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Abstract

Amodelof groupdecision-making is studied, inwhichoneof twoalternativesmustbechosen.Whileagents
differ in their preferences over alternatives, everybody prefers agreement to disagreement. Our model is
distinguished by three features:private informationregarding valuations, differingintensitiesin preferences,
and the option to declareneutrality to avoid disagreement. There is always an equilibrium in which the
majority is more aggressive in pushing its alternative, thus enforcing their will via both numbers and voice.
However, under general conditions an aggressive minority equilibrium inevitably makes an appearance,
provided that the group is large enough. Such equilibria invariably display a “tyranny of the minority”:
the increased aggression of the minority always outweighs their smaller number, leading to the minority
outcome being implemented with larger probability than the majority alternative. We fully characterize the
asymptotic behavior of this model as group size becomes large, and show that all equilibria must converge
to one of three possible limit outcomes.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Group decision-making is the process by which a collective of individuals attempt to reach
a required level of consensus on a given issue. One can crudely divide this process into two
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important components: the deliberation among members of the group and the aggregation of
individual opinions into a single group decision. Traditionally, the literature on political economy
has focusedon the second component bymodelling groupdecision-making as voting games.More
recently, several authors have examined group deliberation by studying its role in aggregating
private information.1 In this paper we emphasize another important aspect of group deliberation:
the role it plays in allowing group members to bargain over the final decision while avoiding
disagreement.
For many group decisions, disagreement, or failure to reach a consensus, is costly for all mem-

bers. There are numerous instances of such environments. A government may need to formulate
a long-run response to terrorism: individuals may disagree—often vehemently—over the nature
of an appropriate response, but everyone might agree that complete inaction is the worst of the
options. Jury members in the process of deliberation may disagree on whether or not the defen-
dant is guilty; however, in most cases they all prefer to reach an agreement than to drag on the
deliberations endlessly. An investigative committee looking into the causes of a riot, or a political
assassination, or a corruption scandal, may be under significant pressure to formulatesomeexpla-
nation, rather than simply say they do not know. Or citizens may need to agree on a constitution
under the threat of civil war if such agreement cannot be reached.
When facing a threat of disagreement, groups usually try to avoid reaching this outcome by

allowing its members, either formally or informally, to declare “neutrality”; effectively, to suggest
that they do not care strongly about either alternative and will support any outcome that may be
more forcefully espoused by others with more intense preferences. For instance, think of an
academic department that meets to make an offer to one of several candidates. Different faculty
members may disagree over the ranking of the candidates. To be sure, some faculty members
will feel more strongly about the choices than others. However, no member wants to see the slot
taken away by the Dean because the department could not agree on an offer. Because faculty
members may be uncertain as to the rankings and intensities of their colleagues, those faculty
members who do not feel strongly about the issue will be less vocal and willing to “go with the
flow”, while those who feel strongly about their favorite candidate will argue aggressively in her
favor.
Likewise, in the jury examplementioned above, membersmay disagree over whether or not the

defendant is guilty. Moreover, some jury members would have stronger feelings about the matter
than others. However, in most cases, all would want to reachsomeunanimous decision rather
than end up with a hung jury.2 Consequently, those jurors who feel strongly towards conviction
or acquital would be more vocal during deliberation, while those who feel less strongly on the
issue might not oppose either side in order to facilitate an agreement.
A threat of disagreement has profound implications for group decision-making. Above all,

preference intensities play a critical role: the decisions of individuals within the group are
based not only on theirordinal ranking of the available alternatives, but also on howstrongly

1 See Gerardi andYariv[10], Austen-Smith and Federsen[2] and Coughlan[7].
2A case in point is the recent trial of LeeMalvo, the younger of the twomen accused in the D.C. sniper case.According

to the interviews conducted with some of the jury members who sat on that trial, the jury was split between conviction
and acquital. Even though conviction could mean the death penalty for the accused, some of the jurors who opposed
conviction remarked that they felt it was more important to reach a unanimous decision then end up with a hung jury
(NewYork Times,[21]).
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they feel towards each one. With cardinal preferences central to our discourse, it is possible to
address several important questions left unanswered in the literature. Do individuals, who favor
an outcome which is less likely to be favored by the majority, fight more aggressively for their
cause than individuals who hold the majority view? Can such aggression be strong enough so that
the minority alternative is indeed implemented with greater probability than the outcome favored
by the majority? Do higher levels of required consensus better protect the implementation of
suchminority outcomes?What is the likelihood that group deliberation will end in disagreement?
To answer these and other related questions, we propose a simple and tractable model of group
decision-making in the shadow of disagreement. We proceed as follows.
A group of n agents must make a joint choice from a set of two alternatives,A or B. Each

agent must either announce an alternative—A or B—or she can declare “neutrality”, in that she
agrees to be counted, in principle, for either side. Once this is accomplished, we tally declarations
for each alternative,including the number of neutral announcements. If, for an alternative, the
resulting total is no less than some exogenously given supermajority, we shall call that alternative
eligible.
Because neutral announcements are allowed for and counted on both sides, all sorts of com-

binations are possible: exactly one alternative may be eligible, or neither, or both. Ifexactlyone
alternative is eligible, that alternative is implemented. If neither is eligible—which will happen
if there is a fierce battle to protect one’s favorite alternative—then no alternative is picked: the
outcome is disagreement. If both are eligible—as will typically be the case when there are a large
number of neutrals—each alternative is equally likely to be implemented.
Our objective is to capture the basic strategic considerations common to several situations in

which disagreement is costly. In this sense the model is sparse but inclusive: disagreement (or the
threat of it) is at center stage, there is preference heterogeneity—in the ordinal sense of course,
but in a cardinal sense as well, and there is the possibility of avoiding disagreement by means
of capitulation. We therefore believe that by analyzing the equilibria of this model, we can gain
important insights into a wide variety of situations.
Several specific features of the model deserve comment. First, while the language of a voting

model is often used, we do not necessarily have voting in mind. The exogenously given superma-
jority may or may not amount to full consensus or unanimity, and in any case is to be interpreted
as some preassigned degree of consensus or social norm that the group needs to achieve. For
instance, in many informal situations, it may be considered socially undesirable to choose an
option objected to by at least one person.
Second, relative to existing literature the option to remain neutral is a novel feature of ourmodel.

At the same time, it is a natural ingredient in the examples discussed above.We only add here that
the neutrality optionmay be interpreted in several ways.One formal institution that is related is ap-
proval voting: members of the group submit an “approval” or “disapproval” for each alternative.A
voter who approves both alternatives is effectively declaring neutrality. Or consider group debate
that effectively proceeds likeawarof attrition:memberswhodropout are inessencedeclaringneu-
trality. In addition, we have already discussed several examples in which neutrality is an informal
yet central feature of the decision-making process. One could also imagine several quasi-formal
mechanisms that help individuals to avoid disagreement by allowing their vote to be counted in a
way thatensuresawin tooneof thealternatives.Forexample,onecoulddelegatehisballot toan im-
partial arbitrator, who appreciates the anxiety of all concerned to avoid disagreement, and is there-
fore interested in implementing some outcome. In short, one could interpret the neutrality declara-
tion as the reduced form of some unspecified procedure, which is used to help avoid unnecessary
disagreements.
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Third, in themodel eligibility is a “zero-one” characteristic: either an alternative is eligible or it
is not. Any outcome that passes the test of garnering the support (either actively by declaring the
alternative, or passively by declaring neutrality) of the required supermajority, is deemed socially
fit—or eligible—to be implemented. There is no sense in which one alternative is “more eligible”
than another. Hence, if both alternatives are eligible, then both are on equal footing in terms of the
social approval received.We therefore assume that the group implements each of the alternatives
with equal probability.
To be sure, the particular tie-breaking rule used by a groupmay vary across different situations.

In some situations, the group may vote again and again until only one outcome becomes eligible.
In other situations, group members may bargain over which outcome to implement. There may
be also situations in which the group would simply choose the eligible outcome with the most
votes. Or an arbitrator or committee chair may break ties. The advantage of our approach is that
it greatly simplifies the analysis and allows us to provide a full characterization of the equilibria.
Sections7.1 and 7.2 discusses some of the implications of assuming an alternative tie-breaking
rule.
Finally, we are interested in the “intensity” of preferences for one alternative over the other, and

how this enters into the decision to be neutral, or to fight for one’s favorite outcome. Specifically,
we permit each person’s valuations to be independent (and private) draws from a distribution, and
allow quite generally for varying cardinal degrees of preference.A corollary of this formulation is
thatothersare not quite sure of how strongly a particular individual might feel about an outcome
and therefore about how that individual might behave. This is one way in which uncertainty enters
the model.
Uncertainty plays an additional role, in that no one is sure how many people favor one given

alternative over the other. We do suppose, however, that there is a common prior—represented
by an independent probabilityp — that an individual will (ordinally) favor one alternative (call
it A) over the other (call itB). Without loss of generality takep� 1

2. If, in fact,p < 1
2, one might

say that it is commonly known that people of “typeA” are in a minority, or more precisely in a
stochasticminority. We shall see that these two types of uncertainty are very important for the
results we obtain.
Weprovidea full characterizationof thismodel andstudyanumber of extensionsandvariations.

Our main results highlight the important implications of a threat of disagreement.
Cardinal preferences play a key role. In any equilibrium, each individual employs a cutoff rule:

there will exist some critical relative intensity of preference (for one alternative over the other)
such that the individual will announce her favorite outcome if intensities exceed this threshold,
and neutrality otherwise. If a rule exhibits a lower cutoff, then an individual using that rule may
be viewed as being more “aggressive”: she announces her own favorite outcome more easily, and
risks disagreement with greater probability.
Equilibria in which an individual of themajority type uses a lower cutoff (and is therefore more

aggressive) than her minority counterpart may be viewed as favoring the majority: we call them
majority equilibria. Likewise, equilibria in which the minority type employs a lower cutoff will
be calledminority equilibria.
Using an obvious parallel from the Battle of the Sexes, there are always “corner” equilibria

in which one side is “infinitely” aggressive—i.e., uses the lowest cutoff—while the other side
is cowed into declaring full neutrality. But the resemblance ends there. In the model we study,
a simple and weak robustness criterion reveals such equilibria to be particularly fragile. Section
4.2.2 introduces the refinement and shows how it removes corner equilibria in which one side
invariably gives up.
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Majority equilibria always exist. There always exists an equilibrium in which themajority uses
a more aggressive cutoff than the minority (Proposition1). This is an interesting manifestation
of the “tyranny of the majority”.3 Not only are the majority greater in number (or at least
stochastically so), they are also more vocal in expressing their opinion. In response—and fearing
disagreement—theminority aremore cowed towards neutrality. So inmajority equilibrium, group
outcomes are doubly shifted towards the majority view, once through numbers, and once through
greater voice.

