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STATUS, INTERTEMPORAL CHOICE, AND RISK-TAKING

BY DEBRAJ RAY AND ARTHUR ROBSON1

This paper studies endogenous risk-taking by embedding a concern for status (rel-
ative consumption) into an otherwise conventional model of economic growth. We
prove that if the intertemporal production function is strictly concave, an equilibrium
must converge to a unique steady state in which there is recurrent endogenous risk-
taking. (The role played by concavity is clarified by considering a special case in which
the production function is instead convex, in which there is no persistent risk-taking.)
The steady state is fully characterized. It displays features that are consistent with the
stylized facts that individuals both insure downside risk and gamble over upside risk,
and it generates similar patterns of risk-taking and avoidance across environments with
quite different overall wealth levels. Endogenous risk-taking here is generally Pareto-
inefficient. A concern for status thus implies that persistent and inefficient risk-taking
hinders the attainment of full equality.

KEYWORDS: Status, growth, attitudes to risk.

1. INTRODUCTION

THIS PAPER DERIVES risk-taking behavior from the assumption that individuals
derive utility from status. In particular, we show how risk-taking behavior might
coexist with risk-averse behavior. Inspired by Veblen (1899) and Duesenberry
(1949), we embed a concern for relative consumption into an otherwise con-
ventional model of economic growth.2 That is, individuals care about relative
as well as absolute consumption. We presume that all fair gambles are avail-
able: there is a competitive industry that can supply such gambles at zero profit.
We study the intertemporal equilibrium of such a model. The theory generates
persistent endogenous risk-taking, even when there is no intrinsic uncertainty,
with minimal restrictions on the shape of the utility function.

The main idea is simple. A deterministic equilibrium—that is, an equilibrium
with no endogenous randomization—in our model induces convergence across
dynasties, as in the Solow or Ramsey parables. Such convergence implies there
would be large gains in relative consumption from small increases in absolute
consumption. Hence the urge to take risks becomes irresistible, destroying the
presumption that the equilibrium is deterministic to begin with. We describe

1Ray’s research was funded by National Science Foundation Grant SES-0962124 and the Ful-
bright Foundation; Robson’s by a Canada Research Chair and the Social Sciences and Humani-
ties Research Council of Canada. Ray is grateful to the Indian Statistical Institute for hospitality
during a year of leave from NYU. We thank the co-editor and four anonymous referees, as well
as participants in numerous conferences and seminars, for useful comments and suggestions.

2Frank (1985), Easterlin (2002), Scitovsky (1976), and Sen (1973), among many others, empha-
sized status in a similar sense; for empirical studies see, for example, Clark and Oswald (1996),
and Dynan and Ravina (2007). There is a small and growing literature dealing with dynamic mod-
els that studies how a concern with status influences savings; see, for example, Corneo and Jeanne
(1998), Hopkins and Kornienko (2006), Arrow and Dasgupta (2009), and Xia (2010).
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the dynamic equilibrium with risk-taking. The steady state of that equilibrium
generates individual insurance against substantial downside risk and gambling
over an intermediate range of outcomes. These explain the stylized facts that
motivated the classic contribution by Friedman and Savage (1948), to which
we return below.

Our emphasis on dynamics clarifies that the origin of endogenous risk-taking
is the convergence of wealth induced by a strictly concave intertemporal pro-
duction function. We underline this reasoning by briefly studying the case of a
convex production function. In this case, when utility depends on status alone,
there exists an equilibrium with no risk-taking. That equilibrium arises because
the convexity of the production function prevents convergence.

Status, as defined here, involves a consumption externality. If risk-taking cre-
ates a gain in status, for example, this gain must be counterbalanced by a loss
to other parties. It is not surprising, then, that the equilibrium gambling here
is Pareto-inefficient; indeed, this is true even if some particular forms of gam-
bling are Pareto-efficient.

Three strands of the literature inform our approach. Friedman and Savage
(1948) reconciled the simultaneous demand for insurance and lotteries by ar-
guing that the former alleviates downside risk and the latter exploits upside
risk. They studied a von Neumann–Morgenstern utility function that is first
concave, then convex, and finally again concave. This model has been criti-
cized, both for its ad hoc specification of the utility function as well as for its
dependence on absolute wealth alone.3 The latter generates marked shifts in
behavior with the overall growth of wealth, as individuals display an attenu-
ated appetite for insurance against downside risk.4 Our main result delivers
the Friedman–Savage findings with no assumption at all on the curvature of
utility in status. Moreover, the concern with relative consumption creates simi-
lar patterns of risk-taking and risk-avoidance across environments with varying
wealth levels.

Second, we build on Robson (1992), who modified Friedman–Savage util-
ity to depend on both relative as well as absolute wealth.5 If utility is concave
in wealth but convex in status, it is not hard to generate a concave-convex-
concave shape for utility as a function of wealth. This construction can be
immune to proportional wealth scaling. There is no presumption in favor of
Pareto-efficiency; there may be too much gambling, or perhaps even too little
of it.6

3Markowitz (1952) was an early and trenchant critique.
4Moreover, as discussed by Friedman (1953), there should be a distinct tendency for all indi-

viduals in the convex region and beyond to gamble their way to more extreme final wealth levels.
5Friedman and Savage actually proposed a rationale of concave-convex-concave utility that

involved relative concerns. They sketched a model with two classes, where changes in wealth
within either class led to decreasing marginal utility, but changes that promoted an individual
from the lower class to the upper class led to increasing marginal utility.

6In contrast, the Pareto-efficiency of the Friedman–Savage model is the main point in
Friedman (1953). In this context, we note that Becker, Murphy, and Werning (2005) also con-
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A limitation of such static models is that the concave-convex-concave util-
ity pattern arises from assumed underlying curvature properties of utility in
absolute and relative consumption, and of the wealth distribution. In the dy-
namic model we consider, no corresponding properties need be exogenously
specified. The results are driven by the inevitability of convergence in any de-
terministic equilibrium, and the resulting need for gambling so as to spread
equilibrium status out within any generation.

Our model is also related to a literature that studies a breakdown of con-
vergence induced by “symmetry-breaking”: individuals taking different actions
whenever society-wide distributions are highly equal. One approach in this
strand emphasizes the endogenous diversity of occupational choices at iden-
tical or near-identical wealth levels, leading to inequality.7 Another involves
the use of income distributions to create endogenous “reference points” with
high marginal gains and losses in the departure of wealth from the reference
points. Then perfect equality will be destabilized by individuals accumulating
capital to different degrees.8 Risk-taking plays an analogous role here.

