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We formalize the notion of collective dynamic consistency for noncooperative 
repeated games. Intuitively, we require that an equilibrium not prescribe any 
course of action in any subgame that players would jointly wish to renegotiate, 
given the restriction that any alternative must itself be invulnerable to subsequent 
deviations and renegotiation. While the appropriate definition of collective dy- 
namic consistency is clear for finitely repeated games, serious conceptual diflicul- 
ties arise when games are repeated infinitely. We investigate several alternative 
solution concepts, and establish existence (under reasonably general conditions) 
for each. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

Selten’s (1965, 1975) notion of subgame perfection requires dynami- 
cally consistent behavior on the part of each participant in a repeated 
game. Unfortunately, well-known “folk” theorems imply that, in general, 
the set of perfect equilibria is vast (see, e.g., Fudenberg and Maskin 
(1986) and Benoit and Krishna (1985) for discussions of infinite and finite 
horizon games, respectively). This observation has led most analysts to 
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impose additional refinements in specific applications. The most common 
practice is to consider “cooperative” equilibria-those that are Pareto 
efficient within the class of perfect equilibria. In imposing this further 
refinement, one implicitly assumes a kind of collective rationality. Specifi- 
cally, if players bargain with complete information over possible out- 
comes subject to any set of constraints, one normally assumes that all 
feasible Pareto improvements are made. In noncooperative environ- 
ments, the relevant constraints are incentive compatibility and individual 
dynamic consistency-the feasible set is defined by agreements that are 
self-enforcing both on and off the equilibrium path. Thus, it appears natu- 
ral to study the most collusive perfect equilibria. 

Unfortunately, this practice lacks internal consistency. Players typi- 
cally have the opportunity to reexamine their self-enforcing agreement at 
any point during the course of play. Just as we require dynamically con- 
sistent behavior on the part of each individual, it is then essential to insist 
upon dynamic consistency at the collective level. For purposes of illustra- 
tion, consider the one-shot game illustrated in Table I. There are two 
Nash equilibria (ui2, a~~) and (a i3, a&. Since the first Pareto dominates 
the second, we would expect players to opt only for the first as a self- 
enforcing agreement. Now consider a single repetition of this game, and 
assume for simplicity that there is no discounting. In the two-stage game, 
there is a perfect equilibrium in which players cooperate (play (air, uzr)) 
initially, and then play (an, u2*) in the terminal period, with any first- 
period deviation punished by reversion to (an, a&. Yet each player 
knows that if either actually deviated in period 1, each would have an 
incentive post hoc to renegotiate the original agreement, and play (an, 
uz2) instead. If players actually have the opportunity to discuss strategies 

TABLE I 
ILLUSTRATION OFCOLLECTIVE DYNAMIC 

CONSISTENCY 

Player II 

Player I 

all 3,3 OS4 0.0 

a12 4,o 2.2 o,o 

a13 0.0 o,o l,l 
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at each stage, then it seems natural to rule out the cooperative equilib- 
rium, on the grounds that it entails dynamically inconsistent behavior at 
the collective level. 

Collective dynamic consistency might well rule out many equilibria 
commonly considered by applied game theorists. For example, grim strat- 
egies typically make all players strictly worse off relative to the equilibria 
which they support. On the other hand, collective dynamic consistency 
need not rule out cooperation: for instance, Rubinstein’s (1979) notion of 
a strong perfect equilibrium is not vulnerable to renegotiation, and it is 
known that certain games admit cooperation as strong perfect equilibria. 
Unfortunately, Rubinstein’s notion is more demanding than necessary for 
the purpose of imposing collective dynamic consistency, and as a result 
often fails to exist. 

In this paper, we define and investigate several notions of collective 
dynamic consistency for repeated games. After describing an analytical 
framework and notation in Section 2, we consider finitely repeated games 
in Section 3. Intuitively, our concept requires that an equilibrium not 
prescribe any course of action in any subgame that players would jointly 
wish to renegotiate (given the restriction that any alternatives must them- 
selves be invulnerable to subsequent renegotiation). This intuition sug- 
gests a recursive definition of the refinement. However, for infinitely 
repeated games, the recursive approach is invalid. Indeed, defining col- 
lective dynamic consistency becomes problematic. In Section 4, we dis- 
cuss these difficulties, propose a specific notion of consistency, and dem- 
onstrate existence under relatively general conditions. In Section 5, we 
note that our formulation of consistency might rule out some apparently 
attractive equilibria, and it might fail to rule out some unattractive ones. 
We therefore propose two alternative refinements--minimal consistency 
and simple consistency-that yield more satisfactory results in the cases 
considered. We also establish existence under relatively general condi- 
tions. Section 6 contains a simple example, in which the requirement of 
collective dynamic consistency isolates interesting subsets of perfect 
equilibria. Section 7 describes the relationship between this paper and 
other work on renegotiation in noncooperative environments. 

2. PRELIMINARIES 

2.1. One-Shot Games 

Consider a one-shot simultaneous move game. The player set is N = 
(1, * - - , n}. For i E N, Ai is the action set of player i. This corresponds 
to player i’s strategies in the one-shot game. Write A = XiENAi. An action 
for player i is a choice ai E Ai. Write a = (al, . . . , a,) (so a E A). The 
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payoff function of i is a real valued function 7~~ on A. The collection 
G e {(Ai)iEN’(nii)iEN} is the one-shot game. 

We make the following assumptions on G. 

(A.l) Ai is compact for each i E N 
(A.2) 7ri: A + !I? is continuous for each i E N 
(A.3) G has a Nash equilibrium in pure strategies.’ 

2.2. Repeated Games 

We shall now repeat the game G for time periods 0, . . . , T. T is the 
horizon. It may be finite or infinite, respectively giving rise to a finitely 
repeated game or an infinitely repeated game. 

Suppose that player i, i E N, has a discount factor & E (0, 1). We 
denote by GT the game formed by playing G during periods 0, . . . , T, 
and writing payoffs as a discounted sum of one-shot payoffs. More pre- 
cisely, for any action profile (Y = (a,)$, where a, E A, the payoff to player i 
is evaluated by the expression 

II,(a) c i 6fTi(U[). 
t=o 

Observe that II,(a) can be viewed as a real valued function on the space 
of all action profiles AT, continuous in the topology of pointwise conver- 
gence . 

A t-history h, is defined for any t = 1, . . . , T as the sequence of 
previous actions. A typical t-history is of the form 

h, = (ao, . . . , a,-~), t=l,. . .,T 

Clearly, A’ is the set of all possible t-histories. A history h is a sequence of 
t-histories: h = (hl, hz, h,, . . .>. 

A strategy for player i is a sequence of functions $i = (Jlil): such that 

t,bir: A’ * Ai, 121 

’ We are using the interpretation that the elements of Ai are actions involving no random- 
ization. Of course, we could just as well think of these elements as mixed strategies, though 
the interpretation of this in a repeated situation is somewhat forced. 
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Let Vjr be the set of ah strategies for i, and define qr = 5 97. Write 
Ji 3 ($i)iEN E qT. We shall call 9 a strategy profile. 

Given 9 E 9r, let a(~$) be the action profile induced (in the obvious 
way) by I/I. More generally, define for any J, and t-history ht, at(JI, h,) as 
the action profile (a,, . . . , uT) starting from time t and induced by the t- 

history h, and a subsequent application of 9. When T = CQ, this can be 
identified easily with an action profile (a:): starting from t = 0, by putting 
al = a,,, for all s B 0. When T = ai, we shall omit the superscript Ton Vr. 

Throughout, we will use the notation that for any n-tuple (x1, . . . , x,), 
X-; denotes the (n - l)-tuple (~1, . . . , xi-i, xi+r, . . . , x,). 

