 
out in 

Lemma 5.6. It is impossible for lim, sup k* = k* to equal +oo. 

Proof. Suppose, on the contrary, that k* = oo. Then we claim that there exists T 
such that k*T> k and c*+, > c*. Suppose not. Then for all T with k* > k (such T exist 
since k =0 or 8f'(k) = 1, and Assumption 6 holds), cT+i =c*. For all t with k* =k 
ct+1 ?f(k). It follows, therefore, that for all t ?0 c*-' B <oo. Consider a sequence (Tn) 
with k* -> oo. Observe that for each n, C* ,+1 maximizes, over c in [0,f(k*9)] 

Z(f(k* ), c) v(c) + 8v[f(f(k*) c) - s -2(f(f(k*) c))]. (5.10) 

But Z(f(k* ) c* + ) < v(B)(1 + 8), since c* - B for all t. 
Since k* -> o0, so does f(k* ). By Assumption 5, there exists n such that 

v(f(k* )) + v(0) > v(B)(1 + 8). (5.11) 
For such n, using (5.10) and (5.11), 

Z(f(k* ), f(kTn)) > Z(f(k*, ).c T+j), 
a contradiction. So our claim is true, and there exists T with 

k* > k and cT+1 > c*- (5.12) 

Further, k* maximizes 

V(y*, k) v(y* - k) + 5v(f(k) - s*+j(f(k))) 
and clearly, f(kk) - S + 1 (f(k*)) = c T+i1 

Now we simply retrace the steps in the proof of Lemma 5.5, substituting s*+1 for 
s*, y*~ for y, and k* for k*. The only difference is that the inequalityf(k*) - s +1(f(k*)) ' 
y*-k* (analogous to (5.5)) is now verified simply by noting that c* + > c* (by choice 
of T). Following these steps yields, finally, 

5f'(k*) 1 (5.13) 

which, together with Assumption 3.2 and Theorem 3.2, contradicts our construction 
k* > k. 

Proof of Theorem 3.3. Combine Lemmas 5.5 and 5.6. 

Theorem 3.4 is proved below, following Lemma 5.7. 

Proof of Theorem 4.1. By Theorem 3.3, limt,<o sup k, _ k, where k is the planning 
turnpike. If k> 0, it solves 8f'(k) = 1, by Theorem 3.2. In this case, limt,o inff'(kt)' 
f'(k) = 1/8 > 1, by Assumption 5.2. If k = 0, limt,<o kt = 0, and so again, limt,<o inff'(kt) = 
f'(0) > 1, by Assumption 2. Define a sequence (pt) by po = 1/f'(fr1(y)), and Pt+i = ptf (kt), 
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t'?0. Then it is easily verified that lim,, p,k,=0, so by a well-known criterion for 
efficiency (see, for example, Mitra (1979, Corollary 1)), (y,, c,, k,)o is efficient. 

Lemma 5.7. Under Assumptions 1, 2, and 5, suppose that (s*)' is a bequest equili- 
brium. Let (y,, c,, k,)o be an equilibrium path generated by (s*)' from y e (0, Y]. Then, if 
k, >0, 

v'(c,) ? 8f'(kt)v'(c,+1), (5.11) 

If. in addition, for any t - 1, s* is strictly monotonic at y, then, for such t, if kt,1 > 0, 
v'(c,-1) < 8f'(kt-1)v'(c,). (5.12) 

Proof. First observe that k, > 0 implies c, 1 > 0. If not, this easily contradicts the 
fact that k, is an equilibrium action for generation t. 

Now suppose, contrary to (5.1 1), that there is some t0- , with v'(c,) > 8f'(kt)v'(c,+1). 
Then for iq > 0 sufficiently small (using the definition of derivatives), 

v(c, + r) - v(c,) > 8v(c,+1) - 8v(ct+l -f(kt) +f(kt - q7)). (5.13) 

Suppose generation t consumes c, +7q instead of c,. Then, by (5.13) 
v(c,) + 8v(c,+1) < v(c, + r) + 8v(c,+1 -f(kt) +f(kt - r)) 

? v(c, + r) + 8v(f(kt - r) - s*+1(f(kt -q))) 
which contradicts the optimality of t's decision (the weak inequality above follows from 
the fact that s*+1( ) is monotonic). This establishes (5.11). 