Section 2 describes the basic setup. Section 3 studies the central model.
Propositions 1 and 2 characterize a unique steady state, in which all dynasties
bequeath the same amount, and start each generation with identical wealth.
However, endogenous risk-taking induces a nondegenerate distribution of life-
time consumption. Proposition 3 shows that an intertemporal equilibrium must
exist, and that any equilibrium path from a positive initial wealth distribution
must converge to the unique steady state. Section 4 throws light on the role
of the assumption of a strictly concave production function, by considering a
special case in which the production function is instead convex. Proposition 4
shows that a simple deterministic equilibrium exists, and it is unique in a broad
class of strategies. Section 5 studies some properties of the equilibrium of the
central model, among them, its inefficiency (Proposition 5). Section 6 sketches
two extensions of the central model. First, in line with Veblen, we observe that
the equilibrium in this model of consumption-based status can be reinterpreted
as a separating equilibrium in which consumption signals unobservable wealth.
Second, we consider how the introduction of uninsurable productive risk might
improve the realism of the model, by creating dispersion in wealth and con-
sumption. Section 7 summarizes and concludes.

sidered the incentive to gamble in a static model with rank-dependent status. They extended
Robson (1992) in a number of ways, perhaps most significantly to a case in which status is a sepa-
rate good that can be bought and sold. This assumption restores Pareto-efficiency. On a different
note, Hopkins (2010) reexamined the consequences of greater inequality. If there is greater in-
equality in the exogenous way the status good is distributed, this may lead to more gambling, in
contrast to the effect of greater inequality of the initial wealth distribution.

7See, for example, Freeman (1996), Mookherjee and Ray (2003), Matsuyama (2004), and Ray
(2006).

8Genicot and Ray (2010) developed this idea.
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2. THE BASIC SETUP

2.1. Feasible Set

There is a continuum of dynasties of measure 1. Each dynasty has initial
wealthw, distributed according to the cumulative distribution function (hence-
forth, c.d.f.) G.

Individuals consume and invest (or bequeath) in every period; each date rep-
resents a lifetime. An individual can transform part or all of starting wealth wt
into any gamble with that mean. The realized outcome is then divided between
consumption ct and kt . Capital produces fresh wealth for the next generation
according to the production function

wt+1 = f (kt)�(1)

We assume throughout that f is strictly increasing and continuously differ-
entiable (C1) in k, with f (0) ≥ 0. For the main analysis in Section 3, we will
suppose that f is strictly concave. However, we entertain the possibility of the
opposite curvature in Section 4. Indeed, under our intergenerational interpre-
tation, the “production function” f may well be nonlinear. For instance, capital
may have a human component—new generations acquire education and make
occupational decisions—and the rate of return to human capital will generally
vary with the level of such capital; see, for example, Becker and Tomes (1979)
and Loury (1981). This interpretation presumes, in addition, that there are im-
perfect credit markets for education.9

2.2. Utility and Status

Each individual has a utility function, u(c� s), that depends on consumption
and status. Status at a particular consumption level is the fraction of the popu-
lation who are consuming strictly less, plus a fraction of those who have exactly
the same level of consumption. That is, if Ft is the c.d.f. of consumption in
society at date t, then, for any c ≥ 0, status s is given by

s= F̄ t(c)= ηF−
t (c)+ (1 −η)Ft(c)�(2)

where η is some number strictly between 0 and 1 and F−
t (c) is the left-hand

limit of Ft at c.10

In the special model of Section 4, we assume that u is a function of status
alone.

9If there were a complete competitive market for borrowing and lending, individuals would
face the linear intertemporal budget constraint arising from the competitive interest rate, with
an intercept term that captures the additional value brought in by human capital, so f would be
affine.

10Setting η= 1/2 is attractive since total status is always then 1/2, across all distributions, with
or without atoms. But it is not needed in the formal analysis.
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2.3. Risk

We suppose that all fair gambles are freely available.11 Each individual can
subject part or all of that wealth to randomization, dividing the proceeds be-
tween consumption and investment. Such randomization might involve partic-
ipation in the state lottery, in stock markets, or real-estate speculation. Un-
der our interpretation, “consumption” is lifetime consumption, so that within-
period risk-taking includes occupational choice or entrepreneurial ventures in
addition to the assumption of short-term risk.

2.4. Dynastic Objective

Given initial wealth w, and a sequence of consumption distributions Ft , a
typical dynasty maximizes the present discounted value of expected payoffs:

∞∑
t=0

δtEu(ct� F̄ t(ct))�(3)

where δ ∈ (0�1) is the discount factor, and expectations are taken with respect
to any endogenous randomization. Of course, the constraint (1) must be re-
spected at every date.

2.5. Equilibrium

Each dynasty pursues a policy, which involves a fair randomization of wealth
(including the possibility of no randomization at all), and a split of the result-
ing proceeds between consumption and investment, all possibly conditioned
on economy-wide and private histories. The recursive application of these
policies, aggregated over all dynasties, yields a sequence of joint distributions
for consumption, investment, and wealth. In particular, there is a sequence
F ≡ {Ft} for consumption at each date, and a corresponding sequence G ≡ {Gt}
for wealth.

We assume anonymity, so only aggregates can be observed, and so a single
dynasty’s actions cannot be conditioned upon by others. Then each dynasty
must take the entire sequence of consumption c.d.f.s F as given. Each such dy-
nasty settles on an optimal policy, which involves (possibly history-dependent)
choices to maximize lifetime payoff as described in (3). An equilibrium is a col-

11With a finite number of individuals, there is an issue of satisfying the overall budget con-
straint. This issue disappears as the number of individuals tends to infinity, given the fairness of
the gambles. Suppose there are N individuals, each with consumption budget b > 0. We wish to
allow individuals to take the gamble with c.d.f. F , say. Suppose this c.d.f. has maximum consump-
tion C and minimum 0. It is not hard to show that individuals n = 1� � � � � m̃, say, can be given
independent draws from F , with individuals n = m̃ + 1� � � � �N treated as residual claimants, in
such a way that m̃/N → 1� with probability 1, as N → ∞�
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lection of optimal policies relative to the sequence F, which generates that very
sequence after aggregation.

A steady state is an equilibrium in which the c.d.f.s of consumption and
wealth are time-stationary: there are distributions F∗ andG∗ such that Ft = F∗

and Gt =G∗, for all t.

3. ENDOGENOUS RISK-TAKING

We consider first the central model in which the production function is
strictly concave and utility depends on both absolute consumption and rela-
tive status. The strict concavity of the production function implies that there
is convergence of wealth levels. With no gambling, consumption levels would
also converge, implying that a small increment in consumption would generate
a “large” gain in status, creating strong incentives to deviate from the presumed
equilibrium. There must, therefore, be endogenous and persistent risk-taking
in equilibrium.

We describe the model. First, the production function is taken to be strictly
concave, and a little more.

ASSUMPTION 1: f is C1, strictly increasing, and strictly concave in k, with
f (0)≥ 0, δf ′(0) > 1, and f (k) < k for all k large enough.

Next, utility is taken to be a function of both consumption and status.

ASSUMPTION 2: u(c� s) is C1, with u(0�0) = 0. It is increasing in s, with
us(c� s) > 0 for all (c� s). It is strictly increasing and strictly concave in c, so
that uc(c� s) > 0 and ucc(c� s) < 0. For every s, uc(c� s) → 0 as c → ∞, and
uc(c� s)→ ∞ as c→ 0.

Finally, we assume that initial wealths are uniformly positive and bounded.

ASSUMPTION 3: The initial distributionG has compact support, bounded away
from 0.

We make two remarks. First, under Assumption 1, an individual will never
randomize on k, whether or not continuation values are convex in investment.
Any such randomization can be dominated by investing the expected value
of the investment, and then taking a fair bet using the produced output. This
domination is independent of the curvature of utility or continuation values.
Without loss of any generality, then, we can work with the equation

f (kt)= bt+1 + kt+1�

where bt is the consumption budget of an individual at date t, and kt+1 is deter-
ministic.
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Second, Assumption 2 does not impose any restriction on the curvature of
u(c� s) in s. However, we do assume that utility is strictly increasing in con-
sumption, which formally rules out the pure status model. This assumption
matters for the existence theorem rather than the convergence results. We dis-
cuss the pure status model separately in Section 4.

