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This Appendix provides supplementary material to accompany the main text. Appendix A stud-
ies alternative specifications of milestone utility. Appendix B concerns stationary and steady
states in the model with bounded income. It characterizes stationary states for the model with
bounded income. It shows by example that stationary states may not always exist and proves
the existence of the weaker notion of a steady state. It contains an extension to technological
progress in the model with bounded income. Appendix C provides some comparative statics
results in the constant elasticity growth model. Appendix D proves Observations 2 and 3 of
Section 5.4.1 in the main text. Appendix E discusses minimal monotonicity and connects this
idea to upward-looking aspirations. Throughout, we number equations, figures, propositions and
lemmas using an “x” prefix, to avoid possible confusion with references to similar objects in the
main text.

APPENDIX A. ALTERNATIVE MILESTONE UTILITIES

In the main text, the aspiration utility is given by w1(e), illustrated in Figure x1a, where e =

max{z � a, 0} is the excess of their child’s wealth z over the aspiration a of the parent and w1

is increasing, smooth and strictly concave. Our results are robust to an alternative utility term,
illustrated in Figure x1b, in which the crossing of the threshold also engenders a jump in utility;
i.e., w1 is strictly increasing with w1(0) > 0.

We could also assume a more general w1-function that incorporates additional disutility in de-
parting downwards from a, as illustrated in Figure x1c (and used in Genicot and Ray 2009). We
work with such a form below to deliver a richer version of Proposition 2 in the main text.

A final alternative, illustrated in Figure x1d, would be to define utilities around multiple “mile-
stones” and interpret those thresholds as an aspiration vector. The crossing of each milestone
is “celebrated” by an extra payoff. These “add-on” payoff functions are defined on the extent to
which outcomes exceed the milestone in question, and are exogenous. But the social environ-
ment determines the milestones, and consequently individual incentives to invest and bequeath.
Even if this aspiration vector were to be common to all in society, heterogeneity in wealth would
play an important role as higher thresholds would become more relevant as an individual moves
further up the income scale.

For the rest of this section, we return to the specification in Figure x1c. Consider an aspirational
utility function of the form w1(z, a) = s(a)w(z/a) where w picks up a purely relative com-
ponent and s picks up scale effects. Assume (a) w is smooth and increasing with w0 > 0, (b)
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w00
(x) > 0 for x < 1 and w00

(x) < 0 for x > 1, (c) s(a) is smooth, with s(a) > 0 for all a > 0

and s(a)/a nonincreasing.

Assumption (b) imparts a S-shaped form to aspirational utility, as shown in Figure x1c. Assump-
tion (c) allows for scale effects but does not insist on them (s(a) is permitted to be a constant
or even decline in a). What is important is that there be a restriction on how quickly utility can
increase in the scale term, which is captured by the requirement that s(a)/a is weakly decreasing.

Notice that, in contrast to the specification used in our paper, the choice of continuation wealth
z is no longer insensitive to a for the frustrated (unlike Proposition 2 in the main text). The first
order condition that guides the choice of continuation wealth is given by

(x1) w0
0 (z) +

s(a)

a
w (z/a) = u0 (y � k(z)) /f 0

(k(z)).

As in the main text, by the concavity of w to the right of a, there can be at most one solution
to (x1) that exceeds a. However, owing to the convexity of w to the left of a there could be
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several solutions to the first order condition that involve frustration. Finding an optimal solution
involves comparing payoffs over all the continuation incomes for which (x1) holds.

Inequality (4) from the main text, which we continue to assume, guarantees a solution that strictly
exceeds aspirations when aspirations close to zero, and so aspirations are satisfied when they are
low. As aspirations continue to rise, there comes a threshold when the solution makes a switch
from satisfaction to frustration; typically, this switch will arrive with a discontinuous fall in
investment, as in the main text.

But higher aspirations can do more than switch individuals from satisfaction to frustration. Once
in the “frustration zone,” economic growth is actually lowered by an increase in a: higher aspi-
rations encourage less investment. This is because the function becomes flatter to the left of a. It
follows that every candidate for an optimal solution already below a must decrease still further.
These findings are formalized in Proposition x1 (which is the counterpart of Proposition 2 in the
main text) and illustrated in Figure x2.

Proposition x1. For given y, there is a unique threshold value of aspirations below which as-
pirations are satisfied, and above which they are frustrated. Once aspirations are frustrated,
chosen wealth declines as aspirations continue to grow.