Minority equilibria exist for large group sizes. Proposition 2 establishes the following result:
if the required supermajority� is not unanimity (i.e.,� < 1), and if the size of the stochastic
minority p exceeds 1− �, then for all sufficiently large population sizes, a minority equilibrium
must exist.
How large is large? To be sure, the answer must depend on the specifics of the model, but our

computations suggest that in reasonable cases, population sizes of 8–10 (certainly less than the
size of a jury!) are enough for existence. We interpret this to mean that our existence result not
only applies to large populations, but also to committees, juries, academic departments, cabinets
and other groups which are numbered in the tens rather than in the hundreds.
From one point of view this result seems intuitive, yet from others it is remarkable. Intuitively,

as population size increases, the two types of uncertainty that we described—uncertainty about
type and uncertainty regarding valuation intensity—tend to diminish under the strength of the
Law of Large Numbers. This would do no good ifp < 1−�, for then the minority would neither
be able to win, nor would it be able to block the majority. (Indeed, Proposition 3 in Section 5.2
shows that ifp < 1− �, then for large population sizes a minority equilibrium cannot exist.) But
if p exceeds 1− �, the minority acquires the “credibility” to block the wishes of the majority, or
at least does so when the population is large enough.

The existence of minority equilibria is not monotone in the consensus level.For two reasons,
however, the above notion of “credible blocking” does not form a complete explanation. First, a
credible block is not tantamount to a crediblewin. Indeed, it is easy to see that as� goes up, the
minority find it easier to block but also harder to win. So the previous result mustnot be viewed
as an assertion that the minority is “better protected” by an increase in�. Indeed, as an example
in Section 5.1 makes clear, this is not true. (Nevertheless, insofar as existence is concerned, the
fact thatp > 1−� > 0 guarantees existence of minority equilibrium for large population sizes.)
Second—and this extends further the line of argument in the previous paragraph—the case of

unanimity (� = 0) is special. Proposition 4 shows that there are conditions (on the distribution of
valuations) under which a minority equilibriumneverexists, no matter how large the population
size is. So blocking credibility alone does not translate into the existence of aminority equilibrium
in the unanimity case. In short, any “intuitive explanation” for Proposition 2 must also account
for these observations.

The minority win more often in a minority equilibrium. Recall that in a majority equilibrium,
the majority will have a greater chance of implementing its preferred outcome on two counts:
greater voice, andgreater number.Obviously, this synergy is reversed for theminority equilibrium:
there, the minority have greater voice, yet they have smaller numbers. One might expect the net
effect of these two forces to result in some ambiguity. The intriguing content of Proposition 5
is that in a minority equilibrium, the minority must always implement its favorite action with

3 It is possible that our use of this term constitutes a slight abuse of terminology, given that the phrase is typically
invoked in the context of simple majority rule. We deal with supermajorities, so the term “tyranny” (of either majority or
minority) here is used in the sense of more strident use ofvoice.
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greater probability than the majority. Whenever a minority equilibrium exists, voice more than
compensates for number.

Even in large groups, both sides may put up a fight. All equilibrium sequences must have
limit points that are one of these three. Two of the outcomes may be viewed as “limit minority
equilibria”. One of them exhibits a zero cutoff for the minority, and the other exhibits a positive
minority cutoff which is nevertheless lower than the majority cutoff. The third outcome is a “limit
majority equilibrium” in which the cutoff used by the majority is zero. The striking feature of
these outcomes is that under some conditions, neither side gives up even if the opposition uses a
zero cutoff! In particular, we establish the necessary and sufficient conditions for the existence of
these interior cutoffs and describe exactly what they are.

Even as group size grows large,agreement is reached with uniformly positive probability. Given
that both sides may put up a fight in relatively large groups, one might expect that for sufficiently
high supermajority requirements disagreement will be endemic. However, for all non-unanimity
rules, the probability of disagreement not only stays away from one, but actually converges to
zero along any equilibrium sequences which converges to a limit outcome in which one side uses
a zero cutoff. For those equilibria that converge to the remaining minority outcome, we show that
the probability of disagreement is bounded away from one even as the population size goes to
infinity.
Our results show that a “shadow of disagreement” may effectively induce groups to make

decisions that take into account their members’ preference intensities. In particular, individuals
who support an outcome that is less likely (ex-ante) to be favored by the majority, may still be
able to implement that outcome if they feel sufficiently strongly about it. However, our paper also
suggests that in group decision-making the outcomes tend to be invariably biased in one direction
or another. In majority equilibrium this is obvious. But it is also true of minority equilibrium. This
lends some support to a commonly-held view that group decision-making tends to have some
degree of extremism built into the process.4

2. Related literature

One central result in our paper is that minorities may fight more aggressively and win. Of
course, the well-known Pareto–Olson thesis (see [24,22]) suggests that minorities might put up
a stronger fight when voting is costly. This intuition is confirmed in some complete-information
modelswith private voting costs (see [1,13]), though in other variantswith incomplete information
(e.g., [23,18,4,16,12]), the majority still wins at least as frequently as the minority even when the
minority fights harder, assuming that preference intensities do not differ across groups.5

Our model also features a “cost of voting”: it is the expected loss caused by disagreement.
But this cost is apublicbad, and it cannot be shifted from one voter to another. (In addition, the
magnitude of this cost is determined endogenously in equilibrium.)
An important feature of our model is that individuals base their decision on how strongly they

prefer onealternative to another.This feature is sharedwith several papers that investigate different
mechanisms in which intensity of preferences determine individual voting behavior. Vote-trading

4Thephenomenonof “grouppolarization” has beenextensively studied in the social psychology literature,most notably
in [20,17]. A more recent experimental study of this phenomenon is[6]. In the political science and law literature, the
potential impact of group polarization on court decisions has been studied by Sunstein[28–30].

5 Certainly, if minorities are sufficiently more zealous in the espousal of their favorite issue, they may fight more
aggressivelyandwin more often, as[4] also shows.
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mechanisms, in which voters can trade their votes with one another, have been analyzed in[3]
and have more recently been revisited by Philipson and Snyder [25] and Piketty [26]. Cumulative
voting mechanisms in which each voter may allocate a fixed number of votes among a set of
candidates has been analyzed as early as in [8] and more recently revisited by Gerber et al. [11],
Jackson and Sonnenschein [15] and Hortala-Vallve [14]. In a related vein, Casella [5] introduces
a system of storable votes, in which voters can choose to store votes in order to use them in
situations that they feel more strongly about.
These papers take a normative approach to group decision making in an attempt to design

optimal procedures. Our approach is different. We take a positive approach and focus on existing
institutions that rely on supermajority rules. We argue that a threat of disagreement may push
individuals to base their decisions not only on their ordinal preferences, but also on their pref-
erence intensities. At the same time, we do not claim that the decision protocol we analyze—a
supermajority rule coupled with a neutrality option and a threat of disagreement—necessarily
leads to an efficient outcome (though mechanism design in our context would certainly be an
interesting research project).
In particular, our analysis highlights the importance of consensus and the fear of gridlock as

a mechanism through which intensities of preferences are translated into the decision making
process. In this context, Ponsati and Sákovicz [27] is also related to the present paper. Indeed,
their model is more ambitious in that they explicitly attempt to study the dynamics of capitulation
in an ambient environment similar to that studied here. This leads to a variant on the war of
attrition, and their goal is to describe equilibria as differential equations for capitulation times, at
which individuals cease to push their favorite alternative.

3. The Model

3.1. The group choice problem

A group ofn agents must make a joint choice from a set of two alternatives, which we denote
byA andB. The rules of choice are described as follows:

(1) Each agent must either name an alternative—A or B—or she can declare “neutrality”, in that
she agrees to be counted, in principle, for either side.

(2) If the total number of votes for an alternative plus the number of neutral votes is no less than
some exogenously given supermajoritym (> n/2), then we shall call that alternativeeligible.

(3) If no alternative is eligible, no alternative is chosen: a stateD (for “disagreement”) is the
outcome.

(4) If a single alternative is eligible, then that alternative is chosen.
(5) If bothalternatives are eligible,A orB are chosen with equal probability.

Recall that our tie-breaking rule follows from our view of eligibility as a “zero-one” character-
istic: either an alternative is eligible or it is not, so that there is no sense in which one alternative
is “more eligible” than another. The point is simply this: if no alternative is blocked, it matters
little whether one alternative gets more votes than another—the preassigned degree of consensus
(or at least the lack of opposition) has been achieved for both alternatives. This is not to suggest,
however, that other tie-breaking rules are not worth exploring. An obvious contender is one in
which the option with the most votes wins in case both pass the supermajority requirement. We
discuss the implication of using this alternative tie-breaking rule in Section7.2.
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3.2. Valuations

Normalizing the value of disagreement to zero, each individual will have valuations(vA, vB)

overAandB. These valuations are random variables, and we assume they are private information.
Use the notation(v, v′), wherev is the valuation of the favorite outcome (max{vA, vB}), andv′
is the valuation of the remaining outcome (min{vA, vB}). An individual will be said to be oftype
A if v = v(A), and oftype Bif v = vB . (The casevA = vB is unimportant as we will rule out
mass points below.)
Our first restriction is
(A.1) Each individual prefers either outcome to disagreement. That is,(v, v′) � 0 with prob-

ability one.
In Section7.5 we remark on the consequences of dropping the assumption that disagreement

is worse than either alternative.
Inwhat followsweshall imposeperfect symmetryacross the two typesexceptfor theprobability

of being one type or the other, which we permit to depart from1
2. (The whole idea, after all, is to

study majorities and minorities.)
(A.2) A person is typeAwith (iid) probabilityp ∈ (0, 12], and is typeB otherwise. Regardless

of specific type, however,(v, v′) are chosen independently and identically across agents.