We first describe the equilibrium outcome in every period, and then embed
this solution in reduced form into the fully dynamic model.

3.1. Within-Period Equilibrium and Reduced-Form Utility

Consider an equilibrium. Suppose that, at some date, the distribution of con-
sumption budgets is given by H. With risk-taking, there will be a new distribu-
tion of consumption realizations, F . Consider the following characterization of
the relationship of F to H. Since F is obtained from H by fair randomizations
(some possibly degenerate),

CONDITION R1: F is a mean preserving spread of H.

The “reduced-form utility” to any agent is defined to be μ(c)≡ u(c� F̄(c)).
If μ(c) were not concave, profitable deviations involving gambling would nec-
essarily exist (given H(0)= 0). Thus, the following holds.

CONDITION R2: μ(c) ≡ u(c� F̄(c)) is concave and continuous. It follows
that F is continuous, so that F̄ = F and μ(c)= u(c�F(c)).

Finally, all individuals who engage in randomization do so willingly. Hence
utility is convex over the range of any randomization. Condition R2 calls for
concavity throughout. These two restrictions imply linearity over the range of
any randomization:

CONDITION R3: μ is affine over the range of any randomization used in
converting H to F . Specifically, suppose that

∫ c

0
F(x)dx >

∫ c

0
H(x)dx for all c ∈ (¯c� c̄)�

Then μ(c)≡ u(c� F̄(c))= u(c�F(c)) must be affine on (¯c� c̄).
Figure 1 illustrates a μ satisfying Conditions R1–R3. Note that there are two

adjacent zones of randomization here, leading to two affine segments of the re-
duced form utility with different slopes. Because of this, no single equilibrium
randomization has outcomes in both zones.

We characterize the relationship of equilibrium consumption realizations
and consumption budgets in Proposition 1(ii). Proposition 1(i) is an interme-
diate step of independent interest; it is the core observation for endogenous
randomizations.
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FIGURE 1.—The reduced form utility.

PROPOSITION 1: (i) Under Assumption 2, if H has compact support with
H(0)= 0, there is a unique F associated with thisH satisfying Conditions R1–R3.

(ii) Under Assumptions 2 and 3, if {Ht�Ft} is an equilibrium sequence of con-
sumption budgets and realizations, then, at each t, Ft satisfies Conditions R1–R3
relative to Ht .

The proofs of our results can be found in the Appendix, with technical details
relegated to the Supplemental Material (Ray and Robson (2012)). In particu-
lar, the Appendix summarizes the proof of Proposition 1, while the Supple-
mental Material contains all details.

3.2. Steady State

A steady state is an equilibrium outcome in which the same distribution of
wealth recurs period after period. We begin our discussion with the following
implication of Proposition 1(i):

COROLLARY 1—To Proposition 1(i): Make Assumption 2. For each b > 0,
there is a unique c.d.f. F satisfying Conditions R1–R3 with the following proper-
ties:

(i) The mean of F equals b:
∫
c dF(c)= b�(4)
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(ii) The support of F is an interval [a�d], and there exists α> 0 such that

u(c�F(c))= u(a�0)+ α(c− a) for all c ∈ [a�d]�(5)

(iii) a > 0, so μ(c)= u(c�F(c)) everywhere, and α= uc(a�0).
Moreover, the slope of the affine segment α is a nonincreasing function of b.

This corollary describes how a common consumption budget must be spread
out by gambling. All such gambles are fair, so we have (4). Moreover, Condi-
tion R3 tells us that μ must be linear over the overall domain of the gambles,
which yields (5). Now we have the following.

PROPOSITION 2: Make Assumptions 1 and 2. Then there is a steady state such
that:

(i) Every individual (in a set of full measure) makes an identical investment
k∗, given by the unique solution to δf ′(k∗) = 1, and has equal starting wealth
w∗ = f (k∗) at every date.

(ii) The distribution of realized consumption is as in Corollary1 with b= b∗ ≡
f (k∗)− k∗.
Moreover, the following holds:

(iii) If f (0) > 0, this steady state is unique. If f (0)= 0, there is no other steady
state with positive wealth for almost every individual.

Observe that, if f (0)= 0, any steady state can be augmented by the addition
of any mass of dynasties with zero initial wealth. Such dynasties will have zero
investment and consumption. However, Proposition 2 asserts that zero wealth
is the only impediment to uniqueness, in this case.

3.3. Existence and Convergence

Two crucial results are needed to justify our focus on the steady state.
That steady state would be rather meaningless if equilibrium convergence to
this steady state were not guaranteed from an arbitrary initial distribution of
wealth. Second, we need existence of equilibrium. The following proposition
resolves both these issues.

PROPOSITION 3: Make Assumptions 1, 2, and 3. Then the following hold:
(i) Under any intertemporal equilibrium, the sequence of consumption distri-

butions must converge over time to the steady state distribution identified in Propo-
sition 2.

(ii) An intertemporal equilibrium exists.

It may be useful to provide an outline of the long argument leading to part (i)
of Proposition 3; see the Appendix and the Supplemental Material for details.
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Begin with any intertemporal equilibrium. By Condition R2, the reduced-form
utility functions μt(c) = u(c�Ft(c)) are concave at every t. This generates an
optimal growth problem with time-varying one-period utilities. By a “turnpike
theorem” due to Mitra and Zilcha (1981),12 starting from any two (positive)
initial wealths, the resulting paths of capital stocks must converge to each other
over time. Therefore, capital stock sequences bunch up very closely. When they
do, the preservation of concavity in μt requires that consumption be suitably
spread out using endogenous risk-taking. Further, the supports of all the gam-
bles involved must overlap. Hence all consumption budgets ultimately fall into
a range over which utility is linear (see Condition R3). Thus, the marginal util-
ity of consumption of all agents is fully equalized after some date, so not only
are capital stocks close together, they coincide after some finite date. The re-
mainder of the argument consists in showing that this (common) capital stock
sequence must converge.

The proof of part (ii) is entirely relegated to the Supplemental Material. We
make two remarks. First, existence is shown in a more general setting than
the model studied here, one that maintains minimal curvature restrictions on
the production function and also allows for stochastic shocks to technology.
Second, we establish the existence of an equilibrium in Markovian policies:
each individual employs a policy that is independent of past choices and past
distributions.

4. A SPECIAL CASE WITH NO ENDOGENOUS RISK-TAKING

In this section, we illuminate the crucial role in the central model that is
played by strict concavity of the production function. We do this by explicitly
considering a production function that exhibits nondecreasing returns to scale.
We also assume that utility depends on status alone, for expositional ease. This
setting permits a remarkably simple equilibrium to exist. The convexity of the
production function f implies that inequality of wealth and consumption do
not fall over time, and endogenous risk-taking does not arise. In equilibrium,
individual savings policies do not depend on the production or utility functions;
they depend only on the discount factor.

Consider the following restrictions:

ASSUMPTION 4: u depends on s alone and is C1, with u(0)= 0 and u′(s) > 0
for all s > 0.