Now suppose, contrary to (5.12), that s* is strictly monotonic at y, but v'(c,- )? 
8f'(kt_1)v'(ct). Then, defining A,-1-A(s*,y,, E,) with E, chosen so that A,<1, for 
sufficiently small iq we have 

v(c,-1 + ,) - v(c,-1)> >v(c,) - 8v(c, - At[f(kt-1) -f(kt,1 - A)]. (5.14) 
Now suppose that generation t -1 consumes c,_1 + iq instead of c,-,. Then, by (5.14), 

v(c,-1) + 8v(c,) < v(c,-, + D) + 8v(ct - At[f(kt-1) -f(kt,1 - D) 
_ v(ct,1 + Dj)+ 8v(f(kt_j - D) - s*(f(kt,1 -D) 

which contradicts the optimality of t - l's choice (the weak inequality follows from the 
definition of At). This establishes (5.12). 11 

Lemma 5.8. Under Assumptions 1, 2, and 5, let (y^,, k,, c)' be the optimal planning 
program from y E (0, Y]. Then if c, > 0 for any t _0 

v'c, +f'(kt)v'(ct+l). (5.15) 

Proof. Suppose, on the contrary, that v'(CS) < f'(ks)v'(CS+,), and CS >0, for some 
s-0. Then, by an argument similar to that in Lemma 5.7, there is n E (0, CS ), such that 

CS- V(C - < 8V( +C +f(kS + 77) -f(kS)) - _V(CS+). (5.16) 

Now define (y', c', k')o from y E (0, Y] by y, = ^, t s + 1, y f+ =ks +) k' = k 
t? s, ks= ks + , and c= c, t ? s, s + 1, c _= - C,+l +f(ks + 7) -f(ks) Clearly, 
this is feasible. Moreover, v(c) = v(c), t ? s, s+1, and v(c') + 8v(c'+1) 

C- ) + 8v(c+1 +f(ks + 7) -f(kS))> v() + Cv(c+1). So (y^, k,, c is not optimal, a 
contradiction. 

Proof of Theorem 3.4. Suppose on the contrary, that k*> k, for some first time 
period r _ 0. Then y*- 'y, where (yt represents optimal output levels under planning. 
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Clearly, (s*)? is a bequest equilibrium, and (y*, k*, c*)? is a program generated by this 
equilibrium, from y*. Let (y', k', c') be the program generated by (s*)', from 9. Then, 
by Lemma 5.1, k' > k*, ti_?T. So k' > k. Hence c' <. 

Now proceed by induction. Suppose that for some t'-, ct< i, and kt < k'. Then, 
using the strict concavity of v (and/or f), Lemma 5.6 (noting that k> 0), and Lemma 
5.8 (noting that ct > 0), 

Sf (k't)v'(c'+ 1) i_ v'(c't) > 'c^t) 

=-f'( kt)v'(cAt$,) > 6f'(k') ct+ ). (5.17) 
Using (5.17), it follows that v'(c+1)> v'(c^t+1), so c+1 < c^t+ . Since k' > kt (by 

hypothesis) and f is increasing, k't+ =f(k') - c+1 f(kt) - ct+l = kt+l. Hence c' < ct for 
all t ? r. This establishes the inefficiency of (y', k', c't) from A^, which contradicts Theorem 
4.1. 

Hence * c kAt for all t _ j. 

Proof of Theorem 4.2. Since s* is strictly monotonic at Yl, and ko > 0, by Lemma 
5.7, we know that for sufficiently small 77, 

v(co) - v(co- 7R) < 8v(c1 +f(ko+ 77) -f(ko)) - 8v(cj). 

Rearranging, 

v(co) + 8v(c1) < v(co- q) + 8v(c1 +f(ko+ q) -f(ko)). 

Thus, if 0 increases his investment by i7 and 1 consumes all the incremental proceeds, 0 
is strictly better off (trivially, so is 1), and no one else is affected adversely. I 

For the remaining results, we will use the following conventions and notation. 
(yt, kt, ct)' denotes a feasible program from yo generated by a bequest equilibrium (s*) . 
The sequence (yt, kt, c^t)o denotes a hypothetical feasible program which Pareto dominates 
it. Define the set T = (tl, t2, .. .) as follows: t E T iff cAt < ct. T must be non-empty under 
Assumptions 1, 2, 3.2, 5, 5.2, and 6, by Theorem 4.1. Define 

P(cl, c2) = {(a, b) I v(a) + 8v(b) > v(cl) + 8v(c2)} 

F(y, k) = {(cl, C2) If(y - cl) - C2_ k I}. 

Lemma 5.9. Under Assumptions 1, 2, 3.1, and 5, if (cr-, c9 E P(ct_1 ct) r- 
F(yt-1, kt), then c_-C ?ct-, and ct ,> ct. 

Proof By definition of the set P(ct,1 ct), 

[V(Ct_) - v(ct-,)] + 8[v(ct) - v(c,)]> ?0 

By strict concavity of v(*), 

(Ct - ct1)v' (ct,,) + 8(Ct - ct)v' (ct) > 0. 