3.3. The game

First, each player is (privately) informed of her valuation(vA, vB). Conditional on this infor-
mation she decides to announce eitherA or B, or simply remain neutral and agree to be counted
in any direction that facilitates agreement. Because an announcement of the less-favored alterna-
tive alone is weakly dominated by a neutral stance, we presume that each player either decides
to announce her own type, or to be neutral.6 The rules in Section 2.1 then determine expected
payoffs.

4. Equilibrium

4.1. Cutoffs

We reiterate, for clarity in what follows, that when we say a player “announces an outcome”,
we mean thatonly that alternative is named by the player; she has forsaken neutrality.
Consider a player of a particular type, with valuations(v, v′). Defineq ≡ n − m. Notice that

our player only has an effect on the outcome of the game—that is, she is pivotal—in the event that
there areexactly qother players announcing her favorite outcome. For suppose there are more
thanq such announcements, say forA. ThenB cannot be eligible, and whether or notA is eligible,
our player’s announcement cannot change this fact. So our player has no effect on the outcome.
Likewise, if there are strictly less thanq announcements ofA, thenB is eligible whether or notA
is, and our player’s vote (A or neutral) cannot change the status of the latter.
Now look at the pivotal events more closely. One case is when there are preciselyq announce-

ments in favor ofA, andq +1 or more announcements favoringB. In this case, by staying neutral
our agent ensures thatB is the only eligible outcome and is therefore chosen. By announcingA

6 For a similar reason we need not include the possibility of abstention. Abstention (as opposed to neutrality) simply
increases the probability of disagreement, which all players dislike by assumption.



ARTICLE IN PRESS
K. Eliaz et al. / Journal of Economic Theory ( ) – 9

she guarantees that neither outcome is eligible, so disagreement ensues. In short, by switching
her announcement from neutral toA, our agent creates a personal loss ofv′.
In the second case, there areq announcements or less in favor ofB. In this case, by going

neutral our agent ensures thatAandBare both eligible, so the outcome is an equiprobable choice
of eitherA or B. On the other hand, by announcingA, our agent guarantees thatA is theonly
eligible outcome. Therefore by switching in this instance from neutral to announcingA, our agent
creates a personal gain ofv − (v + v′)/2.
To summarize, letP+ denote the probability of the former pivotal event (q compatriots an-

nouncingA, q + 1 or more announcingB) andP− the probability of the latter pivotal event (q
compatriots announcingA,qor less announcingB). It must be emphasized that these probabilities
are not exogenous. They depend on several factors, but most critically on the strategies followed
by the other agents in the group. Very soon we shall look at this dependence more closely, but
notice that even at this preliminary stage we can see that our agent must follow acutoff rule. For
announcingA is weakly preferred to neutrality if and only if

P−[v − (v + v′)/2]�P+v′.

Defineu ≡ v−(v+v′)/2
v′ .Note that (by (A.1))u is awell-defined randomvariable.Then thecondition

above reduces to

P−u�P+, (1)

which immediately shows that our agent will follow a cutoff rule using the variableu.
Notice thatwe include theextreme rules of alwaysannouncingneutrality (or alwaysannouncing

one’s favorite action) in the family of cutoff rules. (Simply think ofu as a nonnegative extended
real.) If a cutoff rule does not conform to one of these two extremes, we shall say that it isinterior.
By (A.2), the variableu has the same distribution no matter which type we are referring to.We

assume
(A.3) u is distributed according to the atomless cdfF, with strictly positive densityf on(0,∞).

4.2. Symmetric equilibrium

In this paper, we study symmetric equilibria: those inwhich individuals of the same typeemploy
identical cutoffs.

4.2.1. Symmetric cutoffs
Assume, then, that allA-types use the cutoffuA and allB-types use the cutoffuB . We can

now construct the probability that arandomly chosenindividual will announceA: she must be of
typeA, which happens with probabilityp, and she must want to announceA, which happens with
probability 1− F(uA). Therefore the overall probability of announcingA, which we denote by
�A, is given by

�A ≡ p[1− F(uA)].
Similarly, the probability that a randomly chosen individual will announceB is given by

�B ≡ (1− p)[1− F(uB)].
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With this notation in hand, we can rewrite the cutoff rule (1) more explicitly. First, addP− to
both sides to get

P−(1+ u)�P+ + P−.

Assuming that we are studying this inequality for a person of typeA, the right-hand side is the
probability that exactlyq individuals announceA, while the termP− on the left-hand side is the
joint probability that exactlyq individuals announceA andno more thanq individuals announce
B. With this in mind, we see that the cutoffuA must solve the equation(

n − 1

q

)
�qA

q∑
k=0

(
n − 1− q

k

)
�kB(1− �A − �B)

n−1−q−k(1+ uA)

=
(
n − 1

q

)
�qA(1− �A)

n−1−q . (2)

Likewise, the cutoffuB solves(
n − 1

q

)
�qB

q∑
k=0

(
n − 1− q

k

)
�kA(1− �A − �B)

n−1−q−k(1+ uB)

=
(
n − 1

q

)
�qB(1− �B)

n−1−q . (3)

We will sometimes refer to these cutoffs as “equilibrium responses”, to emphasize the fact that
uA embodies not just a “best response” by an individual but is also an “equilibrium condition”
among individuals of the same type, given the cutoff used by the other type. The term “equilibrium
response” captures the hybrid nature of the group response.

4.2.2. A refinement for equilibrium responses
At this stage, an issue arises which we would do well to deal with immediately. It is that a

symmetric cutoff of∞ is always an equilibrium response for any type to any cutoff employed
by the other type, provided thatq > 0. This is easy enough to check: if no member in groupA

is prepared to declareA in any circumstance, then no individual in that group will find it in her
interest to do so either. This is because (withq > 0) no such individual is ever pivotal.
Hence the “full neutrality cutoff”u = ∞ is always an equilibrium response. But it is an

unsatisfactory equilibrium response for the following reason. Fix a particular person, say of type
A. Perturb the strategy of her compatriots from full neutrality to one in which they do announce
A for a tiny range of very highu-values. Below, we demonstrate that this will make our person
announceA for all but a bounded range ofu-values,where the bound on this range is independent
of the perturbation to the compatriots.
Before we show this, let us distill a formal requirement from the discussion above. Focus on

theA-types with domain variableu. To handle infinite cutoffs, define the variablew ≡ u/(1+u);
obviously, the cutoffswith respect tou translatedirectly into cutoffswith respect tow. In particular,
full neutrality is just a cutoff of 1 inw-space. Now suppose that a (symmetric) cutoffw∗ is an
equilibrium response to some cutoff used by the other type. We will say that such a cutoff is
fragile if there exists� > 0 such that ifw is the cutoff used instead ofw∗, an individual member
of the group will prefer to use a cutoff that is at least�-far fromw∗, no matter how close wis
tow∗.
Observe that this criterion is much weaker than “tatonnement style” refinements which would

examinewhethera responseclose to theputativeequilibriumwould lead toasequenceof “myopic”
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best responses away from the original response. Our criterion raises a red flag only when there is a
discontinuous jumpfrom the original actions following an arbitrarily small perturbation—this is
the significance of the requirement that� is uniform in the perturbation. If our criterion is violated,
the equilibrium response under scrutiny fails—in a strong sense—to be robust: the tiniestmistakes
by others will drive an individual “far away” from the prescribed action.
It turns out that this criterion eliminates—andonly eliminates—those equilibrium responses

exhibiting full neutrality.

Observation 1. An equilibrium response is fragile if and only if it is infinite(in u -space, equiv-
alently equal to 1 inw-space).

Half this observation is obvious. Look at (2), which determines the cutoffuA for a member of
typeA, as a function of�B (which is determined by the cutoff of the other type and so is fixed for
the discussion) and of�A (which is determined by the cutoff employed by theA-compatriots). If
the equilibrium response in question is finite, then�A > 0, anduA is uniquely defined and moves
continuously in�A, so that the question of fragility does not arise.
Indeed, in all the cases in which�A > 0, (2) reduces to the simpler form

q∑
k=0

(
n − 1− q

k

)
�kB(1− �A − �B)

n−1−q−k(1+ u′
A) = (1− �A)

n−1−q . (4)

where we are denoting our individual’s cutoff byu′
A as a reminder that we have not imposed the

symmetry condition yet. Notice that this value ofu′
A is uniformly bounded, say, by some number

M < ∞ no matter what values�A and�B assume, even if�A approaches zero. This is the source
of the fragility of full-neutrality: when�A = 0, so that all compatriots employ an infinite cutoff,
thenuA = ∞ is a solution, but this cutoff jumps to no more thanM as soon as there is any
perturbation to a positive value of�a .
Intuitively, consider an individual of typeA, and entertain a small perturbation in the fully

neutral strategy of her compatriots: they now use a very large cutoff, but not an infinite one. Now,
in the event that our agent is pivotal, it must be that her group is very large with high probability,
because her compatriots are only participating to a tiny extent, and yet there areq participants in
the pivotal case. This means that groupA is likely to win (conditional on the pivotal event), and
our individual will want to declareA for all but a uniformly bounded range of heru-values.
Note that in the special case of unanimity(q = 0), full neutrality isneveran equilibrium

response, so no refinements need to be invoked.
Finally, it should be noted that weak dominance is not enough to rule out full neutrality. To see

this consider the profile in which both groups use a cutoff of zero and so are always voting their
type. In this case, when a voter of typeA is pivotal, he knows for sure that there are more than
q declarations ofB. Therefore, this voter has a strict incentive to claim neutrality. Note however,
that the above profile is the only profile against which neutrality is a strict equilibrium response
for everytype.

4.2.3. Equilibrium conditions
In summary, then, the arguments of the previous section permit us to rewrite the equilibrium

conditions (2) and (3) as follows:

�(uA, uB) ≡ (1+ uA)
q∑

k=0

(
m − 1

k

)
�k(1− �)m−1−k = 1 (5)
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and

�(uA, uB) ≡ (1+ uB)
q∑

k=0

(
m − 1

k

)
�k(1− �)m−1−k = 1, (6)

wherem = n − q, � ≡ �B/1−�A, and� ≡ �A/1−�B .
We dispose immediately of a simple subcase: the situation in which there is simple majority

andn is odd, so thatq precisely equals(n − 1)/2. The following result applies:

Observation 2. If q = (n − 1)/2, there is a unique equilibrium which involvesuA = uB = 0.