ASSUMPTION 5: f is strictly increasing, C1, convex in k, and f (0)= 0.

ASSUMPTION 6: The initial G satisfies G(0) = 0, and u(G(w)) is concave
in w.13

12In the formal proof, we use an extension of the Mitra–Zilcha theorem due to Mitra (2009).
13These requirements implicitly rule out the possibility of atoms—wealth levels shared by a

positive measure of individuals. If u(G(w)) is not concave, the arguments in the Supplemental
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The pure-status restriction on u and the convexity of f are implausible, but
we use them here to illustrate a point. The convexity of f notwithstanding, we
find an equilibrium (see Proposition 4(i)) that generates a concave maximiza-
tion problem for each individual. There is no demand for risk.

This would be less striking if there were many deterministic equilibria, with
varying characteristics. However, Proposition 4(ii) shows that this equilibrium
is the only “strict” and “smooth” deterministic equilibrium, for general f . A de-
terministic equilibrium is strict if, at each date, individuals at all wealth levels
have unique deterministic best responses.14 In particular, in a strict equilib-
rium, a consumption policy can be written as a function of individual wealth
alone. A deterministic, strict equilibrium is smooth if every individual employs
a sequence of differentiable consumption policies {cit}, with 0< dcit(w)/dw < 1
at all wealths w and dates t.15

PROPOSITION 4: (i) Under Assumptions 4, 5, and 6, there exists an equilibrium
in which almost every dynasty undertakes no endogenous risk, and has constant
status over time. In this equilibrium, the policy

ct = (1 − δ)wt(6)

is employed by almost every dynasty, which furthermore is independent of both the
utility function and the initial distribution of wealth.

(ii) Suppose that Assumption 4 holds, and f (0)= 0. Consider any strict deter-
ministic smooth equilibrium described by a family {cit} of consumption functions.
Then cit(w)= (1 − δ)w for all i, all t, and all w.

Several remarks apply to part (i) of this proposition. To begin with, the equi-
librium has an extremely simple structure. Equilibrium policy depends neither
on the initial distribution of wealth, nor the exact forms of the utility function
and the production function. (The equilibrium distributions do, however, de-
pend on these functional forms.) In fact, the equilibrium policy that we exhibit
is the one that would be followed by an optimizing planner with logarithmic
utility defined on absolute consumption given a linear production technology.
What accounts for this structure is the delicate balance achieved across time
periods: status matters today, which increases the need for current consump-
tion, but it matters tomorrow as well, which increases the need for consumption

Material can be applied here to show that there will be an equilibrium in which individuals en-
gage in fair bets in initial wealth, but only in the first period. If Ĝ is the post-gambling wealth
distribution, then u(Ĝ(w)) is concave, with linear ranges of u(Ĝ(w)) associated with nontrivial
gambling. The subsequent equilibrium is then as described here.

14Note that each individual faces the same optimization problem apart from initial wealth.
15These restrictions on dcit (w)/dw imply that all consumption levels are normal in current

wealth.
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tomorrow. In equilibrium—with a convex production function—the two effects
nicely cancel in a way that induces a particularly simple equilibrium structure.16

Second, the equilibrium we obtain induces a concave optimization problem
for each dynasty. With the linear equilibrium policy in place, all individuals
would converge in wealth if the production function were strictly concave, as
they do, for instance, in the Solow growth model. This would ultimately create
a nonconcave optimization problem for an individual, with small amounts of
accumulation giving rise to large status gains. In contrast, the convexity of f
ensures that wealth and consumption distributions stay dispersed at every date:
the lack of bunching induces a concave optimization problem. It is worth noting
how, in this sense, the convexity in the production function generates concavity
in the individual optimization problem.

Finally, precisely because of the convexity of the production function, there
is no incentive to gamble. While gambling has positive net expected value in the
sense of output, the endogenous concavity of payoffs from that output more
than outweighs the convexity in technology.17

Proposition 4(ii) states that our simple equilibrium is the only deterministic
equilibrium in a broad class of policies. It is worth emphasizing that this result
is independent of the curvature of f . What would this imply in the central
model discussed in the previous section? Consider the following minor result:

REMARK 1: Suppose f satisfies Assumption 1, and that Assumption 4 also
holds. Then there is no strict, smooth deterministic equilibrium.

The proof of this assertion is simple. If such a policy sequence were to be an
equilibrium, then it must be of the linear form described in Proposition 4(ii). So
convergence of all wealth and consumption levels would occur. Once at a point
in time sufficiently close to the limit with complete equality, a deviator could
then modify his strategy to increase consumption slightly for an arbitrarily large
number of periods, at the price of reduced consumption thereafter. Such a
deviation would generate a jump in status for this large number of periods and
therefore would have to increase the deviator’s total discounted payoff from
that point onward, which is the desired contradiction. While Remark 1 leaves
open the possibility of rather pathological deterministic equilibria, the obvious
resolution is to allow randomization.18

16This observation may be viewed as a counterpart for rank-dependent status of the result
established by Arrow and Dasgupta (2009), where status derives from the average consumption
level.

17However, if one can buy fair insurance over the outcomes of investment gambles, any strictly
convex section of the production function can be advantageously fully linearized, despite the con-
cavity of utility. Such an outcome requires the individual to commit to investing the realizations



STATUS AND RISK-TAKING 1517

FIGURE 2.—The Friedman–Savage property.

5. SOME IMPLICATIONS OF THE CENTRAL MODEL

5.1. Risk-Averse and Risk-Preferring Choices

We now return to further consideration of the central model developed in
Section 3. Figure 2 provides a diagrammatic representation of the steady state.
The first panel depicts the steady state c.d.f. F∗. This panel is deliberately
drawn to suggest that F∗ has no particular shape, only that it “cancels” all
curvature in u to create the affine segment (between a∗ and d∗) in the second
panel. In addition, zones [0� a∗] and [d∗�∞) must be present, over which no
bets are taken and the utility function is strictly concave.19

The two regions taken together generate the phenomena that Friedman and
Savage (1948) sought to explain by their postulate of an (exogenous) utility
function that is alternately concave and convex. In the steady state, there is
aversion to downside risk; no individual would ever take bets that would lead
them into the consumption region [0� a∗], or beyond d∗. Yet there must be risk-
taking in the region [a∗� d∗], as emphasized throughout the paper.

from endogenous gambling. The assumption of strict convexity implicitly disallows such insurance
against endogenous risk.

18Allowing randomization in consumption restores existence in this case, not surprisingly, since
it is a limiting case of the central model for which existence is available. For simplicity, suppose
that all individuals have the same initial wealth, w0, say. Now, if the assumptions of Remark 1
hold, there is an equilibrium that can be derived simply from the standard one-agent problem of
maximizing

∑∞
t=0 δ

t lnbt subject to w0 = k0 + b0 and f (kt)= kt+1 + bt for t = 0� � � � . That is, if b∗
t

and k∗
t solve this standard problem, then they also are the basis of an equilibrium here. In this

equilibrium, everyone invests k∗
t and randomizes the residual b∗

t with the c.d.f. of consumption
determined by the requirement that u(Ft(ct)) = ct/2b∗

t , for ct ∈ [0�2b∗
t ], for t = 0�1� � � � , under

the harmless normalization that u(1)= 1.
19The former zone is nonempty because u has unbounded steepness in c at the origin, and the

latter is nonempty because steady state gambles have bounded support.
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In the stark specification we study, the zones [0� a∗] and [d∗�∞) are actually
not inhabited in steady state. This outcome is an artificial consequence of our
assumption that there is no exogenous risk. But this is easy to incorporate; see
the discussion in Section 6.1. If this exogenous risk has realizations in the zone
[0� a∗] or [d∗�∞), insurance will avoid such outcomes. If some of the exoge-
nous risk is uninsurable, all three zones will generally be actively inhabited in
steady state. The central model then generates both a demand for insurance
and a demand for gambling.

