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Reinforcement Learning in Repeated

Interaction Games

Abstract

We study long run implications of reinforcement learning when two players
repeatedly interact with one another over multiple rounds to play a finite ac-
tion game. Within each round, the players play the game many successive times
with a fixed set of aspirations used to evaluate payoff experiences as successes or
failures. The probability weight on successful actions is increased, while failures
result in players trying alternative actions in subsequent rounds. The learning
rule is supplemented by small amounts of inertia and random perturbations
to the states of players. Aspirations are adjusted across successive rounds on
the basis of the discrepancy between the average payoff and aspirations in the
most recently concluded round. We define and characterize pure steady states
of this model, and establish convergence to these under appropriate conditions.
Pure steady states are shown to be individually rational, and are either Pareto-
efficient or a protected Nash equilibrium of the stage game. Conversely, any
Pareto-efficient and strictly individually rational action pair, or any strict pro-
tected Nash equilibrium, constitutes a pure steady state, to which the process
converges from non-negligible sets of initial aspirations. Applications to games
of coordination, cooperation, oligopoly, and electoral competition are discussed.



1 Introduction

In complex environments, expected payoff maximization does not often seem plausible
as a description of how players actually make decisions. This notion supposes that every
player understands the environment well enough to precisely estimate payoff functions,
formulate beliefs concerning the actions of others, and subsequently compute the solution
to an optimization problem. Each of these activities requires expensive resources, with
respect to gathering and processing of information.1 Very often, a simple enumeration
of the list of all available feasible actions is too demanding. Indeed, the decision of how
much resources to devote to information gathering and processing is itself a higher-order
decision problem, leading quickly to infinite regress. It is not at all obvious even how to
formulate a theory of rational behavior under such circumstances (Lipman (1991)).

These concerns create a space for behavioral models that are cognitively less demand-
ing and more plausible descriptions of real decision-making processes. One approach is to
posit a notion of a “satisfactory payoff” for an agent, and then to assume that the agent
tends to repeat “satisfactory” actions, and explores alternatives to “unsatisfactory” ac-
tions. This view originated in the behavioral psychology literature as stimulus-response
models.2 Similar models have been studied as parables of automata learning in the com-
puter science and electrical engineering literature.3 Amongst economists, early pioneers
of adaptive “satisficing” models include Simon (1955, 1957, 1959), Cross (1973) and Nel-
son and Winter (1982). More recently, Gilboa and Schmeidler (1995) have developed
an axiomatic basis for such an approach, while their theoretical implications have been
explored by a number of authors.4 Experimental support in favor of the reinforcement
learning hypothesis vis-a-vis the traditional rational play hypothesis and belief learning
has been extensively discussed in more recent literature on experimental games.5

However, the implications of reinforcement learning in a strategic context have not re-
ceived much attention, except for specific classes of games and special families of learning

1For instance, Cournot duopolists need to know the demand function for their product, which requires
them to devote significant expenditures to marketing research. They need to combine this with knowledge
of their own cost functions, and of beliefs concerning the output of their competitor, then solve for a
profit-maximizing output (presumably by using suitable algorithms to solve corresponding programming
problems). Formulating this decision problem as a Bayesian game of incomplete information further
increases the resources required to formulate and solve the resulting optimization problems.

2See Estes (1954), Bush, Mosteller and Thompson (1954), Bush and Mosteller (1955), Luce (1959,
Chapter 4) and Suppes and Atkinson (1960).

3See Lakshmivarahann (1981), Narendra and Mars (1983), Narendra and Thathachar (1989), and
Papavassilapoulos (1989).

4See Arthur (1993), Bendor, Mookherjee and Ray (1992,1995), Börgers and Sarin (1997, 2000), Dixon
(2000), Gilboa and Schmeidler (1995), Karandikar, Mookherjee, Ray and Vega-Redondo (1998), Kim
(1995a), Pazgal (1997) and Palomino and Vega-Redondo (1999).

5See Selten and Stoecker (1986), Selten (1991), Mookherjee and Sopher (1994, 1997), Roth and Erev
(1995), Kim (1995b), Erev and Roth (1995, 1998) and Camerer and Ho (1999).
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rules.6 The purpose of this paper is to provide a general theory of reinforcement learning
when two players repeatedly interact with one another to play an arbitrary finite action
game, using a minimal set of assumptions about the nature of reinforcement process.
This helps identify some key properties of reinforcement learning models that are both
quite general and distinctive, relative to alternative models of learning and evolution in
games.

We incorporate only two fundamental assumptions concerning the nature of rein-
forcements, which are common to most formulations in existing literature, and receive
considerable support in the psychological literature.7 The first is positive reinforcement
(PR), which says that an action generating a satisfactory payoff experience tends to be
selected with a (weakly) higher probability in the next play. The second assumption is
negative reinforcement (NR), which states that after an unsatisfactory payoff experience,
players will attempt all other actions with positive probability. A few additional but mild
restrictions are imposed: the reinforcement rules are modified by small degrees of inertia,
wherein — absent any other information — players increase probability weight on the
most recently selected action, and by random perturbations, in which players might de-
velop slightly different behavioral propensities with small probability. This last notion is
akin to — but not entirely congruent with — the idea of experimentation with different
actions. Its role is to prevent players from getting locked into low payoff actions owing
to historically low aspirations and lack of experimentation with alternative actions.

The notion of “satisfactory” inherently requires a player to be endowed with some
aspiration level that is used as a reference point or threshold. How are such aspirations
formed? It is plausible that while aspirations shape behavior in the short to intermedi-
ate run, they themselves adapt in the long-run to past payoff experiences. In this paper
we study a two-way sequenced dynamic between aspirations and behavior. Specifically,
we examine a long-lived relationship between two players, the duration of which is di-
vided into what we call rounds. Within any given round the two players play the game
successively a large number of times with fixed (though possibly player-specific) aspira-
tions. Across rounds, aspirations are adjusted on the basis of the discrepancy between
average payoffs and aspirations in the previous round. This formulation involves first
evaluating the limiting average outcome within any given round, and then taking limits
across rounds in order to identify long-run aspirations and induced behavior. The main
advantage of this formulation is that it limits the dimensionality of the state space at
each stage of the dynamic, thereby allowing us to provide a general theory applicable
to arbitrary finite action games. In contrast, a model in which aspirations and players’
behavioral propensities simultaneously evolve, as in the model of Karandikar et al (1998),

6Related literature is discussed more thoroughly in Section 9 and in Bendor, Mookherjee and Ray
(2000).

7See Erev and Roth (1998) for relevant citations to this literature.
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involves a higher dimensional dynamic which can be analysed only for a special class of
2 by 2 games.

While we do not neglect the dynamics, our focus is on the steady states of this
process. We devote particular attention to pure steady states, in which agents have
deterministic aspirations and select particular actions with probability one. We justify
this focus by providing some results concerning convergence to such states. Specifically,
we demonstrate global convergence (to pure steady states) in symmetric games where
players have symmetric aspirations, and report some partial convergence results in the
more general case (e.g., if initial aspirations of both players lie in suitable intermediate
ranges).

Most of the paper is devoted thereafter to characterizing such pure steady states. It
is shown that they correspond to an intuitive notion of stability of distributions over the
(behavior) states of players. This notion is called a pure stable outcome (pso), which
requires consistency with the underlying aspirations (i.e., the payoffs must equal the
aspirations), and a certain form of stability with respect to random perturbations of the
states of players. The main convenience of this stability criterion is that it can be checked
given only the payoff matrix of the game, i.e., without an explicit analysis of the entire
underlying dynamic.

We then establish a number of key properties of pso’s. They are individually rational,
in the sense that players attain at least (pure strategy) maxmin payoffs. Moreover,
they are either Pareto-efficient or a “protected” Nash equilibrium. The latter is a Nash
equilibrium with the additional “saddle point” property that unilateral deviations cannot
hurt the opponent, nor generate a Pareto improvement. An example of this is mutual
defection in the Prisoners’ Dilemma, or a pure strategy equilibrium of a constant sum
game.

A converse to this result can also be established: any Pareto-efficient and strictly
individually rational action pair is a pso, and so is any protected strict Nash equilib-
rium. In particular the former result indicates that convergence to non-Nash outcomes
is possible under reinforcement learning in repeated interaction settings. For instance,
cooperation is possible in the Prisoners’ Dilemma.

One interpretation of this result is that in the one-player problem induced by the
strategy of the other player, convergence to strongly dominated actions can occur. In
contrast, in a “genuine” single-person decision making environment with deterministic
payoffs, our assumptions on the learning process guarantee convergence to the optimal
decision.8 Therefore convergence to dominated actions is due to the interaction between
the learning dynamics of the two players, rather than their inability to solve simple
single person decision problems. In particular, an action that is strongly dominated in

8This may not be true of one-person decision problems with random payoffs. See Section 10 for further
discussion of this point.
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a single person setting, is no longer so in a game setting owing to the feedback effects
induced by the learning process of other players. These results are distinctive to models of
reinforcement learning in repeated interaction settings, in contrast to models of “rational”
learning, “best response” learning, or evolutionary games.9

Other results include a generic existence theorem for pso’s, and some properties of
mixed stable distributions. These general characterization results yield sharp predictions
for a number of games of coordination, cooperation and competition.

The paper is organized as follows. Section 2 describes the basic model of how players
adjust their states within a given round, with given aspirations. Section 3 discusses the
dynamics of aspirations across successive rounds. Section 4 introduces steady states and
the notion of stable distributions, while Section 5 provides results concerning convergence
to pure stable outcomes. Section 6 provides a characterization of such outcomes, while
Section 7 contains additional remarks on pure and mixed stable states. Section 8 applies
our results to specific games. Section 9 discusses related literature, and Section 10
suggests possible extensions of our model. Finally, Section 11 concludes. Technical
proofs are relegated to the Appendix.

2 Reinforcement Behavior with Given Aspirations

Two players named A and B possess finite action sets A and B, with (pure) actions
a ∈ A, b ∈ B. Let C ≡ A × B; a pure action pair is then c = (a, b) ∈ C. Player A has a
payoff function f : C → IR and B has a payoff function g : C → IR. We shall refer to the
vector-valued function h ≡ (f, g) as the payoff function of the game.

Players inherit aspirations (F,G) ∈ IR2 in any given round. Within each round they
play a large number of times t = 1, 2, . . . successively, with fixed aspirations. Let H
denote the pair (F,G). For the rest of this section, we study the dynamics of play within
a given round, with fixed aspirationsH. The next Section will then turn to the aspiration
dynamics across rounds.

The state of a player at any given play of the game is represented by a probability
vector, whose components are probability weights assigned to different actions. This
represents the player’s psychological inclination to select amongst them, based on past
experience.10 The state of the game at the beginning of any play is represented by

9Our analysis also shows that similar results obtained in specific settings and with particular forms
of learning rules in repeated interaction settings (e.g., Bendor, Mookherjee and Ray (1992, 1995), Kim
(1995a), Pazgal (1997), Karandikar et al (1998) and Dixon (2000)) actually do generalize substantially.

10The theory will also apply to alternative formulations of the state variable, e.g., in terms of a vector
of ‘scores’ assigned to different actions that summarize the degree of success achieved by them in the
past, which determine choice probabilities (as in the model of Luce (1959)). This version of the model is
described further below. For ease of exposition we adopt the formulation of choice probabilities as the
state variable throughout this paper.
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γ ≡ (α, β) in the set Γ ≡ ∆(A) ×∆(B). Γ, endowed with its Borel sets, will represent
the state space for the given pair of players within a given round.

We now describe how a player’s state is updated from one play to the next. It
is defined primarily by a process of reinforcement , modified slightly by inertia, and
perturbed occasionally by random trembles.