Proof. By (4), if aspirations are small enough, then aspirations must be satisfied. Because y is
fixed, aspirations must be frustrated once a is high enough. So there is certainly a threshold at
which a changeover occurs from satisfaction to frustration. Below, we shall prove that such a
threshold must be unique. To go further, we employ the following lemma:

Lemma x1. Consider any selection from the optimality correspondence that links a to an optimal
choice z. Then that mapping cannot exhibit a discontinuous upward jump.

Proof. Suppose that z1 and z2 are both optimal choices at a, with z2 > z1. We claim that

(x2) (z2/a)w
0
(z2/a)� w (z2/a) > (z1/a)w

0
(z1/a)� w (z1/a)
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To prove this, recall the first-order condition (x1) for z1 and z2:

(x3) w0
0 (zi) +

s(a)

a
w0

(zi/a) = u0 (y � k(zi)) k
0
(zi) = u0(ci)/f

0
(y � ci)

for i = 1, 2, where ci is consumption under zi. At the same time, by the joint optimality of z1
and z2, u(c1) + w0 (z1) + s(a)w (z1/a) = u(c2) + w0 (z2) + s(a)w (z2/a), or equivalently,

(x4) s(a)w (z2/a)� s(a)w (z1/a) = [u(c1) + w0 (z1)]� [u(c2) + w0 (z2)].

Multiplying both sides of (x3) by zi = f(yi � ci), combining the result with (x4), and defining
�i ⌘ (zi/a)w

0
(zi/a)� w (zi/a) for i = 1, 2, we see that

s(a)(�2 ��1) =


u0(c2)f(y2 � c2)

f 0
(y � c2)

+ u(c2)

�
�

u0(c1)f(y1 � c1)

f 0
(y � c1)

+ u(c1)

�

� [z2w
0
0(z2)� w0(z2)] + [z1w

0
0(z1)� w0(z1)].(x5)

Simple differentiation plus the strict concavity of u, w0 (and the concavity of f ) show that
zw0

0(z) � w0(z) is decreasing in z while [u0(c)f(y � c)/f 0
(y � c)] + u(c) is decreasing in

c (for given y). Using this information in (x5) along with the fact that z2 > z1 and c2 < c1, we
establish (x2), as desired.

Let z(a) be any selection from the optimality correspondence. Suppose, contrary to the lemma,
that it jumps up at a. By the upperhemicontinuity of optimal choices, that implies (i) there are
z⇤1 and z⇤2 with z⇤2 > z⇤1 , both optimal at a, (ii) z⇤1 is a limit point of optimal choices z(a0) for
a0 < a, and (iii) z⇤2 is a limit point of optimal choices z(a0) for a0 > a. Note that (x2) holds with
zi = z⇤i for i = 1, 2, so that transposing terms,

(z⇤2/a)w
0
(z⇤2/a)� (z⇤1/a)w

0
(z⇤1/a) > w (z⇤2/a)� w (z⇤1/a) .

Because z⇤ > z⇤1 and w is increasing, both terms in the inequality above are positive. So, because
s(a) � as0(a) by Assumption (c),1 we can conclude that

s(a)

a

⇥
(z⇤2/a)w

0
(z⇤2/a)� (z⇤1/a)w

0
(z⇤1/a)

⇤
> s0(a) [w (z⇤2/a)� w (z⇤1/a)] ,

so that transposing terms again,

(x6) s(a)(z⇤2/a
2
)w0

(z⇤2/a)� s0(a)w (z⇤2/a) > s(a)(z⇤1/a
2
)w0

(z⇤1/a)� s0(a)w (z⇤1/a) .

With (x6) in mind, we can pick a1 < a and a2 > a (but close enough) along with zi optimal for
ai and close enough to z⇤i for i = 1, 2, such that

(x7) s(⌘2)
z2
⌘22

w0
(z2/⌘2)� s0(⌘2)w (z2/⌘2) > s(⌘1)

z1
⌘21

w0
(z1/⌘1)� s0(⌘1)w (z1/⌘1)

for every ⌘1 and ⌘2 in the interval [a1, a2].

Viewing s(a)w(zi/a) as a function of a, and applying the mean-value theorem,

(x8) s(a1)w(zi/a1)� s(a2)w(zi/a2) = (a2 � a1)
⇥
s(⌘i)zi/⌘

2
iw

0
(zi/⌘i)� s0(⌘i)w(zi/⌘i)

⇤

1To see this, simply differentiate s(a)/a with respect to a and use assumption (c) on s(a).
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for i = 1, 2, where ⌘1 and ⌘2 are the points in [a1, a2] where the relevant mean values are
attained. Combining (x7) and (x8), it follows that

(x9) s(a1)w(z2/a1)� s(a2)w(z2/a2) > s(a1)w(z1/a1)� s(a2)w(z1/a2).

