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This paper concerns the existence of Markov perfect equilibria in altruistic 
growth economies. Previous work on deterministic models has established existence 
only under extremely restrictive conditions. We show that the introduction of 
production uncertainly yields an existence theorem for aggregative infinite horizon 
models with very general forms of altruism. Journal of Economic Literature 
Classification Numbers: 022, 026, 111. 0 1989 Academic PXSS, Inc. 

1 I INTRODUCTION 

An altruistic growth economy consists of a sequence (possibly finite) of 
generations and production technologies. Each generation derives utility 
from its own consumption and the consumptions of some or all of its 
descendants.’ As we have discussed elsewhere ( 
this framework is of wide applicability. 

* We are grateful for helpful conversations with Peter Hammond, Christopher Harris, and 
James Mirrlees, and to an anonymous referee for useful suggestions. An earlier version of this 
paper was circulated as Technical Report No. 467, Institute for Mathematical Studies in the 
Social Sciences, Stanford University (June 1985). Ray thanks the Department of Economics. 
Stanford University, his affiliation when the first draft of this paper was written. This research 
was supported by National Science Foundation Grant S&S-84-04164 at the Institute for 
Mathematical Studies in the Social Sciences, Stanford University, Stanford, Ca.. 

i Alternatively, each generation might derive utility from its own consumption and the 
utilities of its descendants. This “non-paternalistic” formulation raises different issues, but we 
do not consider them here (see, e.g., Pearce [17], Ray [19], Streufert [ZO]). 
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A central concept describing intertemporal behaviour for such an 
economy is that of Markov perfect equilibrium.2 In such an equilibrium, 
each generation chooses consumption optimally, given knowledge of its 
own endowment and the endowment-dependent behaviour of its des- 
cendants. This is true of all possible endowments, and for every generation. 
Since Markov equilibria are so simple, they may be more likely than com- 
plex equilibria to arise in practice, and their properties are certainly more 
amenable to study (see, e.g., Bernheim and Ray [6]). In addition, Markov 
equilibria will undoubtably turn out to be very useful in studying the 
properties of more complex equihbria.3 

The natural and basic question is: do Markov equilibria exist in a 
reasonably wide class of altruistic growth economies? This issue remained 
unresolved (see, e.g., Peleg and Yaari [lS]; Kohlberg [13]) until 
Bernheim and Ray [4] and Leininger [is] obtained independent affirm- 
ative results for an aggregative (one-commodity) model displaying limited 
altruism. Altruism is limited in their models in the sense that each genera- 
tion derives utility only from its own consumption and the consumption of 
its immediate successor.4 

This existence result is useful but restrictive. In particular, it is important 
to study whether the result can be extended to (a) a disaggregated multi- 
commodity model, and (b) more general and far reaching forms of 
altruism. Regarding (a), recent interesting work by Harris [12] employs 
techniques similar to that in Bernheim and Ray [4] to prove a Markov 
existence result in a many-commodity framework.5 But (b) is a tougher 
nut to crack. In fact, Peleg and Yaari [lS] construct a finite horizon 
counterexample, showing the difficulty of obtaining a general result.6 

In Bernheim and Ray [6], we showed that the presence of uncertainty 
(embodied naturally in the production technology) paves the way for a 
very general Markov existence theorem in finite horizon models. Unfor- 

‘See, e.g., Dasgupta [S], Kohlberg [13], Leininger [15], and Bernheim and Ray [S], and 
in the non-paternalistic context, Loury [16], Streufert [20], and Ray [19]. 

3 There is an analogy here with repeated games, where history dependent strategies 
incorporate one-shot “punishments” in order to sustain “collusive” outcomes. 

4 Such limited altruism models have been explored in a variety of contexts. See, e.g., Arrow 
[2], Dasgupta [S], Barro [3], Kohlberg [13], Loury [16], and Lane and Mitra [14]. 

5 However, even in a stationary model, Harris [12] fails to establish the existence of a 
stationary equilibrium. This remains an interesting (and difficult) open question. 