2.1 Reinforcement

In the definitions that follow, we describe the reinforcement process for player A, with
the understanding that B modifies her state via an analogous process. For player A,
let α be his current psychological state, a the action currently chosen (according to the
probability α(a)), f the payoff currently received, and F the fixed aspiration level. A
reinforcement rule RA maps this into a new state α̃ at the next play. We assume that
RA is continuous, maps totally mixed states to totally mixed states, and satisfies the
following two restrictions:

Positive Reinforcement (PR) If f ≥ F , then α̃(a) ≥ α(a).

Negative Reinforcement (NR) If f < F , then α̃(a′) > 0 for all a′ 	= a.

These restrictions are weak, requiring that satisfactory payoff experiences do not cause
probability weights to decline (PR), while unsatisfactory experiences cause other actions
to be tried (NR). A more symmetric formulation might be that a failure results in the
player reduces the probability weight on the chosen action, and simultaneously increases
the weight on alternative actions.11 Our NR formulation is clearly weaker than such a
condition. Indeed, it has bite only for current states which are not totally mixed, and
serves to rule out the possibility that a player converges to a pure action despite being
perpetually disappointed with it.

Examples of rules satisfying these conditions include the Bush-Mosteller learning
model (e.g., Bush, Mosteller and Thompson (1954), Bush and Mosteller (1955)) con-
cerning stimulus response of subjects in experiments where outcomes are classified into
success and failure, i.e., the payoff function f is dichotomous and maps into {0, 1}. The
notion of an aspiration level is then implicit in the definition of payoff experiences as
satisfactory (f = 1) or unsatisfactory (f = 0). In such contexts the model prescribes
linear adjustment of probability weights following any given choice of actions:

α̃ = [1− φ]α+ φλ (1)

where φ = φ(a, f) is an adjustment parameter lying between 0 and 1, and λ = λ(a, f)
is a probability vector in ∆(A). In particular, if f = 1 then λ(a, f) could be the vector

11This presumes that there is no ‘similarity’ relation among actions, which might cause the weight on
actions similar to a recently unsuccessful choice to also be reduced.
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putting weight 1 on action a: then action a is positively reinforced, and the player
responds by moving linearly in the direction of the pure strategy δa concentrated on
a. On the other hand if a failure is realized (f = 0), then λ(a, f) could be a vector
which puts zero weight on action a and positive weight on all the other actions, so the
player reduces the weight on action a and increases it on all the other actions. If θ lies
strictly between 0 and 1, then (PR) and (NR) are satisfied. In the case where the payoff
function is not dichotomous, the Bush-Mosteller rule can be generalized as follows: if
F ∈ IR represents the aspiration of the player,

α̃ = [1− φ]α+ φλ (2)

where φ = φ(a, f, F ) and λ = λ(a, f, F ). In particular λ(a, f, F ) = δa if the player is
satisfied (f ≥ F ), and assigns positive probability to any a′ 	= a otherwise. A particular
case of this is studied by Börgers and Sarin (2000) in a context with a single player and
two actions.12

Our approach can also be extended to the formulation of Luce (1959) based on
assignment of scores to different actions, where choice probabilities depend on relative
scores, and scores are updated adaptively based on experience. A version of this approach
has been tested experimentally by Erev and Roth (1995, 1998). The extension would
require scores to be used as the state variable, rather than the choice probabilities.13

The reinforcement learning rules described above satisfy a diminishing distance (DD)
property of the induced Markov process, studied extensively by Norman (1972). Infor-
mally, this property is an extension of the contraction mapping notion to the stochastic
case. For simplicity of exposition, we apply a restricted version of this property to our
reinforcement rule; all the results we need can be obtained from the weaker specification
as well.14

Definition RA satisfies the strong diminishing distance (SDD) property if there exists
r ∈ (0, 1) such that for any current experience (a, f, F ) and any two states α, α′ for
player A that map respectively into α̃ ≡ RA(α, a, f, F ) and α̃′ ≡ RA(α′, a, f, F ) at the
following play,

||α̃ − α̃′|| ≤ r||α − α′||. (3)

Norman (1972, Chapters 1-3) establishes that the DD property (and a fortiori, the
strong version given here) implies that the properties of the induced Markov process
over a (compact) state space are entirely analagous to those of finite Markov chains. The
SDD property will be useful at some parts of the analysis below. But as will become

12Their paper also allows aspirations to evolve simultaneously with choice probabilities.
13Details of such an extension are available at http://www.econ.nyu.edu/user/debraj/Papers/bmrLR.pdf.
14The DD property is weaker by requiring that the expected distance in a finite number of steps (not

necessarily one step) is contracting.
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evident, it is less fundamental for our purposes than the reinforcement properties (PR)
and (NR) which we assume throughout the rest of the paper.

2.2 Inertia

We combine reinforcement with some inertia. Recall that δa denotes the probability
vector concentrated on action a. We shall refer to this as the pure strategy state (pss) a
for player A. We assume that the new state of player A puts some positive weight on the
most recently selected action, with the remainder selected according to the reinforcement
rule RA:

Inertia (I) There is ε ∈ (0, 1) such that player A’s psychological state next period, α′,
can be written as

α′ = LA(α, a, f, F ) ≡ εδa + (1− ε)RA(α, a, f, F ) (4)

Property (I) is similar to analogous assumptions in Binmore-Samuelson (1997) and
Karandikar et al (1998), and can be motivated from more primitive considerations such
as switching costs. It implies that a positive reinforcement will be followed by an increase
in the probability weight on the most recently selected action at some minimal geometric
rate (unless it was already at one already). In the absence of this assumption, such a
property can be directly imposed by strengthening (PR) in a manner which also happens
to be satisfied by many common learning rules. The inertia assumption simplifies the
analysis to some extent, so we shall also impose it throughout the rest of our analysis.

2.3 Trembles

Finally, we suppose that at each play, it is possible (with small probability η) that a player
may simply gravitate to a new psychological state — typically within some neighborhood
of the old state — instead of following the reinforcement rule. This ensures that players
will occasionally experiment with different actions, preventing them from getting stuck
with actions generating lower payoffs than others, with correspondingly low aspirations
that cause them to be satisfied with such low payoffs.

To formalize this, suppose that for small values of η, the new state is generated
according to a density eA(.|α) whose support includes an open neighborhood N(α) of α,
and assume that the density eA is continuous in α. With remaining (“large”) probability
1− η, the state of player A is updated according to the rule LA discussed above.

For simplicity we assume that the probability η is the same for both players, and that
the perturbations are independent across players and successive plays. For i = A,B,
denote by Ei the rule that results when Li (already described above) is combined with
these perturbations.
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2.4 Limiting Outcomes Within a Round: No Perturbations

The given aspirations (F,G) and the updating rules for the two players generate a Markov
process on the state space Γ. When the tremble probability η = 0 we shall refer to the
corresponding transition kernel P as the unperturbed process. Specifically, for given
current state γ ∈ Γ, P(γ, S) is the probability assigned to Borel set S at the next round,
where for any given S, P(., S) is a measurable function. From any initial state γ, this
induces a sequence of probability measures at successive plays µt = Pt(γ, .), where Pt

denotes the t-step transition kernel corresponding to P.
A measure µ over the state space Γ is said to be invariant for P if µ.P = µ.15 An

invariant measure µ for P is said to be a long-run distribution if from any γ ∈ supp µ, the
sequence of probability measures Pt(γ, .) converges weakly to µ. A long-run distribution
thus has the property that all the states in its support ‘communicate’ with one another.
Its support is stochastically closed (i.e., γ ∈ supp µ implies that with probability one it
the state will stay in supp µ forever thereafter) and does not contain any proper subset
which is stochastically closed.

The empirical distribution νn over the first n plays t = 1, 2, . . . , n is defined as the
measure over the state space Γ by the proportion of visits

νn(S) =
1
n

n∑
t=1

IS(γt)

to any Borel set S, where IS denotes the indicator function of the set S.

Definition The unperturbed process P is said to be weakly ergodic if (i) it has a finite
number of long run distributions; and (ii) with probability one the empirical distribution
νn converges weakly to some long-run distribution as n → ∞.

If the unperturbed process is weakly ergodic, the asymptotic empirical distribution
over the state if any given round is well defined and given by one of its long-run distri-
butions. The following result can be obtained following a straightforward application of
Theorems 4.3 and 4.4 in Norman (1972, Chapter 3).16

15For a transition kernel P on Γ and a measure µ on Γ, we define the measure µ.P by µP(S) =∫
Γ

P(γ, S)µ(dγ) for any Borel set S.
16Indeed, this result follows only from the SDD property and does not require either PR or NR. The

proof involves defining the event space by whether or not a given player experiences inertia, and the
action pair actually chosen. Then if the reinforcement rules of each player satisfy the SDD property, the
Markov process over the state space can be verified to have the DD property and is hence compact. Since
the state space is compact, Theorems 4.3 and 4.4 in Norman (1972) can be applied to yield the result.
In the case of the Luce-Erev-Roth model, the SDD property is satisfied when the state variable is taken
to be the vector of scores. Hence the score dynamic is weakly ergodic, in turn implying weak ergodicity
of the induced choice probabilities.
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Proposition 1 Suppose that the reinforcement rules RA and RB satisfy the SDD prop-
erty. Then for any pair of aspirations, the unperturbed process is weakly ergodic.

Actually, the structure of the model can be exploited to a considerable extent to
yield sharper results, provided we place some conditions on the set of aspirations. To
this end, say that an action pair c is mutually satisfactory (MS) relative to aspiration
pair H = (F,G) if {f(c), g(c)} ≥ H. Now define an aspiration pair H to be intermediate
if it is (strictly) individually rational:

H � H, (5)

where H denotes the pair of (pure strategy) maxmin payoffs, and if there is some action
pair that is MS relative to H. Also, say that an aspiration pair H is low if

H � H. (6)

Proposition 2 Let H be an aspiration pair that is either intermediate or low, and
suppose that (PR) and (NR) are satisfied. Then from any initial state, the unperturbed
process P converges almost surely to some pure strategy state c which is MS relative to
H. Each such MS pair exhibits a positive probability of being reached in this way if the
initial state is totally mixed.

In particular, P is weakly ergodic, and the set of corresponding long-run distributions
of P is the set of degenerate distributions δc concentrated on pure strategy states c that
are MS relative to H.

This proposition is adopted from our earlier work (Bendor, Mookherjee and Ray
(1992, 1995)); see also Proposition 2 and Remark 3 in Börgers and Sarin (1997). The
outline of the underlying argument is the following. First, it can be shown that the
reinforcement and inertia assumptions imply that starting from an arbitrary initial state,
an MS action pair will be played within the next two plays with probability bounded
away from zero. For if an MS action pair is not played immediately, some player must
be dissatisfied and subsequently must try other actions, causing an MS action pair to
possibly be played within the next two plays. And once an MS action pair is played,
both players will be positively reinforced. Combined with inertia, the probability weight
on these actions will increase at least at a geometric rate. This ensures that an infinite
run on this action pair has a probability bounded away from zero, and so must eventually
happen almost surely. Such an infinite run would cause the probability weights on these
actions to converge to one.

It should be noted that a diminishing distance property is not needed to obtain
Proposition 2. Indeed, Propositions 1 and 2 may be viewed as embodying different
approaches to establishing weak ergodicity. One uses stronger assumptions to yield
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weak ergodicity for any pair of aspirations, while the other exploits the positioning of
aspirations to obtain more structured results. In any case, the weak ergodicity of the
unperturbed process will be necessary in our discussion of the aspiration dynamic in the
next Section. So for the rest of the paper we shall assume that (SDD), (PR) and (NR)
are simultaneously satisfied.17

Note that the unperturbed process may have multiple long-run distributions. For
example, in the context of Proposition 2, if there are two MS action pairs, then the
corresponding degenerate distributions concentrated on either pair constitute long-run
distributions. The unperturbed learning process cannot be ergodic in that case: the
long run empirical distribution (while well-defined) will depend on the initial state and
the actual historical patterns of play. In other words it is inherently unpredictable and
accordingly must be treated as a random variable.