Now, z2 is an optimal choice at a2, so in particular we have

u(c2) + w0(z2) + w(z2/a2) � u(c1) + w0(z1) + w(z1/a2),

where c1 and c2 are the levels of consumption corresponding to the choices z1 and z2. Applying
(x9) to this inequality, we must conclude that

u(c2) + w0(z2) + w(z2/a1) > u(c1) + w0(z1) + w(z1/a1),

but this contradicts the fact that z1 is an optimal choice at a1.

Let’s now return to the main proof, and suppose that aspirations are frustrated at a1: z1 is an
optimal choice with z1 < a1. Consider an increase from a1 to a2, with z2 optimal at a2. Then

u(c1) + w0(z1) + w1(z1, a1) � u(c2) + w0(z2) + w1(z2, a1),

where c1 and c2 are the levels of consumption corresponding to the choices z1 and z2, and
likewise

u(c2) + w0(z2) + w1(z2, a2) � u(c1) + w0(z1) + w1(z1, a2).

Adding both these inequalities and transposing terms, we must conclude that

(x10) w1(z1, a1)� w1(z2, a1) � w1(z1, a2)� w1(z2, a2).

For a small increase in aspirations from a1 to a2, Lemma x1 implies that max{z1, z2} < a1 < a2
for any optimal choice z2 at a2. But over this zone, the cross partial derivative

@2w1(z, a)

@z@a

is strictly negative (for details, see this footnote).2 It follows from (x10) that z1 must be no
smaller than z2. Moreover, the first order condition

w0
0 (z1) +

s(a1)

a1
w0

(z1/a1) = u0 (y � k(z1)) k
0
(z1)

can no longer hold when a1 increases to a2, so z1 is actually strictly larger than z2.

This argument can obviously be extended to any change in aspirations, small or not, as long as
aspirations are frustrated to begin with.

The above argument, coupled with Lemma x1, also proves that the critical threshold of movement
from satisfaction to frustration is unique. For once aspirations are frustrated, they can never be
satisfied at higher levels of aspirations.

2We have w1(z, a) = s(a)w(z/a). Differentiating with respect to z, we see that @w1(z, a)/@z = �(a)w

0
(z/a),

where �(a) ⌘ s(a)/a. Differentiating the result with respect to a, we see that @2
w1(z, a)/@z@a = �

0
(a)w

0
(z/a)�

�(a)w

00
(z/a)z/a

2. We have �

0
(a)  0 by assumption c) on w1, while w

00
(z/a) > 0 by z < a and assumption b)

on w1. Therefore @

2
w1(z, a)/@z@a < 0, as claimed.
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APPENDIX B. STEADY STATES AND STATIONARY STATES WITH BOUNDED INCOMES

B.1. Characterization of Stationary States. Recall the definitions from the main text: a sta-
tionary state is a distribution on positive wealths such that each dynasty replicates its starting
wealth generation after generation. A steady state is a distribution that replicates itself period
after period. Under the latter definition, dynasties might “cross paths,” generating persistent
mobility but with an unchanging distribution.

A natural setting for steady or stationary states is one in which wealths are bounded, as in the
Solow model. It is implied by the end-point restriction: f(x) < x for all x large enough.
Proposition 6 in the main text tells us that if aspirations are range-bound, scale-invariant and
socially monotone, then a stationary state is concentrated on just two positive values of incomes.

Let us examine what such a stationary state — call it F ⇤ — would look like. Let’s say that there
are two incomes, y` and a higher level yh, and p is the proportion of the population located at y`.
For each group i = `, h, ai is then given by

(x11) ai =  (yi, F
⇤
).

The proof of Proposition 6 tells us that both these aspirations cannot be satisfied. Both can’t be
frustrated either, because the corresponding income for failed aspirations is determined uniquely,
given condition (4) in the main text. So a` must be a failed aspiration and ah a satisfied aspiration.
In particular, y` is fully pinned down by

(x12) d(y`) = 0,

for which the solution is unique, as just discussed. On the other hand, because ah is satisfied, yh
is determined by

(x13) d(yh) + w0
1(yh � (yh, F ⇤

)) = 0.

This generates four equations for five unknowns that need to be satisfied in a stationary state
(y`, yh, p, a`, ah), but in part the extra degree of freedom will be used up in guaranteeing that we
can find configurations that are compatible with the failure of aspirations at y` and the satisfaction
of aspirations at yh. Sometimes this will work, as in the case of Example 1 in the main text, where
there is a continuum of stationary states. But sometimes a stationary state may fail to exist.