3. CONSISTENT EQUILIBRIA IN FINITELY REPEATED GAMES 

Our analysis of finitely repeated games makes use of some additional 
notation. For each a+, denote discounted payoffs as 

Il~(CX’) = 2 67-‘7Ti(177). 
r=, 

For each 4 E ?r, t such that 0 < t I T, and t-history hl, let 

Vi($) = nP(4$)) 

and 

uf(9, h,) = W(d+, M). 

The strategy profile $I* E ‘PT is a subgame perfect Nash equilibrium 
(abbreviated PE) if for each i, t, and t-history h,, we have 

and 

uf(t,//*, h,) 2 U:($i, Jlfi, ht) 

for all +i E 9:. 
We define a consistent equilibrium by induction on the number of stages 

in the game. For T = 0, let %O be the set of $I* E q” such that, for all i 
and $i E 97, 

Vi($*) z Vi($iv JI*i)* 
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To is simply the set of Nash equilibria in the one-shot game. Next, define 
the consistent equilibrium set @O as $* E To such that for all $J E To, 

Vi(+*> 2 Vi($) 

for some i. @O is simply the weak Pareto frontier of the Nash set. Intui- 
tively, in a one-shot game players would always renegotiate to the Pareto 
frontier of the set of self-enforcing agreements. Clearly, assumptions 
(A.l) through (A.3) guarantee that @O is nonempty. 

Now consider the t-stage game. Define the set Fr as $* E ?’ such that 
for all i and $i E ‘Pf, 

and, for all hl, (I/$(*, hi)):=i E et-i. Intuitively, we have already defined 
the consistent set @f-1, and must require that all continuation strategy 
profiles lie in this set, or players would renegotiate upon reaching period 
1. Finally, define the consistent set et as $* E g’ such that for all I/J E vr, 

V;($*) > Vi(+) 

for some i. That is, we look at the Pareto frontier of vr-otherwise, 
players would renegotiate in period 0. Once again, existence follows in a 
straightforward way from (A. 1) through (A.3). 

It is immediate from definitions that every consistent equilibrium is 
subgame perfect, but not vice versa. It is, for example, clear that the game 
considered in the introduction (Table I) has only one consistent equilib- 
rium, in which no cooperation occurs. 

The notion of a consistent equilibrium for finitely repeated games was 
developed in an earlier draft of this paper (Bernheim and Ray, 1985). The 
concept also appears under different names in van Damme (1987) and 
Farrell and Maskin (1987). Bernheim et al. (1987) noted that this notion 
may not be entirely satisfactory for games involving more than two play- 
ers, in that we have restricted attention to renegotiation by the set of all 
players. Their notion of a perfectly coalition proof equilibrium coincides 
with consistency in two-player, finite horizon games. Bernheim and 
Whinston (1987) provided an example in which consistency isolates sub- 
game perfect equilibria of particular interest (the equilibria are cyclical, 
despite the fact that the game also admits noncyclical subgame perfect 
equilibria). Bernheim and Ray (1987) described a more elaborate example 
along these -lines in an economic context. More recently, Benoit and 
Krishna (1988) provided an analysis of the behavior of consistent equilib- 
rium payoffs in an undiscounted, finitely repeated game, as the horizon 
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tends to infinity. (Their refinement is slightly different in the choice of the 
Pareto frontier.) 

While the definition of collective dynamic consistency for finitely re- 
peated games is not controversial (at least for games with two players), its 
extension to infinitely repeated games has proven problematic. In the 
remaining sections, we focus exclusively on infinitely repeated games. 

4. CONSISTENT EQUILIBRIA IN INFINITELY REPEATED GAMES 

In this section, we motivate and define the notion of collective dynamic 
consistency for infinitely repeated games. Our main result concerns the 
existence of consistent equilibria. 

4.1. Conceptual Issues and a Definition of Consistency 

For infinitely repeated games, the definition of consistency given in 
Section 3 is inapplicable. The reason is simple: there is no finite horizon 
from which one can perform a backward recursion to isolate consistent 
equilibria. Consequently, we must look for a nonrecursive definition of 
collective dynamic consistency. 

The key motivation for our definition of collective dynamic consistency 
is the observation that, for infinitely repeated games, all subgames are 
identical. Any outcome that is possible in one subgame is also possible in 
every other subgame. Thus, an equilibrium implies a description of a set 
of outcomes that are possible in every subgame. At the beginning of each 
period, irrespective of history, players should have the option of collec- 
tively renouncing their prescribed strategies, and adopting the strategies 
prescribed for any other subgame. At a minimum, collective dynamic 
consistency should imply that players would never find it in their joint 
interests to exercise this option. 

Below, we refer to this requirement as internal consistency. We also 
argue that internal consistency does not by itself capture the full implica- 
tions of collective dynamic consistency. In particular, if one internally 
consistent equilibrium Pareto dominates another in every subgame, one 
would expect players to agree upon the first. This motivates a notion of 
external consistency. A consistent equilibrium is both internally and ex- 
tremely consistent. 

We formalize these notions as follows. Recall the description of a re- 
peated game in Section 2, with T = w. Define, for each i E N, Vi: 1I’ ---, !X 
by 

(4.1) 
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ui(+, h,) E ni(a’(JI, h)), i E N. (4.2) 

Vi is i’s payoff function in the infinitely repeated game G”. Write V = 
(VI,. * * 3 VJ and u = (u,, . . . , u,). 

A strategy profile $* E W is a subgame perfect Nash equilibrium if for 
each i and every t-history h,, we have 

Vi($*) B Vi($i, !b*i), +i E vi (4.3) 

and 

u~(JI*, h,) 2 ui($i, $Ti, h,) $i E vi (4.4) 

for all Jli E Vi. 
Let E 5 {p E %a[~ = V($) for some PE $}. Clearly, E is nonempty by 

(A.3).* Let E be the power set of E. A set P E E is internally consistent 
(IC) if P is nonempty and 

(c.1) p E P implies that there is a PE $ vith V($) = p and with the 
property that for every t-history h,, 

UC+, h,) E P, 

(c.2) for no p, p’ E P is it the case that 

p %p’. 

Two observations about IC sets are worth making right away. First, IC 
sets rule out equilibria that support cooperative behavior in games by the 
threat of reverting to “grim” strategies in the case of a deviation. For 
example, the well-known method of supporting collusive outcomes in 
repeated oligopoly games by threatening to revert to one-shot Nash be- 
havior is unacceptable under this approach. If collusive behavior is sup- 
portable to start with (by whatever means), and subsequently a deviation 
occurs, it is difficult to imagine that players who are communicating or 
negotiating at every stage will revert permanently to a Pareto inferior one- 
shot equilibrium when a “better” equilibrium is available. Of course, this 
may mean that the better equilibrium may not be an equilibrium to start 
with! 

* Our only use of (A.3) is to guarantee nonemptiness. 
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Second, IC sets do not necessarily rule out all forms of cooperative 
behavior. One easy example is Rubinstein’s (1979) method of supporting 
collusion in the prisoner’s dilemma as a strong perfect equilibrium out- 
come. The set formed by collecting all the equilibrium payoffs (in the 
original game and in continuation games) under the strong equilibrium is 
indeed IC. 

Nevertheless, an IC set may not capture all of our intuition regarding 
collective dynamic consistency. The simplest way to see this is to note 
that the singleton set consisting of the payoff vector arising from an 
(infinite) repetition of any one-shot equilibrium is always IC, despite the 
fact that another internally consistent equilibrium might be “superior” to 
it (e.g., an equilibrium formed by repeating a Pareto superior one-shot 
equilibrium). 

We therefore need additional restrictions to capture the notion of col- 
lective dynamic consistency. Some additional notation is required. Let 
II G 8 be the set of all IC sets. Clearly, II is nonempty by (A.3) and 
the discussion in the preceding paragraph. Now suppose P, P' E II. We 
will say that P directly dominates P ’ (written P d P ‘) if there is p E P, 
p’ E P’ such that p % p ‘. (Note that in principle, it is quite possible that 
both P d P’ and P’ d P.) 

