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In this online appendix, we prove Proposition 6 when there is no idiosyncratic noise (i.e., ✏i(j)) =

0 for all i and j). All notation has the same meaning as in the main text. We consider two cases:

CASE 1. µ contains at least two nonzero sub-vectors (µi 6= 0 for at least two indices i). For this

case, it is without loss of generality to assume that Var(y) is positive definite. Otherwise, re-write

µ0
ty as µ̄0

tȳ (µ̄t 6= 0), where ȳ is a maximal linearly independent subset of y, and apply the same

technique by substituting µ0
ty with µ̄0

tȳ/|µ̄t|, and ◆t with ◆t/|µ̄t|.

All the proofs are the same as that in the proof for the case that there is idiosyncratic noise in

the main text except for a separate argument to show that (A.23) in the main text cannot hold,

reproduced here for convenience as:

Var(µ) Var(µ0
iyi)� Cov(µ,µ0

iyi)
2 = 0, (1)

with zi replaced by yi in the absence of idiosyncratic noise. Suppose, on the contrary, that (1)

holds for every i. Because µ0y 6= 0 and µ contains two nonzero sub-vectors, it follows from (1)

that for every i,
P

j µ
0
jyj = µ0

iyi with probability one. That means that for every i, µ0
iyi = 0 with

probability one. But this is impossible, given µk 6= 0 for some k and the assumption of positive

definiteness of Var(yk) in Assumption 1.

CASE 2. µ contains only one nonzero sub-vector.

Without loss of generality, we assume µ1 6= 0 and µi = 0 for i 6= 1. Because Qt = ⇡t/�t,

Qt/|Qt| ! µ. Observe that

Cov(Qt, ✓)

Var(Qt) + Vart(u)
Cov(Qt,yi) =

Cov(Qt/|Qt|, ✓)
Var(Qt/|Qt|) + Vart(u)/|Qt|2

Cov(Qt/|Qt|,yi). (2)

Following the same arguments in the proof of Claim 1 in the main text, we have Vart(u)/|Qt|2 !
0. Similar to the proof in Proposition 4, we know that {Qt} is bounded. For easy reference, we



repeat equations (14) and (15) from the main text below:

Qi =

h
Var(zi)� Cov(Q,yi)Cov(Q,yi)0

Var(Q)+Var(u)

i�1 h
Cov(✓,yi)� Cov(Q,✓)

Var(Q)+Var(u) Cov(Q,yi)
i

�i VarQ(✓|i)
, (3)

� =
1 +

Pn
i=1

Cov(Q,✓)�Cov(✓,yi)0 Var
�1(zi)Cov(Q,yi)

�i Var(✓|i)[Var(Q)+Var(u)�Cov(Q,yi)0 Var
�1(zi)Cov(Q,yi)]Pn

i=1
1

�i Var(✓|i)
. (4)

Because Qit ! 0 for each i 6= 1 (and with (2) and Vart(u)/|Qt|2 ! 0 in mind), we can pass to

the limit in (3) to obtain

Var(µ0
1y1)Cov(✓,yi) = Cov(✓,µ0

1y1)Cov(µ0
1y1,yi) (5)

for each i = 2, . . . , n. But (5) also holds for i = 1. To see this, multiply both sides of (3) by the

positive definite matrix Var(y1)� Cov(Qt,y1)Cov(Qt,y1)0

Var(Qt)+Var(u) , then by Q0
1t, and finally pass to the limit as

t ! 1. Then:

Q0
1t


Var(y1)�

Cov(Qt,y1)Cov(Qt,y1)0

Var(Qt) + Vart(u)

�
Q1t =

Q0
1t

h
Cov(✓,y1)� Cov(Qt,✓)

Var(Qt)+Vart(u)
Cov(Qt,y1)

i

�1 Vart(✓|1)

= |Qt|
 Q0

1t
|Qt|

h
Cov(✓,y1)� Cov(Qt/|Qt|,✓)

Var(Qt/|Qt|)+Vart(u)/|Qt|2 Cov(Qt/|Qt|,y1)
i

�1 Vart(✓|1)

!
! 0,

where the second equality follows from (2) and the limit follows from the boundedness of {Qt},

Q1t/|Qt| ! µ1, Qt/|Qt| ! µ (µi = 0 for every i � 2), and Vart(u)/|Qt|2 ! 0. So


Var(y1)�
Cov(Qt,y1)Cov(Qt,y1)0

Var(Qt) + Vart(u)

�
Q1t ! 0. (6)

Combining (2), (3) and (6) along with Vart(u)/|Qt|2 ! 0, we must conclude that

Cov(✓,y1)�
Cov(µ0

1y1, ✓)

Var(µ0
1y1)

Cov(µ0
1y1,y1) = 0 (7)

so that (5) also holds for i = 1.
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Now, (7) along with Cov(✓,y1) 6= 0
⇤ also implies that

µ1 =
Var

�1(y1)Cov(✓,y1)

|Var
�1(y1)Cov(✓,y1)|

(8)

and

Cov(✓,µ0
1y1)

Var(µ0
1y1)

= |Var
�1(y1)Cov(✓,y1)|. (9)

Multiplying both sides of (5) by µit and adding over all i, we have

Var(µ0
1y1) Cov(µt, ✓)� Cov(✓,µ0

1y1) Cov(µt,µ
0
1y1) = 0 (10)

for every t, while for i = 2, . . . , n,

Cov(µt, ✓)� Cov(✓,yi)
0
Var

�1(yi)Cov(µt,yi)

! Cov(✓,µ0
1y1)� Cov(✓,yi)

0
Var

�1(yi)Cov(µ0
1y1,yi)

=
Cov(✓,µ0

1y1)

Var(µ0
1y1)

⇥
Var(µ0

1y1)� Cov(µ0
1y1,yi)

0
Var

�1(yi)Cov(µ0
1y1,yi)

⇤
, (11)

where the limit follows from the fact that µi = 0 for every i � 2, and the equality again makes

use of (5). By (9) and (10), Cov(µt, ✓) = |Var
�1(y1)Cov(✓,y1)|Cov(µt,µ0

1y1) for every t.