B.2. Possible Nonexistence of a Stationary State. To prove this last assertion, fix any utility
function (u,w0, w1) satisfying our assumptions. Observe first that y` is uniquely given by (x12).
Next, note that a` must be bounded below by a, defined as the lowest aspiration for which an
individual at y` is just indifferent between her lower choice z = y` and some upper choice
z0 > a. In turn, that places a lower bound on the size of yh. At that value, it is possible that
f(yh)� yh is low enough so that yh is not worth maintaining for any aspiration ah. That proves
that a stationary state may not always exist.

The problem is that as a parent, I obtain my payoff from the value of the child’s wealth, whereas
the child does not value her own wealth directly; only the consumption she obtains from it.
If there is enough curvature in the production function, the implied level of consumption that
maintains wealth may be too low. This isn’t to assert that non-existence is the rule rather than
the exception, but only to caution that non-existence is a possibility.



7

B.3. Existence of Steady States. Faced with this possible nonexistence of a stationary state,
one must then retreat to the weaker definition of a steady state, which is an invariant equilib-
rium distribution F ⇤. Despite the lack of stochastic shocks, there could be mobility within the
distribution, so that the stationarity of the outcome only happens at the aggregate and not at the
individual level.

In what follows we will assume that , the aspirations formation function, is additionally contin-
uous in F , in the topology of weak convergence on distributions. This assumption is not entirely
innocuous: for instance, in the case of upper mean aspirations, it is not automatically satisfied.3

However, a little smoothing restores that continuity. For example, suppose that the edges of the
cognitive window are not sharply defined but are delineated by a continuous weighting function
that drops to zero. Then the resulting aspirations function will indeed be continuous in the weak
topology on distributions.

Proposition x2. If the aspirations formation function is continuous in (y, F ), then there exists a
steady state.

Proposition x2 is a corollary of the more general Proposition x3, which we now state and prove.

Fix some compact interval [0, Y ] of real numbers, with Y > 0. Let M be the space of all
probability measures µ defined on [0, Y ], equipped with the weak convergence topology.

For each µ and each y 2 [0, Y ], let �(y, µ) be the set of “choices” made by y. We assume:

(i) �(y, µ) is nonempty and takes values in [0, Y ].

(ii) � is uhc in (y, µ).

A transition probability p defined on [0, Y ] agrees with � and µ if for every B, and for µ-a.e. y,
p(y,B) > 0 only if B \ �(y, µ) 6= ;.

Proposition x3. Under Assumptions (i) and (ii) on �, there exists a probability measure µ⇤ on
[0, Y ] and a transition probability p⇤(y, .) that agrees with � and µ⇤ such that

(x14) µ⇤
(B) =

Z

[0,Y ]
p⇤(y,B)µ⇤

(dy),

for every Borel set B.

Before proving the proposition, we make some remarks. First, Proposition x2 is a near-immediate
consequence. If the aspirations function a =  (y, F ) is continuous in (y, F ), then the policy
correspondence

�(y, F ) ⌘ argmax

z
[u (yt � k(z)) + w0 (z) + w1 (max{z � a, 0})]

is nonempty-valued and uhc on [0, Y ], so that Assumptions (i) and (ii) are satisfied. Therefore
an invariant measure µ⇤ and a transition probability p⇤ satisfying (x14) exist. Because p⇤ agrees

3Fix y, and think of a sequence of distributions in which a mass point approaches the boundary of the cognitive
window from below. In the limit, the upper conditional expectation will move discontinuously.
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with � and µ⇤, it only picks out optimal continuation choices. The cdf F ⇤ corresponding to µ⇤

is therefore a steady state.

Second, Proposition x3 is conceivably of independent interest as it applies to a variety of situa-
tions in which the ambient distribution of types influences individual choice, not just aspirations.
There is also ample scope to expand the proposition to a larger domain, not just some compact
subset [0, Y ] of the reals.4

Proof of Proposition x3. Let R be the space of all probability measures ⇢ on the product space
[0, Y ]

2. For any ⇢ 2 R, let m1(⇢) and m2(⇢) stand for the induced marginals on each dimension
of [0, Y ]

2.

