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In Bendor, Mookherjee and Ray [2001] (henceforth BMR), we study reinforcement
learning in repeated interaction games. In these notes, we show how the model in BMR
can be easily be adapted to the learning version of the probabilistic choice model of Luce
(1959), with a suitable redefinition of the state variable. Denoting the actions for a player
i = 1, 2, . . . , m, Luce’s model specifies the existence of a scaling function vi, i = 1, . . . , m
representing the “utility” or “score” of different actions at any given date, such that the
probability of choosing action i at that date is

pi(v) =
vi

Σjvj
(1)

where v denotes the vector of scores (v1, . . . , vn). The scores form the state variable in
this model, whose evolution from one play to the next is given by a linear rule of the
form

vi(t+ 1) = βivi(t) + γi

where βi, γi are parameters that depend on the action-outcome pair (a, f, F ).1

Here the learning rule is defined in terms of the evolution of the scores determining
choice probabilities, rather than these probabilities themselves. Another example of such
a formulation is the Erev and Roth (1995, 1998) version of the Luce model:

vj,t+1 = max{ν, (1− φ)vj,t + γj(ft − F )} (2)

where vj,t denotes the score assigned to action j at round t, ν is a small nonnegative
number, φ is a ‘forgetting’ parameter between 0 and 1, and γj is the score reinforcement
function depending continuously on the gap between payoff ft at round t and aspiration
F .

To adapt the model in BMR to this setting, reformulate the state variable to consist
of the scores themselves. We will soon check that the scores are nonnegative for every
action, and that their sum is positive. The state then determines the choice probabilities
via Luce’s rule (1). The Erev-Roth score reinforcement functions can be calibrated as
follows. Introduce a matrix of functions γji, describing how action j is reinforced when

1This is the so-called Gamma model in Luce (1959, Chapter 4), obtained under axioms of positivity
and boundedness of scores, independence of units, and independence from irrelevant alternatives. A
special case of this is the Beta model, where γi is set equal to zero.
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action i happened to be chosen at round t. The reinforcement γii of the chosen action
itself is set to be a continuous increasing function with γii(0) = 0. Likewise, for j �= i,
take γji to be a continuous decreasing function with γji(0) = 0. So then (2) reduces to
the following: at date t, if action i is chosen with payoff ft, then

vj,t+1 = max{ν, (1− φ)vj,t + γji(ft − F )} (3)

Indeed, it is possible to allow the reinforcements γji to also depend on the current score
vj,t (e.g., the reinforcements could be proportional to the current score), though this does
not form part of the Erev-Roth model.

Start the process with scores that are nonnegative and aggregate to a positive number.
Then by construction vj,t ≥ 0 for all j and

∑
j vj,t > 0 for all t ≥ 1 with probability one.2

So the process is well-defined.
Next, we proceed as follows. Since we want to allow for the possibility that some

actions are chosen with zero probability, we set ν = 0. The following properties (taken
as assumptions in BMR) can now be checked:

(a) Compact state space: This follows from the fact that reinforcements are bounded
above by maxi,j max{γii(f̄ − F ),−γji(f − F )}, where f̄ and f respectively denote
the highest and lowest payoff in the game. So scores lie in some compact interval
[0, V ] with V < ∞.

(b) Norman’s DD property (SDD version): follows from the construction.

(c) Positive Reinforcement: If i is chosen and ft ≥ F then γii ≥ 0 and γji ≤ 0 (for all
j �= i), implying vi,t+1 ≥ (1−φ)vi,t and vj,t+1 ≤ (1−φ)vj,t for j �= i. Consequently,

vi,t+1
∑

j vj,t+1
≥ vi,t+1

∑
j �=i vj,t(1− φ) + vi,t+1

≥ vi,t
∑

j vj,t

which verifies (PR).

(d) Negative Reinforcement: If i is chosen and ft < F then γji > 0 for all j �= i, implying
that all such actions will receive a positive score at t+ 1.

As in the model defined on the choice probabilities, the reinforcement rule has to
be modified subsequently by adding inertia and trembles. Using a parallel formulation,
inertia is modeled as modifying the updating rule: write as an “interim score” the payoff
in (3):

wi,t+1 = max{0, (1− φ)vi,t + γii(ft − F )} (4)
2The first property is obvious. The second is also obvious if ν > 0. So consider the case where ν = 0.

Then note that if ft > F then vi,t+1 > 0. If ft = F then vj,t+1 has the same sign as vj,t for all j. And if
ft < F then vj,t+1 > 0 for any j �= i.
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and then add inertia:
vj,t+1 = (1− ε)wj,t+1 + εδi(t) (5)

where δi denotes the unit vector with one in the ith component and zero elsewhere, and
ε ∈ (0, 1).

It is easily verified that all the properties required by our theory continue to be
satisfied: in particular, properties (a)-(d) continue to hold for the untrembled process.
Finally, the following properties can also be checked:

(e1) Inertia: the probability weight on i is bounded away from zero, since the scores lie
in a compact interval, and

(e2) Inertia-cum-PR: causes the probability that the most recently chosen action will
not be chosen will go down at least at some geometric rate bounded away from
zero. This follows from the fact that the combination of inertia and PR implies
that

vi,t+1
∑

j vj,t+1
≥ vi,t + κ

∑
j vj,t + κ

where κ ≡ ε
(1−ε)(1−φ) . Defining ζ ≡ κ

ε+κ , this implies that (1− pi,t+1) ≤ ζ(1− pi,t),
where pi,t denotes the probability that i will be chosen at t.

Properties (a)-(d), (e1) and (e2) of the induced stochastic process over choice probabil-
ities are all that are required by our theory.3 With trembles added to the scores in a
manner analogous to the way they were added to the process defined directly over choice
probabilities themselves, all our results extend.
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3Property (e2) is used in the proof of Lemma 1 in BMR.
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