Consequently, for every t,

Cov(µt, ✓)� Cov(✓,y1)
0
Var

�1(y1)Cov(µt,y1)

= Cov(µt, ✓)� |Var
�1(y1)Cov(✓,y1)|Cov(µt,µ

0
1y1) = 0, (12)

where the first equality uses (8). (3) and (12) together let us conclude that for every t,

Q1t =
Var

�1(y1)Cov(✓,y1)

�1 Vart(✓|1)
. (13)

⇤If Cov(✓,y1) = 0, then Cov(✓,yi) = 0 for all i by (5), which contradicts the hypothesis that Cov(✓,yi) 6= 0 for
at least one i.
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To see this, use (3) to observe that (13) is equivalent to


Var(y1)�
Cov(Qt,y1)Cov(Qt,y1)0

Var(Qt) + Vart(u)

��1 
Cov(✓,y1)�

Cov(Qt, ✓)

Var(Qt) + Vart(u)
Cov(Qt,y1)

�

= Var
�1(y1)Cov(✓,y1).

Therefore, multiplying by Var(y1)� Cov(Qt,y1)Cov(Qt,y1)0

Var(Qt)+Vart(u)
on both sides of this equality, we see that

to establish (13), it suffices to show that

Cov(✓,y1)�
Cov(Qt, ✓)

Var(Qt) + Vart(u)
Cov(Qt,y1)

=


Var(y1)�

Cov(Qt,y1)Cov(Qt,y1)0

Var(Qt) + Vart(u)

�
Var

�1(y1)Cov(✓,y1).

The above equality is further equivalent to

Cov(Qt, ✓)

Var(Qt) + Vart(u)
Cov(Qt,y1) =

Cov(Qt,y1)Cov(Qt,y1)0

Var(Qt) + Vart(u)
Var

�1(y1)Cov(✓,y1),

which is indeed true due to (12).

We have

�t =
1 +

Pn
i=1

Cov(Qt,✓)�Cov(✓,yi)0 Var
�1(yi)Cov(Qt,yi)

�i Vart(✓|i)[Var(Qt)+◆2t Vart(u)�Cov(Qt,yi)0 Var
�1(yi)Cov(Qt,yi)]Pn

i=1
1

�i Vart(✓|i)

=
1 + 1

|Qt|
Pn

i=1
Cov(µt,✓)�Cov(✓,yi)0 Var

�1(yi)Cov(µt,yi)
�i Vart(✓|i)[Var(µt)+◆2t Vart(u)�Cov(µt,yi)0 Var

�1(yi)Cov(µt,yi)]Pn
i=1

1
�i Vart(✓|i)

=
1 + 1

|Qt|
Pn

i=2
Cov(µt,✓)�Cov(✓,yi)0 Var

�1(yi)Cov(µt,yi)
�i Vart(✓|i)[Var(µt)+◆2t Vart(u)�Cov(µt,yi)0 Var

�1(yi)Cov(µt,yi)]Pn
i=1

1
�i Vart(✓|i)

, (14)

where the first equality follows from (4) (note that here there is no idiosyncratic noise, so zi = yi),

the second equality uses the fact that µt = Qt/|Qt|, and the third equality follows from (12).

Consequently, from (14) and the fact that |Qt|� |Q1t| ! 0 (because Qit ! 0 for every i � 2), we

have

�t �
1 + �1 Vart(✓|1)

|Var
�1(y1)Cov(✓,y1)|

Pn
i=2

Cov(✓,µ0
1y1)

�i Vart(✓|i)Var(µ0
1y1)Pn

i=1
1

�i Vart(✓|i)
! 0. (15)
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From (9) we also have

1 + �1 Vart(✓|1)
|Var

�1(y1)Cov(✓,y1)|
Pn

i=2
Cov(✓,µ0

1y1)
�i Vart(✓|i)Var(µ0

1y1)Pn
i=1

1
�i Vart(✓|i)

=
1 +�1 Vart(✓|1)

Pn
i=2

1
�i Vart(✓|i)Pn

i=1
1

�i Vart(✓|i)

= �1 Vart(✓|1). (16)

Combining (15) and (16), we obtain

�t ��1 Vart(✓|1) ! 0. (17)

From (13) and (17), we can derive the two limits:

⇡1 ! Var
�1(y1)Cov(✓,y1), ⇡i ! 0, i = 2, ..., n, and �2

t Var(ut) ! 0.

Thus, Cov(✓,y1) = Cov(⇡,y1). Multiplying by ⇡1 on both sides, we obtain Cov(✓,⇡) = Var(⇡).

Combining this with (5) leads to Cov(✓,yi) = Cov(⇡,yi) for every i � 2.

In a similar way to (13), we can show that ↵1t = Var
�1(y1)Cov(✓,y1) for every t. By (12), we

have �1t = 0 for every t. If follows from (5) that ↵it ! 0 for any i � 2. By (11) and (9), we have

�it|⇡| ! |Var
�1(y1)Cov(✓,y1)|, i.e., �it ! 1 for any i � 2. Then the limit on {ct} follows from

the equality (8) in the main text, and the proof is now complete. ⇤
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