This definition of dominance is motivated by the following consider- 
ations. Suppose that the players contemplate playing a perfect equilib- 
rium, I/J’, with its payoffs yielding some IC set, P’. Suppose further that 
there is another equilibrium 9, the payoffs of which form an IC set P, such 
that for some p E P and p ’ E P ‘, p % p ’ . By choosing II, ‘, players assert 
that in some subgame they will play strategies that yield payoffs p ‘. Yet if 
they ever reached this subgame, they might consider renouncing their 
strategies, choosing instead the subgame strategies from $J that yield p. 
Since these new subgame strategies are internally consistent, players 
might have good reasons to believe that p is in fact achievable. An incen- 
tive to renounce the original strategies would then exist. Recognizing this 
in advance, players would realize that JI ’ may not prescribe a credible 
course of action, or at the very least, that I$’ may be “threatened” in 
some subgame. 

The preceding discussion suggests one possible notion of external con- 
sistency. Say that an IC set satisfies strong consistency if there is no other 
IC set that directly dominates it. 

Unfortunately, there exist games with multiple IC sets, none of which 
satisfy strong consistency. This possibility is illustrated by Fig. 1. Let 
A = (Al, AZ) and B = (B,, &). Suppose that A and B are both IC sets. 
A d B and B d A, so neither set is strong consistent. 

The diagram is only indicative of the problem, however, and does not 
constitute a concrete example. By restricting attention to pure strategies, 
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1 

P2 

--- 

---- ---------- 
J2 

7A, 
I 

FIG. 1. Failure of strong consistency. 

* 
Pl 

it is relatively easy to construct situations in which IC sets exist, but 
strong consistent sets do not. We provide the following example. 

EXAMPLE 1. Consider the bimatrix game depicted in Table II. Each 
player chooses either uI, bl, a~, or b2. In each cell, I’s payoff is listed 
first. Suppose that this game is repeated infinitely and that 6 = 8. We will 
characterize the IC sets and show that, for sufficiently large F, none of 
them satisfy strong consistency. For the moment, we restrict attention to 
pure strategies (mixed strategies are considered in turn). 

First, we argue that, for F sufficiently large, no off-diagonal element 
can occur along any pure strategy equilibrium path. This follows trivially 
from the observation that repeated play of b2 guarantees each player a 
payoff of 0. 

Now consider some perfect equilibrium. Suppose that (ai, ai) occurs 
along the equilibrium path. By deviating in the corresponding period, 
agent I can increase his payoff by 1. Thus, for this action pair to occur 
along the equilibrium path, it must be the case that 

1 25 (UC - uP)I9, 

or uc - up 2 9, where uc denotes I’s payoff in the continuation game, and 
up denotes his payoff on the punishment path. Note that the upper bound 
on uc is (1 - S)-* 8 = 9 (we know that (b2, ai) can never occur) and that 
this bound is achieved only by repeating (al, a,) in every period. Note also 
that up 2 0 (since I can play b2) and that this bound can be achieved only 
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TABLE II 

PAYOFF MATRIX FOR EXAMPLE 1 
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Player II 

bl a2 b2 

5 8, 2 -F, -F -F, -F -F, 2 

bl 
-F, -F 2, a -F. -F -F, 9 

Player I 
a2 -F, -F -F, -F 0, 3 -F, 0 

b2 9, -F 2, -F 0, -F 3, 0 

by repeating (u2, a~). Thus, if (a,, ai) euer occurs on the equilibrium path, 
it also occurs in all subsequent periods, and any deviation is punished by 
permanent reversion to (u2, u2). It is trivial to check that this is, in fact, an 
IC equilibrium. The corresponding IC set, denoted A, is simply ((9, $), 
(0, Y)}. A completely symmetric argument applies for (bl, bi). Let B 
denote the corresponding IC set, ((2, 9), (Vi 0)). Note that A d B d A. 

The only other candidates for perfect equilibrium paths either include 
one of these two IC sets (i.e., consist of a finite sequence of (u2, u2) and 
(b2, bz), followed by one of the equilibria described above) or simply 
consist of sequences of (u2, u2) and (b2 , bz). In the latter case, let C denote 
a corresponding IC set. It is immediate that either A d C or B d C. We 
conclude that, within the class of pure strategy equilibria, there does not 
exist P E II such that for all P’ E II, P’ does not dominate P. 

Consideration of mixed strategies does not alter this result. We will 
briefly sketch the argument. For sufficiently large F, all equilibria entail 
actions that are “almost” pure in every period. Indeed, the outcome must 
lie on the diagonal with probability close to 1 (again, this follows from the 
fact that bZ guarantees a payoff of 0). If we restrict attention to sequences 
of mixtures that are in the neighborhood of (~2, ~2) or (bz, b2), then the 
resulting outcomes will be dominated by the pure strategy equilibria dis- 
cussed above. Therefore, we need only consider equilibria that involve 
mixtures in the neighborhood of (a,, ai) (a symmetric argument applies to 
mixtures in the neighborhood of (bl , b,)). 

Using an argument analogous to that employed for pure strategy equi- 
libria, one can show the following: if the equilibrium prescribes a mixture 
around (al, al) in any period, it must prescribe a mixture in the neighbor- 
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hood of (al, a,) in every subsequent period. Moreover, I’s punishment 
must entail up close to 0. 

It is certainly possible to construct a punishment with this property by 
using mixtures in the neighborhood of (a2 , ~2). However, unless the pun- 
ishment also yields II a discounted payoff in excess of 9, it will be domi- 
nated by the pure strategy equilibrium, B. It follows that, for this equilib- 
rium to escape domination, the punishment must employ a mixture 
around (b, , bt). 

Since this punishment provides I with a discounted payoff near 0, and 
since the continuation payoff can never be below 0 in any period, I’s 
payoff in the first period cannot exceed some small number E > 0. Since 
the mixture is in the neighborhood of (b, , bt), I’s total gains from deviat- 
ing to b2 permanently are close to 2. To discourage this deviation, one 
would have to provide a punishment path along which I’s payoffs are 
roughly - 18. This is clearly infeasible, since I can guarantee himself 0. 

While this nonexistence result is discouraging, we would argue that, in 
any case, strong consistency is too strong. When players contemplate a 
joint deviation from one equilibrium to another, they must be convinced 
that the second equilibrium would actually prevail and that additional 
joint deviations would not subsequently occur. The mere fact that the 
second equilibrium is IC does not rule such deviations out. Note in partic- 
ular that, in Fig. 1 (and in the example), both IC sets directly dominate 
each other. Suppose that the players contemplate playing equilibrium 
strategies 9 associated with the IC set A. Let $I’ be equilibrium strategies 
associated with the IC set B. For some subgame, players could make a 
Pareto improvement by shifting to the appropriate subgame strategies in 
I/J’. If players regard $ ’ as a credible equilibrium, then they will not regard 
I$ as credible. Of course, the relationship between sets A and B is entirely 
symmetric, so if players regard I,!J as a credible equilibrium, they will not 
regard I/J’ as credible. Thus, there are two self-fulfilling sets of beliefs: 
either $ is credible and I/J’ is not, or I,!I’ is credible and I,!J is not. Accord- 
ingly, we would regard both $ and I/J’ as consistent. 

This discussion motivates a weaker requirement. We might call an IC 
set “consistent” if it directly dominates every IC set that directly domi- 
nates it. Unfortunately, even this definition is too strong to guarantee the 
existence of such sets. We provide the following example. 