Let G(µ) stand for the graph of � in [0, Y ]

2; that is,

G(µ) = {(y, z) 2 [0, Y ]

2|z 2 �(y, µ)}.
For any µ 2 M, define

�(µ) = {⇢ 2 R|⇢(G(µ)) = 1 and m1(⇢) = µ},
and

H(µ) = m2(�(µ)) = {⌫ 2 M|⌫ = m2(⇢) for some ⇢ 2 �(µ)}.
Lemma x2. � is nonempty- and convex-valued, and is upper-hemicontinuous (uhc).

Proof. To show that � is nonempty-valued, consider the upper-semicontinuous selection �(y, µ) ⌘
max�(y, µ). This is easily seen to be a deterministic transition probability,5 so that ⇢̄ defined by

⇢̄(A) ⌘ µ{y : (y,�(y, µ)) 2 A}
for all Borel A ✓ [0, Y ]

2 belongs to �(µ). Convex-valuedness is trivial: the convex combination
of two joint probabilities sharing the same marginal must have that marginal, and if each places
full weight on some common set, their convex combination must do so as well.

For uhc, let µn be a sequence in M with µn ) µ, and suppose that for some sequence
⇢n 2 �(µn

), ⇢n ) ⇢ 2 R. Because marginals are continuous in weak convergence (see,
e.g., Billingsley 1999, p. 23), it must be that m1(⇢) = µ.

For any ✏ > 0, define G✏ to be the set of all points (y, z) 2 [0, Y ]

2 such that d((y, z), G(µ)) 
✏, where d is the infimum of Euclidean distance between (y, z) and points (y0, z0) 2 G(µ).
Because � is uhc and [0, Y ]

2 is compact, it is easy to see that there exists N(✏) such that for all
n � N(✏), G(µn

) ✓ G✏. Because G✏ is closed, we know from the Portmanteau theorem for
weak convergence (see. e.g., Billingsley 1999, Theorem 2.1, part iii) that

1 = lim sup

n
⇢n(G(µn

))  lim sup

n
⇢n(G✏)  ⇢(G✏);

or in other words, ⇢(G✏) = 1. Because \✏G✏ = G(µ) and all these sets are closed, it follows
that ⇢(G(µ)) = 1. Therefore ⇢ 2 �(µ), so � is uhc.

4We are very grateful to Andy McLennan who suggested the line of proof of this proposition. A similar approach
— though for a result that does not apply to the case at hand — is also to be found in Duffie et al (1994).

5An upper-semicontinous function is certainly measurable, and therefore satisfies all the conditions for it to be a
transition probability; see, e.g., Remark 2 in Neveu (1965, p. 74).
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Again, by the continuity of marginals, H inherits all the properties of Lemma x2 from �, so it
is also nonempty-valued, convex-valued, uhc. By the Fan-Glicksberg fixed point theorem, there
exists (µ⇤, ⇢⇤) such that ⇢⇤ 2 �(µ⇤

) and µ⇤
= m2(⇢

⇤
).

By the so-called disintegration theorem which can be proved at varying levels of generality
(Parthasarathy 1967, p. 147, Theorem 8.1, can be easily adapted for our purposes), there exists a
transition probability p⇤(y, .) such that for every product set A⇥B ✓ [0, Y ]

2,

(x15) ⇢⇤(A⇥B) =

Z

A
p⇤(y,B)µ⇤

(dy).

Notice that ⇢⇤(G(µ⇤
)) = 1, so that p⇤ must agree with µ⇤.6 Moreover, because m2(⇢

⇤
) = µ⇤, it

follows that for every set B, µ⇤
(B) = ⇢⇤([0, Y ]⇥B). Applying this to (x15), we see that

µ⇤
(B) =

Z

[0,Y ]
p⇤(y,B)µ⇤

(dy),

which establishes (x14) and completes the proof.

B.4. Bounded Incomes: Exogenous Technological Progress. In this section, we introduce ex-
ogenous technological progress in the model with bounded income. Assume that a unit measure
of individuals supplies one unit of labor inelastically and at zero disutility cost. Society has ac-
cess to an aggregate production function Y = G(K,L) where K is capital and L is effective
labor. Effective labor is the product of the labor supply 1 and a labour enhancing technology that
grows exogenously at a factor ⌘ > 1. We can therefore write

Lt = ⌘t for all t � 0.

Assume that G is strictly increasing, strictly concave in each input and exhibits constant returns
to scale. Define capital per effective unit of labor by kt ⌘ Kt/Lt and income per effective
unit of labor by yt = Yt/Et. By constant returns to scale, these are connected by a “per-capita
production function” yt = f(kt) = G(kt, 1) that is strictly increasing and strictly concave. It is
well known that this device of exogenous technological change is often used to allow for growth
in the Solow model. As in that model, we impose the assumption that f(k) < k for all k large
enough, and recall that while this bounds wealth per unit of effective labor, wealth per-capita is
fully capable of growth without bound.