It is of interest that this phenomenon—risk-aversion at the extreme ends
of the distribution coupled with risk-taking elsewhere—arises “naturally” in
an environment where utility depends on status. There is no need to depend
on an ad hoc exogenous description of preferences and distributions for an
explanation.20

5.2. Scale-Neutrality

The use of relative consumption guarantees that the model is, in a certain
sense, scale-neutral. Two insulated societies with, say, two different produc-
tion technologies, will generally settle into two different steady states. Both the
steady states will generally exhibit the requisite patterns of risk-taking and risk-
avoidance, even though they may be located at different ranges in the wealth
and consumption distribution. Unless the Friedman–Savage utility function
moves around to accommodate different wealths in exactly the right way, it
is not possible in their approach to generate the same phenomenon at diverse
aggregate wealth levels.

5.3. Pareto-Inefficiency

Gambling in the Friedman–Savage world is ex ante efficient: there is an as-
sumed convexity in the utility function, and this convexity is well-served by
risk-taking. In our model, however, there is a pervasive consumption exter-
nality. I consider the status consequences for me of my choice to gamble, but
there must be consequences for others as well, and these I ignore. Equilibrium
risk-taking will then generally be Pareto-inefficient.

Consider first the special case in which u is jointly strictly concave in (c� s).
Assign a status rank of 1/2 to every individual that lives in a society of perfect
equality. It then follows that the steady state identified in Proposition 2 must
be Pareto-inefficient. To prove this, simply ban all gambling at the steady state.

20One might object that (unlike Friedman and Savage) our individuals do not strictly prefer
to bear risk. In the aggregate, however, risk-taking arises as a robust equilibrium phenomenon.
From a revealed preference perspective, we have accounted for the same observations as did
Friedman and Savage.
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All individuals continue to invest k∗, and utility in each period is u(b∗�1/2). In
contrast, in the steady state with gambling, utility is given by

∫
u(c�F∗(c))dF∗(c) < u

(∫
c dF∗(c)�

∫
F∗(c)dF∗(c)

)

= u(b∗�1/2)�

where we use the strict concavity of u, and Jensen’s inequality.
But inefficiency is more pervasive, and it does not require the concavity of

u in status. In such cases, some gambling may well be Pareto-efficient, in line
with the static model of Robson (1992) and one of the models of Becker, Mur-
phy, and Werning (2005). Nevertheless, such efficient gambling cannot be an
equilibrium outcome in the steady state derived here.

PROPOSITION 5: Under Assumptions 1 and 2, the steady state identified in
Proposition 2 must be Pareto-inefficient.

5.4. Consumption Distribution in Steady State

Our model predicts key properties of the equilibrium distribution of lifetime
consumption. If u is jointly strictly concave in (c� s), then Jensen’s inequality
implies that u(b∗�F∗(b∗)) < u(b∗�1/2), so that b∗ < (F∗)−1(1/2). (This conclu-
sion holds whether or not η= 1/2.) That is, the mean of the distribution is less
than the median, which conflicts with the stylized fact that the mean exceeds
the median. Utility functions that are concave in consumption, but convex in
status, on the other hand, are capable of generating the realistic prediction
that the mean exceed the median.21 Concavity in consumption and convexity
in status was the central formulation of Robson (1992), although the motiva-
tion there was independent of the argument here.

6. TWO EXTENSIONS OF THE CENTRAL MODEL

6.1. Exogenous Risk

Suppose that there are production or ability shocks, so that we write the
production function as f (k�θ) where k ≥ 0 is the bequest as before, and θ ∈
[0�1] is the realization of a random variable. We can replace Assumption 1 by
the following.

ASSUMPTION 7: f is increasing in (k�θ), C1, and strictly concave in k, with
f (0� θ)≥ 0 for all θ ∈ [0�1]. Moreover, for all θ ∈ [0�1], δfk(0� θ) > 1 and there
exists K ≥ 0 such that f (k�θ) < k for all k>K.

21It is not hard to produce an example of such a utility function where the mean exceeds the
median.
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Suppose that this risk can be fully insured in actuarially fair fashion. Then,
without any loss of generality, the production function can be taken as
Eθf (k�θ), which is deterministic and satisfies Assumption 1. So insurable risk
makes no difference at all to the analysis.

However, the assumption that all risk is insurable is strong. There may be
ability shocks (f includes all income sources, including wage income), or part
of k may be in the form of human capital bequests that are subject to moral
hazard. In this case, the full generality of Assumption 7 is needed in place of
Assumption 1. An equilibrium can still be shown to exist (see the Supplemen-
tal Material). As long as the effect of the random variable θ is small enough,
moreover, we conjecture that there will be a generalized stochastic steady state
(or invariant distribution) that is close to the deterministic steady state found
here, with endogenous and persistent risk-taking. The noise will disperse in-
dividuals into all three regions of the utility function that arose in the case
without noise—see Figure 2. Individuals who find themselves in regions where
the noiseless utility was strictly concave above or below the region where it was
linear would then consume and invest in a way that tends to restore them to the
linear region. The stochastic steady state would then essentially involve balanc-
ing the noise introduced by uninsurable risk and this restorative behavior.

6.2. Status From Wealth

Status in the current model derives explicitly from consumption rather than
wealth. Veblen (1899) coined the phrase “conspicuous consumption” as a re-
flection of the capacity of observable consumption goods to signal underlying
wealth and thereby generate status. Although the current model cannot do jus-
tice to Veblen, the equilibrium here can be reinterpreted as a fully separating
equilibrium in which observable consumption signals underlying unobservable
wealth.22

To see this, reconsider the steady state of our model, in which consumption
generates status. At the start of any date, almost all individuals have wealth
w∗ = f (k∗); but the after-gambling wealth distribution has continuous c.d.f.
G∗, say, which is the c.d.f. of after-gambling wealth k∗ + c, where the c.d.f.
of c is F∗. That is, G∗(k∗ + c) = F∗(c), and status is F∗(c) for all c ≥ 0. For
individual optimality, an individual who has any after-gambling wealth w ≥ 0
must solve

max
c�c′

[
u(c�F∗(c))+ δu(c′�F∗(c′))

]
subject to f (w− c)= c′ + k∗�(7)

22There is yet another formulation in which wealth is observable, just as consumption is in our
model. This is a variant that is not accommodated. It would be of interest to extend our analysis
to this case. It is not obviously more difficult, but it is the task of another paper. (It is plausible
that endogenous risk-taking would also arise if there is convergence, but convergence would have
to be proven.)
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where everyone else behaves in accordance with the equilibrium. That is, the
individual would choose to invest k∗ over the range of after-gambling wealth
levels generated by the consumption gamble F∗ and would find it optimal to
take the gamble G∗ in the first place.