EXAMPLE 2. Consider the three-player game depicted in Table III. 
Player I chooses row, player II chooses column, and player III chooses 
box. Each player’s action set is given by {a,, b, , cl, u2, bz, ~2). In each 
cell, I’s payoff is listed first, II’s second, and III’s third. Suppose we 
repeat this game infinitely and that 6 = Q. 

This game is essentially the three-player counterpart to Example 1. 
There are three equilibria of interest. In each, (x1, xl, XI) is repeated 
forever, and punishment of an opportunistic deviation results in perma- 
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nent reversion to (x2, x2, x2), for x = a, b, and c. Let A, B, and C denote 
the associated IC sets. Note that A d C d B d A. Arguing as in Example 1, 
one can show that all other IC sets are dominated by either A, B, or C. We 
leave the details to the reader. 

We would argue that, on theoretical grounds, even this weaker notion 
of consistency is too demanding. After all, it requires the candidate IC 
equilibrium to survive challenges from all other IC equilibria, while these 
other equilibria need only survive challenges from the candidate equilib- 
rium. To put it another way, if none of the other IC equilibria satisfy the 
external consistency requirement, then none of them are credible alterna- 
tives. The candidate equilibrium would then be externally consistent. 

It is helpful to study this problem in the context of Example 2. A, B, and 
C are IC sets, and the only dominance relations are A d B d C d A. Thus, 
the relationship between these three sets is completely symmetric, and 
none satisfies either notion of external consistency defined above. 

Given the symmetry of this configuration, one has only two options: 
reject A, B, and C as inconsistent, or accept them all as consistent. The 
first option leads to a paradox. If none of the IC equilibria are externally 
consistent, then there are no credible alternatives to any one of them, in 
which case all of them must be externally consistent. 

At first, it might appear that the second option (accepting all three as 
consistent) poses the same paradox in reverse. We resolve this problem 
as we did for the case depicted in Fig. 1: one need not take all three sets to 
be credible simultaneously. Suppose that we take the equilibrium con-e- 
sponding to one IC set to be credible. In our view, every other IC set that 
is dominated (either directly or indirectly) by the original set is thereby 
rendered not credible. Thus, if we take A to be credible, we rule out B and 
C through domination. Players would then never deviate from the equilib- 
rium corresponding to A in any subgame, as the desirable alternative (a 
subgame strategy from C) would not be considered viable. Likewise, the 
belief that either B or C is credible is also self-justifying. Accordingly, we 
would accept all three sets as consistent. Our theory is, however, silent 
on which of these sets would actually prevail. 

These considerations motivate a third notion of external consistency. 
To formalize this notion, we require some additional notation. We will say 
that P dominates P’ (written P d* P’) if there are finitely many elements 
ofII,sayPr,. . . ,Pm,suchthat 

P d P, d P2 d . * . d P, d P’. 

P does not dominate P’ if it is not true that P d” P’. 
The following criterion embodies our notion of external consistency. 

P E B is externally consistent (EC) if P is nonempty and 

(c.3) ForeveryP’EIIsuchthatP’d*P,Pd*P’. 
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TABLE III 
PAYOFF MATRIX FOR EXAMPLE 2 

Player II 

7 bl c1 a2 b2 c2 
a1 

P 
1 a1 8,8,2 -F, -F, -F -F, -F, -F -F,-F,-F -F,-F,-F -F,O,-F 

a bl 
-F, -F, -F -F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,O,-F 

Y 
e 

c1 
-F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,O,-F 

r 

I a2 
-F.-F.-F -F,-F,-F -F, -F, -F -F,-F,-F -F,-F,-F -F,O, -F 

b2 
-F,-F,-F -F,-F,-F -F, -F, -F -F,-F,-F -F,-F,-F -F,O, -F 

c2 
9,-F,-F 0,-F.-F 0,-F,-F O,-F,-F O,-F,-F 0,0,-F 

Player II 

bl 
=1 bl 5 a2 b2 =2 

P -F,-F, -F -F,-F,-F -F,-F,-F -F,-F,-F -F.-F,-F -F,O,-F 
1 a1 

a 
bl 

-F,-F,-F 2,8,8 -F, -F, -F -F,-F,-F -F,-F,-F -F,9, -F 

Y 
e 

c1 
-F,-F,-F -F,-F,-F -F,-F,-F -F, -F, -F -F,-F,-F -F,O, -F 

r 

a2 -F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,O, -F 
I 

b2 
-F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,-F.-F -F,O,-F 

c2 
O,-F,-F 2,-F,-F O,-F,-F O,-F,-F 0,-F,-F 0,0,-F 

=1 
bl 

Player II 

=1 a2 b2 =2 

P 7 
-F,-F,-F -F,-F,-F -F, -F, -F -F,-F,-F -F,-F,-F -F,O,-F 

1 
a 

bl 
-F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,O, -F 

Y 
e 

=1 
-F, -F, -F -F,-F,-F 8,2,8 -F,-F,-F -F,-F,-F -F,2,-F 

r 

a2 
-F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,-F.-F -F,O,-F 

I 

b2 
-F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,O, -F 

c2 
0,-F,-F 0,-F,-F O,-F,-F 0,-F,-F 0,-F,-F 0,0,-F 

If some P E E is both internally and externally consistent (i.e., if it 
satisfies (c.l), (c.2), and (c.3)), then we will say that it is consistent. We 
will often refer to the strategy profile that supports any element of a 
consistent set as a consistent equilibrium. 
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TABLE III-Continued 

Player II 

7 bl =1 a2 b2 =2 
a2 

P 
al 

-I?,-F, 2 -F,-F.-F -F,-F,-F -F.-F,-F -F,-F,-F -F,O,-F 
1 
a 

bl 
-F,-F,-F -F,-F.-F -F,-F.-F -F,-F,-F -F,-F,-F -F.O,-F 

Y 
e =1 

-F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,O,-F 
r 

a2 
-F,-F,-F -F,-F,-F -F.-F,-F 0.3.3 -F,-F,-F -F,O,-F 

I 

b2 
-F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,O,-F 

c2 O,-F,-F O,-F,-F 0,-F,-F O,-F,-F 0,-F,-F 0,0,-F 

Player II 

b2 
al bl 9 a2 b2 c2 

P 
al 

-F,-F,-F -F,-F,-F -F,-F,-F -F,-F.-F -F.-F,-F -F,O.-F 
1 
a 

bl 
-F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,O,-F 

Y 
e 

c1 
-F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,O,-F 

r 
-F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,-F,-F -F,O,-F 

I 
a2 

b2 
-F,-F,-F -F,-F,-F -F,-F.-F -F,-F,-F 3,0,3 -F,O,-F 

c2 
O,-F,-F 0,-F,-F O,-F.-F O,-F,-F O,-F,-F 0,0,-F 

al bl 

Player II 

c1 a2 b2 c2 
-2 

P 
1 

al 

a 
bl 

Y 
e 

c1 r 

I a2 

b2 

c2 

-F,-F,O -F,-F,O -F,-F,O -F.-F,0 -F,-F,O -F,O,O 

-F.-F,0 -F,-F,O -F,-F,O -F,-F,O -F,-F,O -F,O,O 

-F,-F,O -F,-F,O -F,-F,9 -F,-F,O -F,-F,O -F,O,O 

-F,-F,O -F,-F,O -F,-F,O -F,-F,O -F,-F,O -F,O,O 

-F,-F,O -F,-F,O -F,-F,O -F.-F,0 -F,-F,O -F,O,O 

O,-F,O O,-F,O O,-F,O O,-F,O O,-F,O 3,3,0 

It is worth noting that if P is consistent and p d* P, then p is also 
consistent (this is easily checked). If in particular P” d P’ d P and P is 
consistent, then P” is also consistent (as is P’). This justifies our practice 
of describing P’ as not credible on the grounds that P” is a credible 
alternative. 
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4.2. Existence of a Consistent Set 

Our main result is 

THEOREM 1. There exists a consistent set. 