2.5 Limiting Outcomes Within a Round: Small Trembles

The multiplicity of long-run distributions provokes the following concern: while a par-
ticular distribution may receive significant probability under the unperturbed process
(depending on initial states), the “overall” probability of reaching such distributions
may be low if states are not robust, i.e., immune to trembles.

As an instance of this phenomenon, consider the following example of a Prisoners’
Dilemma:

C D
C (2,2) (0,3)
D (3,0) (1,1)

Suppose that aspirations are at (0.5, 0.5). Proposition 2 implies that the unperturbed
process has exactly two limits, respectively concentrated on the pure action pairs (C,C)
and (D,D) that are mutually satisfactory relative to the given aspirations. Moreover,
each limit has a positive probability of being reached. Now consider what happens
if we introduce trembles. This permits “transitions” to occur (with low probability
depending on the infrequency of the tremble) between the two limits. However, there
is an asymmetry in these transitions. Consider an individual tremble from (C,C): the
“trembler” benefits by shifting weight to D. Because the “non-trembler” loses (relative
to her aspirations), she shifts weight to D as well. Then (D,D) is played with positive
probability, from which the untrembled process can converge to the other pure limit

17If initial aspirations are intermediate, then the SDD assumption is actually unnecessary; the latter
assumption is required only to ensure that the aspiration dynamic is globally well-defined.
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(D,D). Hence a single tremble suffices to move from the the pure (C,C) limit to the
pure (D,D) limit.

But the reverse is not true. Starting from the (D,D) limit, a single tremble causes
the “trembler” to try C, which causes her payoff to fall below aspirations. Hence the
“trembler” tends to revert back to D. In the meantime, the deviation benefits the “non-
trembler”, who thus continues to stick to the pure strategy concentrated on D. Thus
the pure (D,D) limit exhibits a stability to one-person trembles that the pure (C,C)
limit does not. If trembles are infrequent and independent across players, two-person
trembles will occur with vanishingly small probability (relative to one-person trembles)
and so may be ignored. Then with probability close to one, the process will spend almost
all the time in the long-run near the (D,D) limit, despite the fact that the (C,C) limit
can be reached with positive probability in the absence of trembles. In such cases it
is appropriate to ignore the pure (C,C) limit owing to its lack of robustness to small
trembles.

We now present the formal argument. First note that a positive tremble probability
ensures that the resulting process must be ergodic:

Proposition 3 Fix η > 0 and some pair of aspirations. Then the perturbed Markov
process Pη is strongly ergodic, i.e., there exists a measure µη such that the sequence of
probability measures Pt

η(γ, .) from any initial state γ converges strongly to µη.

The next step is to take the tremble probability to zero, and focus on the “limit” of
the corresponding sequence of ergodic distributions µη. The word “limit” is in quotes
because there is no guarantee of convergence.18 So we employ an analogue of trembling-
hand perfection: admit possibly multivalued predictions of long-run outcomes for any
given round; indeed, all those which are robust to some sequence of vanishing tremble
probabilities. This is explained in more detail below.

Given any initial state γ ∈ Γ, define the long-run average transition R(γ, .) ≡
limn

1
n

∑n
t=1 Pt(γ, .), if this limit measure is well-defined (in the weak convergence topol-

ogy). Next, define Q(γ, .) to be the one-step transition when exactly one player i = A,B
is chosen randomly to experience a tremble, while the other player employs the unper-
turbed update. In other words, with probability one half it is generated by the composi-
tion of the tremble for A and the learning rule LB, and with probability one half by the
reverse combination.

Proposition 4 (i) Given any sequence of positive tremble probabilities converging to
zero, the corresponding sequence of ergodic distributions has a (weakly) convergent sub-

18The limit of the sequence of ergodic distributions may depend on the precise sequence along which
the tremble probability goes to zero. These problems are analogous to those arising in the analysis of
stability of Nash equilibria.
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sequence. (ii) Suppose µ∗ is a limit point of such a sequence. Then µ∗ is an invariant
measure for the transition Q.R (as well as for P), provided R is well-defined.

The first part of this Proposition implies that there always exists a long-run outcome
of the untrembled process which is robust with respect to some sequence of vanishing
trembles. It is possible, however, that there is more than one long-run outcome with
this property. The second part of this proposition (which is based on Theorem 2 in
Karandikar et al (1998)) describes a property satisfied by each of these ‘robust’ long run
outcomes (provided R is well-defined): any such distribution is also robust with respect
to a single perturbation of a single (randomly chosen) player, followed by the indefinite
operation of the unperturbed process thereafter. This property will play a key role in
the discussion of stability in Section 4 below.

Given the possibility of multiple robust long-run outcomes, there is no basis to select
any of these over the rest. Hence we must entertain the possibility that any one of
these could arise, depending on initial conditions and the history of play. Specifically,
consider any invariant measure µ∗ which is stable with respect to some sequence of
vanishing trembles. Clearly µ∗ can be expressed as a convex combination of a finite
number of long-run distributions of the untrembled process (since it is itself invariant for
the untrembled process). Hence given the set of long-run distributions µ1, . . . , µK of P,
there exist weights βi ≥ 0 such that

µ∗ =
K∑

i=1

βiµi (7)

Given aspirations H = (F,G), we can then define

D(H) ≡ {µi|βi > 0 for some ergodic limit µ∗};
the set of long-run distributions of P that receive positive weight in some stable limit
µ∗. These are the long-run distributions that are robust with respect to some sequuence
of vanishing trembles; any one of them could arise in the play of any pair of players with
aspirations H. The trembles merely serve to eliminate ‘non-robust’ long-run outcomes,
i.e., which receive zero weight in every possible stable invariant measure of the untrembled
process. This is entirely analogous to the approach that is now standard in the literature,
e.g., Kandori, Mailath and Rob (1993) and Young (1993).

3 Aspiration Dynamics Across Rounds

Thus far we have identified a mechanism that selects a particular class of robust long
run distributions, D(H), beginning from any aspiration vector H. These long run distri-
butions are associated with corresponding average payoffs for each player. This suggests
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an updating rule for aspirations across rounds — simply take a weighted average of as-
pirations HT and the average payoff vector (ΠT ) earned in the most recently concluded
round:

HT+1 = τHT + (1− τ)ΠT (8)

where τ is an adjustment parameter lying between 0 and 1. This presumes that players
play infinitely many times within any round, a formulation we adopt in the interest of
simplicity. It can be thought of as an approximation to the context where players play a
large but finite number of times within any round. This is partially justified by the results
of Norman (1972) concerning the geometric rate of convergence of diminishing distance
Markov processes to the corresponding long run distributions (Meyn and Tweedie (1993)
also provide similar results for the perturbed model). The assumption is analogous to
corresponding assumptions of infinite number of random matches between successive
stages of the finite player model of Kandori, Mailath and Rob (1993).19

The next question is: which distribution do we use to compute average payoffs ΠT ?
One tempting route is to use (one of) the trembled limit(s) µ∗ described in the previous
section. But this is conceptually problematic when µ∗ represents a mixture of more than
one robust long run distribution of the unperturbed process. For as we discussed in the
previous section, it is more appropriate to view the average outcome within the round as
random, located at one of the robust long-run distributions receiving positive weight in
µ∗ — rather than µ∗ itself. Accordingly we must treat ΠT as a random variable, equal to
the average payoff in some robust distribution. The only restriction thus imposed here
is that no weight is placed on a non-robust distribution, i.e., which receives zero weight
in µ∗.

Formally, we posit that the distribution over the states of players in a given round-
T will be randomly selected from the finite set D(HT ). Using ρ(µ,HT ) to denote the
probability that the long-run distribution for round T will be µ ∈ D(HT ),

ΠT =
∫

hdµ with probability ρ(µ,HT ), (9)

where h, it will be recalled, represents the vector of payoff functions. No restriction need
be imposed on the family of probability distributions ρ(., .), except that its support is
D(HT ), i.e., every robust long-run distribution is selected with positive probability.

One might ask: why the restriction to robust distributions? It is possible, of course,
that the behavior states of the process within any round may spend time in the neigh-
borhood of a nonrobust long run distribution. However, with sufficiently small trembles
the proportion of such time will be arbitrarily small relative to the proportion spent at
or near robust long run distributions. This is the basis of the restriction imposed here.

19We discuss this issue in further detail in Section 10 below.
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Together with (8), equation (9) defines a Markov process over aspirations across
successive rounds (with state space IR2). In fact, given (8), the state space can be
restricted to a compact subset of IR2, formed by the convex hull of the set of pure strategy
payoffs, augmented by the initial aspirations. The Markov process for aspirations is
well-defined if PHT

is weakly ergodic for all T with probability one. This will indeed
be the case if either the reinforcement rules satisfy (SDD), or if initial aspirations are
intermediate or low. For future reference, we note that in the case of intermediate
aspirations, the state space can be further restricted:

Proposition 5 Provided initial aspirations are intermediate, (8) and (9) define a Markov
process over the set of intermediate aspirations.

The proof of this result is simple, and follows from Proposition 2.20

4 Steady States and Stable Distributions

We now study the steady states of the aspiration-updating process. An analysis of
convergence to these steady states is postponed to the next section. For reasons that
will soon become apparent, we are particularly interested in deterministic steady states
of the aspiration dynamic.

Say that H is a steady state aspiration if
∫

hdµ = H for every µ ∈ D(H). It is a pure
steady state aspiration if in addition there is a robust distribution µ ∈ D(H) which is
concentrated on a pure action pair.

A steady state aspiration H∗ corresponds exactly to a deterministic steady state for
the process defined by (8) and (9). Irrespective of which distribution in D(H∗) actually
results in a given round, players will achieve an average payoff exactly equal to their
aspirations, and so will carry the same aspirations into the next round. Conversely,
given (9) it is clear that every distribution in D(H∗) must generate average payoffs
exactly equal to aspirations H∗ in order for the latter to remain steady with probability
one.

While the notion of a steady state aspiration is conceptually clear, it is nevertheless
hard to verify this property directly for any given aspiration vector H in a given game,
owing to the difficulty in obtaining a general characterization of the entire set D(H) of

20In any round where aspirations are intermediate, the average payoff corresponds to some pure strat-
egy state which Pareto-dominates their aspirations. The aspirations of both players in the next round
will then partially move up towards the achieved payoff of the previous round, so they continue to be
intermediate. Notice that the same assertion cannot be made of low aspirations, or even the union of
intermediate and low aspiration pairs. It is possible that a low starting aspirations pair could lead to
an aspirations update that is neither low nor intermediate (using the precise sense in which these terms
have been defined).
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robust distributions for an arbitrary aspiration pair H. Moreover, one is particularly
interested in predicting the behavior of players rather than just the payoffs they achieve.
For both these reasons, we now develop an analogous notion of stability of distributions
over the state space (of behavior, rather than aspirations), which is easier to verify in
the context of any given game.

Specifically, the aim of this Section is to develop an analogous steady state (or sta-
bility) notion in the space of distributions over Γ, the set of choice probability vectors.
Special attention will thereafter be devoted to a particular class of such steady states,
which are concentrated on the play of a pure strategy pair, which we shall call pure stable
outcomes (pso). The main result of this section (Proposition 6 below) will be to relate
steady states in the aspiration space with those in the behavior space. In particular it will
be shown that pso payoffs will correspond exactly to pure steady state aspirations. The
following Section will then be devoted to results concerning convergence of behavior to
pso’s (and analogous convergence of aspirations to pure steady state aspirations), while
subsequent Sections will be devoted to characterizing pso’s based only on knowledge of
the payoff functions of the game.

The steady state notion over behavior exploits the characterization of the set of robust
distributions provided in part (ii) of Proposition 4. Say that a long-run distribution µ′ of
the untrembled process can be reached following a single perturbation from distribution
µ if starting from some state γ in the support of µ, a single perturbation of the state of
some player will cause the empirical distribution under P(H) to converge weakly to the
distribution µ′ (with positive probability). Next define a set S of long run distributions
to be SP-closed (that is, closed under a single perturbation) if for every µ ∈ S, the set of
long run distributions that can be reached from µ is contained in S, and if every µ′ ∈ S
can be reached from some µ ∈ S.