Given the possibility of unbounded exponential growth, it will be useful to assume (as with linear
production) that utilities are constant-elasticity, with the same elasticity for each utility indicator:

(x16) u(c) = c1��, w0(z) = �z1��, and w1(e) = �⇡e1��,

where � 2 (0, 1), � > 0 is a measure of discounting and ⇡ > 0 is a measure of the importance
of milestone utility relative to intrinsic utility.

An individual with starting wealth Yt and aspirations At chooses Kt+1 to maximize

(x17) (Yt �Kt+1)
1��

+ �
h
G(Kt+1, Lt+1)

1��
+ ⇡ (max{g(Kt+1, Lt+1)�At, 0})1��

i
.

6Details: Suppose on the contrary that for some set B, p(y,B) > 0 for y in some set A with µ

⇤
(A) > 0, but at

the same time, B \ �(y, µ

⇤
) = 0 for each such y. Then it should be obvious that (A ⇥ B) \ G(µ

⇤
) is empty, but

(x15) informs us that ⇢⇤(A⇥B) > 0. That contradicts ⇢⇤(G(µ

⇤
)) = 1.
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Dividing throughout by Lt+1, we see that the maximization in (x17) is equivalent to choosing
yt+1 that maximizes

(x18)

yt
⌘

� f�1
(yt+1)

�1��

+ �
h
y1��
t+1 + ⇡ (max{yt+1 � at, 0})1��

i

where at ⌘ At/Lt+1.

The central question here is: with systematic technical change, how might At be determined? If
the rate of technical progress is used as a normalization factor for aspirations, we could have (for
instance):

At = ⌘ (Yt, Ft),

which is related to (though not the same as) the “future-based aspirations” variation in Genicot
and Ray (2009), where aspirations are adjusted to take account of the future distribution of
income.

With aspirations normalized in this way to account for trends in technical progress, Proposition
5 in the main text survives unscathed, and equality is impossible in steady state.

On the other hand, if aspirations are entirely unnormalized — that is, if they fail to take account
of the fact that the next generation will be, on average, richer, then perfect equality is possible,
just as it is in Proposition 7. By the assumption that  is range bound, it must be that under
perfect equality, At = Yt, so that at = Yt/Lt+1 = yt/⌘ for every t. In this case, it can be shown
that if ⌘ is sufficiently large, it is possible to find y⇤ > 0 such that faced with the maximization
problem

max

z

✓
y⇤

⌘
� f�1

(z)

◆1��

+ �

"
z1��

+ ⇡

✓
z � y⇤

⌘
, 0}

◆1��
#
,

the individual at income y⇤ will choose the continuation z = y⇤. But then y⇤ must be a steady
state with perfect equality.

APPENDIX C. COMPARATIVE STATICS IN THE CONSTANT ELASTICITY GROWTH MODEL

In addition to the effect of a more equal initial distribution discussed in the main text, we may
be interested in other factors that “affect the chances” of convergence to equality. One way
to formalize this is to say that some parametric change makes convergence to equality more
likely if for any initial distribution F0 with convergence to perfect equality before the change,
that convergence is unaffected, and for some distributions F0 with bipolar divergence before the
change, convergence to perfect equality occurs after the change. One such parameter is the extent
of social monotonicity, and to vary it, we consider aspirations to be a weighted average of one’s
own income y and a common term  (F ) that lies in the range of the distribution F :

(x19)  (y, F ) = �y + (1� �) (F ) for � 2 [0, 1],

so that a higher � means we have aspirations that are less sensitive to social changes.

Proposition x4. Consider the constant-elasticity growth model. Assume that aspirations are
range-bound, scale-invariant and socially monotone. Everything else remaining the same, the
set of initial distributions on a compact support for which convergence to perfect equality ensues
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expands with (i) a higher rate of return (⇢), (ii) a larger weight on aspirational utility (⇡), (iii)
lower aspirations (that is, a decrease in (y, F ) for all (y, F )), and (iv) aspirations that are less
sensitive to social outcomes (higher � in (x19)).

Proof. Proposition 3 showed that whether an individual with income y is frustrated or satisfied at
time 0 depends on whether that individual’s aspirations ratio r0(y) is above or below the thresh-
old r⇤ > 1 (identified in the statement of that proposition). It is obvious from the maximization
problem in (10) that a higher rate of return ⇢ or a higher ⇡ increases the threshold r⇤ that induces
frustration, thereby increasing the set of initial distributions that will result in perfect equality.
(Indeed, for any given distribution on a compact support there is a ⇢ high enough such that
convergence to equality will ensue.) That establishes part (i) and (ii).