Proof of the Theorem. For the proof, we need some additional nota- 
tion and a number of lemmas. 

Consider any P E II, and p E P. Pick some PE strategy profile $ which 
fulfills condition (c. 1) for p. We will say that Q = a)($) is an action profile 
associated with p. Let (Y = (ao, al, a2, . . .). 

Define a payoff sequence associated with p, (pl)z, by 

where (ao, al, . . .) is an action profile associated with p. 
Finally, h defined from (Y is an associated history. 
Next, we define simple strategy profiles (Abreu, 1988). Consider an 

(n + l)-tuple of action profiles (a(O), . . . , a(n)). Informally, a simple 
strategy profile $(o(O), . . . , a(n)) requires 

(a) the playing of a(0) until some player deviates singly from a(O) by 
choosing a different action in some period, 

(b) for any j E N, the playing of a(j) should the jth player deviate 
singly from a(i), an ongoing previously specified action profile; continue 
with a(i) if no deviations from a(i) occur or if two or more players deviate 
simultaneously.3 

LEMMA 1. Let C C 8 be the set of all nonempty closed subsets of E. 
Then, equipped with the Hausdorff metric, C is compact.4 

Proof. Note first that E is compact. A direct proof is easy (using (A. 1) 
and (A.2)) though the reader may consult Abreu (1988). The compactness 
of C in the Hausdorff metric is a well-known consequence (see, e.g., 
Hildenbrand , 1974). Q.E.D. 

Define n C II as the set of all IC sets that are closed (in the Euclidean 
metric). !I isnonempty, by (A.3). Obviously, n C C. Choose, for each 
P E n and i E N, 

p (i) E arg min {pi 1 p E P}. (4.5) 

3 This informal definition is taken directly from Abreu (1988). A formal definition is easy to 
construct, though tedious to write down. The interested reader may consult Abreu (1988). 

4 See, e.g., Hildenbrand (1974) for a definition of the Hausdorff metric. 
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Of course, p(i) may not be unique but this does not matter. Denote by 
cr(i) an action sequence associated with p(i), for i E N. 

LEMMA 2. Let P E fT, p E P and let (Y be an action projile associated 
with p. Then the simple strategy profile $((Y, eu(l), . . . , a(n)) is a PE. 

Proof. For notational ease, let p(O) = p and (Y(O) = (Y. Now consider 
$(4x m, * * * 7 a(n)). By Abreu (1988, Proposition I), $(a(O), . . . , 
(Y(n)) is a PE iff for all i = 0, . . . , rz, $(cx(i), a(l), . . . , cu(n)) is a Nash 
equilibrium. 

Define, for any i and aei E XjEN Aj, 
j#i 

Di(a-i) E y&T ?Ti(Ui, U-i). (4.6) 
I 1 

This is the maximal one-shot payoff possible for i when others choose 
the tuple of actions a-i. Now, for each k = 0, . . . , n, a(k) is an action 
sequence associated with p(k). So for each t and each i, there exists 
p(t, i) E P such that 

2 b;-‘mi(at(k)) 2 Di(a,,-i(k)) + 6ipi(t, i) (4.7) 

1 Di(at,-i(k)) + &pi(i). 

The first inequality in (4.7) follows from the definition of an associated 
action sequence (and also using (c.l)), and the second follows from the 
definition of p(i), i E N. 

But (4.7) immediately implies that for each i, $(a(i), a(l), . . . , a(n)) is 
a Nash equilibrium. So Jl(a(O), a(l), . . . , a(n)) is a PE. Q.E.D. 

LEMMA 3. !i is compact. 

Proof. Because Tf C C, it suffices to prove (given Lemma 1) that ii is 
closed. To this end, let Pq be a sequence in n with Pq + P (in the 
Hausdorff metric). We are to show that P E II’. Clearly, because C is 
compact, P is closed. Moreover, it is easy to check that P satisfies (c.2). It 
remains to prove that P must satisfy (c. 1). So fix any p E P. We must find 
a PE 9 satisfying the conditions in (c.1). 

For each Pq, we may choose pq(i), i E N, as in (4.5) above, and their 
associated action profiles a”(i), i E N. 

Now, given p E P, we have (by Hausdorff convergence) a sequence 
(pq), with pq E Pq for all 9 and p 4 --, p. For each q, let (~4 be an action 
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profile associated with pq. Next, use a diagonal argument to extract a 
subsequence of q (call it k) such that 

Pk(i) ---, p”(i) E P (4.8) 

ak(i) 4 a*(i) (4.9) 

ak-, ff, (4.10) 

where the convergence in (4.9) and (4.10) is in the sense of pointwise 
convergence of sequences (we are using (A. 1) here). The membership of 
the limit point p *(i) in P (see (4.8)) is a consequence of Hausdortf conver- 
gence . 

Now, by (4.9) and (4.10) we have for each i, by using the continuity of 
discounted payoffs in the topology of pointwise convergence on action 
sequences (see (A.2) and the remarks in Section 2.2): 

= p?(i) E P 

and similarly 

(4.12) 

=pr E P. 

The L.H.S.‘s of (4.11) and (4.12) are the tth terms of the associated payoff 
sequences of pk(i) and pk, respectively. And the R.H.S.‘s of (4.11) and 
(4.12) are the tth terms of the payoff sequences associated with p *(i> and 
p, respectively. By Hausdorff convergence and (c. 1) applied to {p k}, p F(i) 
and p, belong to P for all r. 

We are therefore done if we can show that the simple strategy profile 
Jl(w a”(l), * * * 9 a*(n)) is a PE. Observe that by Lemma 2, we have for 
each k, r andj, because $(cyk, cyk(l), . . . , ak(n)) is a PE, 

(4.13) 
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and additionally for each i E N, 

C dj’-‘rj(a!(i)) 2 Dj(U!,-j(i)) + 6jpj(j). 
,=t 

(4.14) 

Passing to the limit as k + 03 in (4.13) and (4.14), using the continuity of 
the L.H.S. in pointwise convergence and the continuity of Oj(*) for all 
j (the “maximum theorem,” applying (A.2)), we have verified that 
$(a, a*(l), * * * , a*(n)) is a PE (Abreu, 1988, Proposition 1). This com- 
pletes the proof. Q.E.D. 

LEMMA 4. For each P E u, define L(P) = {P’ E ni( P d P’}. Then L(P) 
is open relative to TI. 

Proof. Pick P E fi, and let P’ E L(P). In particular, there is p E P, 
p’ E P’ such that p % p ‘. Now there is E > 0 such that for all q E B,(p ‘) 
(the (Euclidean) open ball of radius E around p ‘), we have p % q. Now, for 
this E, construct an open ball of (Hausdorff) distance E, B,(P’), around 
P’. It is immediate that if P” E n and P” E B,(P’), P d P”. This estab- 
lishes the lemma. Q.E.D. 

LEMMA 5. Let P E II. Then closure(P) E I% 

Proof. Let p = closure(P), and define p(i), i E N by (4.5). It is clear 
that p satisfies (c.2). We are to show that F satisfies (c. 1). Pick p E p. If 
p E P, we are done. If not, there is a sequence pk in P such that pk --, p. 

Now consider p(i), i E N. If p(i) E P, let cx(i) be an associated action 
sequences. If for some i, p(i) & P, let pm in P be chosen, pm * p(i). 
Without loss of generality choose the sequence such that a corresponding 
sequence of associated action sequences, (am), converges (pointwise) 
(this can be done by noting that S is compact and using a diagonal argu- 
ment). Call the pointwise limit cr(i). 