Proposition 4(ii) implies that the set D(H) is SP-closed for any pair of aspirations H.
This is because it consists of all the long-run distributions that receive positive weight in
a measure invariant with respect to the processQ.R, i.e., where the state of one randomly
chosen player is trembled just once, followed by the untrembled process thereafter. Hence
if we start from any robust distribution, a single tremble will cause the process either to
return to the same distribution, or transit to some other robust distribution. Conversely,
any robust distribution can be reached following a single perturbation of some other
robust distribution.

To be sure, SP-closure is not “minimal” in the sense that there may be strict subsets
of SP-closed sets which are SP-closed. If a set does satisfy this minimality requirement,
call it SP-ergodic. By weak ergodicity, there are can only be a finite number of long run
distributions. Combined with Proposition 4(ii), this implies thatD(H) can be partitioned
into disjoint SP-ergodic subsets S1(H),S2(H), . . . ,SK(H). Of course this is provided

15Bendor et al.: Reinforcement Learning 

Produced by bepress.com, 2002



that R(H) is well-defined.21 If in addition Q.R has a unique invariant distribution,
then D(H) is itself SP-ergodic. This motivates the following definition of stability of a
distribution over behavior states.

Say that a measure µ over Γ is stable if

(i) µ is a long-run distribution of P for aspirations H =
∫

hdµ, and

(ii) µ belongs to a set S of long-run distributions of P which is SP-ergodic, for which
every µ′ ∈ S satisfies ∫

hdµ′ = H.

Notice that this definition makes no reference at all to set D(H) of robust long run
distributions. Part (i) says that µ is a long-run distribution of P which is consistent
with the aspirations H, i.e., generates an average payoff equal to H. To be sure, this
consistency property is required by the condition that H is a steady state aspiration. The
steady state property additionally demands that every long-run distribution in D(H) is
consistent. Instead, (ii) imposes the milder condition that every distribution in the same
SP-ergodic subset as µ is consistent. On the other hand, (ii) is stronger than what the
steady state property for aspirations by itself requires, by insisting that µ belong to an
SP-ergodic set of long-run distributions of P. This condition is always met when R is
well-defined (in that case this property is true for every element of D(H) by virtue of
Proposition 4(ii), so ceases to have any bite).

The justification for this definition of stability of a distribution over behavior states,
then, is not that it produces an exact correspondence with the notion of a steady state
aspiration. Rather, conditions (i) and (ii) are easier to check for any candidate distri-
bution in any given game. The main convenience of this definition is that it avoids any
reference to robust distributions, i.e., the set D(H) of distributions ‘selected’ by the pro-
cess of vanishing trembles. Specifically, checking for stability of a distribution µ over Γ
requires that we go through the following steps:

(1) First calculate the average payoff H for each player under µ, and then check the
consistency property: is µ a long-run distribution of the untrembled process in any
round where players have aspirations H?

(2) Next find the set of all long-run distributions µ′ that can be reached from µ (with
aspirations fixed at H) following a single random perturbation.

(3) Then check that every such µ′ generates a payoff vector of H.
21In general, D(H) can be partitioned into a collection of a collection of nonempty SP-ergodic sets, and

a ‘transient’ set containing distributions which cannot be reached from any distribution in a SP-ergodic
set.
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(4) Finally, ensure that starting from any such µ′, it is possible to return to µ following
a sequence of single random perturbations (i.e., there is a sequence of long-run
distributions µ1, µ2, . . . , µN with µ1 = µ′ and µN = µ, such that µk can be reached
from µk−1 following a single random perturbation).

This procedure avoids the need to find the entire set of selected distributions D(H),
which is typically difficult.

A particular case of a stable distribution is one which is entirely concentrated on some
pure strategy state, which corresponds to the notion of a pure steady state aspiration.
Thus say that a pure action pair c ∈ A×B is a pure stable outcome (pso) if the degenerate
measure µ = δc concentrated on the pure strategy state c is stable.

A pso combined with a pure steady state aspiration is nonrandom in all relevant
senses: behavior and payoffs for both players are deterministic. Our results in the subse-
quent section will justify our interest in such outcomes. But before we proceed further,
it is useful to clarify the exact correspondence between our notion of steady state aspi-
ration (which pertains to steady state payoffs) and that of stable distributions over the
state space (which pertains to the steady state behavior). These results follow up on and
extend the informal discussion above.

Proposition 6 (a) If c ∈ A × B is a pso then h(c) is a pure steady state aspiration.
Conversely, if h(c) is a pure steady state aspiration, then some c′ ∈ A × B with
h(c′) = h(c) is a pso.

(b) More generally, if H is a steady state aspiration, then there exists µ ∈ D(H) which
is stable.

(c) If µ is a stable distribution with aspirations H =
∫

hdµ, if R is well-defined, and
Q.R has a unique invariant measure, then H is a steady state aspiration.

Part (a) of the proposition states that pure stable outcomes correspond to pure steady
state aspirations. Hence in order to study the pure steady states of the aspiration dy-
namic it suffices to examine the set of pure stable outcomes of the game. The next
section will present some convergence results justifying the interest in such pure stable
outcomes as representing the long run limit of the process of adaptation of aspirations
and behavior.

The remaining parts of Proposition 6 consider the relationship between steady state
aspirations and (possibly mixed) stable distributions, and show that the correspondence
between the two notions does not extend generally. Parts (b) and (c) assert that there
always exists a (pure or mixed) stable distribution corresponding to a steady state aspi-
ration, but the reverse can be assured to be true only under additional conditions. These
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are useful insofar as a complete characterization of all (pure or mixed) stable distribu-
tions enable us to identify all the steady state aspirations (rather than just the pure
steady states), as will be the case for certain games considered in Section 8.

5 Convergence to Pure Steady States

A major goal in this paper — especially in the light of part (a) of Proposition 6, —
is to characterize those action pairs which are pure stable outcomes. We postpone this
task for a while and first settle issues of convergence to a steady state. In discussing
such issues, we will also come away with further justification for focusing on pure steady
states — and therefore on pure stable outcomes.

We begin with a sufficient condition for convergence that bases itself on the loca-
tion of initial aspirations. It turns out that this condition is also sufficient for deriving
convergence to a pure steady state.

Proposition 7 Suppose that initial aspirations H0 are intermediate. Then the subse-
quent sequence of aspiration pairs HT converges almost surely to a pure steady state
aspiration as T → ∞. Moreover, for all sufficiently large T , every long-run distribution
µT over the behavior states in round T is concentrated on some pso.

Proposition 7 comes with an interesting corollary: any pso is almost surely the limit
of the process for a suitable (nonnegligible) set of initial aspirations:

Proposition 8 Take any pso c∗. There exists an open ball T (c∗) in IR2 such that
whenever initial aspirations H0 lie in T (c∗), HT converges to H∗ ≡ h(c∗) almost surely,
and the long-run distribution µT is concentrated on c∗ (or some payoff-equivalent pure
strategy state) for all large T .

The detailed proofs are presented in the appendix. But it is useful here to sketch the
main idea underlying Proposition 7. By Proposition 2, if H is an intermediate aspiration
pair, then the long run distributions corresponding to H are all concentrated on pure
action pairs that are MS relative to H. Hence limit average payoffs in the round — no
matter how we select from the set of long run distributions — must be (almost surely)
no less than H. Because aspirations are bounded above by the maximum of the initial
aspirations and the highest feasible payoff in the game, the resulting sequence HT is a
submartingale, and thus converges almost surely. It follows that HT+1 − HT converges
to 0 almost surely.

Now HT+1 − HT = (1 − τ)[ΠT − HT ]. So it follows that ΠT − HT also converges
to 0 almost surely. That is, ΠT must converge as well. Since for any T , ΠT lies in a
finite set (by virtue of Proposition 2 once again) it follows that for large T , ΠT = h(c∗)
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for some pure action pair c∗. To complete the proof, it suffices to show that c∗ is a pso;
the argument for this draws on our characterization of pso’s in the next Section and is
presented in the appendix.

Proposition 8 is likewise proved in the appendix. For any pso c∗ it is shown that for
initial aspirations sufficiently close to (but below) h(c∗), convergence to the pure steady
state aspiration h(c∗) will occur almost surely.

These propositions establish convergence to pure steady states from initial aspirations
that are intermediate. Whether convergence occurs from non-intermediate aspirations
remains an open question. We end this section with an observation for the general case.

Consider symmetric games, so that A = B and f(a, b) = g(b, a) for all (a, b). Make
the following two assumptions. First, suppose that there is some symmetric pure action
pair c∗ = (a∗, a∗) which is Pareto-efficient amongst all mixed strategy pairs. Second,
assume that players begin with the same aspirations, and update these by convexifying
past aspirations with the average payoff received in the current round over both players:

HT+1 = τHT + (1− τ)
ΠA,T +ΠB,T

2
(10)

where Πi,T now denotes the average payoff of player i = A,B in round T , and HT (with
some abuse of notation) is now a scalar which stands for the common aspiration of both
players.22 Then the following proposition is true.

Proposition 9 Consider a symmetric game satisfying the description given above. Then
(irrespective of initial aspirations as long as they are the same across players) aspirations
almost surely converge to a pure steady state aspiration, and any associated sequence of
long-run distributions converges weakly to a pso.

6 Characterization of Pure Stable Outcomes

The preceding results justify focusing on pure stable outcomes. However, the definition
of stability is extremely abstract — referring not just to the consistency of a single long
run distribution of the process, but to the stability of that distribution, which involves
checking all other long run distributions that can be reached from it following a single
perturbation. The purpose of this section is, therefore, to provide a simple yet near-
complete characterization of pure stable outcomes in terms only of the payoff matrix of
the game.

Roughly speaking, the characterization states the following:
22We continue to assume, of course, that the unperturbed process is always weakly ergodic. This can

be directly verified using Proposition 2 if HT ≤ π∗, but a similar property for HT > π∗ would require an
assumption such as SDD for the reinforcement rules.
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An action pair c is a pso if and only if it is either individually rational and Pareto-efficient,
or a particular type of Nash equilibrium which we shall call “protected”.

The “if-and-only-if” assertion is not entirely accurate, but the only reason for the
inaccuracy has to do with weak versus strict inequalities, which matters little for generic
games.

Now turn to a more formal account. Say that an action pair c ≡ (a, b) ∈ A × B is
protected if for all (a′, b′) ∈ A × B:

f(a, b′) ≥ f(a, b) and g(a′, b) ≥ g(a, b). (11)

In words, c is protected if unilateral deviations by any player do not hurt the other player.
An action pair c = (a, b) is a protected Nash equilibrium if it is protected, it is a Nash

equilibrium, and no unilateral deviation by either player can generate a (weak) Pareto
improvement. More formally: for all (a′, b′) ∈ A × B:

f(a′, b) ≤ f(a, b) ≤ f(a, b′) (12)

g(a, b′) ≤ g(a, b) ≤ g(a′, b). (13)

and

f(a′, b) = f(a, b) =⇒ g(a′, b) = g(a, b) and g(a, b′) = g(a, b) =⇒ f(a, b′) = f(a, b)
(14)

A protected Nash equilibrium, then, is a pure strategy Nash equilibrium with the “saddle
point” property that unilateral deviations do not hurt the other player (nor generate
a Pareto improvement). The corresponding actions (resp. payoffs) are pure strategy
maxmin actions (resp. payoffs) for either player. Examples include mutual defection in
the Prisoners Dilemma and any pure strategy equilibrium of a zero-sum game.

Next, say that an action pair c = (a, b) is individually rational (IR) if (f(c), g(c)) ≥
(F ,G), where it may be recalled that F and G denote the (pure strategy) maxmin payoffs
for players A and B respectively. It is strictly IR if the above inequality holds strictly in
both components. Finally, an action pair c = (a, b) is efficient if there is no other pure
action pair which (weakly) Pareto dominates it.