To see why this must be true, consult (5) and (6). Notice that whenq = (n − 1)/2, it must be
thatm− 1= n− q − 1= q. So an equilibrium response must equal zero no matter what the size
of the other group’s cutoff. In words, there is no cost to announcing one’s favorite outcome in this
case. Recall that the only conceivable cost to doing so is that disagreement might result, but in the
pivotal case of concern to any player, there areq compatriots announcing the favorite outcome,
which means there are no more thann − 1− q = q opposing announcements. So disagreement
is not a possibility.
In the remainder of the paper, then, we concentrate on the case inwhich a genuine supermajority

is called for:
(A.4) q < (n − 1)/2.
The following observations describe the structure of response functions in this situation. (A.1)–

(A.4) hold throughout.

Observation 3. A symmetric responseui is uniquely defined for eachuj , and declines continu-
ously asuj increases, beginning at some positive finite value whenuj = 0,and falling to zero as
uj → ∞.

Observation 4. Consider the point at which type A’s response crosses the45◦ line, or more
formally, the valueū at which�(ū, ū) = 1. Then type B’s equilibrium response cutoff toū is
lower thanū, strictly so ifp < 1

2.

While the detailed computations that support these observations are relegated toSection 9, a few
points are to be noted. First, complete neutrality is not an equilibrium response (it is fragile) even
when members of the other group arealwaysannouncing their favorite alternative. The argument
for this is closely related to the remarks made in Section4.2.2 and we shall not repeat them here.
On the other hand, “full aggression”—u = 0—is alsonever an equilibrium response except in
the limiting case as the other side tends to complete neutrality. These properties guarantee that
every equilibrium (barring those excluded in Section 4.2.2) employs interior cutoffs.
Observation 4 requires some elaboration. It states thatat the point where the equilibrium

response of Group A leaves both sides equally aggressive(so thatuA = uB = ū), groupB’s
equilibrium response leads to greater aggression. The majority takes greater comfort from its
greater number, and therefore are more secure about being aggressive. There is less scope for
disagreement. However, note the emphasized qualification above. As we shall see later, it will
turn out to be important.
Fig. 1 provides a graphical representation. Each response function satisfies observation 3, and

in addition observation 4 tells us that the response function forA lies above that forB at the 45◦
line. We have therefore established the following proposition.



ARTICLE IN PRESS
K. Eliaz et al. / Journal of Economic Theory ( ) – 13

0

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0 2.5

uA

uB

uB

uA

Fig. 1. Existence of a majority equilibrium.

Proposition 1. An equilibrium exists in which members of the stochastic majority—group B—
behave more aggressively than their minority counterparts: uB < uA.

Proposition1 captures an interesting aspect of the “tyranny of the majority”. Not only are the
majority greater in number (at least stochastically so in this case), they are also more vocal in
expressing their opinion. So group outcomes are doubly shifted—in this particular equilibrium—
towards the majority view, once through numbers, and once through greater voice.7 We will call
such an equilibrium amajority equilibrium.

5. Minority equilibria

5.1. Existence

Fig. 1, which we used in establishing Proposition 1, is drawn from actual computation. We
setn = 4, p = 0.4, q = 1/4, and choseF to be gamma with parameters (3,4). Under this
specification, there is, indeed, a unique equilibrium and (by Proposition 1) it must be the majority
equilibrium.
Further experimentation with these parameters leads to an interesting outcome. Whenn is

increased (along withq, to keep the ratioq/n constant), the response curves appear to “bend
back” and intersect yet again, this time above the 45◦ line (see Fig. 2). Aminority equilibrium
(in which uA < uB , so that the minority are more aggressive) makes its appearance. For this
example, it does so when there are 12 players.
The bending-back of response curves to generate a minority equilibrium appeared endemic

enough in thecomputations, thatwedecided toprobe further.Todo this,westudy largepopulations
in which the ratio ofq ton is held fixed at� ∈ (0, 12). More precisely, we look at sequences{n, q}

7 Notice that this model has no voting costs so that free-riding is not an issue. Such free-riding is at the heart of the
famous Olson paradox (see[22]), in which small groups may be more effective than their larger counterparts.
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Fig. 2. Minority equilibrium.

growing unboundedly large so thatq is one of the (at most) two integers closest to�n. We obtain
the following analytical confirmation of the simulations:

Proposition 2. Assume that0 < � < p� 1
2. Consider any sequence{n, q} such thatn → ∞

and q is one of the(at most) two integers closest to�n. Then there exists a finite N such that for
all n�N , a minority equilibrium must exist.

Several comments are in order. First, if there is a minority equilibrium, there must be at least
two of them, because of the end point restrictions implied by Observations3 and 4. Some of these
equilibria will suffer from stability concerns similar to those discussed in Section 4.2.2. But there
will always be other minority equilibria that are “robust” in this sense.8

Second, it might be felt that the thresholdN described in Proposition 2 may be too large
for “reasonable” group sizes. Our simulations reveal that this is not true. For instance, within the
exponential class of valuation distributions, the threshold at which aminority equilibrium appears
is typically aroundN=10 or thereabouts, which is by no means a large number.
Third, the qualification that� > 0 is important. The unanimity case, withq=0 is delicate. We

return to this issue in Section 7. The casep��, which we also treat in the next subsection, is of
interest as well.
Finally, as an aside, note that Proposition 2 covers the symmetric casep = 1

2, in which case
the content of the proposition is that an asymmetric equilibrium exists (for largen). To be sure,
the proposition is far stronger than this assertion, which would only imply (by continuity) that a
minority equilibrium exists (with largen) if p is sufficiently close to12.

5.2. Discussion of the existence result

We can provide some intuition as to why minority existence is guaranteed for largen but not
so for smalln. Observe that whenn is “small”, there are two sorts of uncertainties that plague

8Once again, this follows from the end-point restrictions.
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any player. She does not know how many people there are of her type, and she is uncertain about
the realized distribution of valuations. Both these uncertainties are troublesome in that they may
precipitate costly disagreement. The possibility of disagreement is lowered by more and more
people adopting a neutral stance, though after a point it will be lowered sufficiently so that it
pays individuals to step in and announce their favorite outcome. For a member of the stochastic
majority, this point will be reached earlier, and so a majority equilibrium will always exist.
On the other hand, whenn is large, these uncertainties go away or at any rate are reduced. Now

the expectation that the minority will be aggressive can be credibly self-fulfilling, because the
expectation of an aggressive strategy can be more readily transformed into the expectation of a
winning outcome. This intuition suggests that when the proportion of the minority is smaller than
the superminority ratio, then minority equilibria do not exist for largen. This is confirmed in the
following proposition.

Proposition 3. Assume that0 < p < � < 1
2. Consider any sequence{n, q} such thatn → ∞

and q is one of the(at most) two integers closest to�n. Then there exists a finite N such that for
all n�N , a minority equilibrium does not exist.

Taken together, Propositions2 and 3 may suggest a monotonic relation between the super-
majority requirement and the “power” of the minority. Common intuition suggests that a higher
supermajority requirement facilitates the emergence of a minority equilibrium. Indeed, the com-
parativepolitics literaturecomparesdifferent political systemsandmotivateswhathasbeen termed
“consensus systems” [19] by the desire to protect minorities from the tyrany of the majority.
However, this is generally false in our model. To see why, consider an individual of typeA and

her best response condition. Asq decreases,A’s cutoff increases (holdingB’s cutoff fixed), i.e.,
the group fights less aggressively. This follows from the fact that asq decreases, the probability
that theB-types might blockA increases. Because the above effect of loweringq applies to both
groups, it is not clear which group benefits from this change.
To demonstrate the ambiguous effect of loweringq consider the following example: letn =

1000 (in light of Proposition 5 we intentionally pick a largen),p = 0.4 and consider the distribu-
tion functionF(u) = 1− 1√

ln(u+e)
. Forq = 300 there exists a minority equilibriumuA � 1.35

anduB � 80. However, forq = 10 there exists no minority equilibrium.
The above example seems to suggest that for somedistribution functions aminority equilibrium

may not exist when the supermajority requirement isat unanimity. Indeed, this is true.

Proposition 4. Suppose that the distribution of u, F(u), satisfies the condition

f (x)

1− F(x)
� 1

(1+ x) ln(1+ x)
(7)

for all x > 0. Then in the case wherem = n—i.e.,unanimity—a minority equilibrium cannot
exist for any n.

Note that cdf from the above example,F(u) = 1− 1√
ln(u+e)

, satisfies the sufficient condition
(7). Moreover, while conceivably not necessary,somecondition is needed to rule out minority
equilibria in the unanimity case: there do exist cdf’s for which minority equilibria exist for all
largen. 9

9One example of such a cdf is the exponential distributionF(u) = 1− e−u.



16 K. Eliaz et al. / Journal of Economic Theory ( ) –

ARTICLE IN PRESS

Finally, compare and contrast our findings with the asymmetric equilibria in the Battle of the
Sexes (BoS). Recall that analogues of those equilibria exist in this model as well,but they have
already been eliminated by the refinement introduced in Section4.2.2. One might suspect that the
equilibria of ourmodel converge (asngrows large) to the equilibria of the BoS game. In this sense,
the equilibria could be perceived as purification of the BoS equilibria. However, Proposition 4
establishes that this is not the case. Indeed, in somecases,minority equilibria do not exist for anyn.

Hence, uncertainty plays a crucial role in our model. This conclusion will be further strengthened
when we study limit outcomes in Section 6.

5.3. Minorities win in minority equilibrium

In this section we address the distinction between an equilibrium in which one groupbehaves
more aggressively, and one in which that groupwinsmore often. For instance, in the majority
equilibrium the majority fights harderand wins more often than the minority does. (It cannot
be otherwise, the majority are ahead both in numbers and aggression.) But there is no reason to
believe that the same is true of the minority equilibrium. The minority may be more aggressive,
but the numbers are not on their side.
However, a remarkable property of this model is that a minority equilibriummust involve the

minority winning with greater probability than the majority. Provided that a minority equilibrium
exists, aggression must compensate for numbers.