Return, now, top and the sequence p k that converges to it. Once again, 
choose the sequence so that (ak>, the corresponding sequence of action 
sequences, converges to some (Y. In a manner analogous to Lemma 2, it is 
easy to check that the simple strategy profile I/&~, a(l), . . . , a(n)) is a 
PE for each k. One can then use a limiting argument (as in (4.13) and 
(4.14)) to conclude that $((w, a(l), . . . , a(n)) is a PE. 

We are now home. By using arguments similar to that following (4.11) 
and (4.12) of Lemma 3, it is easy to verify that given p, $(a, a(l), . . . , 
a(n)) is a PE that does the job required by (c.1). Q.E.D. 

LEMMA 6. Suppose P, P’ E II. Zf P dominates P’, then closure (P) 
dominates P’. Zf P does not dominate P’, then P does not dominate 
closure (P ‘) . 
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Proof. Obvious. Q.E.D. 

Proof of the Theorem. We shall show that a consistent set may be 
found in n itself. 

Suppose not. Then for each P E n, there is P” E Il such that (a) P” d* P 
and (b) it is not true that P d* P”. By Lemmas 5 and 6, it must be the case 
that there is P’ E fi such that (a) P’ d* P and (b) it is not true that P d* P’. 

It follows, in particular, that 

U L(P) = i7. (4.15) 
PEii 

By Lemmas 3 and 4, and using the property of compactness, there are 
PI, . . * , P, E ?I such that 

m 
U L(Pj) = IT. 
.i= I 

(4.16) 

Pick P, . By our supposition, there is P [ E n such that P ; d* PI and it is 
not true that PI d* P 1. But P ; E L(Pi) for some i # 1 (otherwise we have a 
contradiction). Now consider Pi. Again, there is PI E !I such that PI 
dominates Pi but not vice versa. Continuing in this way, we get an infinite 
sequence of the form 

. . * P; d* Pk d Pf d* Pi d Pi d” PI. 

But as there are only finitely many Pj’s, there must be a repetition of at 
least one index. This is easily seen to yield a contradiction. Q.E.D. 

5. ALTERNATIVE NOTIONS OF CONSISTENCY IN INFINITELY 
REPEATED GAMES 

In this section, we discuss some conceptual problems with the notion of 
consistency described in Section 4. We then propose and analyze two 
alternative criterion-minimal consistency and simple consistency-that 
seem conceptually superior and perform better in the context of particular 
examples. 

5.1. Motivation for Alternative Refinements 

The central problem with consistency stems from the following obser- 
vation: if P and P’ are both internally consistent, and if neither P d P’ or 
P’ d P, then P U P’ is also internally consistent. The fact that two 
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TABLE IV 
PAYOFF MATRIX FOR EXAMPLE 3 

315 

9 

bl 
Player I 

a2 

b2 

c 

al bl 

Player II 

a2 b2 c 

16, 1 -F, -F -F, -F -F, -F -F, 1 

-F, -F 3,8 + c -F, -F -F, -F -F, 9(1+ ; 

-F, -F -F, -F 0, a -F, -F -F, 0 

-F, -F -F, -F -F. -F 4, cl -F, 0 

18, -F 3, -F 0, -F 0, -F 2, 4 

unrelated sets can be joined together in this way causes us to retain some 
undesirable equilibria, and to reject some attractive ones. We illustrate 
these points via the following examples. 

EXAMPLE 3. Consider the bimatrix game depicted in Table IV. Sup- 
pose that we repeat this game infinitely and that 6 = Q. This is essentially 
an adaptation of Example 1. We have changed the numerical payoffs, and 
we have added a fifth choice, labeled c. Note that (c, c) is a pure strategy 
equilibrium for the static game. 

For small 1~1, there are three equilibria of interest. The first two consist 
of repeating (xi, xi) forever and punishing opportunistic deviations by 
permanently reverting to (x2, x2), x = a, 6. We will refer to the corre- 
sponding IC sets as A and B. The third equilibrium of interest consists of 
repeating (c, c) forever. We will refer to the corresponding IC set as C. 
Note that A U C is also IC.5 Henceforth, we will restrict attention to these 
four sets; arguing as in Example 1, one can show that this involves no loss 
of generality. 

We illustrate the sets A, B, and C for E = 0 in Fig. 2 (we depict 
normalized payoffs and adopt the convention that the point Xi represents 
the payoff vector associated with repeating the action pair (xi, xi), 

s In fact, one could actually “mix” the equilibria associated with points in A and C. 
Specifically, choose any point in A, and, for the associated equilibrium, replace continuation 
strategies following any simultaneous deviation by two or more players with the equilibrium 
corresponding to C. 
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P2 

8 

FIG. 2. IC sets for Example 3. 

X = A, B, i = 1, 2, and similarly for the point C). Changing E simply 
moves the point B1 up or down. 

Suppose initially that E < 0. We have A d B d C, and A d B d (A U C). 
Moreover, A is not dominated by any other IC set. Thus, only A is 
consistent. 

Now suppose E > 0. As before, A d B d C. However, we now have 
B d A as well. Thus, the improvement in B has rendered it externally 
consistent, as well as internally consistent. However, we also have 
(A U C) d B d A. Thus, the set A U C is now externally consistent as well. 
Our refinement therefore implies that repetitions of (c, c) can occur if and 
only if E > 0. 

This conclusion strikes us as odd. While raising E certainly makes B 
more attractive, it does nothing for C. If anything, C becomes less desir- 
able. When E > 0, C survives, but not on its own merits. Rather, it is 
saved by an irrelevant association with A via A U C. 

One might argue for inclusion of C on the following grounds. C is 
dominated only by B, and B is dominated by A. Thus, one can without 
inconsistency maintain the belief that both A and C are credible, while B is 
not. While this argument has some merit, it applies with equal force 
regardless of whether E is greater or less than 0. It seems that one ought to 
either reject C in both cases or accept it in both cases. The refinement 
developed in this section always rules out C. One could always avoid 
ruling out C by adopting the second notion of external consistency dis- 
cussed in Section 4. Unfortunately, for that notion, existence is problem- 
atic as we have already seen. 



COLLECTIVE DYNAMIC CONSISTENCY 317 

EXAMPLE 4. Consider the three-player game depicted in Table V. 
Players I and II chose from the set {a,, bi , ~2, b2} (rows and columns, 
respectively), while player III chose from {z, , z2}. Suppose that we repeat 
this game infinitely and that 6 = Q. For simplicity, we confine our discus- 
sion to pure strategies. 

Once again, this is an adaptation of Example 1. Indeed, if III chooses 
zl, I and II’s payoffs are exactly as in Example 1, and III always receives 
0. On the other hand, if III chooses z2, matters are quite different. Note 
that the action triplet (al, bl , ~2) yields payoffs of (U, V, W). We will 
consider two different sets of values for these variables. 

TABLEV 
PAYOFF MATRIX FOR EXAMPLE 4 

Player II 

9 bl a2 b2 

=1 

=1 8.2,0 -F, -F,O -F, -F,O -F,Z,O 

bl 
-F,-F,O 2,8,0 -F, -F,O -F,9,0 

Player I 

a2 
-F. -F,O -F. -F.O 0,3,0 -F,O,O 

b2 9,-F.0 2,-F,O 0, -F,O 3,0,0 

Player II 

a1 bl a2 b2 

z2 

a1 -F,O,-F u.v,w -F,-F.-F -F,-F,-F 

bl 1,1,5 O,-F.-F O,-F,-F O,-F,-F 

Player I 

a2 
-F,O, -F -F,-F,-F -F,-F,-F -F.-F, -F 

b2 -F,O, -F -F,-F,-F -F,-F.-F -F,-F,-F 
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The first case to consider is U = V = W = -F. There are three equilib- 
ria of interest. The first two consist of repeating (x1, x1, zi) forever 
and punishing opportunistic deviations by reverting permanently to 
(x2, x2, z,), x = a, b. We will refer to the corresponding IC sets as A 
and B. The third equilibrium consists of repeating (bl , al, z2) forever. We 
will refer to this IC set as C. 