We now present our characterization results.

Proposition 10 If c ∈ A × B is a pso, it must be IR, and is either efficient or a
protected Nash equilibrium.

The converse requires a mild strengthening of the IR and Nash properties.

Proposition 11 Suppose that one of the following holds: (i) c is a protected Nash
equilibrium which is also strict Nash, or (ii) c is efficient and strictly IR. Then c is a
pso.
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The argument underlying part (ii) of Proposition 11 is easy to explain in the context
of a game with generic payoffs. If c is efficient and strictly IR, then aspirations h(c) are
intermediate, and c is the only action pair which is mutually satisfactory relative to these
aspirations. Proposition 2 assures us that there is a unique long-run distribution of the
untrembled process with aspirations h(c), hence is the only element of D(h(c)). Then c
satisfies the requirements of a pso.

Somewhat more interesting is the case of a candidate pso that is not efficient. Can
such a pso exist? Our answer is in the affirmative, provided the candidate in question
possesses the protected Nash property. Intuitively, a protected Nash equilibrium is stable
with respect to single random perturbations: since it is protected, a perturbation of one
player will not induce the other player to change her state at all. And given that it is
a Nash equilibrium, the original deviation cannot benefit the deviator. So if the state
of one player changes at all owing to a perturbation, it must involve that player shifting
weight to a payoff equivalent action, leaving payoffs unaltered. If the equilibrium is strict
Nash, the deviator must return to the original action, ensuring that it is not possible to
transit to any other long run distribution following a single tremble. This explains why
a strict protected Nash equilibrium constitutes a pso.

On the other hand, inefficient actions that lack the protected Nash property cannot
survive as pso’s, which is the content of Proposition 10. They may serve as attractors
(and as pure long run distributions) for certain initial aspirations. But there must be
other positive-probability attractors: e.g., any Pareto-dominating action pair. Moreover,
it is possible to transit to the latter from a non-protected-Nash outcome following a single
perturbation. Since the two long run distributions are Pareto-ordered, an inefficient
action pair cannot be a pso if it is not protected Nash.

Notice that our characterization is not complete: there is some gap between the
necessary and sufficient conditions for a pso. Nevertheless the preceding results cannot
be strengthened further. Consider the following examples.

C D
C (2,2) (1,1)
D (1,1) (1,1)

In this example the action pair (D, D) is a protected Nash equilibrium, but it is not a pso
(owing to the fact that it is not a strict Nash equilibrium). The reason is that δC,D can
be reached from δD,D following a single perturbation, and δC,C can be reached from δC,D

following a single perturbation. Hence δC,C must be included in any stochastically closed
subset of D(1, 1) to which δD,D belongs. Since the two distributions do not generate the
same mean payoffs, (D, D) cannot be a pso.
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The next example shows an efficient IR action pair (C, C) which is not a pso. The
reason is that following a single perturbation of the row player’s state to one which puts
positive probability weight on D, he could thereafter converge to the pure action pair D,
whereupon the column player must obtain a payoff of 0 rather than 1.

C D
C (0,1) (0,0)
D (0,0) (0,0)

These examples show that Proposition 11 cannot be strengthened. On the other
hand, Proposition 10 cannot be strengthened either: the fact of being a pso does not
allow us to deduce any strictness properties (such as strict IR or strict Nash).

7 PSO Existence and other Stable Distributions

The very last example of the preceding section actually displays a game in which no
pso exists. From any of the pure strategy states where at least one player selects D,
it is possible to reach the (C, C) pure strategy state following a sequence of single
perturbations. Moreover, we have already seen that it is possible to “escape” (C, C) by
means of a unilateral perturbation. This shows that no pso can exist.

Nevertheless, pso’s can be shown to exist in generic games (where any distinct action
pair generates distinct payoffs for both players):

Proposition 12 A pso exists in any generic game.

We end this section with some remarks on stable distributions in general. Observe
first that all degenerate stable distributions must be pso’s.

Proposition 13 Every distribution which is stable and degenerate (either with respect
to behavior states or payoffs) must be a pso.

The reasoning underlying this is simple. Consider first the possibility that a degener-
ate distribution places all its weight on some (non-pure-strategy) state in which payoffs
randomly vary. Then there must exist some player and a pair of resulting outcomes
which yield payoffs that are above and below his aspirations. Given inertia, the former
outcome must cause a revision in the state of this player, contradicting the assumption
that the distribution is concentrated on a single state. Hence if there is more than action
pair that can result from the distribution, they must all generate exactly the same payoff
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for each player. Consistency requires this constant payoff equals each player’s aspiration.
This implies that any action played will be positively reinforced; with positive proba-
bility the player will subsequently converge to the corresponding pure strategy, which
is an “absorbing” event, contradicting the hypothesis that we started with a long-run
distribution (all states in the suppprt of which communicate).

Finally, we describe some properties of non-degenerate stable distributions.

Proposition 14 Let µ be a stable distribution (with aspirations H). Then:

(i) µ is individually rational: H ≥ (F ,G).

(ii) If the payoff to at least one player under µ is stochastic, there is no action pair c∗

such that h(c∗) ≥ H.

Recall from part (b) of Proposition 6 that for every steady state aspiration there
exists a corresponding stable distribution. Proposition 14 thus helps restrict the set of
steady state aspirations. Spevcifically, part (ii) states that stable distributions cannot
generate random payoffs if the corresponding aspirations are Pareto dominated by some
pure action pair. And (i) shows that pure strategy maxmin payoffs provide a lower
bound. As we shall see in the next section, the combination of these propositions permit
sharp predictions for a wide range of games.

8 Applications

8.1 Common Interest, Including Games of Pure Coordination

In a game of common interest, there is a pure action pair c∗ which strictly Pareto domi-
nates all others. Games of pure coordination constitute a special case: f(a, b) = g(a, b) =
0 whenever a 	= b, positive whenever a = b, and all symmetric action pairs are strictly
Pareto-ordered.

Proposition 14 implies that nondegenerate stable distributions with stochastic payoffs
to either player cannot exist, as they would be Pareto-dominated by c∗. Hence all stable
distributions must be pso’s.

Since c∗ is efficient and strictly IR, Proposition 11 implies that c∗ is a pso. Proposition
10 implies that the only other candidates for a pso must be protected Nash equilibria.
The following game is an example of a game of common interest with an inefficient pso
(comprised of (M, M)), besides the efficient pso (T, L).

L M D
T (3,3) (0,2) (0,0)
M (2,0) (2,2) (2,0)
B (0,0) (0,2) (0,0)
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In the special case of coordination games, however, there cannot be any Nash equilib-
rium which is protected, as unilateral deviations cause lack of coordination which hurts
both players. In pure coordination games, therefore, there is a unique stable distribution,
concentrated entirely on the efficient outcome c∗.

8.2 The Prisoners’ Dilemma and Collective Action Games

Proposition 10 implies that the Prisoners’ Dilemma has exactly two pso’s: one involving
mutual cooperation (since this is efficient and strictly IR), and the other involving mutual
defection (since this is a protected strict Nash equilibrium).

More generally, consider the following class of collective action problems: each player
selects an effort level from the set A = B = {e1, e2, . . . , en}, with ei > ei−1 for all i.
These efforts determine the level of collective output or success of the pair. Collective
output is increasing in the effort of each player. The payoff of each player equals a share
of the collective output, minus an effort cost which is increasing in the personal level of
effort.

In such collective action games, an increase in the effort of any player increases the
payoff of the other player. The maxmin payoff for each player thus corresponds to the
maximum of the player’s payoff with respect to his own effort level, assuming the other
player is selecting minimal effort e1. Let ej denote the best response to e1.

Now suppose that there exists a symmetric effort pair (em, em) with m > 1 which
is efficient and Pareto dominates all other symmetric effort pairs. Then f(em, em) >
f(ej , ej) ≥ f(ej , e1) if j 	= m, while f(em, em) = f(ej , ej) > f(ej , e1) if j = m. So
(em, em) is strictly IR, and thus constitutes a pso.

If there is an inefficient pso, it must be a protected Nash equilibrium. Any Nash
equilibrium in which some player is choosing higher effort than e1 is not protected.
Hence the only candidate for an inefficient pso is the pair (e1, e1). If this is a strict Nash
equilibrium then it is a pso. If it is not a Nash equilibrium then all pso’s are efficient.
In general, however, intermediate levels of effort are ruled out. Hence a pso is either
efficient, or involves minimal effort e1 by both players.

8.3 Oligopoly

Consider two firms involved in quantity or price competition, each with a finite number
of alternative price or quantity actions to select from. Each firm is free to “exit” (e.g.,
by choosing a sufficiently high price or zero quantity) and earn zero profit. Suppose
that the demand functions satisfy the relatively weak conditions required to ensure that
in any pure strategy Nash equilibrium where a firm earns positive profit, there exists a
deviation (e.g., involving larger quantity or lower price) for the other firm which drives
the first firm into a loss. This implies that each firm’s maxmin profit is zero. Hence any
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collusive (i.e., efficient from the point of view of the two firms) action pair generating
positive profit for both firms is a pso.

If there is any other pso, it must be a zero profit protected Nash equilibrium (e.g.
a competitive Bertrand equilibrium in a price-setting game without product differen-
tiation). If such a zero profit equilibrium does not exist (e.g., when there is quantity
competition or product differentiation), all pso’s must be collusive.

8.4 Downsian Electoral Competition

Suppose there are two parties contesting an election, each selecting a policy platform
from a policy space P ≡ {p1, . . . , pn}, a set of points on the real line. There are a large
number of voters, each with single-peaked preferences over the policy space and a unique
ideal point. Let fi denote the fraction of the population with ideal point pi, and let pm

denote the median voter’s ideal point. In the event that both parties select the same
position they split the vote equally. The objective of each party is monotone increasing
(and continuous) in vote share. Every policy pair is efficient, and the median voter’s
ideal policy pm is a maxmin action for both parties. Hence maxmin payoffs correspond
to a 50-50 vote split. This game has a unique pso involving the Downsian outcome where
both parties select pm, since this is the only pure action pair which is IR. Indeed, this
is the unique stable distribution of the game, as it cannot have a nondegenerate stable
distribution owing to Proposition 14.

9 Related Literature

The paper most closely related to this one is our own earlier work on consistent aspirations
(Bendor, Mookherjee and Ray (1992, 1995)) which did not offer a dynamic model of
aspiration adjustment, replacing it instead with the requirement that aspirations be
consistent with the long-run behavior they induce (for small trembles). Moreover, the
learning rules studied in those papers were significantly narrower, while the results were
more restricted.23

As already discussed, Erev and Roth (1998) specialize the Luce (1959) model to study
aspiration-based learning, though the appropriate state space for their process is one of
scores rather than choice probabilities.

Karandikar, Mookherjee, Ray and Vega-Redondo (1998) (henceforth KMRV) consider
an explicit model of aspiration adjustment in which aspirations evolve simultaneously
with the behavior states of players. This increases the dimensionality of the state space.

23No characterization of long run consistent equilibria was provided (except for specific 2 by 2 games
of coordination and cooperation under strong restrictions on the learning rules); the only general result
establised was that cooperative outcomes form equilibria with consistent aspirations.
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The resulting complexity of the dynamic analysis necessitated restriction to a narrow
class of 2 by 2 games of coordination and cooperation, and to a particular class of
reinforcement learning rules. In particular, that paper assumed that players’ states are
represented by pure strategies, and that players switch strategies randomly only in the
event of dissatisfaction (with a probability that depends on the degree of dissatisfaction).
The current paper replaces the simultaneous evolution of aspirations and behavior states
with a sequenced two-way dynamic; this permits the analysis to be tractable enough to
apply to arbitrary finite games and a very large class of reinforcement learning rules.
Nevertheless, our notion of stability in this paper owes considerably to Proposition 4(ii),
which in turn is based on Theorem 2 in KMRV.