Rearranging, 

ct ct- (ct-l ct_l)1 () (5.18 ) 8v'(c,) 
By definition of the set F(yt,, kt), 

-l - c>c) - C't_ kt =f(yt-, - ct-1) - ct, 
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or 

[f(kt,1 + (c,_ - c-,_)) -f(k,-1)] + [c, - c,] '. 
By the concavity of f(*), 

(ct-I - c-,_)f'(kt-1) + (c - c') >0. 
Rearranging, 

?t C C, - (c>- - c, -)f'(kt-1). (5.19) 

Now, suppose, contrary to the lemma, that cr-1 > c,-i. Then, using Lemma 5.7 and 
equation 5.19, 

C, t c,-(C 1-Ct 1) a,( C ) 

But this contradicts (5.18), so c-,_ 
' 

ct1. 
Since (cr,1, c,) E P(c,-,, ct), 

we must then have 
c't ct, as desired. 11 

Lemma 5.10. Under Assumptions 1, 2, 3.1 and 5, if 0 T, then for all t E T, 

()c_1 > Ct_l 

(ii t-lYt 

(iii) kt < kt. 

Proof. If (i) fails, t -1 is worse off under the dominating program-a contradiction. 
For (ii) and (iii), we argue as follows. First, it is obvious that yt9-_ _ yt,1-. Now suppose 
that kt1 _ k,t. Then F(y,1_1, ktl) c F(ytl_1, ktl). We know that 

(Ct _1, ct)E P(C'1-_ , C,,) r- F y,_1, k,l) 

C P(c,l _l, ) r- F (ytl, -ktl) 

Apply Lemma 5.9 to conclude that ct$-4' ct,i1, which contradicts (i). 
Now suppose that (ii) and (iii) are valid for tn. ktn < k,,, and for t E 

(tn +1,.. ., tn - 2), c^, ' ct. Thus, At -1 < Yt,1+,-i. Applying the same argument as above, 
we see that ktn+1 < ktn+,-1. 

Lemma 5.1 1. Under Assumption 3.2, ify y2 and k1 > k2, and if there exists (cl, c2) E 
F(y2, k2) - F(y', kO), then for all (c', c2) e F(y', k) with c1 < c1, there exists (c, c) e 
F(y2, k2) with C3 > C2. 

Proof We know that f(y2 - cl) - k2 >f(yl - c1) - kl, and by concavity of f (along 
with c1 < cl), 

f(y2_ c1) _f(y2_ c1) <f(y -I_)-f(y1-c1) 
Combining these, 

c3 =f(y2_ cl) - k2> f(yI - cl) - k1 _ c2 

But (cl, C3) e F(y2, k2) by construction. 1 

Proof of Theorem 4.3. It is completely straightforward to show that efficiency is a 
necessary condition for Pareto optimality. Suppose now that the equilibrium program is 
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not modified Pareto optimal-i.e. there is a dominating program (y,, kt, Ct with 00 T 
Choose any t E T Since c, c^) E P(ct_l, c,), and since c,_1 > c,_l (Lemma 5.10(i)), then 
by Lemma 5.9, t $c) F(yt1, k,). Further, by Lemma 5.10(ii) and (iii), 9-i-i, 
and k, < k,.But then, by Lemma 5.11, there exists some (c',, c') E F(y1, k,) such that 
(c'>,, c') > (c,-,, c,). Consider a new consumption program, (c,)0, where c, = c' if t or 
t + 1 E T, and c, = c, otherwise. Since (c)0 was feasible, by construction (j,)' is feasible. 
But since (-)' strictly dominates (c,)', (c,)' is not efficient. 
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NOTES 
1. This model is adapted from Kohlberg (1976), and is closely related to those used by Arrow (1973), 

Dasgupta (1974a, b), Lane and Mitra (1981), Leininger (1983), and Bernheim and Ray (1983). 
2. A Markov perfect equilibrium is a subgame perfect equilibrium in which strategies are defined only 

as functions of current state variables. 
3. The second part of Assumption 4 is simply an assumption of normality of the second argument of 

w(ct, c,,,). If a consumer with this utility function chose c, and c,+1 at fixed prices, c,+1 would be a normal good. 
4. The borderline case lim,OOf'(k) =8-' presents more subtle technical problems which we have not 

explored. 
5. The term originally appears in Arrow (1973). 
6. Corollary 3.1 does not preclude the possibility that lim,,. k* oo, which is not, strictly speaking, a 

steady-state property. However, k* < o in a large class of situations (at least, in all situations where the 
corresponding optimal growth "turnpike" is finite-see below). 

7. One can, of course, use a similar argument when feasible utility streams diverge. 
8. The proof is omitted. For a more general version of this result in an aggregative context, see Mitra 

and Ray (1984). 
9. Since this result implies Theorem 3.3, and is obtained under only slightly more restrictive conditions, 

Theorem 3.3 may appear redundant. However, Theorem 3.3 is used in the proof of Theorem 4.1, which in turn 
yields Theorem 3.4. Consequently, it is necessary to state these results separately. 
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