To establish parts (iii) and (iv), notice that the threshold r⇤ is unaffected by the aspirations forma-
tion process. Because lower aspirations (in the sense of a decrease in  (y, F ) for every (y, F ))
decrease r0(y) for all y, convergence to perfect equality becomes more likely, which proves part
(iii). To prove part (iv), we note:

Lemma x3. rt(y) is strictly increasing (decreasing) in � if rt(y) < (>)1, and is bounded above
(below) by 1.

Proof. Using (x19), aspirations ratios at time t are

rt(y) ⌘
1

� + (1� �) (Ft)/y
for every y 2 Supp Ft.

The effect of � is given by drt(y)/d� = �rt(y)
2
(1�  (Ft)/y). Hence, an increase in � raises

(lowers) rt(y) if  (Ft) > (<)y. Since the latter inequality depends on how rt compares to 1,
drt(y)

d�
> (=, <)0 for rt(y) < (=, >)1,

while rt(y) is correspondingly bounded above (below) by 1.

It follows from this lemma that all aspirations ratios converge to 1 as � increases (i.e., as as-
pirations become less socially sensitive). Because r⇤ > 1, lowering the social sensitivity of
aspirations therefore bunches more individual aspirations ratios in an interval below r⇤. That
reduces the proportion of frustrated individuals, increasing the likelihood of convergence to per-
fect equality. (Observe that without condition (4) in the main text, r⇤ < 1 and g < 1 would be
possible. In this case, more — and not less — social sensitivity would reduce the proportion of
frustrated individuals.)

APPENDIX D. PROOFS OF OBSERVATIONS 2 AND 3 OF SECTION 5.4.1

Observation 2. Assume upper mean aspirations. Then balanced growth with growth factor
g > g is possible if (and only if) the distribution of normalized incomes y/(1 + g)t is Pareto:

F

✓
y

[1 + g]t

◆
⌘ F (w) = 1� (A/w)r/(r�1)
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for all w � A and (A, r) such that r 2 (1, r⇤].

Proof. Balanced growth at rate g among the satisfied requires the aspirations ratio to be constant
in y, say at value r. Define normalized income w at time t by w = y/(1 + g)t, and let F (w) be
the distribution of w; it will be time-invariant. Aspirations ratios (expressed as a function of w
in the support of F ) are easily seen to be

r = r(w) =
E(w0|w0 � w)

w
=

1

w

Z 1

0


1�max

⇢
F (x)� F (w)

1� F (w)
, 0

��
dx

= 1 +

1

w[1� F (w)]

Z 1

w
[1� F (x)] dx

where the penultimate inequality is a standard rewriting of the expectation formula for a nonneg-
ative random variable.7 Defining H(w) ⌘

R1
w [1� F (x)]dx for all w � 0, this means that

H(w)

wH 0
(w)

= �(r � 1),

for all w in the support of F , from which it follows that for all such w,

(x20) hw�1/(r�1)
= H(w) =

Z 1

w
[1� F (x)]dx

for some nonzero constant h, to be suitably chosen soon. Differentiating both sides of (x20) and
transposing terms, we have

F (w) = 1�Aw�r/(r�1),

for all w in its support, where A = h/(r�1) is a suitably chosen constant so that F is a bonafide
cdf. This is a Pareto distribution, and all such distributions with r 2 (1, r⇤] are compatible with
perennially satisfied individuals growing at the rate of g(r).

Observation 3. Consider the local income neighborhood model. The balanced growth is possi-
ble from a distribution with compact support, and no individual remains frustrated forever.

Proof. It is easy to construct a distribution with balanced growth, even under initial distributions
with bounded support. Create a set of clusters of individuals, all with the same income within
the cluster but with incomes that differ enough across clusters that they are not in each other
aspirations windows. Each cluster then grows at a rate g(1).

Now we prove that in no equilibrium can an individual be frustrated forever.

Recall that  (y, F ) is completely insensitive to the distribution outside the local range [y(1 �
�), y(1 + �)], for every y. We first show that this implies that min{y,minFy,�}   (y, F ) 
max{y,maxFy,�}, where Fy,� is the restriction of the distribution over [y(1� �), y(1 + �)].