6 Two points are relevant here. First, more general history dependent equilibria will still 
exist, as Goldman [9] shows for the finite horizon case and Harris [11] demonstrates for the 
infinite horizon model. But Markov equilibria still demand our attention, as we have argued 
elsewhere (Bemheim and Ray [S]). Second, it is of some interest that similar problems do not 
arise in a non-paternalistic framework and Markov equilibria can be shown to exist 

(Ray Ci911. 
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tunately, the techniques used in that paper are not well suite 
infinite horizon problem. 

The purpose. of this note is to demonstrate that the introduction sf 
uncertainty also yields an existence theorem for stationary Markov equi- 
libria in aggregative infinite horizon models with very general forms of 
altruism. The uncertainty is used to show that the best response of a 
generation, given its descendants’ strategies, exists. Our proof depends 
critically on the fact that each generation’s equilibrium investment is a 
non-decreasing function of its endowment. As in Ray [19], this allows 
monotone savings functions to be identified wth distributions of probabil 
measures, and endowed with the topology of weak convergence. 
Bernheim and Ray [S], we have shown that this “monotonicity” property 
has strong implications for the positive and normative features of 
equilibrium programs for a related model. Unfortunately, monotonicity 
policy functions depends both upon the existence of an aggregate goo 
and on a separability assumpton for preferences. Therefore, the infinite 
horizon result is more limited than its finite horizon counterpart. 

We discuss the model and its assumptions in Section 2. Section 3 states 
and proves the main theorem. 

2. THE MODEL 

Consider an infinite sequence of generations labelled t = 0, 1,2, etc. 
There is one commodity, which may be consumed or invested. In each time 
period, decisions concerning production and consumption are made by a 
fresh generation. Thus, generation t is endowed with some initial output, 
yr 2 0, which it divides between consumption, c, 2 0, and investment, X, 2 
(y, = c,+ x,). The return to this investment forms the endowment of the 
succeeding generation. 

The well-being of each generation will be determined by the sequence of 
consumption choices. Specifically, we assume that generation t’s preferences 
can be represented by a utility function U,: Ry.-+ R, satisfyin 
following assumptions. 

v-J.n) U,((c,),“=,)=u(c,)+~(c,+,, c,+2> -1~ 
(U.2) u is continuous in the product topology on real valued 

sequences. 

(U.3) 24 is strictly concave in c,. 

Remarks. (i) Note throughout that the model considered here is 
stationary. The techniques used can be adapted to demonstrate the exist- 
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ence of non-stationary Markov-perfect equilibrium for non-stationary 
environments, at the expense of additional notation. 

(ii) Implicitly, we assume that each generation’s well-being is 
independent of its ancestors’ choices. Trivially, this assumption could be 
weakened to require separability between ancestors’ choices, current 
choice, and descendants’ choices. Further weakening of the assumption is 
clearly impossible: if ancestors’ choices affect the current generation’s 
ordinal preferences over descendants’ choices, the use of Markov policy 
functions will, in general, be suboptimal. 

The investment chosen by each generation determines the endowment of 
its successor up to a random disturbance, ol, which is realized from the 
state space [0, 11. Specifically, the production function, f: iw + x [O, 11 -+ 
lR+ , and disturbances CD, satisfy the following assumptions. 

(F.l) f is strictly increasing and continuous in both x and w,. 

(F.2) There exists j such that for all O,E [0, l] and x >y, 
f-(x, WI <x. 

(F.3) w.= (w,),m is an i.i.d. sequence of random variables. The 
distribution of w  is given by an atomless probability measure q on the class 
of Bore1 sets in [0, 11. Let p denote the product measure qco (see Halmos 
[lo, p. 1571). 

Remarks. (i) Under (F.2), if y,, sj, then for all feasible programs 
yZ gj. On this basis, we restrict attention to endowments in [0, J].7 It is 
possible to relax assumption F.2 by using a truncation argument (see 
Bernheim and Ray [4]). 

(ii) It is relatively straightforward to relax the assumption that the o, 
are i.i.d. However, some subset of past realizations will then affect expecta- 
tions concerning future realizations. Thus, one would have to allow 
strategies to depend on the history of past innovations, as well as current 
endowments. Strictly speaking, the equilibrium strategies would then not 
be Markov. It would not, however, be necessary to allow conditioning 
of strategies on past actions, independent of their effects on current 
endowments, in order to obtain an existence result. 