Börgers and Sarin (2000) also consider simultaneous adjustments of behavior and
aspirations. However, they restrict attention to single-person decision problems under
risk, rather than games.

Kim (1995a) and Pazgal (1997) apply the Gilboa-Schmeidler case-based theory to
repeated interaction games of coordination and cooperation. Kim focuses on a class of 2
by 2 games, whereas Pazgal examines a larger class of games of mutual interest, in which
there is an outcome which strictly Pareto dominates all others. Actions are scored on
the basis of their cumulative past payoff relative to the current aspiration, and players
select only those actions with the highest score. Aspirations evolve in the course of play:
aspirations average maximal experienced payoffs in past plays (in contrast to the KMRV
formulation of aspirations as a geometric average of past payoffs). Both Kim and Pazgal
show that cooperation necessarily results in the long run if initial aspiration levels lie in
prespecified ranges.

Dixon (2000) and Palomino and Vega-Redondo (1999) consider models where aspi-
rations are formed not just on own payoff experience in the past, but also those of one’s
peers. Dixon considers a set of identical but geographically separated duopoly markets;
in each market a given pair of firms repeatedly interact. The aspirations of any firm
evolve in the course of the game, but are based on the profit experiences of firms across
all the markets. Firms also randomly experiment with different actions. If the current
action meets aspirations then experimentation tends to disappear over time; otherwise
they are bounded away from zero. In this model, play converges to joint profit maximiz-
ing actions in all markets, regardless of initial conditions. Palomino and Vega-Redondo
consider a non-repeated-interaction setting (akin to those studied in evolutionary game
theory) where pairs are randomly selected from a large population in every period to
play the Prisoners’ Dilemma. The aspiration of each player is based on the payoff expe-
riences of the entire population. They show that in the long run, a positive fraction of
the population will cooperate.
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10 Extensions

Our model obtains general insights into the nature of reinforcement learning, but a num-
ber of simplifying assumptions were invoked in the process. Dropping these assumptions
would constitute useful extensions of the model. In this section, we speculate on the
consequences of relaxing some of the most important assumptions.

Our analysis relies heavily on the sequenced dynamic between aspirations and behav-
ior. While it may not be unreasonable to suppose that aspirations adjust more slowly
than behavior, the sequenced nature of the process implies that the two differ by an order
of magnitude. Simultaneous adaptation — perhaps at a higher rate for behavior — may
be a more plausible alternative. This is exactly the approach pursued in KMRV (besides
Börgers and Sarin (2000) in a single person environment). However, the simultaneous
evolution of behavior and aspirations results in a single dynamic in a higher dimensional
state space, which is extremely complicated. KMRV were consequently able to analyze
only a particular class of 2 × 2 games. Moreover, they restricted attention to a very nar-
row class of reinforcement learning rules, where player’s behavior states are represented
by pure strategies.

Whether such analyses can be extended more generally remains to be seen. But
we can guess at some possible differences by examining the relationship between the
results of KMRV and this paper for the Prisoner’s Dilemma. In KMRV, there is a
unique long run outcome (as aspirations are updated arbitrarily slowly) where both
players cooperate most of the time. That outcome is a pso in our model, but there is
an additional pso concentrated on mutual defection. This is not a long run outcome in
the KMRV framework. The reason is that starting at mutual defection (and aspirations
consistent with this outcome), as one player deviates (accidentally) to cooperation, the
other player temporarily experiences a higher payoff. In the KMRV setting, this serves
to temporarily raise the latter’s aspiration. Hence, when the deviating player returns
to defection, the non-deviating player is no longer satisfied with the mutual defection
payoff. This destabilizes the mutual defection outcome.24

This suggests that there are differences between models where aspirations adjust in
a sequenced rather than simultaneous fashion. Nevertheless there is a close connection
between stable outcomes of the two formulations in the Prisoner’s Dilemma: the stable
outcomes with simultaneously adjusting aspirations is a refinement of the set of stable
outcomes with sequentially adjusting aspirations. Whether this relationship extends to
more general games is an interesting though challenging question for future research.

At the same time, the sequenced model may well be a better approximation to the
24The mutual cooperation outcome (with corresponding aspirations) does not get destabilized in this

fashion, and so is robust with respect to a single random perturbation, unlike the mutual defection
outcome. In contrast, when aspirations are held fixed, neither mutual defection nor mutual cooperation
get destabilized by a single random perturbation.
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learning process. While the simultaneously evolving aspiration model may appear de-
scriptively more plausible, the finer results of that model are nevertheless driven by the
assumption that players respond differently to arbitrarily small disappointments com-
pared with zero disappointment. This is exactly why the mutual defection outcome is
destabilized in KMRV. It may be argued that actions plausibly experience negative rein-
forcement only if the extent of disappointment exceeds a small but minimal threshold. In
that case the mutual defection outcome in the Prisoner’s Dilemma would not be desta-
bilized with simultaneously (but slowly) adjusting aspirations, and the stable outcomes
generated by the two formulations would tend to be similar.25 If this is true more gen-
erally, the sequenced dynamic formulation may be an acceptable “as-if” representation
of the outcomes of the more complicated simultaneously-evolving-aspiration model.

The sequenced approach implies, in particular, that there are an infinite number of
plays within any round, and then an infinity of rounds; the long run results pertain really
to an “ultra” long run. (Note, however, that Propositions 7 and 8 establish convergence
to a pso in a finite number of rounds, while behavior distributions within any round
converge quickly.) This may limit the practical usefulness of the theory; for instance,
with respect to the interpretation of experimental evidence. While we have considerable
sympathy with this criticism, it should be pointed out that the time scale is no different
from formulations standard in the literature, e.g., Kandori, Mailath and Rob (1993). At
any given stage of the game, they assume that players are matched randomly with one
another an infinite number of times, thus allowing the theoretical distribution of matches
to represent exactly the empirical distribution of matches. This experience is used by
players to update their states to the next stage of the game. Our use of an infinite
number of plays within a given round serves exactly the same purpose: to represent the
empirical average payoff by the average payoff of the corresponding theoretical long run
distribution. If players actually play finitely many times within a given round, there
will be random discrepancies between the empirical and theoretical average, resulting in
additional randomness in the aspiration dynamic. Examining the long-run consequences
of these discrepancies would be worthwhile in future research (just as Robson and Vega-
Redondo (1996) showed how to extend the Kandori-Mailath-Rob theory analogously).
Likewise, the consequences of allowing small aspiration trembles, or reversing the order
of trembles and aspiration revisions, would need to be explored.

We simplified the analysis considerably by considering games with deterministic pay-
offs (though, to be sure, payoffs are allowed to be stochastic if mixed “strategies” are
employed). But this is one case in which simplification brings a significant conceptual
gain. In a deterministic one-player decision problem our learning process does yield long

25Of course, the modification of the negative reinforcement assumption would modify the analysis of
the sequenced dynamic as well, but for finite generic games the introduction of a small minimal threshold
of disappointment for actions to be negatively reinforced would not change the long-run outcomes.
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run optimality. Yet in games non-Nash outcomes are possible: i.e., each player is un-
able to reach the best outcome in the single-person decision problem “projected” by the
strategy of the other player. These two assertions mean that the source of non-Nash play
is the interaction between the learning of different players. It is not because the learning
rule is too primitive to solve deterministic single-person problems.

This neat division breaks down when the single-person problem is itself non-deterministic.
As Arthur (1993) has observed, it is more difficult for reinforcement learners to learn to
play their optimal actions in the long-run, even in a single person environment, an issue
explored more thoroughly by Börgers, Morales and Sarin (1998). It is for this reason
that the deterministic case is instructive. Nevertheless, an extension of the model to
games with random payoffs would be desirable in future research.

Finally, our model was restricted to the case of only two players, and extensions to
the case of multiple players would be worthwhile. It is easily verified that the underlying
model of behavioral dynamics within any given round (based on Propositions 1, 3 and 4)
extend to a multiplayer environment. Hence the subsequent dynamic model of aspirations
across rounds is also well-defined, based on (9). Proposition 2 however needs to be
extended. With an arbitrary (finite) number of players, it can be verified that the
following extension of Proposition 2 holds.

Let N denote the set of players {1, 2, . . . , n}, and J a coalition, i.e., nonempty subset
of N . Let the action subvector aJ denote the vector of actions for members of J , and
a−J the action vector for the complementary coalition N − J . Also let AJ denote the
aspiration subvector, and πJ(aJ , a−J) the payoff function for members of J . Then say
that aJ is jointly satisfactory (JS) for J given aspirations AJ if πJ(aJ , a−J) ≥ AJ for all
possible action vectors a−J of the complementary coalition N − J .

In the two player case, if J is a singleton coalition this corresponds to the notion
of a uniformly satisfactory action. If J is the grand coalition it corresponds to the
notion of a mutually satisfactory action pair. This motivates the following extension
of the definition of an intermediate aspiration: A, a vector of aspirations for N , is an
intermediate aspiration if (i) there exists an action tuple a which is JS for N relative to
aspirations A; and (ii) there does not exist coalition J , a proper subset of N , which has
an action subvector a′

J which is JS relative to aspirations A.
Then the following extension of Proposition 2 holds with arbitrarily many players:

starting from an intermediate aspiration, the process within any round will almost surely
converge to some action tuple which is JS for the grand coalition. In turn this implies
that starting from an intermediate level, aspirations must converge to some efficient pso,
so Proposition 7 will extend as well.

Moreover, it is easy to see that the sufficient conditions for an action pair to constitute
a pso in the two player case, continue to be sufficient in the multiplayer case. Specifically:
(i) take any Pareto efficient action tuple a with the property that aspirations A = π(a)
are intermediate (which generalizes the notion of strict IR). Then a is a pso. (ii) Any
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protected strict Nash equilibrium (defined by the same property that unilateral deviations
are strictly worse for the deviator, and do not hurt other players) is a pso.26

However, further work is needed to identify how the necessary conditions for a pso
extend to multiplayer settings.27 But the preceding discussion indicates that some of
the key results of the two player analysis do extend straightforwardly to a multiplayer
setting, such as the possibility that players learn to cooperate in the n-player Prisoners
Dilemma, efficiently coordinate in n-person coordination games, and collude in oligopolis-
tic settings.

11 Concluding Comments

Our analysis of the long-run implications of reinforcement learning in repeated interaction
settings yields new insights. In particular, our findings are sharply distinguished not only
from models of rational or best-response learning, but also from evolutionary models.
These differences stem from differences both in the nature of the learning rules as well
as the interaction patterns typically assumed in these models.

The first distinctive feature is that reinforcement learning models permit convergence
to (stage game) non-Nash outcomes, in a manner that appears quite robust across dif-
ferent specifications of the game and the precise nature of reinforcement. This does not
result from a specification of reinforcement learning that prevents players from converg-
ing to optimal choices in a single person deterministic environment. Rather, players do
not converge to best responses owing to a game-theoretic feature, resulting from the in-
teraction in the learning processes of different players. Experimentation with alternative
actions may generate temporary payoff gains relative to cooperation, but this change will
make the other player dissatisfied and so induces her to deviate in turn, which erodes
the gains from the original deviation. A period of trial and error with different actions
follows, until they find their way back to a cooperative action pair. Despite the myopic
adjustment of behavior states, in effect they respond to others’ deviations in a way that
mimics a repeated game strategy.

It is also clear that repeated interaction between the same set of players is important
to ensure such a result. If instead players were randomly selected from a large population
to play the game once, and thereafter returned to the population to be matched with
other players in later rounds — as in the standard evolutionary models — such interactive
dynamic responses would typically not arise.

26Part (i) follows from applying the extension of Proposition 2 described above. Part (ii) follows from
the fact that single random perturbations of the state of any player starting from a protected strict Nash
equilibrium will lead back to the same degenerate distribution concentrated on that action tuple.