Note that we have A d B d A. Moreover, there is no dominance relation- 
ship between C and either A or B. Accordingly, A, B, and C are all 
consistent (incidentally, so are A U C and B U C). 

The second case to consider is U = V = 1 - E, W = 5 - E, for some 
small E > 0. There is now a fourth equilibrium of interest, which consists 
of repeating (a,, bl, z2) forever. Let D denote the corresponding IC set. 
Note that C d D, and it is not the case that D d C. Moreover, there is no 
dominance relationship between D and either A or B. 

One would think that the addition of the “inferior” set D should have 
no impact on the attractiveness of A or B. Unfortunately, this is not the 
case. Note that A U D and B U D are also IC. Moreover, C d (A U D) d B, 
C d (B U D) d A, and neither A d* C or B d* C. Thus, in this second case, 
only C is consistent (even A U C and B U C are ruled out). Both A and B 
have been defeated via an apparently irrelevant association with D. 

5.2. Minimal Consistency 

We have seen in Examples 3 and 4 that our notion of consistency can 
rule out some desirable equilibria and fail to rule out undesirable ones. In 
the cases considered, the problem arises because the union of unrelated 
IC sets is also IC, as long as there is no dominance relationship between 
them. One possible solution is to demand that each candidate set stand or 
fall on the basis of its own merits, rather than on the basis of incidental 
associations with more or less meritorious sets. We pursue this possibility 
in the remainder of the current subsection. 

We define the collection of minimal internally consistent (MIC) sets, 
IIm, as follows. Let C denote strict inclusion. Consider P, P’ E II. Say 
that P is properly included in P’ if closure(P) C closure(P’). A set P E II 
is minimal internally consistent if there is no collection of IC sets {Pa} 
such that P, is properly included-in P, for each (Y, and U, closure(P,J = 
closure(P). Let nrn denote the set of minimal IC sets that are closed. 
Again, by (A.3), I?“’ is clearly nonempty. For P, P’ E IIm, we will say that 
P m-dominates P’ (written P dm P’) if there are finitely many elements of 
IIm, say PI , . . . , P, , such that 
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P does not m-dominate P’ if it is not true that P d” P’. We now replace 
(c.3) with the following requirement. P E E is minimal externally consis- 
tent (MEC) if P is nonempty and 

(c.4) for every P’ E Hm such that P’ d” P, P d” P’. 

If some P E B is both MIC and MEC, then we will say that it is a minimal 
consistent (MC) set. 

Note that this refinement produces the desired results in the preceding 
examples. In Example 3, A is MC for E < 0, and both A and B are MC for 
E > 0. In Example 4, A, B, and C are all MC, even in the presence of the 
IC set D. 

Our main result is 

THEOREM 2. There exists a minimal consistent set. 

We require three results in addition to Lemmas 1 through 5. 

LEMMA 7. Let P E Ilm. Then closure(P) E nm. 

Proof. By Lemma 5, closure(P) is IC. Observing that closure(P) = 
closure(closure(P)), we are done. Q.E.D. 

LEMMA 8. Suppose P, P’ E IIm. ZfP dm P’, then closure(P) dm P’. Zf 
P does not m-dominate P’, then P does not m-dominate closure(P’). 

Proof. Obvious. Q.E.D. 

LEMMA 9. Let P E n, andp E P. Then there exists P* E nrn such that 
p E p*. 

Proof. Define II(p) = {P’ E n/p E P’}. Then II(p) # 0, because 
P E II(p). Also, II(p) is a closed subset (in the Hausdorff metric) of n, 
and so by Lemma 3, U(p) is compact. Consider, now, any chain in II(p), 
that is, any subset O of II(p) totally ordered by 2. Define P = flFEOP’. 
Because this is a nested intersection of nonempty compact sets, p is 
nonempty and compact. Moreover, P C P’ for all P’ E O. Also, note that 
for each integer q I 1, there is Pq E O such that h(P, Pq) < l/q where h is 
the Hausdorff distance). Therefore Pq + P, and so because II(p) is com- 
pact, F E II(p). 

We have therefore shown that each totally ordered (by 1) subset of 
U(p) has a lower bound in II(p). By Zorn’s Lemma, there is P* E II(p) 
which is aminimal element under 2; i.e., for no P’ E II(p) does P’ c P* 
hold. 

We claim that P * E nm. Suppose not. Then closure(P*) = P * = U, 
closure(PJ for some collection {P,}, with P, IC and properly included in 
P* for all E Because p E P*, p E closure(P,) = p, for some (Y. By 
Lemma 5, P, E II, and by proper inclusion, Pa C P *, which contradicts 
the defining property of P *. This proves the lemma. Q.E.D. 
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Proof of the Theorem: We shall show that a minimal consistent set 
can be found in nrn itself. 

Suppose that the theorem is false. Then for each P E iI”, there exists 
P” E II” such that (a) P” d” P and (b) not P dm P”. By Lemmas 7 and 8, 
there exists P’ E nrn such that (a) P’ dm P and (b) not P d” P’. 

By Lemma 9, if we have P, P’ E !I and P’ d P, then there exists 
P* E nrn such that P* d P. Thus, under our supposition 

Using Lemmas 3 and 
P,,, E nrn such that 

U L(P) = il. 
PEiirn 

4, it then follows that there exists PI, . . . , 

m 
U L(Pj) = i?. j=l 

pick PI, and recall that, by construction, PI E nm. Under our supposi- 
tion, there exists Pi E nm such that PI d” PI, but not PI dm Pi. We know 
that Pi E L(Pi) for some i # 1 (otherwise we have an immediate contra- 
diction). Now consider P;, and recall that Pi E nfm. Again, there is some 
Pi E nrn such that P[d” Pi, but not Pi dm Pi. Continuing this way, we get 
an infinite sequence of the form 

. ..P.d”PkdPi’dmPidPidmPI, 

where Pj, Pj’ E nm for allj. But there are finitely many Pj’s, so there must 
be repetition of at least one index, 1. For 1, Pid” 9, and PI d” Pi, which is 
a contradiction. Q.E.D. 

5.3. Simple Consistency 

The spirit of minimal consistency is that one wishes to delete irrelevant 
portions of IC sets, thereby reducing them to “essential units,” before 
considering dominance relationships. Intuitively, an IC set can be divided 
up into several distinct pieces wherever it includes payoff vectors from 
several different perfect equilibria. This observation suggests an alterna- 
tive approach: require each IC set to coincide with the set of payoffs 
achieved (in all subgames) by a single perfect equilibrium. 

Unfortunately, this approach is problematic. Even with the require- 
ment described above, internally consistent sets that correspond to differ- 
ent equilibria can be combined by modifying equilibrium strategies appro- 
priately (see footnote 5 for an example). 
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To resolve this difficulty, we propose that attention be restricted to 
simple equilibria, which are perfect equilibria that involve simple strategy 
profiles (see Abreu, 1988). This involves no loss of strategic richness, in 
the sense that every equilibrium payoff can be supported as a simple 
equilibrium. 

Define a simple internally consistent (SIC) set to be an IC set which 
corresponds to the payoffs achieved in all subgames for some simple 
equilibrium. Let IIs c II be the set of all simple internally consistent sets. 
For P, P’ E IIs, we define s-dominance (d”) as follows: P d” P’ if there are 
finitely many elements of IIs, say PI, . . . , P,, such that 

PdPrdPzd..*dP,dP’. 

We now replace (c.3) with the following requirement. P E H is simple 
externally consistent (SEC) if P is nonempty and 

(c.5) for every P’ E IIs such that P’ d” P, P d” P’. 