A Markou strategy (for any generation) is a function s: [0, jj] --) [0, jJ] 
such that for all y E [0, u], 0 ss(y) 5 y. Let So denote the set of 
conceivable Markov strategies. 

We will focus attention on stationary equilibria. Thus, we wish to 
describe the evolution of decisions when all generations select the same 
Markov strategy, s. The following recursion determines the evolution 

’ Or, if y0 <$ in general, to all feasible programs with y, < max { j, $1. 
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of capital stocks, given w, s, an some initial investment choice x for 
generation 0 

This, in turn, determines the evolution of consumption decisions 

Y,(Xt 0; s) =f(a,- lb, 0; s), 0,) - @r(X, 0; 31, t = 1, 2, . . . . 

Let CT = (a,, CT*, . ..) and y = (yl, y2, . ..). and define 

T/(x, w; 3) = v(y(x, 0; s)). 

The strategy s E So constitutes a (stationary Markol; perfect) equilibrium 
if for each y E [lo, j], s(y) solves 

Remark. Note that by our continuity assumption (U.2) and the com- 
pactness of feasible programs in the product topology, the expectation in 
(2) is always well defined provided V is measurable. 

3. EXISTENCE 

We now state our central result. 

THEOREM. Under the stated assumptions, there exists a stationary 
Markov-perfect equilibrium. It is always the case that the equilibrium policy 
function, s, is non-decreasing, and may be chosen to be upper semicont~n~o~s. 

The general line of proof used below is similar to that of Ray [19], and 
some specific steps are closely related to arguments therein, We have noted 
these steps throughout, generally leaving them to the reader, who may wis 
to consult Bernheim and Ray [7] for complete details. 

ProoJ: Our first key lemma establishes that best response policy 
functions are always non-decreasing. The proof is identical to that of 
Theorem B in Ray [ 191; we therefore omit it. 

LEMMA 1. Fix SE,!?‘. Suppose thatfor y~(y’,y~), yi~[cO,j] (i=L2Q, 
yi > y2, problem (2) is well defined. Further, suppose x1 and x2 are corre- 
sponding solutions. Then x1 2 x2. 
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Henceforth, we will restrict attention to non-decreasing, upper semicon- 
tinuous (USC) functions. Let S c So denote the set of such functions. Our 
next two lemmas establish that when future generations select s E S, then 
problem (2) is well defined. 

LEMMA 2. Suppose SE S. For each x E [0, j], and t 2 0, CJ~(X, o; s) is 
continuous in w almost everywhere. 

ProoJ: By induction. Suppose that c,- 1 does not depend upon 
(q, o,+ 1, ... ), and that (T,-~ is continuous in o almost everywhere (this 
holds for t = 1). Not then that 0, does not depend upon (o,, 1, w,+~, . ..) 
(inspect (1)). Denote the set of discontinuities of CJ- I by D,- 1. Since s is 
non-decreasing, it has at most a countable number of discontinuities on 
[0, jJ]; call them (d,, d2, . ..). Let Df= {olf(a,-,(x, w; s), o,)=dj}. a, is 
discontinuous at o only if w  E D,- 1, or w  E Df for some i. Since f is strictly 
increasing in o,, and since or- 1 does not depend on o,, every (w,),+~- 
section of Df consists of a single point, and therefore has measure zero. 
Thus, Df has measue zero (see Halmos [lo, p. 1471). Since D, is contained 
in the union of a countable number of sets of measure zero, it has measure 
zero. This completes the induction step. Q.E.D. 

Two corollaries follow immediately: 

COROLLARY 2.1. Suppose SE S. For each XE [0, j], a(x, w; s), 
y(x, o; s), and V(x, o; s) are continuous in o almost everywhere. 

COROLLARY 2.2. Suppose s E S. For each x0 E [0, y], dejke D(x’) = 
(WOE [0, 11” 1 V(x, 0’;s) is discontinuous in x at x0>. For all X’E [0, j], 
0(x0) has measure zero. 