27Such an extension would also be important in checking whether the exact correspondence between
pure steady state aspirations and pso’s extend.
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Second, convergence to Nash outcomes is possible, but only to a very special subset
of Nash outcomes: those which have the protected or saddle-point property. Indeed,
our main characterization of pso’s established that any inefficient pso must necessarily
take this form. The saddle-point property ensures that unilateral deviations do not
allow subsequent periods of simultaneous trembles by both players, which is necessary
for them to discover and gravitate towards more efficient outcomes. Conversely, any
protected Nash equilibrium which is also strict is a pso. This saddle-point property is
familiar from zero sum games, and explains why pure strategy Nash equilibria in such
games are salient when players are reinforcement learners. The median voter outcome
in electoral competition models is a particular example.

Third, the particular predictions for games of coordination and cooperation are dis-
tinctive. For instance, properties such as risk-dominance do not play a role in games
of coordination. These games typically lack protected Nash equilibria, so only payoff
dominance considerations matter, and only efficient outcomes can result. In games such
as the Prisoners’ Dilemma, protected Nash equilibria do exist. Then payoff dominance
considerations do not drive the selection: there are multiple Pareto-ordered pso’s, sug-
gesting that history plays a significant role in selecting long-run outcomes. It confirms
the common intuition that historically low aspirations may be self-reinforcing, and thus
subject to hysteresis. When there is an inefficient protected Nash equilibrium, this is
robust with respect to small doses of trembles by either player, and thus tends to survive
in the long-run.
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Appendix: Proofs

Lemma 1 (i) Suppose that for some a ∈ A, player A receives PR no matter what B
does; that is, f(a, b) ≥ F for all b ∈ B. Then if player A takes action a at some date, the
probability that he will play a forever thereafter (and hence that his state will converge to
the pure strategy concentrated on a) is positive and bounded away from zero, irrespective
of A’s initial state.

(ii) Similarly, suppose that for some action pair c both players receive PR. Then if c
is played at some date, the probability that c will be played forever thereafter (and hence
that the state will converge to the pure strategy state concentrated on c) is positive and
bounded away from zero, irrespective of the initial state.

Proof. We prove part (i), the proof of (ii) being similar.
Let γ be the going state at any date (say 0) and suppose that A selects a. For t ≥ 1,

let pt denote the infimum probability that action a is selected at t conditional on being
selected at all dates 0, . . . , t − 1 (where the infimum is taken over all possible actions
chosen by B at those dates). Then the probability of an infinite run on a starting at
date 1 is bounded below by Π∞

t=1pt, which is positive if and only if
∑∞

t=1[1 − pt] < ∞.
Moreover, the former infinite product is bounded away from zero (with respect to A’s
state), if the latter infinite sum has an upper bound which is uniform with respect to
A’s state. Since a is positively reinforced at every date t, (1− pt+1) ≤ (1− ε)(1− pt), so
that (1− pt) ≤ (1− ε)t. Hence the required infinite sum is bounded above by 1

ε .

Lemma 2 Consider a deterministic decision environment for Player A, e.g., one in
which A’s payoff function, say f∗, does not depend on player B’s action b. Suppose
that his aspiration F does not exceed his maximal payoff maxa f∗(a). Then almost surely
player A’s choice will converge to an action (and hence his state to a corresponding pure
strtategy) which generates a payoff of at least F .

Proof. If f∗(a) ≥ F , call a satisfactory. Otherwise it is unsatisfactory. Given Lemma
1, it suffices to show that at any date t and any initial state α, the probability that some
satisfactory action a will be selected at either t or t+ 1, is bounded away from zero.

If a satisfactory action is selected at t there is nothing to prove. So suppose an
unsatisfactory action a′ is selected at t. Define

θ(a, a′) ≡ min
α∈∆(A)

(1− ε)RA(α, a′, f∗(a′), F )[a]

Also let θ denote the minimum over all θ(a, a′) where f∗(a′) < F . Because f∗(a′) < F , it
follows from assumption NR that RA(α, a′, f∗(a′), F )[a] > 0 for every α. By continuity,
the minimum of this expression over all α must also be positive. It follows that θ(a, a′) >
0. Since the action sets are finite, it also follows that θ > 0, and we are done.
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Lemma 3 If any player experiences NR at any date, then the probability weight on every
action for that player at the next two dates is bounded away from zero.

Proof. Every other action will be selected at the next date with probability bounded
away from zero, owing to NR (and the argument that θ > 0). And the same action will
also be selected at the next date with probability at least ε, owing to inertia. Hence the
weight on every action at the next date is bounded away from zero. Applying inertia
again, the same is true for the subsequent date as well.

Lemma 4 For given aspirations H = (F,G), suppose there exists an action pair c = (a, b)
satisfying any one of the following properties:
(i) c is MS relative to H,
(ii) a is uniformly satisfactory (US) for A: f(a, b′) ≥ F for all b′,
(iii) b is uniformly satisfactory (US) for B: g(a′, b) ≥ G for all a′.

Then for any initial state, the process P will almost surely either converge to a MS
pure strategy state (satisfying (i)), or the state of one player will converge to a pure
strategy concentrated on a US action (satisfying either (ii) or (iii)).

Proof. Given Lemma 1 it suffices to show that starting from any initial state, the
probability of playing either some MS action pair, or one player playing a US action,
within the next two dates, is bounded away from zero.

If no MS or US actions are played at date 0, the action pair c′ = (a′, b′) chosen at 0
violates (i), (ii) and (iii). Hence there exists b′′ such that f(a′, b′′) < F .

Suppose first that A does have a US action a. If A received NR at date 0 by playing
some non-US action, then she will play the US action at the next date with probability
bounded away from zero (special case of Lemma 3), and we are done. So suppose that
A received PR at date 0. Then since the action pair c′ chosen at 0 does not satisfy (i),
player B must receive NR. Then with probability bounded away from zero, player B will
play b′′ at date 1 while A will repeat a′, whence A will receive an NR, and thereafter
play the US action a at date 2 with probability bounded away from zero.

A similar argument obviously applies if B has a US action. So to complete the proof,
suppose neither player has a US action. Let c be an MS action pair. Because the action
pair played at 0 is not MS, at least one player received NR. Without loss of generality,
suppose this is A. By Lemma 3, A will then play every action at each of the subsequent
two dates with probability bounded away from zero. We are then done if B selected
her component of an MS action at 0, or received an NR at 0. Suppose neither: she
played b′ at 0, and received a PR. Since b′ is not an US action, there exists a′′ such that
g(a′′, b′) < G. Then let A play a′′ at 1 and a at 2, while B repeats b′ at 1 and thus
obtains an NR at 1. Then the MS action pair c will be selected at 2 with probability
bounded away from zero, which completes the proof of the lemma.
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Given aspirations (F,G), call an action a for player A a USU (uniformly satisfactory
for A and unsatisfactory for B) action if f(a, b′) ≥ F, g(a, b′) < G for all b ∈ B.
Corollary to Lemma 4. Given some aspiration pair, suppose either that a MS action
pair exists, or one player has a USU action. Then almost surely P converges to a pure
strategy state that is MS, or one player converges to a USU pure strategy.

[The proof is straightforward given Lemma 4. If player A converges to a US action a
which is not USU, there is b for B such that (a, b) is MS. In that case, they will converge
to a MS action pair, as B will keep trying different actions whenever dissatisfied, so must
eventually discover and stick to a satisfactory action, such as b.]

Proof of Proposition 2. If aspirations are intermediate, then MS action pairs exist,
while neither player has a US action. The result follows from Lemma 4. If aspirations
are low, then once again MS action pairs exist (e.g., the maxmin action pair), and there
are no USU actions. The result then follows from the Corollary to Lemma 4.

Proof of Proposition 3. This follows upon applying Theorem 16.2.5 in Meyn and
Tweedie (1993), and verifying that the perturbed Markov process is strong Feller and
open-set irreducible, hence is a T-chain.

Proof of Proposition 4. (i) follows from the tightness of the space of probability
measures on a compact metric space in the topology of weak convergence (see, e.g.,
Parthasarathy (1967)). (ii) follows upon applying the reasoning in proof of Theorem 2
of Karandikar et al (1998). Specifically, all but the very last step in that proof uses the
properties that R is well-defined, and that the perturbed Markov process is strong Feller
and open set irreducible, to infer that µ∗ must be invariant for Q.R.

Proof of Proposition 5. See main text.

In what follows, we deviate from proving propositions in the order stated in the text.
[No circularities will be introduced thereby!] We first complete the proofs of the “char-
acterization propositions” 10 and 11.

Proof of Proposition 10. First we show that if c is a pso then it is IR. Otherwise
suppose (without loss of generality) that f(c) < F . Starting from δc, and aspirations
equal to h(c), a single perturbation of A’s state can cause him to converge to his maxmin
pure strategy action with positive probability, applying Lemma 1. Hence it is possible to
reach a non-mean-payoff-equivalent distribution from δc following a single perturbation,
contradicting the hypothesis that c is a pso.

To complete the proof, we show that if a pso c is inefficient, it must be a protected
Nash equilibrium.

34 Advances in Theoretical Economics Vol. 1 [2001], No. 1, Article 3



Suppose c is not protected. Then there is an action, say a′ for A, such that g(a′, b) <
g(c). Now suppose that starting from δc, A’s state is perturbed to a totally mixed state,
and a′ is played. Then B receives NR, so will play all actions at the next date with
positive probability. This is true of A as well, because he is at a totally mixed state.
It follows that a Pareto-dominating action pair c∗ will be played at the next date with
positive probability. In other words, it is possible to reach a Pareto-superior distribution
δc∗ from δc following a single perturbation, which contradicts the stability of δc. Therefore
c is protected.

Finally, we show that c is Nash. Otherwise (given that we already know c is protected)
there is a unilateral deviation by one player which generates a Pareto improvement. Once
again, it is possible to transit from δc to another Pareto-superior distribution (the non-
deviator being protected will not change her state, and the deviator can converge to the
Pareto-dominating pure strategy action) following a single perturbation. This contradicts
the stability of c.

Proof of Proposition 11. If c is a protected strict Nash equilibrium, then the only
distribution that can be reached from δc (given aspirations h(c)) — following a single
perturbation — is δc itself. For if A’s state is perturbed once, B will continue with the
pure strategy b in perpetuity since she is protected in any unilateral deviation by A. And
given that B sticks to b, and a is a strict best response for A to b, any other action a′

generates a lower payoff to A than his aspiration f(c). Applying Lemma 2, it follows that
A must re-converge to the pure strategy action a. Hence only δc can be reached from
itself following a single perturbation, and {δc} constitutes a SP-ergodic set of long-run
distributions of Ph(c), the untrembled process with aspirations h(c). So c is a pso.

If c is efficient and strictly IR, then Proposition 2 implies that the only long-run
distributions of Ph(c) are of the form δc∗ with h(c∗) = h(c). All these distributions can
be reached from one another following a single perturbation: this is obvious for any pair
representing a deviation by a single player. In the case of a pair c1, c2 where a1 	= a2

and b1 	= b2, note that the strict IR property implies that neither player is protected
against certain unilateral deviations by the other player. Hence a perturbation of the
state of any player will with positive probability cause a transition from one long-run
distribution to the other (e.g., one player deviates in a way to hurt the other player and
then at the subsequent date the alternative pure action pair will be played with positive
probability, following which Lemma 1 ensures that an infinite run on the new action pair
is possible). So the entire set of long-run distributions δc∗ of the form h(c∗) = h(c) is
SP-ergodic, and c is a pso.

Proof of Proposition 6: Consider first part (a). If c is a pso, note first that no USU
actions exist relative to aspirations h(c) — otherwise a single perturbation can result in
the play of an USU action, and eventual convergence to a long-run distribution of Ph(c)
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which is not payoff-equivalent to δc. This would contradict the hypothesis that c is a
pso.