To do so, take a person with income y. Let y1 = min{y,minFy,�} and y2 = max{y,maxFy,�}.
Create a new distribution F1 by taking all the mass of the distribution F that is not in [y(1 �

7For any nonnegative random variable with cdf G, its expectation is given by
R1
0

[1 � G(x)]dx. In the case of a

distribution conditional on values no less than w, G(x) = max

n

F (x)�F (w)
1�F (w) , 0

o

for all x � 0.
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�), y(1 + �)] and place it at y(1� �) � ✏, just below our individual’s window. By insensitivity
outside the window,  (y, F ) =  (y, F1), and by range-boundedness  (y, F1) 2 [y(1 � �) �
✏, y2]. Combining these two observations and taking an appropriate sequence with ✏ ! 0, we
must conclude that (y, F ) 2 [y(1��), y2]. By the same token, we can create a new distribution
F2 by taking all the mass of the distribution F that is not in [y(1 � �), y(1 + �)] and place
it at y(1 + �) + ✏, just above our individual’s window. By insensitivity outside the window
 (y, F ) =  (y, F2), and by range-boundedness,  (y, F2) 2 [y1, y(1 + �) + ✏], so that passing
to the limit as ✏! 0, (y, F ) 2 [y1, y(1+�)]. Intersecting these two findings, we must conclude
that y1   (y, F )  y2.

Now suppose, on the contrary, that there is some largest income level y at some time t that
remains frustrated forever. Since r⇤ > 1, it must be that  (y, Ft) > y and therefore — by the
above claim — that maxFt,y,� > y. Take any y0 2 (y,maxFt,y,� ]. Because those individuals
initially at y0 are not forever frustrated, their income must grow at a rate strictly exceeding gn(at
least along a subsequence of dates) and in time leave the aspirations window of individuals who
started at y. In time, there cannot be any higher income in that person’s aspirations window. But
that contradicts the assumption that that person remains frustrated forever. Hence no individual
remains frustrated forever.

APPENDIX E. MINIMAL MONOTONICITY

Recall the definition of minimal monotonicity. Take a distribution F . Let ȳ be the supremum
income in it. For any y, let F�(y) denote the left-hand limit of the distribution at y. Now take
another distribution F 0 that weakly dominates F . Aspirations are minimally monotone if

1.  (ȳ, F 0
) �  (ȳ, F );

2.  (y, F 0
) �  (y, F ) for y < ȳ if F 0

�(y) = F�(y); and

3.  (y, F 0
) >  (y, F ) for y < ȳ if F 0

�(y) = F�(y) and F 0
(x) < F (x) for all x > y with

F 0
(x) < 1.

Let us pause to understand minimal monotonicity. F 0 weakly dominates F . Minimal monotonic-
ity requires that the aspirations at the highest income level under F do not decrease. For other
levels of income y < ȳ, matters can go either way, as we showed by example in the main text.
That is, aspirations can increase or decrease if F 0

�(y) 6= F�(y) (there are more or fewer people
who are poorer than y). Minimal monotonicity asks that if F 0

�(y) = F�(y), then aspirations for
y < ȳ cannot decrease, and indeed, they must strictly increase if there is strict dominance above
y.

For any distribution function F and any income y, define Fy to be the conditional distribution
function of F on the domain [y,1). Consider any aspirations formation function that respects
the following conditions:

[Upward Looking]  (y, F ) =  (F 0
) whenever Fy = F 0

y.

[Upper Monotone]  (y, F 0
) �  (F ) whenever F 0

y dominates F 0
y, with strict inequality when

the domination is strict.
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Recall that “upper mean aspirations,” in which aspirations are given by the conditional mean of
income above one’s own income:

 (y, F ) = EF (x|x � y),

are “upward looking ” and “upper monotone.” But one can think of other examples as well,
including those that truncate the cognitive window at some upper bound. For instance, suppose
that an individual were to look at some average of conditional incomes belonging only to the
nearest p percentiles above her. Then, too, the conditions above are satisfied.

Proposition x5. Suppose that aspirations are upward looking and upper monotone. Then they
are minimally monotone.

Proof. Consider two distributions F and F 0, with supremum incomes ȳ and ȳ0 respectively, such
that F 0 weakly dominates F . Clearly ȳ0 � ȳ, so that it is trivially the case that F 0

ȳ dominates
Fȳ. It is also easy to check the same relationship for any other income y provided that F 0

�(y) =
F�(y). Similarly, it readily follows that F 0

y strictly dominates Fy under these circumstances
when F 0 strictly dominates F . Therefore, we have

 (y, F 0
) �  (y, F ),

with strict inequality whenever F 0 strictly dominates F .

It follows that aspirations that are upward looking and upper monotone, are minimally monotone.
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