Proposition 5. In a minority equilibrium, the minority outcome is implemented with greater
probability than the majority outcome.

This framework therefore indicates quite clearly how group behavior in a given situation may
be swayed both by majority and minority concerns. When the latter occurs, it turns out that we
have some kind of “tyranny of the minority”: they are so vocal that they actually swing outcomes
(in expectation) to their side.
The proof of this proposition is so simple that we provide it in the main text, in the hope that it

will serve as its own intuition.

Proof. Recall (5) and (6) and note thatuA < uB in a minority equilibrium. It follows right away
that

∑q
k=0

(
m−1
k

)
�k(1− �)m−1−k >

∑q
k=0

(
m−1
k

)
�k(1− �)m−1−k, so that� < �. Expanding this

inequality, we conclude that�B(1− �B) < �A(1− �A). Because�A < 1
2, this can only happen

in two ways: either�B > 1− �A, or �B < �A. The former case is impossible, because�A and
�B describe mutually exclusive events, so the latter case must obtain. But this implies the truth of
the proposition. �

6. Limit equilibria

In Section 5.1we established the existence of aminority equilibrium. Existencewas guaranteed
for largen and for all supermajority rules except for unanimity. As we have already remarked,
there must be at least two such equilibria, while in addition we know that there is at least one
majority equilibrium. This raises the question of what the set of equilibria look like as the group
size grows without bound.
The purpose of this section is to prove that despite the possibly large multiplicity of equilibria

for finite group size, there are exactly three limit outcomes. Two of these outcomes are “limit
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minority equilibria”. Of the two, one exhibits a zero cutoff for the minority, and the other exhibits
a positive minority cutoff which is nevertheless lower than the majority cutoff. The third outcome
is a “limit majority equilibrium” in which the cutoff used by the majority is zero.
Moreover, the two corner equilibria (in which one side always fights for its favorite) possess a

special structure:the other side does not necessarily yield fully. That is, the rival side may use an
interior cutoff even in the limit, and we will characterize this cutoff exactly.
We will also study disagreement probabilities along any sequence of equilibria.

6.1. A characterization of limit outcomes

Wenow study the various limit points of equilibrium cutoff sequences.Wewill denote a generic
limit point by (u∗

A, u
∗
B).

Proposition 6. Assume that� > 0.

(1) Suppose that(u∗
A, u

∗
B) � 0.Then both limits must be finite, and solve

p[1− F(u∗
A)] = (1− p)[1− F(u∗

B)] = �. (8)

(2) Suppose thatu∗
A = 0.Thenu∗

B < ∞ if and only ifp < (1− �)/�, and in that caseu∗
B is given

by the condition

F(u∗
B) = p(1− 2�)

(1− p)�
. (9)

(3) Likewise, suppose thatu∗
B = 0.Thenu∗

A < ∞ if and only if1− p < (1− �)/�, and in that
caseu∗

A is given by the condition

F(u∗
A) = (1− p)(1− 2�)

p�
. (10)

(4) Moreover, if p > �, each of the three configurations described above are limits for some
sequence of equilibria.

Proposition6 is best understood by looking at Fig. 3, which is drawn for the “semi-corner case”
in which � < p < 1− p < �/(1− �). This figure depicts the loci�B/(1− �A) = �/(1− �) and
�A/(1−�B) = �/(1−�), suitably truncated to respect the constraints that�A�p and�B �1−p.
We claim that limit equilibrium cutoffs must simultaneously lie onboth these truncated loci. To
see this, suppose that some cutoff sequence{�nA, �nB} lies below the locus�B/(1−�A) = �/(1−�)
(along some subsequence, but retain the original indexn). Then the equilibrium condition (5),
coupled with the strong law of large numbers, assures us thatun

A → 0, or that�nA → p, which
pulls the system back on to the locus. If, on the other hand, the cutoff sequence{�nA, �nB} lies
abovethe locus�B/(1− �A) = �/(1− �), we have a contradiction as follows. First, by using (5)
again, we may conclude that�nA → 0. Next, recall that�nB �1− p < �/(1− �) (by assumption),
but this and the previous sentence contradict the presumption that�nB/(1− �nA) > �/(1− �) for
all n.
Of course, the same sort of argument applies to both loci, so we may conclude that equilibrium

cutoffs must converge to one of three intersections displayed in Fig. 3.10

10 It is also possible to construct versions of this diagram for the other cases, such as 1−p > �/(1−�) butp < �/(1−�).
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Fig. 3. Limit equilibrium cutoffs.

The last part of the proposition asserts that when minority equilibria exist for largen, each of
the three cases indeed represent “bonafide” limit points, in that each case is an attractor for some
sequence of equilibria. For the majority corner, this is obvious, as majority equilibria always exist
and no sequence of majority equilibria can ever converge to a minority outcome. That the other
two limits are also non-vacuous follow from the proof of existence of minority equilibria (the
reader is invited to study the formal arguments in Section9).

6.2. Disagreement

One important implication of Proposition 6 is that evenwhen there is little uncertainty regarding
the size of each faction, both sidesmay still put up a fight. In particular, when 1−p < 1−�

� all limit
equilibria consist of “fighting” on both sides. This raises the question of whether disagreement is
bound to occur in large populations.

Proposition 7. Assume� > 0.

(1) Suppose that� < p < 1−�
� and letu∗

B be the limit cutoff value that solves(9).Then in the limit
semi-corner equilibrium

(
0, u∗

B

)
both sides agree with certainty.

(2) Assume1− p < 1−�
� and letu∗

A be the limit cutoff value that solves(10).Then in the limit
semi-corner equilibrium

(
u∗
A,0

)
both sides agree with certainty.

(3) Consider any sequence of equilibria
(
un
A, u

n
B

) → (
u∗
A, u

∗
B

)
whereu∗

A andu∗
B solve(8).Then

the probability of disagreement along that sequence is bounded away from one.

The proofs of (1) and (2) follow immediately by looking at Fig. 3. At the semi-corner minority
equilibrium the proportion ofA votes is simplyp, which is strictly greater than�. The proportion
of B votes is 1− p[(1− �) /�], which is strictly smaller than�. It follows that in the limitA is
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the unique eligible alternative, and hence thatA will be implemented with certainty. Analogous
arguments show that in the semi-corner majority equilibrium,B is the unique eligible alternative.
The proof of (3) is more involved. Recall that in this case the proportion ofA andB votes

converges to the superminority requirement�. Onemaybe tempted to conclude that the probability
of disagreement in this casemust converge to1

4.A closer examination reveals that this may not be
the case. Indeed, what is important in determining the probability of disagreement is not the mere
convergence of�A and�B to �, but theirrateof convergence. So far, the equilibrium conditions
do not allow us to pin down the probability of disagreement in this case. Still, we establish that
this probability is bounded away from one.
The intuition for this result is the following. Suppose that the probability of disagreement is

high. Then the probability that each group is blocking the supermajority of its rival is also high.
In particular, this means that group cutoffs are not wandering off to infinity. On the other hand,
we can see that if groupA, for example, is blocking groupB, then the latter will be discouraged
from making aB announcement. Doing so will most likely lead to disagreement, while casting a
neutral vote ensures an agreement onA. This argument makes for high cutoffs, a contradiction to
the bounded group cutoffs that were asserted earlier in this paragraph.
In part, the formalization of the above intuition is easy, but the simultaneous movements in

population size and cutoffs necessitate a subtle argument. In particular, the last implication—that
cutoffs become large with population size—rests on arguments regardingratesof change as a
function of population. The reader is referred to the formal proof for details.
What allows individuals toagree, evenwhen therearegreatmanyof them, is theoption to remain

neutral. This can be seen if we analyze a restricted version of our model in which individuals
have only two options:A or B. We carry out this analysis in Section7.3. There, we show that
Proposition 7 ceases to hold.
Finally, note that the case of unanimity isnot covered here. This question remains open.

7. Extensions

7.1. Biased choice when both alternatives are eligible

Our model emphasizes majorities and minorities, but it can be used to study other issues.
Consider the following example involving “bias”. Suppose that an interested arbitrator or chair
gets to implement the outcome in case both options are eligible.11 To focus directly on the issue
at hand, assume that the model is symmetric in every respect (inclusive ofp = 1

2, though this is
not logically needed for what follows) except for the bias, which we denote by� > 1

2 in favor of
alternativeB.
It stands to reason that the presence of such a bias will spurA types on to greater aggression in

pushing their alternative, while it might make theB types more complacent. This much is fairly
obvious12 : the question is whether such behavioral changes might nullify or even outweigh the
bias.
The case of a strong bias, in which� �1, is easiest to consider, because it has an unambiguous

prediction:

11We owe this subsection to the comments of a referee.
12Formally, with multiple equilibria we would have to analyze changes in the equilibriumcorrespondence, but the

reasonable conjecture in the main text can be easily made precise.
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Observation 5. Along any sequence of equilibria(as� → 1), it must be the case that�B → 0,
and�A → p = 1

2.

While a formal proof is postponed to Section9, the intuition is simple. TheB types know that
as long asB is eligible, it is very likely to win. But pushingjust Bserves no additional purpose
except to create a possible gridlock, which is damaging. Hence typeB’s equilibrium response
must converge to “full neutrality” as� → 1. For theA types, then, full aggression becomes
an equilibrium response: they know that the eligibility of both alternatives is the same as an
almost-sure defeat, and there is little likelihood of disagreement (given the timidity of theBs).
The implication of these results is that the probability ofAwinning must converge to precisely

the probability that theA types number more thanq in the population. ForAwins only when the
A types blockB, and triumph as the only eligible alternative. Otherwise it loses. Ifq < n/2 (so
that we are dealing with supermajority rules), this probability must exceed1

2. In contrast, when
there is no bias, the model is completely symmetric and the probability thatA wins must be no
more than half, ex-ante.13

We have therefore shown that arbitration biases against an alternativemay increase the winning
probability of that alternative, and indeed will increase it when the arbitration bias is infinitely
high.