If some P E E is both SIC and SEC, then we will say that it is a simple 
consistent (SC) set. Note that simple consistency produces the desired 
results in Examples 3 and 4. 

Following the lines of Theorem 2 and using a few additional arguments, 
one can prove (details- omitted) 

THEOREM 3. A simple consistent set exists. 

One practical advantage of simple consistency is that it allows us to 
fully identify each payoff set satisfying collective dynamic consistency 
with a single equilibrium. In general, this interpretation does not apply 
either to consistent sets or to minimal consistent sets, except in the for- 
malistic sense mentioned earlier (see footnote 5). We may therefore speak 
of a simple consistent equilibrium, rather than of a set of equilibrium 
payoffs. 

6. THE INFINITELY REPEATED PRISONERS'DILEMMA 

In this section, we apply our refinements to a familiar problem: the 
repeated prisoners’ dilemma. Recent work by van Damme (1989) estab- 
lishes that in this particular context, when players are sufficiently patient, 
any feasible and individually rational outcome can be sustained by means 
of an internally consistent equilibrium. Here, we demand external consis- 
tency, as well as internal consistency. Our object is to show that, for a 
robust set of parameter values, our refinements single out equilibria with 
interesting properties. Specifically, there is a range of discount factors 
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TABLE VI 
THE PRISONERS’ DILEMMA 

Player II 

Player I 

all a,a d,c 

a12 
l-----l 

c,d b,b 

strictly below unity for which all consistent equilibria are nonstationary 
(despite the fact that stationary perfect equilibria do exist), and only 
partially cooperative (hence, they are not strong perfect). 

The static prisoners’ dilemma is depicted in Table VI. As usual, we 
assume that c > a > b > d > 0. Let 

pl = (b - d)(c - d)-‘, 

~2 = min{(c - a)(a - &I, (c - a)(2c - a - b)-l}. 

Note that y2 < 1. We will consider the class of games satisfying the 
following two inequalities: 

c-a<a-d 6 1) 

and 

p1 < rLL2. (6.2) 

These inequalities are satisfied for a nonempty and open set of parame- 
ters.6 Throughout this discussion, we also restrict attention to pure strat- 
egy equilibria. 

6 For example, take a = 6, b = 1, c = 10, and d = 0. The inequalities continue to be 
satisfied for an open ball around these parameter values. 
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When ,ul < 6 < p2, it is possible to show that all consistent equilibria 
are nonstationary. We will provide a brief outline of the argument, leaving 
details to the reader. 

First, one shows that there exists an IC equilibrium which entails alter- 
nation between the off-diagonal corners and which “bootstraps” itself (in 
the sense that one punishes defections by restarting the equilibrium from 
the comer that is unfavorable to the defector). The second step consists of 
showing that there does not exist a perfect equilibria for which (all, u2,) 
occurs in any period (the incentive to deviate, c - a, exceeds the present 
value of any feasible punishment). Third, one shows that there is no IC set 
that dominates the alternating equilibrium described above. Having estab- 
lished that (all, ~21) can never occur, this is simply a matter of demon- 
strating that convex combinations of the payoffs associated with the re- 
maining three outcomes cannot Pareto dominate the payoffs associated 
with the alternating equilibrium. It follows that the alternating equilibrium 
satisfies strong consistency. This equilibrium is therefore both consistent 
and minimal consistent. The fourth step is to note that the repeated static 
solution is dominated by the alternating solution. Since the latter is strong 
consistent, the former cannot be consistent. Finally, one notes that infi- 
nite repetition of (a r2, ~21) or (all, ~2) on the equilibrium path would not 
be individually rational. Taken together, the second, fourth, and fifth 
steps rule out all stationary possibilities. 

The nonstationary, consistent equilibrium identified in the preceding 
paragraph entails alternation between the two off-diagonal corners. It is 
also straightforward to show that this outcome is not Pareto efficient- 
one can in general create a Pareto improvement by replacing the outcome 
in some appropriately chosen periods by (all, ~2~). Thus, the consistent 
equilibrium is not strong perfect. 

7. RELATED WORKON INFINITELY REPEATED GAMES 

We have already mentioned related papers on finitely repeated games in 
Section 3. For infinitely repeated games, several competing notions of 
collective dynamic consistency, or immunity to renegotiation, have been 
proposed. These appear in papers by Rubinstein (1979), Pearce (1987), 
Asheim (1989), and Farrell and Maskin (1989). 

Rubinstein’s (1979) requirement of strong perfection is excessive in two 
respects. First, Pareto efficiency in the space of all feasible outcomes 
should not be imposed as a precondition for collective dynamic consis- 
tency. Second, strong perfection requires that an equilibrium survive all 
conceivable deviations, most of which are unreasonable. This is unsatis- 
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factory at a conceptual level. Moreover, given the stringent requirements, 
it is hardly surprising that these equilibria often fail to exist. 

Pearce (1987) also provides a notion of collective dynamic consistency 
that differs fundamentally from that considered here. In particular, he 
does not require internal consistency. He argues that, when attempting to 
renegotiate, players should compare their current payoffs to the worst 
payoffs in any subgame of the proposed alternative. In essence, Pearce 
insists that behavior must be history dependent-once the game has 
started, players can never collectively declare that past losses are sunk 
costs and start play over as if it was period 0. The lack of internal consis- 
tency implies that at some dates, players will not renegotiate to a Pareto 
superior equilibrium even if one is available within all the constraints. 
Pearce’s work is therefore based on different conceptual premises. 

Asheim (1989) develops a theory of renegotiation in repeated games 
using Greenberg’s (1987) theory of social situations and compares his 
developments to our work at several points. He argues that his approach 
identifies a specific refinement, which he labels Pareto perfect Nash equi- 
librium. Moreover, he points out that this concept differs from the refine- 
ments proposed here. Specifically, he explores a different method of es- 
tablishing external consistency. In addition, he regards time stationarity 
of the equilibrium set as an unnecessary imposition, even in a (stationary) 
repeated game. 

The current paper is most closely related to the work of Farrell and 
Maskin (1989). Their weak renegotiation proof (WRP) concept coincides 
exactly with our requirement of consistency.7 Strong renegotiation proof- 
ness (SRP) coincides with strong consistency. Their notion of relative 
strong renegotiation proofness (RSRP) is similar in some respects to con- 
sistency, but yields different results in specific games. 

This final remark requires some explanation. One constructs an RSRP 
set as follows. Consider sets formed by taking the union of WRP sets. 
Restrict attention to sets that are maximal within the class of sets having 
the property that some WRP set lies entirely on the efficient boundary. 
Any WRP set lying entirely on the boundary of such a maximal set is 
called an RSRP set. 

It is instructive to compare the performance of RSRP, consistency, and 
minimal consistency in specific games. For Example 3, A is the only 
RSRP set when E < 0, but A, B, and C are RSRP when E > 0. This 
outcome is similar to that obtained by imposing consistency. The one 

7 The notion of an IC/WRP equilibrium was developed simultaneously and independently 
by ourselves and by Joseph Farrell, although Farrell’s original note on renegotiation (Far- 
rell, 1983) predates the first draft of this paper (Bemheim and Ray, 1985). 
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distinction is that A U C, rather than C alone, is consistent when E > 0. 
This distinction underscores the dependence of C on A. Note that both 
concepts have the undesirable property that C is excluded if and only if 
E < 0, whereas minimal consistency and simple consistency exclude C in 
all cases. 

For Example 4, C is the only RSRP set both in case 1 and in case 2. In 
contrast, A, B, and C are all consistent in case 1, while only C is consis- 
tent in case 2. Recall also that A, B, and C are all minimal consistent and 
simple consistent in both cases. 

These examples illustrate the fact that there is no hierarchical relation- 
ship between consistency, RSRP and either MC or SC-none is a refine- 
ment of another. The relationship between MC and SC remains an open 
question. 
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