It is easy to interpret this as a separating equilibrium in which observable
consumption signals unobservable after-gambling wealth. Suppose everyone
else behaves as before, and consider the two-period problem faced by any in-
dividual. This is

max
c

[
u
(
c�G∗(w(c))

) + δu(c′�G∗(w(c′))
)]

(8)

subject to f (w− c)= c′ + k∗�

where w(x) is the after-gambling wealth level inferred from observing con-
sumption level x. However, since w(x) ≡ k∗ + x for all x ≥ 0, it follows that
G∗(w(x)) = F∗(x); our individual solves (8) exactly as she solves (7). More-
over, by the one-shot deviation principle, no profitable deviation across multi-
ple dates can exist. It follows that the steady state equilibrium where consump-
tion generates status directly can be reinterpreted as a separating equilibrium
where consumption signals after-gambling wealth.23

7. CONCLUSION

In this paper, we embed a concern for relative consumption into an other-
wise conventional model of economic growth, and examine its consequences.
In our main result, obtained with conventional concavity restrictions on the
utility and production functions, there must be persistent, endogenous, and
inefficient risk-taking in equilibrium.

More generally, there must be persistent consumption inequality. When
that inequality is generated “naturally,” as it is with a constant- or increasing-
returns technology, behavior is simple and deterministic. On the other hand,
when inequality tends to diminish, as it does under concavity, it is recreated by
endogenously generated recurrent risk-taking.

What might be the real-world manifestations of such risk-taking? We take as
wide a view as possible. We might emphasize state lotteries,24 as did Friedman
and Savage, but that is only one example. One can also view the choice of

23Out of steady state, initial wealth levels may differ across individuals. However, realized ob-
served consumption is still strictly increasing in total after-gambling wealth, by the weak concavity
of current utility and the strict concavity of the relevant continuation value, so the argument can
be generalized.

24The salient feature of state lotteries is that they offer a very small probability of a very large
gain, and a probability near 1 of a small loss. It is difficult to explain why these would be the
only unfair gambles taken in an expected utility framework. See Chew and Tan (2005) for an
explanation using weighted utility.
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career in this light, such as entrepreneurship, or occupations in which the rate
of return may be low on average, but risky. Consider, for instance, the decision
to become a professional basketball player, a sport with a low expected rate of
return. Or consider a restauranteur who invests heavily in a new eatery, despite
a half-life of six months for such establishments. Alternatively, consider a low-
level member of a drug gang who earns only about the minimum wage, faces
the possibility of arrest and imprisonment and of being murdered, and can, on
average, have only a modest chance of promotion within the gang.

The framework might also apply to individual activity on financial markets,
to the extent that many of the risky outcomes may well be effectively idiosyn-
cratic, depending on the individual decision mix. There is also a large aggregate
component here, which forms a substantive topic meriting further research.25

Such phenomena admit of alternative explanations—most obviously that the
subjective probabilities of success in these cases are exaggerated (perhaps—as
in the case of professional sports—by the media). But the current explanation
is attractive in that it does not rely on such misperception.

APPENDIX

This appendix outlines the proofs of Propositions 1–5 as stated in the text.
However, details (including the proofs of lemmas stated below) are relegated
to the Supplemental Material. In addition, the Supplemental Material contains
a proof of existence of equilibrium in a more general model, which implies
Proposition 3(ii) in particular.

We maintain Assumptions 1–3 until further notice. We begin with a central
lemma.

LEMMA 1: At any date with equilibrium c.d.f. of consumption F , μ(c) ≡
u(c� F̄(c)) is concave.

PROOF OF PROPOSITION 1(i): First suppose that H has finitely many mass
points. For any “initial point” a such that H(a) < 1, and for any “terminal
point” d > a, let [aHd] be the affine segment that connects u(a�H(a)) to
u(d�H(d)). Associated with [aHd] is a positive slope α, given by

α≡ u(d�H(d))− u(a�H(a))
d− a �

Say that [aHd] is allowable if α≥ uc(a�H(a)).
25What would the current approach predict for the attitude of individuals to pure aggregate

risk? Suppose that a population of individuals can decide to either enter an activity with purely
aggregate risk, or stay out. If they stay out, they obtain constant consumption and a fluctuating
status that depends on the number of individuals in the risky activity. If they enter, they obtain
risky consumption and a status that is risky, but only to the extent that others stay out. It is worth
studying the equilibria of such a model, both in a static and in a dynamic context.
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LEMMA 2: If [aHd] is allowable, then the following distribution function F is
well-defined and strictly increasing: F(c)=H(c) for all c /∈ (a�d), and

u(c�F(c))= u(a�H(a))+ α(c − a)(9)

for all c ∈ (a�d).
For allowable [aHd] with associated distribution function F as described in

Lemma 2, define

I[aHd](x)≡
∫ x

a

[F(z)−H(z)]dz

for x≥ a. Say that the allowable segment [aHd] is feasible if

I[aHd](x)≥ 0(10)

for all x ∈ [a�d), with equality holding at x= d:

I[aHd](d)= 0�(11)

Because H has finitely many jumps and is flat otherwise, and because u is
concave in c, it is easy to see that from any a, there are at best finitely many
feasible segments (there may not be any). Construct a function d(a) in the
following way. If, from a, there is no feasible segment with d > a, set d(a)= a.
Otherwise, set d(a) to be the largest value of d among all d’s that attain the
highest value of α.

LEMMA 3: Let [aHd] and [aHd′] be two feasible segments. If α′ > α, then
d′ > d.

LEMMA 4: For every a with H(a) < 1, α(a) and d(a) are well-defined.

LEMMA 5: Suppose that an ↓ a with d(an) > an for all n. Then d(a) > a.26

LEMMA 6: Suppose that [aHd] with slope α is allowable, but (10) fails at
x= d. Then the maximum slope α(a) from a strictly exceeds α.

Now construct a utility function μ∗ on consumption alone. In the sequel this
will be the unique reduced-form utility satisfying Conditions R1–R3 for the
distributionH. The construction is always in one of two phases: “on the curve”
or “off the curve,” referring informally to whether we are “currently” following

26This assertion is false for arbitrary sequences an; consider a distribution H with a unique
mass point at a. It is clear that d(a)= 0, while d(a′) > 0 for all a′ < a.
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the original function u(x�H(x)) or are changing it in some way. Starting at
a = 0, follow the original function u(a�H(a)) as long as d(a) = a (stay “on
the curve”); at the first point at which d(a) > a—and Lemma 5 guarantees
that if any d(a) > a exists, there is a first such a—move along the line segment
[aHd(a)] (go “off the curve”). Repeat the same process once back again “on
the curve” at d(a).27 The reduced-form function—call it μ∗—will be made up
of affine segments in the regions in which d(a) > a, and when d(a) = a, of
stretches that locally coincide with u(c�H(c)). It is easy to see that there are
at most finitely many affine segments involved in the construction of μ∗.28

When H has finite support, this generates a reduced-form utility (RFU).

LEMMA 7: μ∗, as given by the construction, satisfies Conditions R1–R3.