7.2. More on tie-breaking

The discussion in the previous section may be viewed more generally as an instance of various
tie-breaking scenarios when both alternatives are eligible. For example, one might simply have
a majority vote or some other “runoff” in this case. The parameter� in Section 7.1 may be
viewed as the reduced-form probability of win for typeB in the runoff following eligibility of
both alternatives. This makes little difference to the formalities of the model. One would simply
redefine the variableu, depending on the value of� (the proof of Observation 5 in Section 9 does
just this).
An interesting special case arises when� is given by a simple majority runoff. In this case, by

Observation 2,� must equal 1− p, a bias towards the majority. This is an additional source of
minority aggression, as suggested by the analysis of the previous section.
Other tie-breaking procedures are harder to handlewithin our framework. For instance, suppose

that the outcome with the more votes is chosen in the event that both outcomes are eligible. (The
existingvotes are recounted, so this is different from a runoff.) This leads to a more complicated
setup; we indicate some of the steps.
Begin by deriving the necessary and sufficient condition for an individual of some type, say

A, to weakly prefer an announcement of his favorite outcome—A in this case—to neutrality. To
simplify the exposition we introduce the following notation. Define	 to be the joint probability
that not counting our individual’s vote, bothA andB are eligible and both have the same number
of declarations. Similarly, we define	′ to be the joint probability that not counting theA type’s
vote, bothA andB are eligible, both have strictly less thanq declarations, butB has exactly one
declaration more thanA.We also use the notationP+ defined in Section 4.1.

13The qualification “no more than half” stems from the possibility of disagreement. However, remember that there may
be multiple equilibria, so our statement in the text may be viewed as the outcome of symmetric randomization over all
equilibria.
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Given theabove tie-breaking rule, anA typeweaklyprefers todeclareA than todeclareneutrality
if, and only if

	v + 	′
(
v + v′

2

)
�P+v′ + 	′v′ + 	

(
v + v′

2

)
.

Simplifying this inequality we obtain the following cutoff rule: declareA if, and only if
(
	 + 	′) u�P+.

It follows that as in our original model, individuals base their decisions on how strongly they favor
their preferred outcome to the alternative one. A similar inequality is obtained for theB types.
The complexity involved in analyzing ourmodel under this alternative tie-breaking rule follows

from the above inequality. Recall that in our original formulation the cutoff rule was expressed as
the lower tail of abinomial distribution.Unfortunately, thenew formulationdoesnot accommodate
such an expression.
Despite the added complexity, we are able to replicate some of our original results. First, it

can be shown that all symmetric equilibria are interior (this is stated and proved as Observation
8 in Section 9). In contrast to the corresponding result in the paper (Observation 1), this result
does not rely on any refinement. Second, a majority equilibrium always exists. This follows from
arguments similar to those made in Proposition 1.
Establishing the existence of a minority equilibrium proved to be a formidable task. However,

it is easy enough to generate numerical examples that exhibit the same features as those described
in Proposition 2.14

7.3. No neutrality

In our opinion, when faced with impending disagreement, the option of a neutral stance is
very natural. This is why we adopted this specification in our basic model. (As discussed already,
neutrality is not to be literally interpreted as a formal announcement.) Nevertheless, it would be
useful to see if the insights of the exercise are broadly preserved if announcements are restricted
to be eitherA orB.
We can quickly sketch such a model. An individual is now pivotal under two circumstances.

In the first event, the number of people announcing her favorite outcome is exactlyq, which
we assume to be less than(n − 1)/2.15 By announcing her favorite, then, disagreement is the
outcome, while an announcement of the other alternative would lead to that alternative being
implemented. The loss, then, from voting one’s favorite in this event is preciselyv′ (recall that the
disagreement payoff is normalized to zero). In the second event, the number of people announcing
the alternative is exactlyq. By announcing her favorite, she guarantees its implementation, while
the other announcement would lead to disagreement. So the gain from voting one’s favorite in
this event isv. Consequently, an individual will announce her favorite if

Pr(exactlyq others vote for alternative)v�Pr(exactlyq others vote for favorite)v′.

Definew ≡ v/v′. Then equilibrium cutoffswA andwB are given by the conditions

14For example, a minority equilibrium exists forF(u) = 1− e−3u, p = 0.4, n = 19 andq = 3.
15The caseq = (n − 1)/2 is exactly the same as in Observation2 for the main model. No matter what the valuations

are, each individual will announce her favorite outcome.



22 K. Eliaz et al. / Journal of Economic Theory ( ) –

ARTICLE IN PRESS

wAPr(|B| = q)�Pr(|A| = q) (11)

and

wBPr(|A| = q)�Pr(|B| = q), (12)

where|A| and |B| stand for the number ofA- andB-announcements out ofn − 1 individuals,
and where equality must hold in each of the conditions provided the corresponding cutoff strictly
exceeds 1, which is the lower bound for these variables.
In this variation of the model, it is obvious that at least one group must be “fully aggressive”

(i.e., its cutoff must equal one).16 Moreover, as long as we are in the caseq < (n − 1)/2, both
groups cannotsimultaneouslybe “fully aggressive”: one of the cutoffs must strictly exceed unity.
So, in contrast to our model, in which all (robust) equilibria are fully interior, the equilibria here

are at “corners” (full aggression on one side, full acquiescence on the other) or “semi-corners”
(full aggression on one side, interior cutoffs on the other). The semi-corner equilibria are always
robust in the sense of Section 4.2.2, and we focus on these in what follows.17

In particular, to examine possibleminority equilibria, setwA = 1. Then use the equality version
of (12) to assert that

wB =
(

p + (1− p)H(wB)

(1− p)[1− H(wB)]
)n−1−2q

(13)

in any such equilibrium, whereH is the (assumed atomless) cdf ofw, distributed on its full support
[1,∞).
It is easy to use (13) to deduce

Observation 6. (1)A semi-corner minority equilibrium exists if(n, q) are sufficiently large.
(2) In any minority equilibrium, the minority outcome is implemented with greater probability

than the majority outcome.

So the broad contours of our model can be replicated in this special case. This is reassuring,
because it reassures us of the robustness of the results. At the same time this variation allows us
to highlight the main implication of allowing voters to remain neutral: absent neutrality voters
may be locked into situations in which they are almost certain to disagree. This is formalized in
the next result.

Observation 7. Assume0 < � < p < 1
2. Consider any sequence{n, q} such thatn → ∞ and

q is one of the two integers closest to�n. Then there exists a sequence of semi-corner minority
equilibria for which the probability of disagreement converges to one.

The above result demonstrates the importance of being neutral: neutrality allows the players to
avoid disagreement. Recall that Proposition7 establishes that with neutrality, the probability of
disagreement at every interior equilibrium is boundedaway fromone.Once theoptionof neutrality
is taken away, the probability that players reach a disagreement (at any interior equilibrium) must
go to one along some sequence of minority equilibria.

16Simply examine (11) and (12) and note that both right-hand sides cannot strictly exceed one.
17 In contrast to our setup, the “full corner” equilibria may or may not be robust. We omit the details of this discussion.
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7.4. Known group size

Our model as developed has the potential drawback that the instance of a known group size
is not a special case. More generally, individuals may have substantial information regarding the
ordinal stance of others (though still remaining unsure of their cardinal preferences).18

One way to accommodate this concern is to amend the model to posit a probability distribution

(nA) over the numbernA of A-types in the population. (The current specification of cardinal
intensities may be retained.) This has the virtue of nesting our current model as well as known
group size as special cases.19 In addition, the basic structure of our model is easily recreated
in this more general setting. For instance, if
 exhibits full support, a similar robustness argu-
ment applies to eliminate the “coordination-failure” corner equilibria, and downward-slopping
“reaction functions”, as in Fig. 1, may be constructed just as before. The concept of a stochastic
minority can also be easily extended. However, there are interesting conceptual issues involved in
changinggroup size: in particular, we will need to specify carefully how
 alters in the process.
While a full analysis of this model is “beyond the scope of the current paper”, we provide some

intuition by studying the extreme case in which group size is known; i.e.,
(nA) = 1 precisely at
some integernA < n/2. We retain all our other assumptions.
Of course,
 no longer has full support, so the arguments in Section 4.2.2 do not apply to this

case. To see why, consider the case when allB types are voting forB, whereas only extreme
A-types are voting forA. When anA-type knows exactly how manyB-types there are, he realizes
that he can only create a disagreement by voting forA. Therefore, when group sizes are known,
the two corner equilibria are robust (in the sense of Section 4.2.2). This suggests that the corner
equilibria are unnatural in the following sense: when faced with some uncertainty about group
sizes, some individuals may still put up a fight.
A further observation relates to the importance of group size in the emergence of minority

equilibria. Potentially, the existence of minority equilibria in our original model may be due to
two types of uncertainties that are relaxed in large groups. First, as the number of individuals in
the group increases, voters have a more accurate estimate of the proportion of their types in the
group. Second, as the population increases, each individual has a better picture of the distribution
of intensities among his compatriots.
What if group sizes are known? Then it can easily be shown that the equilibrium cutoff for

one type depend only on the equilibrium cutoff of the other type. More precisely, an equilibrium
(uA, uB) satisfies the following equations:

(1+ uA)
q∑

k=0

(
nB

k

)
(F (uB))

nB−k (1− F(uB))
k = 1,

(1+ uB)
q∑

k=0

(
nA

k

)
(F (uA))

nA−k (1− F(uA))
k = 1,

wherenA < nB are the number of individuals of typeA andB, respectively.
It is straightforward to construct examples in which there does not exist a minority equilibrium

for smallnA andnB . For instance, takeF(u) = 1− 1√
ln(u+e)

, nA = 2, nB = 3 andq = 1.

For these values there exists a unique interior majority equilibrium,uA ≈ 250 anduB ≈ 0.22.
However, using arguments similar to those employed in Propositions 2 and 4, one can show that

18 In our current model, such “substantial information” is only possible ifp is close to either 0 or 1.
19 In the current model,
(nA) = ( n

nA

)
pnA(1− p)n−nA for somep ∈ (0, 12).
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for largenaminority equilibriumexists and the probability of disagreement is bounded away from
one. By simple stochastic dominance arguments, it can be shown that in any minority equilibrium
the minority wins more often.
We conclude that certainty regarding the numbers ofA andB types is not sufficient to generate

a minority equilibrium; even when the numbers ofA andB types are known, we still needn to
be sufficiently large for the minority to prevail.