Thus — since no USU actions exist and since c is MS relative to aspirations h(c)
— the corollary to Lemma 4 assures us that every long-run distribution of Ph(c) is of
the form δc′ where h(c′) ≥ h(c). And Proposition 2 ensures that Rh(c) is well-defined.
Proposition 4(ii) then implies that D(h(c)) is the support of an invariant distribution of
Qh(c).Rh(c), and so can be partitioned into a collection of disjoint, nonempty SP-ergodic
subsets S1, . . . ,SK .

We must show that every µ ∈ D(h(c)) has mean payoff h(c).
If c is efficient then every long-run distribution of Ph(c) is of the form δc′ where

h(c′) = h(c), so the same is true for every distribution in D(h(c)). So suppose that c is
inefficient. Then it must be a protected Nash equilibrium, by Proposition 10. Suppose
there exists a long-run distribution in D(h(c)) of the form δc′ with h(c′) ≥ h(c) and
h(c′) 	= h(c). We claim that δc can be reached from δc′ following a sequence of unilateral
perturbations. Starting from c′ (with aspirations h(c)), perturb the state of A to ensure
that a is played with positive probability. Then a is a US action relative to aspirations
h(c) since c is protected. So A will (with positive probability) converge to the pure
strategy corresponding to action a. And given that A selects a with probability one,
Lemma 2 ensures that B must converge to an action b′′ which is payoff equivalent to c,
i.e., h(a, b′′) = h(c). If b′′ = b we are done. If not then note that δc can be reached from
δ(a,b”) following a single (further) perturbation of B’s state.

Hence δc must belong to the same SP-ergodic subset Sk as δc′ . This implies that
δc′ can also be reached from δc following a sequence of single perturbations, which con-
tradicts the hypothesis that δc is a stable distribution. So every distribution in D(H)
must generate payoff h(c), implying that h(c) is a steady state aspiration. It is also a
pure steady state aspiration because every element of D(h(c)) is concentrated on a pure
strategy state. We have therefore established that if c is a pso then h(c) is a pure steady
state aspiration.

The second part of (a) follows directly from the definition of a pure steady state
aspiration.

Turn now to part (b). H is a steady state aspiration implies that every µ′ ∈ D(H)
satisfies H =

∫
hdµ′. Note also that weak ergodicity of P implies that there exists a

nonempty subset of D(H) which is SP-ergodic. (This is because the finite set of long-run
distributions of P can always be partitioned into a collection of nonempty SP-ergodic
sets, and a ‘transient’ subset). Then take any µ in a SP-ergodic subset of D(H): this is
stable.

To prove (c), note that if µ is stable, it belongs to an SP-ergodic set S of long-run
distributions of P, where H =

∫
hdµ′ for every µ′ in S. IfR is well-defined and Q.R has a

unique invariant distribution, there is a unique SP-ergodic set of long-run distributions of
P. By Proposition 4(ii), D(H) must coincide with S. Hence every µ′ in D(H) generates
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mean payoff H, so H is a steady state aspiration.

Proof of Proposition 7. Following the argument in the text, with probability one
there is an integer T ∗ and pure action pair c∗ such that ΠT = h(c∗) for all T > T ∗,
and HT converges to h(c∗) from below. Since HT is intermediate for all T , Proposition
2 implies that every long run distribution of PHT

is concentrated on a pure strategy
state that is MS relative to HT (in particular, RHT

is well-defined). Hence for T > T ∗,
µT = δc for some c satisfying h(c) = h(c∗). Since the action sets are finite, we can find
T ∗∗ large enough so that for any T > T ∗∗, there is an action pair c payoff-equivalent to
c∗ such that µT = δc, which has the property that δc ∈ D(HTn), n = 1, 2, . . . along some
subsequence Tn → ∞.

Take any such δc: it suffices to show it is a pso. To this end, we use the charac-
terization in Proposition 11. First, note that c is strongly IR by construction (because
h(c) = h(c∗) ≥ HT >> (F ,G)).

Next we show that c is efficient. Suppose not; then c is Pareto-dominated by some
other action pair c′. We claim that in this case, c must be protected.

Otherwise, there is a player, say B, who is worse off if the other player (A) deviates
to some action ã, i.e., g(ã, b) < g(a, b). Since HT → h(c∗) = h(c), it follows that
g(ã, b) < GT for T sufficiently large. For any such T , a single perturbation of δc (e.g.,
if A’s state is perturbed to a totally mixed state putting positive probability weights on
ã and a′) will cause PHT

to transit to δc′ with positive probability. For instance, at the
first date A could play ã while B plays b and receives NR, and at the next date c′ is
played, which is MS relative to aspirations HT ≤ h(c). By Lemma 1 there will be an
infinite run on c′ thereafter with positive probability.

So δc′ can be reached from δc following a single perturbation, when players’ aspirations
are HT , for T sufficiently large. Since RHT

is well-defined for all T , Proposition 4(ii)
implies that δc′ must be in D(HT ), and hence Π(HT ) = h(c′) with positive probability,
for all large T . This contradicts the requirement that Π(HT ) = h(c) 	= h(c′) for all
T > T ∗ with probability one.

Therefore c is protected. But this conclusion contradicts the fact that c is strongly
IR (protection implies that maxmin payoffs are at least as high as h(c)). It follows that
our original supposition is erroneous, and that c is indeed efficient.

Now use Proposition 11 to infer that c is a pso.

Proof of Proposition 8: Let c∗ be a pso. Define I(c∗, ε) ≡ [f(c∗)− ε, f(c∗)]× [g(c∗)−
ε, g(c∗)]. We first show that for ε > 0 sufficiently small, USU actions cannot exist (relative
to any aspiration H ∈ I(c∗, ε)).

Otherwise there is a sequence εn → 0+ and aspirations Hn ∈ I(c∗, εn) such that one
player (A, say) has a USU action an relative to Hn for each n. Hence f(an, b) ≥ f(c∗)−εn

and g(an, b) < g(c∗) for all b and for all n. Since A is finite it follows that there exists
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a′ ∈ A such that an = a′ for infinitely many n. Hence f(a′, b) ≥ f(c∗) and g(a′, b) < g(c∗)
for all b. Then with aspirations fixed at h(c∗), a single perturbation of δc∗ would cause
P to transit to a long-run distribution where A selects a′ with probability one, and B is
perpetually dissatisfied. Since this distribution must generate B a lower average payoff
than δc∗ , we contradict the hypothesis that c∗ is a pso.

Hence for small enough ε, the Corollary to Lemma 4 ensures that P must converge to
some MS action pair, for any aspirations P ∈ I(c∗, ε). The finiteness of the action sets
implies that for small enough ε, an action pair that is MS relative to some P ∈ I(c∗, ε)
is MS relative to h(c∗). So for small ε, the only long-run distributions of P for any
P ∈ I(c∗, ε) are of the form δc where h(c) ≥ h(c∗).

If c∗ is efficient then every MS action pair relative to aspirations h(c∗) will be payoff-
equivalent to c∗. Hence for small ε, every distribution in D(H) for every P ∈ I(c∗, ε) is
of the form δc where h(c) = h(c∗). Then H0 ∈ I(c∗, ε) implies that with probability one,
for any T : µT = δc for some c payoff equivalent to c∗, and HT converges to h(c∗).

If c∗ is inefficient, Proposition 10 implies it must be a protected Nash equilibrium.
Hence given any ε > 0 and any aspirations H ∈ I(c∗, ε), it is not possible to reach
a Pareto-superior δc′ from δc∗ following a single perturbation (if one player deviates
unilaterally, the other player continues to be satisfied relative to aspirations set equal to
h(c∗) and hence relative to aspirations H ≤ h(c∗) as well; hence the latter player will not
deviate from her component of c∗).

On the other hand for ε sufficiently small (eg., smaller than the smallest difference
between two distinct payoffs for any player), and for any P ∈ I(c∗, ε), it is possible to
reach δc∗ from a Pareto-superior δc′ following a sequence of single perturbations. For
instance, if A’s state is perturbed and he plays a∗, he is guaranteed a payoff of at least
f(c∗) ≥ F , no matter what B does. Hence Lemma 1 implies that with positive probability
he will converge to the pure strategy a∗. In this event, B’s state must converge to a pure
strategy b such that g(a∗, b) = g(c∗) if ε is sufficiently small, by virtue of Lemma 2. Hence
it is possible to reach δ(a∗,b) from δc′ following a single perturbation for any sufficiently
small ε. Note finally that δc∗ can be reached from δ(a∗,b) following a single perturbation
of B’s state which makes her play b∗ with positive probability.

It follows that if c∗ is inefficient, then for sufficiently small ε and for any aspirations
H ∈ I(c∗, ε), there cannot be a distribution in D(H) which Pareto-dominates δc. Hence
D(H) for any such H is of the form δc such that h(c) = h(c∗), and now we can apply the
same reasoning as in the case where c∗ is efficient.

Proof of Proposition 9. If in round T the aspiration HT lies in the interval (F , π∗],
the result follows from an application of Proposition 7. If HT ≤ F then there exists at
least one MS action pair (e.g., c∗) relative to HT , and each player’s maxmin action is
uniformly satisfactory (i.e., generates payoff at least as large as the aspiration, no matter
what the other player does). Then USU actions cannot exist and the corollary to Lemma
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4 implies that the unperturbed process will almost surely converge to some pure strategy
state which is MS relative to HT . Hence in round T players must attain an average
payoff between HT and π∗, implying that HT+1 ∈ (HT , π∗). An argument analogous to
that used in proving Proposition 7 then establishes the result.

It remains to consider the case where HT > π∗ for all T . Since the average payoff in
any round cannot exceed π∗, it follows that HT+1 ≤ τHT + (1− τ)π∗, i.e., HT+1 − π∗ ≤
τ(HT −π∗) ≤ τ2(HT−1 −π∗) ≤ . . . ≤ τT+1[H0 −π∗] for all T . So HT must then converge
to π∗, which in turn requires that the probability of c∗ under µT converges to 1. Finally,
note that π∗ is a pure steady state aspiration, and c∗ is a pso, since with aspirations at
π∗ = h(c∗) every long-run distribution of the unperturbed process must generate a payoff
of h(c∗), by Proposition 2. So δc∗ is the unique long-run distribution of Ph(c∗), hence the
only member of D(h(c∗)).

Proof of Proposition 12. Let (F̂ , Ĝ) denote the payoffs resulting when both players
seelct their maxmin actions. By definition of maxmin payoffs, (F̂ , Ĝ) ≥ (F ,G). Since the
game is generic, either (F̂ , Ĝ) >> (F ,G), or (F̂ , Ĝ) = (F ,G). In the former case, there
exists an efficient, action pair that is strictly IR (take any efficient action pair that Pareto-
dominates or is payoff-equivalent to the maxmin action pair). When (F̂ , Ĝ) = (F ,G),
and are equal to players’ aspirations H, USU actions cannot exist. Then the Corollary to
Lemma 4 implies that every long-run distribution of P is of the form δc where h(c) ≥ H.

If the maxmin action pair is efficient, every long-run distribution of P generates payoff
H, and one of them must be stable (since the set of these distributions must contain an
SP-ergodic set). If it is inefficient, the genericity of the game implies that there exists
an efficient action pair, which is strictly IR, and so must be a pso.
Proof of Proposition 13. See main text.

Proof of Proposition 14. (i) follows from an argument analogous to the first step in
the proof of Proposition 10. If (ii) is false there is a pure action pair c which Pareto
dominates (F,G) and one player (say B) has a stochastic payoff in µ. Then there must
be a state γ in the support of µ in which some action pair c′ = (a′, b′) is played with
positive probability, where B is dissatisfied: g(c′) < G. Starting with γ, perturb A’s
state to a totally mixed state, which assigns positive weight to a and a′. Suppose c′ is
played initially, causing B’s choice of b′ to receive NR. Then at the subsequent date c will
be played with positive probability; by Lemma 1 there will be an infinite run on c with
positive probability. Hence δc could be reached from µ following a single perturbation.
Since they are not mean-payoff-equivalent, we contradict the hypothesis that µ is stable.
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