Now we prove that a larger class of consumption budget distributions all
admit reduced-form utilities satisfying Conditions R1–R3. We begin by proving
the uniqueness of such functions.

LEMMA 8: For every distribution of consumption budgets H, there is at most
one RFU.

To complete the proof of the first part of the proposition, we use an extension
argument. Consider the collection H of all c.d.f.s H on [0�M], where M <∞.
We seek the existence of a mapping φ that assigns to each H ∈ H its unique
RFU μ. Let Hfin be the subspace of H containing all H with finite support.
Then Hfin is dense in H in the weak topology. Lemma 7 tells us that the map-
ping φ is already well-defined on Hfin. To extend it, we use the following three
lemmas.

LEMMA 9: Let Gn converge weakly to G, and (an�bn) to (a�b). Then

∫ bn

an
Gn(x)dx→

∫ b

a

G(x)dx as n→ ∞�

LEMMA 10: Consider any sequence Hn ∈ H converging weakly to H ∈ H, and
suppose that there exist associated RFUs μn, along with distributions of realized
consumption Fn. If Fn converges weakly to F , then μ given by μ(c)≡ u(c�F(c))
for all c is the RFU for H.

LEMMA 11: Every sequence in φ(Hfin), the space of all RFUs for distributions
in Hfin, admits a weakly convergent subsequence.

27It could be that d(d(a)) > d(a) so that we immediately leave the curve again at d(a).
28Indeed, the number of affine segments cannot exceed the number of atoms in H .
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Now proceed as follows. Pick any distribution H ∈ H. We know that
there is a sequence Hn ∈ Hfin that converges weakly to H. Each Hn has its
(unique) RFU μn, with associated distribution of realized consumptions Fn.
By Lemma 11, {Fn} admits a convergent subsequence that weakly converges
to some distribution F . By Lemma 10, this is an RFU for H. By Lemma 8, it is
the only one, so the proof of Proposition 1(i) is complete. Q.E.D.

To prove Proposition 1(ii), let {Ht�Ft} be an equilibrium sequence of con-
sumption budgets and realizations. We observe that Ht(0) = 0 for all t ≥ 0.
This follows easily from Assumption 3 combined with the unbounded steep-
ness of utility u(c� F̄ t(c)) at every date (recall that uc(c� s)→ ∞ as c → 0 for
any s); initial wealth positive implies optimal consumption is positive at all
dates.29

It follows that Ft(0) = 0 for all t. For if Ft(0) > 0, there must be a positive
measure of individuals who take gambles that have a positive probability of
generating 0. All of them have strictly positive budgets, so each such person
would be better off by replacing her gamble by one that avoids 0, which yields
a status payoff F̄ t(0) that is discontinuously lower than Ft(0). This contradicts
the fact that we have an equilibrium to begin with.

It is now easy to prove Conditions R1–R3, noting that Condition R2 is a
direct corollary of Lemma 1.

PROOF OF COROLLARY 1: Simply verify that the conditions in the statement
of the corollary correspond to Conditions R1–R3 when the consumption bud-
get is degenerate, and then apply Proposition 1(i) for the case of a degenerate
distribution H.30

To establish the very last assertion in the corollary, suppose that b is in-
creased. Then, by (4), the new distribution function F must have a higher
mean. It is easy to conclude that a and d must both increase. By the concavity
of uc(·�0), α≡ uc(a�0) cannot increase. Q.E.D.

PROOF OF PROPOSITION 2: Let F∗ be any steady state distribution of con-
sumption. Then we know that the RFU μ∗(c) = u(c�F∗(c)) is concave. By
Assumption 2 and the fact that μ∗(c) ≥ u(c�0) for all c, μ∗ has unbounded
steepness at 0. Consider the problem of choosing {bt(i)�kt(i)} to maximize∑∞

t=0 δ
tμ∗(bt(i)), subject to wt(i)= bt(i)+ kt(i) and wt+1(i)= f (kt(i)) for all

t, with w0(i) given. Because μ∗ is concave and f is strictly concave, there is a
unique optimal investment strategy, assigning an investment k and consump-
tion budget b for every starting wealth w.

29We record this observation formally in Lemma 13.
30For part (iii) in particular, use the fact that uc(c� s)→ ∞ as c → 0 to argue that a > 0, and

use the concavity of the RFU to argue that α= uc(a�0).
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One can check (see, e.g., Mitra and Ray (1984)) that, for each individual, kt
must converge to a steady state. Because μ∗ has unbounded steepness at 0, this
steady state value k∗ is defined by δf ′(k∗)= 1, provided w0(i) > 0. Finally, F∗

must be the distribution associated with the degenerate consumption budget
b∗ = f (k∗) − k∗. That verifies that if there is any steady state with positive
wealth for all individuals, it must be the one described in the proposition.

We need to complete the formalities of showing that this outcome is indeed
a steady state. All we need to do is exhibit an optimal consumption policy. If
the consumption budget b at any date equals b∗ ≡ f (k∗)− k∗, take a fair bet
with c.d.f. F∗, consuming the proceeds entirely.

We already know that the investment policy is optimal. So is the consumption
policy, because utilities are linear in realized consumption over the support
of F∗. Q.E.D.

PROOF OF PROPOSITION 3: We assume all the conditions given in the state-
ment of the proposition.

Part (i)—Convergence. We review the main argument. The first step is
Lemma 12, based on a turnpike theorem due to Mitra and Zilcha (1981) and
Mitra (2009). It states that in any equilibrium, the paths followed by all agents
converge to one another. Lemmas 13 and 14 ensure that convergence occurs
to some common sequence that has a strictly positive limit point (over time).
The second step is Lemma 16, which states that when all stocks cluster suf-
ficiently closely to this common limit point, a bout of endogenous risk-taking
must force all consumption budgets to lie in the same affine segment of the
“reduced-form” utility function μ at that date. Lemma 17 states that all in-
dividual capital stocks must fully coincide thereafter. The remainder of the
proof shows that this common path must, in turn, converge over time to k∗,
with consumption distributions converging to F∗, the unique c.d.f. associated
(as in Corollary 1) with b∗ = f (k∗)− k∗.

LEMMA 12: In any equilibrium, supi�j |kt(i) − kt(j)| → 0 and supi�j |bt(i) −
bt(j)| → 0 as t → ∞.

LEMMA 13: In any equilibrium, for any i with initial wealth strictly positive,
bt(i) > 0 for every t and lim supt bt(i) > 0.

LEMMA 14: There exists σ > 0 so that, for every ε > 0, there is a date T

bT(i) ∈ [σ − ε�σ + ε](12)

for all i.

LEMMA 15: For any σ > 0, there exists ψ> 0 such that, for all ε < σ/2,

Ft(σ + ε)− Ft(σ − ε)≤ψε(13)
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independently of t.

We now combine Lemmas 14 and 15 to prove the following.

LEMMA 16: There exists a date T such that, for every i, bT (i) belongs to the
interior of the same affine segment of μT ; in particular, μ′

T (bT (i)) is a constant
independent of i.

LEMMA 17: For every date t ≥ T + 1, where T is given by Lemma 16, the
wealths, investments, and consumption budgets of all agents must fully coincide.