LEMMA 3. Suppose s E S. Then for all x, y, 0 Q x < y d j, 

u( y - x) + E, V(x, o; s) 

is well defined, and continuous in (y, x). 

ProoJ: The first term is continuous in (y, x). V is simply the composi- 
tion of measurable functions, and is therefore measurable. Since v is boun- 
ded on the space of all feasible programs (see (U.2)), the expectation is well 
defined. To show continuity for the second term, take some sequence 
xn --f x. Then 

E, V(x”, o; s) - E, V(x, o; s) = 1 (V(x”, o; s) - V(x, o; s)) d,u. 
co, 11” 
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By Corollary 2.2, V(x”, o; s) -+ V(x, co; s) almost everywhere. Further, since 
(C,)ZlE PJ,Yl”, which is compact in the product topology, and since u 
is continuous, V is bounded. Applying Lebesgue’s dominated convergence 
theorem establishes continuity. 

Due to difficulties involving the behaviour of policy functions at j, it is 
convenient to work with quasi-equilibria, defined as follows. An s E S is a 
quasi-equilibrium if for each y E [0, j), s(y) solves (2). Let SC S consist of 
the functions s E S such that s(y) = 7. As in Ray [ 191, 3 can be thought 
as the set of distribution functions on [IO, j] (where probability is rescale 
Our next lemma indicates that if we start with some element of S, maxi- 
mization for each y E [0, j] generates a unique “quasi-best” response in 3. 

LEMMA 4. For each s E 3, there is a unique function s’ z 
s’ E S, and for all y E [0, j), s’(y) solves problem (2). 

ProoJ: Let h(y) be the correspondence which maps to solutions of (2). 
y Lemma 4 and the maximum theorem, h is upper hemicontinuous. Let 

s (y) = max(h(y)} for y E [0, j), and s’(j) = j. Clearly, s’ E S. Now suppose 
there is another U.S.C. selection from h(y), s” E 3. For some 9, s’(j) 
Since s” is u.s.c. there is some j >jj with s’(j) > S”(J). But this cant 
Lemma 1. 

Lemma 4 defines a mapping, H: S + 2. A fixed point of this mapping is 
a quasi-equilibrium. We need to establish continuity of If. The key step is 
to prove that E, V is continuous in s. 

LEMMA 5. Suppose some sequence (s” )r in S converges to s E 2 Then 
for each x E CO, j], E, V(x, o; s”) + E, V(x, o; s). 

ProoJ Choose any oi at which G is continuous in o. Suppose 
fJ,- 1(x, 6; f) + L-J- 1 (x, 6; s) (this holds for t = 1). By assumption, fis con- 
tinuous. Further, since ot(x, w; s) is continuous in a, at 6, and since f is 
increasing in cc),, s must be continuous at f(ot- 1(x, &i; s), 6,). Thus, using 
(I), a,(~, 6; sn) -+ CI((X, 6; s). By induction, this holds for all t. rice S is 
continuous, y(x, 15; sn) -+ y(x, d; s) in the product topology. (U.2), 
V(x, 65; Y) -+ V(x, 6; s). 

By Corollary 2.1, (T is continuous in o almost everywhere. Thus, by the 
peceding argument, V(x, o; s”) + V(/(x, o; s) almost everywhere. Combining 
this with the boundedness of V (see the proof of Lemma 3) and Leb 
dominated convergence theorem yields the desired result. 

Given Lemma 5, one proves continuity of the mapping N in a manner 
completely analagous to the proof of Lemma 6 in Ray [9], From Lemma 3 
of Ray [19], if S is endowed with the topology of weak convergence, every 
continuous function from ,!? to itself has a fixed point. Thus, a quasi-e 
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librium exists, with some policy function s E S. Let x0 solve (2) for y =j (by 
Lemma 3, x0 exists). Define j(v) = s(y) for y E [0, jj), and i(v) = x0 for 
y = jj. Since f is increasing in w, (so that y, = y iff o, = l), and since q is 
atomless (so that p[ {o E [0, 1 ] m 1 o, = 1 for some t>] = 0), it follows that 
s” is an equilibrium. Lemma 1 assures us that s^ must be non-decreasing. By 
construction, s” is use. Q.E.D. 
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