7.5. Types who prefer disagreement to the rival alternative

Suppose there exist types who rank disagreement above their second best alternative. Clearly,
voting for the preferred alternative is weakly dominant for these types. Hence, in any interior
equilibrium these individuals would vote their type. In this sense, incorporating these voters into
our model is equivalent to adding aggregate noise.We believe that if the proportion of such types
is sufficiently low, all of our results continue to hold.

8. Summary

We study a model of group decision-making in which one of two alternatives must be cho-
sen. While group members differ in their valuations of the alternatives, everybody prefers some
alternative to disagreement.
We uncover a variant on the “tyranny of the majority”: there is always an equilibrium in

which the majority is more aggressive in pushing its alternative, thus enforcing their will via both
numbers and voice. However, under very general conditions an aggressive minority equilibrium
inevitablymakesanappearance, provided that thegroup is largeenough.This equilibriumdisplays
a “tyranny of the minority”: it is always true that the increased aggression of the minority more
than compensates for smaller number, leading to the minority outcome being implemented with
larger probability than the majority alternative.
These equilibria are not to be confused with “corner” outcomes in which a simple failure of

coordination allows any one group to be fully aggressive and another to be completely timid,
without regard to group size. Indeed, one innovation of this paper is to show how such equilibria
are entirely non-robust when confronted with varying intensities of valuations, and some amount
of uncertainty regarding such valuations. In fact, as we emphasize in the paper, minority equilibria
do not always exist: they do not exist, in general, for low population sizes and in the unanimity
case they may not exist foranypopulation size.
We also fully characterize limit outcomes as population size goes to infinity.We show that there

are exactly three limit outcomes to which all equilibria must converge. Two of these outcomes are
“limit minority equilibria”. Of the two, one exhibits a zero cutoff for the minority, and the other
exhibits a positive minority cutoff which is nevertheless lower than the majority cutoff. The third
outcome is a “limit majority equilibrium” in which the cutoff used by the majority is zero. The
two corner equilibria which display full aggression on one side do not, in general, force complete
timidity on the rival side. We provide a complete characterization by providing necessary and
sufficient conditions for the interiority of such cutoffs and describing exactly their values.
Finally, we address the question of disagreement as group size grows large. We show that the

probability of disagreement must converge to zero along all equilibrium sequences that converge
to the semi-corners identified above. For those equilibria that converge to the remaining interior
minority outcome, we show that the probability of disagreement is bounded away from one as
the population size goes to infinity. The option to remain neutral is crucial in obtaining this result.
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Observation7 in Section 7 considers an extension in which the neutrality option is removed, and
proves that there is always a sequence of equilibria (in group size) along which the probability of
disagreement must converge to one.
While we focus on the positive aspects of supermajority rules, our analysis suggests an ap-

proach from the viewpoint of mechanism design. Under supermajority rules, the fear of possible
disagreement induces agents to base their actions on theircardinal preferences, rather than just
on their ordinal ranking as in simple majority. Individuals who care a lot about the final outcome
will indeed risk disagreement. Thus supermajority rules in the shadow of disagreement plays a
possible role in eliciting intensities. However, there are caveats. First, disagreement is costly. It
remains to be seen whether groups would obtain a net benefit by committing to the use of this
costly option. Second, as our analysis shows, what determines agent behavior arerelative, not
absolute preference intensities over the different outcomes (see also [14]). This is an important
(and complicated) enough question that deserves to be addressed in a separate paper.

9. Proofs

Proof of Observation 3. For concreteness, seti = A andj = B. Fix anyuB ∈ [0,∞). Recall
that

� = �B
1− �A

= (1− p)[1− F(uB)]
1− p[1− F(uA)] ,

so that� is continuous inuA, with � → 1− F(uB) asuA → 0, and� → (1− p)[1− F(uB)]
asuA → ∞. Consequently, recalling (5) and noting thatq < (n − 1)/2, we see that�(uA, uB)

converges to a number strictly less than one asuA → 0, while it becomes unboundedly large as
uA → ∞. By continuity, then, there exists someuA such that�(uA, uB) = 1, establishing the
existence of a cutoff.
Toshowuniqueness, it suffices toverify that� is strictly increasing inuA. Because theexpression∑q
k=0

(
m−1
k

)
�k(1−�)m−1−k must be decreasing in�, it will suffice to show that� itself is declining

in uA, which is a matter of simple inspection.
To show that the responseuA strictly decreases inuB , it will therefore be enough to establish

that� is also increasing inuB . Just as in the previous paragraph, we do this by showing that� is
decreasing inuB , which again is a matter of elementary inspection.
Finally, we observe thatuA ↓ 0 asuB ↑ ∞. Note that along such a sequence,� → 0 regardless

of the behavior ofuA. Consequently,
∑q

k=0

(
m−1
k

)
�k(1− �)m−1−k converges to 1 asuB ↑ ∞. To

maintain equality (5), therefore, it must be the case thatuA ↓ 0.
Of course, all these arguments hold if we switchA andB. �

Proof of Observation 4. Let ū be defined as in the statement of this observation. Define�̄A ≡
p[1− F(ū)] and�̄B ≡ (1− p)[1− F(ū)]. Then

(1+ ū)
q∑

k=0

(
m − 1

k

)
�̄k(1− �̄)m−1−k = 1, (14)

where�̄ ≡ �̄B/(1− �̄A). Now recall that� in (6) is defined by� = �A

1−�B
, so that if we consider

the corresponding valuē� defined by settinguA = uB = ū, we see that

�̄� �̄ if and only if �̄A(1− �̄A)� �̄B(1− �̄B).
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But �A� 1
2 (becausep� 1

2), so that the second inequality above holds if and only if�̄A� �̄B , and
this last condition follows simply from the fact thatp� 1

2.
So we have established that�̄� �̄. It follows that

q∑
k=0

(
m − 1

k

)
�̄k(1− �̄)m−1−k �

q∑
k=0

(
m − 1

k

)
�̄k(1− �̄)m−1−k

and using this information in (14), we must conclude that

�(ū, ū) = (1+ ū)
q∑

k=0

(
m − 1

k

)
�̄k(1− �̄)m−1−k �1. (15)

Recalling that� is increasing in its first argument (see proof of Observation3), it follows from
(15) that typeB’s equilibrium response tōu is no bigger than̄u.
Finally, observe that all these arguments apply with strict inequality whenp < 1

2. �

Proof of Proposition 1. For eachuB �0, define�(uB) by composing equilibrium responses:
�(uB) is B’s equilibrium response toA’s equilibrium response touB . By Observation 3, we see
thatA’s equilibrium response is a positive, finite value whenuB = 0, and therefore so isB’s
response to this response. Consequently,�(0) > 0. On the other hand,A’s equilibrium response
is preciselyūwhenuB = ū, and by Observation 4 wemust conclude that�(ū) < ū. Because� is
continuous (Observation 3 again), there isu∗

B ∈ (0, ū) such that�(u∗
B) = u∗

B . Letu
∗
A be typeA’s

equilibrium response tou∗
B . Then it is obvious that(u

∗
A, u

∗
B) is an equilibrium. Becauseu

∗
B < ū,

we see from Observation 3 thatu∗
A > ū. We have therefore found a majority equilibrium.�

Proposition 2 and some subsequent arguments rely on the following lemma.

Lemma 1. Consider any sequence{n, q} such thatn → ∞ and q is one of the two integers
closest to�n. For anyūA satisfying

p [1− F (ūA)] > �, (16)

there exists a finite N such that for alln�N , ûn
B > un

B > ūA whereun
B solves(5)with uA = ūA,

andûn
B solves(6)with uA = ūA.

Proof. Consider any sequence{n, q} as described in the statement of the lemma. Becausep > �,
there exists a range of positive cutoff values satisfying inequality (16). Consider any such value
ūA and denotē�A ≡ p [1− F (ūA)]. There exists a finiten∗ such that for alln�n∗,

�̄A >
q

n − 1
� �

Note that there is also an associated sequence{m} defined bymn ≡ n − q. 20

We break the proof up into several steps.
Step1: We claim that there exists an integerM such that for eachm�M there isum

B < ∞ that
solves the following equation:

q∑
k=0

(
m − 1

k

)
(�m)k (1− �m)m−1−k = 1

1+ ūA

, (17)

20While correct notation would demand that we denote this sequence bymn, we shall use the indexmfor ease in writing.
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where

�m ≡ �mB
1− �̄A

and

�mB ≡ (1− p)
[
1− F

(
um
B

)]
.

We prove this claim. Note that for alln�n∗, 1− p�p > q/(n − 1), so that

�̄ ≡ (1− p)(n − 1)

m − 1
>

q

m − 1
� �

1− �

for all n�n∗. Consequently, by the strong law of large numbers (SLLN),

q∑
k=0

(
m − 1

k

)
�̄k (1− �̄)m−1−k → 0

asmandq grow to infinity. It follows that there existsM such that for allm�M (and associated
q),

q∑
k=0

(
m − 1

k

)
�̄k (1− �̄)m−1−k <

1

1+ ūA

. (18)

For suchm, provisionally considerum
B = 0. Then

�mB
1− �̄A

= 1− p

1− p [1− F (ūA)]

and using this in (16), we conclude that

�m = �mB
1− �̄A

= 1− p

1− p [1− F (ūA)]
>

(1− p) (n − 1)

m − 1
= �̄.

Combining this information with (18), we see that ifum
B = 0, then

q∑
k=0

(
m − 1

k

)
�k
m (1− �m)m−1−k <

1

1+ ūA

. (19)

Next, observe that ifum
B is chosen very large, then�mB and consequently�m are both close to zero,

so that
∑q

k=0

(
m−1
k

)
�k
m (1− �m)m−1−k is close to unity. It follows that for suchum

B ,

q∑
k=0

(
m − 1

k

)
�k
m (1− �m)m−1−k >

1

1+ ūA

. (20)

Combining (19) and (20) and noting that the LHS of (17) is continuous inum
B , it follows that for

all m�M there exists 0< um
B < ∞ such that the claim is true.