In what follows, we consider only dates t > T . By Lemma 17, the equilibrium
program has common values at all dates thereafter: (wt� bt), where all these
values are strictly positive. By Proposition 1 and Corollary 1, the distribution
Ft is also fully pinned down at all these dates. Denote by αt the correspond-
ing slopes of the affine segments of μt , given by (5); these too are all strictly
positive.

LEMMA 18: Suppose that for some t ≥ T + 1, kt ≤ kt+1 and αt ≤ αt+1. Then
ks ≤ ks+1 for all s ≥ t.

LEMMA 19: The common sequence of investments {kt}, defined for t ≥ T + 1,
must converge to k∗, which solves δf ′(k∗)= 1.

The proof of Proposition 3(i) then proceeds as follows. Lemma 16 assures
us that there exists a date T at which consumption budgets bT (i) belong to
the same affine segment of μT for every i. Lemma 17 states that, for every date
t ≥ T+1, the wealths, investments, and consumption budgets of all agents must
fully coincide. Lemma 19 states that the common sequence of investments {kt},
defined for t ≥ T + 1, must converge to k∗, which solves δf ′(k∗)= 1.

At the same time, Corollary 1 asserts that, for all t ≥ T + 1, the equilibrium
distribution of consumptions must be the unique c.d.f. associated with the com-
mon consumption budget bt , where “association” is defined (and uniqueness
established) in Proposition 1. Therefore the sequence of consumption distribu-
tions must converge to the unique c.d.f. associated with b∗ = f (k∗)− k∗. This
is the unique steady state of Proposition 2, so the proof is complete.

Part (ii). Existence will follow as a corollary of Proposition 6 in the Supple-
mental Material. This proves existence for a more general model than the one
in the paper, in which the production function can have convex segments and
there are possibly stochastic shocks to production. Q.E.D.

PROOF OF PROPOSITION 4: For this proof, Assumptions 4–6 replace As-
sumptions 1–3.

Part (i). Suppose that all dynasties in a set of unit measure use the policy
function (6). Let G = {Gt} be the resulting sequence of wealth distributions.
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Clearly, for every date t and for every w in the support of Gt+1, Gt+1(w) =
Gt(f

−1(w)/δ)). We have the following.

LEMMA 20: u(Gt(w)) is concave for all dates t on the support of Gt .

Fix a date t. Suppose that a particular dynasty employs the policy (6) for
all dates s ≥ t + 1, and that every other dynasty employs the policy (6) at all
dates. Define Vt+1(w

′) to be the discounted value to our dynasty under these
conditions, starting from wealthw′ and date t+1. Then status at every s ≥ t+1
is simply F̄ s(cs)=Gt+1(w

′), so that

Vt+1(w
′)= (1 − δ)−1u(Gt+1(w

′))�(14)

Now suppose that at date t, our dynasty has starting wealth w, does not ran-
domize, and chooses k ∈ [0�w]. Then total dynastic payoff at that date is given
by

u(F̄ t(w− k))+ δVt+1(f (k))

= u(F̄ t(w− k))+ δ(1 − δ)−1u
(
Gt+1(f (k))

)
= u(Gt([w− k]/(1 − δ))) + δ(1 − δ)−1u

(
Gt+1(f (k))

)
= u(Gt([w− k]/(1 − δ))) + δ(1 − δ)−1u(Gt(k/δ))�

where the first equality uses (14), the second uses the fact that F̄ t(c) =
Gt(c/(1 − δ)) for every c ≥ 0, and the last uses Gt+1(w)=Gt(f

−1(w)/δ)).
By Lemma 20, this expression is concave in both w and k, so no randomiza-

tion is necessary (assuming, as we do, that the stochastic outputs of investment
randomizations cannot be insured). Moreover, given the concavity of u(Gt(w))
and the assumption that u is C1,Gt must have left-hand and right-hand deriva-
tives everywhere (G−

t (w) and G+
t (w), respectively), with

G−
t (w)≥G+

t (w)(15)

for all w. So a solution to the first-order condition

−u′(rt)G+
t ([w− k]/(1 − δ))(1 − δ)−1(16)

+ δ(1 − δ)−1u′(rt+1)G
−
t (k/δ)δ

−1

≥ 0

≥ −u′(rt)G−
t ([w− k]/(1 − δ))(1 − δ)−1

+ δ(1 − δ)−1u′(rt+1)G
+
t (k/δ)δ

−1

(where rs is the resulting status in date s, for s = t� t + 1) is an optimum. Using
(15), we see that k = δw is indeed a solution to (16), so that by the one-shot
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deviation principle and the fact that t and w are arbitrary, (6) is an equilibrium
policy.

Part (ii).31 Notice that each dynasty is atomless and therefore has the same
intertemporal utility criterion as any other. Because the equilibrium is regular,
we see that, at any date, the solution to the optimization problem is unique ex-
cept at countably many wealth levels. But it is easy to see that such a solution
cannot admit more than one differentiable selection. Therefore, all individuals
must use the same savings policy, which we denote by {ct}. Given this environ-
ment, let Vt(w) be the (total) value to a dynasty with wealth w at date t. By
using exactly the same steps as in part (i), we see that, for every w, c = ct(w)
must maximize

u
(
Gt(c

−1
t (c))

) + δ(1 − δ)−1u
(
Gt(s

−1
t (w− c)))�(17)

where st(w)≡w− ct(w) is also strictly increasing and differentiable, by regu-
larity. By Lemma 1, u(Ft(c)) is concave in c, and so Ft is differentiable almost
everywhere. Consequently, becauseGt(w))= Ft(ct(w)) and ct is differentiable
and strictly increasing, Gt is also differentiable at almost every w. Using the
fact that optimal c and w − c are both strictly increasing in w, we may there-
fore differentiate the expression (17) with respect to c at almost every w, set
the resulting expression equal to zero (it is the first-order condition), and can-
cel common terms all evaluated at the same rank or same wealth, to obtain

1
c′
t(w)

= δ

1 − δ
1

s′t(w)
= δ

1 − δ
1

1 − c′
t(w)

�

or c′
t(w)= (1 −δ) for every t and for almost every w. This completes the proof

of the proposition. Q.E.D.

PROOF OF PROPOSITION 5: We now revert to Assumptions 1–3 instead of
Assumptions 4–6. Consider the steady state F∗; we may equivalently express
it as a mapping from realized status s ∈ [0�1] to realized consumption c∗(s)
at status s, given by c∗(s) = (F∗)−1(s). If the outcome is Pareto-efficient, that
mapping must maximize the integral∫

u(c(s)� s)ds

over all continuous and increasing functions c on [0�1] with
∫
c(s)ds = b.

But it is easy to see that a necessary condition for such maximization is that
uc(c

∗(s)� s) is constant as s varies over [0�1], or equivalently, that

uc(c�F
∗(c))= λ for some λ > 0�(18)

31We are indebted to a referee for suggesting this line of proof, which is simpler than the one
we had.
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for all c ∈ [a�d]. Now, recall from (5) that

u(c�F∗(c))= u(a�0)+ α[c− a]
for all c ∈ [a�d]. Because α= uc(c�0), it follows that F∗′(a)= 0. Consequently,

duc(c�F
∗(c))

dc

∣∣∣∣
c=a

= ucc(a�F
∗(a))+ ucs(a�F∗(a))F∗′(a)

= ucc(a�F
∗(a)) < 0�

which contradicts (18). Q.E.D.
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