Step2: One implication of (17) in Step 1 is the following assertion: as(m, q) → ∞,

�m → �/(1− �) ∈ (0,1), and in particular, um
B is bounded. (21)

To seewhy, note that 11+ūA
∈ (0,1). Using (17) andSLLN, itmust be that�m → �/(1−�) ∈ (0,1)

as(m, q) → ∞. Recalling the definition of�m it follows right away thatum
B must be bounded.
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Step3: Next, we claim there exists an integerM∗ such that

For allm�M∗, um
B > ūA. (22)

To establish this claim, note first, using (16), that

p [1− F (ūA)] >
q

n − 1
=

q
m−1

1+ q
m−1

�
q

m−1
1−p
p

+ q
m−1

,

where the last inequality follows from the assumption thatp ∈ (
0, 12

]
, so that1−p

p
�1. A simple

rearrangement of this inequality shows that

(1− p) [1− F (ūA)]

1− p [1− F (ūA)]
>

q

m − 1
� �

1− �
. (23)

Now suppose, contrary to the claim, thatum
B � ūA along some subsequence ofm. Then on that

subsequence,

�m = �mB
1− �̄A

= (1− p)
[
1− F

(
um
B

)]
1− p [1− F (ūA)]

� (1− p) [1− F (ūA)]

1− p [1− F (ūA)]
. (24)

Combining (23) and (24), we may conclude that along the subsequence ofm for whichum
B � ūA,

inf
m

�m >
�

1− �
,

which contradicts (21) of Step 2.
To prepare for the next step, letûm

B denote the equilibrium response of theB-types touA = ūA.
That is,

1

1+ ûm
B

=
q∑

k=0

(
m − 1

k

)
�k
m (1− �m)m−1−k , (25)

where

�m ≡ �̄A

1− �̂
m

B

and

�̂
m

B ≡ (1− p)
[
1− F

(
ûm
B

)]
.

Step4: There is an integerM∗∗ such that for allm�M∗∗, ûm
B > um

B .
To prove this claim, suppose on the contrary thatûm

B �um
B along some subsequence ofm. (All

references that follow are to this subsequence.) Then

�m = �̄A

1− �̂
m

B

= p [1− F (ūA)]

1− (1− p)
[
1− F

(
ûm
B

)] � p [1− F (ūA)]

1− (1− p)
[
1− F

(
um
B

)]

= �̄A
1− �mB

. (26)

Recall from (21), Step 2, that �m
B

1−�̄A
→ �

1−� . Therefore�
m
B → �̄B , where�̄B ≡ �

1−�

(
1− �̄A

)
.

Recall from (16) that̄�A > �, so that̄�B < � and in particular̄�B < �̄A. Becausep� 1
2, so is�̄A,
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and these last assertions permit us to conclude that�̄A
(
1− �̄A

)
> �̄B

(
1− �̄B

)
, or equivalently,

that

�̄A
1− �̄B

>
�̄B

1− �̄A
.

Using this information in (26) and recalling that�mB → �̄B , we may conclude that

lim inf
m→∞ �m� �̄A

1− �̄B
>

�̄B
1− �̄A

= �

1− �
,

where the last equality is from (21). It follows from (25) that̂um
B → ∞. But this contradicts our

supposition that̂um
B �um

B (that along a subsequence) because the latter is bounded; see (21) of
Step 2. �

Proof of Proposition 2. Consider any sequence{n, q} as described in the statement of the propo-
sition. Choose some cutoffūA that satisfies (16). By Lemma 1, there is an integerN such that for
all n�N , ûn

B > un
B > ūA. Define, for eachn�N and eachuA ∈ (0, ūA], �n(uA) as thediffer-

encebetweenB’s equilibrium response touA and the value ofuB to whichuA is an equilibrium
response. By Lemma 1 and Observation 3,�n is well defined and continuous on this interval.
Using Observation 3 yet again, it is easy to see that (for eachn) �n(uA) < 0 for small values of
uA, while the statement of Lemma 1 assures us that�n(ūA) > 0. Therefore for eachn, there is
ũn
A ∈ (0, ūA) such that�n(ũn

A) = 0. If we defineũn
B to be the equilibrium response toũn

A, it is
trivial to see that(ũn

A, ũ
n
B) constitutes an equilibrium.

Finally, note that

ũn
A < ūA < un

B < ûn
B < ũn

B,

where the second and third inequalities are a consequence of Lemma1, and the last inequality
comes from the fact that the equilibrium response function is decreasing (Observation 2). This
means that(ũn

A, ũ
n
B) is a minority equilibrium. �

Proof of Proposition 3. Suppose on the contrary that a minority equilibrium(un
A, u

n
B) exists

along some subsequence ofn (all references that follow are to this subsequence). Then
limn→∞(un

A, u
n
B) is either(∞,∞), (0,∞)orapair of strictly positivebut finitenumbers(u∗

A, u
∗
B).

To prove that our supposition is wrong, we show that none of these limits can apply.
Assume(un

A, u
n
B) → (∞,∞). Then�nA → 0 and�nB → 0. This implies that�n → 0 and

�n → 0. But this implies, by Eqs. (5) and (6) and using SLLN, that(un
A, u

n
B) → (0,0), a

contradiction.
Assume(un

A, u
n
B) → (0,∞). Then�nA → p and�nB → 0, so that�n → p < � <

q
m−1. But

using (6) and SLLN, this implies thatun
B → 0, a contradiction.

Assume(un
A, u

n
B) → (u∗

A, u
∗
B), where bothu∗

A andu∗
B are strictly positive and finite. Using

SLLN and Eqs. (5) and (6), it follows that�n and�n must both converge toq
m−1. This means that

�nA → �∗
A and�nB → �∗

B such that

�∗
B

1− �∗
A

= �∗
A

1− �∗
B

.
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This equality holds only if�∗
A = �∗

B , or if �
∗
A = 1−�∗

B . Suppose the former is true. Then�n → �∗
where

�∗ = �∗
B

1− �∗
A

<
�

1− �
� q

m − 1
.

But the above inequality implies, by (5) and SLLN, thatun
A → 0, a contradiction. Suppose next

that�∗
A = 1− �∗

B . But 1− �∗
B > p > �∗

A, a contradiction. �

Proof of Proposition 4. Under unanimity, (5) and (6) reduce to

1

1+ uA

= (1− �)n−1 (27)

and

1

1+ uB

= (1− �)n−1. (28)

For any givenn andk = A,B, defineyk ≡ (1+ uk)
1/(n−1). Thenyk �1, and (27) and (28) may

be rewritten as

1− � = 1

yA
(29)

and

1− � = 1

yB
. (30)

Recalling that� = �B/(1 − �A) and� = �A/(1 − �B), we may use (29) and (30) to solve
explicitly for �A and�B . Doing so and writing out�k for k = A,B, we see that

�A = p[1− F(uA)] = yB − 1

yA + yB − 1
, (31)

while

�B = (1− p)[1− F(uB)] = yA − 1

yA + yB − 1
. (32)

By multiplying both sides of (31) by 1− F(uB) and both sides of (32) by 1− F(uA) and using
the fact thatp < 1− p, we may conclude that

[1− F(uB)]
[
(1+ uB)

1/(n−1) − 1
]
< [1− F(uA)]

[
(1+ uA)

1/(n−1) − 1
]
. (33)

We will now prove thatuA > uB . Given (33), it will suffice to prove that

[1− F(x)]
[
(1+ x)1/(n−1) − 1

]

is nondecreasing inx. This, in turn, is implied by the stronger observation that

d

dx
[1− F(x)]

[
(1+ x)1/(n−1) − 1

]
�0
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for everyx > 0, or equivalently, that

f (x)

1− F(x)
� 
(1+ x)
−1

(1+ x)
 − 1
, (34)

where
 ≡ 1
n−1 ∈ (0,1].

To this end, we demonstrate that for allx > 0 and
 ∈ (0,1],

(1+ x)
−1

(1+ x)
 − 1
� 1

(1+ x) ln(1+ x)
. (35)

To establish (35), note that for fixedx > 0,h(
) ≡ (1+ x)
 is differentiable and convex inx. By
a standard property of differentiable convex functions,h(
1)− h(
2)�h′(
1)(
1− 
2) for all 
1
and
2. Applying this inequality to the case
1 = 
 and
2 = 0, we may conclude that

h(
) − h(0) = (1+ x)
 − 1�h′(
)
 = (1+ x)
 ln(1+ x)


and a quick rearrangement of this inequality produces (35).
To complete the proof, combine (7) and (35) to obtain (34).�

Proof of Proposition 6. Recall the conditions describing equilibrium cutoffs:

1

1+ uA

=
q∑

k=0

(
m − 1

k

)
�k(1− �)m−1−k

and

1

1+ uB

=
q∑

k=0

(
m − 1

k

)
�k(1− �)m−1−k.

For each integern (with associatedm andq) and everyu�0, define a functionh(u, n) by the
condition that

q∑
k=0

(
m − 1

k

)
h(u, n)k(1− h(u, n))m−1−k ≡ 1

1+ u
.

Note thath is well-defined for each(u, n). With this in hand, we may rewrite the equilibrium
conditions more succinctly as

�nB
1− �nA

= �n = h(un
A, n) ≡ �n (36)

and

�nA
1− �nB

= �n = h(un
B, n) ≡ �n, (37)

where we are now starting to index all endogenous variables byn in order to prepare for sequences
of equilibria. Solving these two equations for�nA and�nB , we see that

�nA = p[1− F(un
A)] = �n(1− �n)

1− �n�n (38)
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and

�nB = (1− p)[1− F(un
B)] = �n(1− �n)

1− �n�n . (39)

We now study various limits of equilibrium cutoff sequences. We will denote the limits in all
cases by(u∗

A, u
∗
B). The following lemma summarizes simple properties ofh and will be used

throughout.

Lemma 2. (1) For every n, h is strictly increasing in u, with h(0, n) = 0 andh(u, n) → 1 as
n → ∞.
(2) If un converges to u with0< u < ∞, thenlimn→∞ h(un, n) = �/(1− �).
(3) If un converges to0 thenlim supn→∞ h(un, n)��/(1− �).
(4) If un → ∞, thenlim inf n→∞ h(un, n)��/(1− �).

The proof of this lemma follows from routine computations and the use of the law of large
numbers, and is omitted.
Nowwe prove part (1) of the proposition. First, we claim thatu∗

A andu∗
B are finite. For suppose,

say, thatu∗
A = ∞ (the argument in the other case is identical). It follows from (38) that either�n

has a limit point at 1, or that�n has a zero limit point. The latter possibility is ruled out by Lemma
2, becauseu∗

B > 0 by assumption. It follows that lim supn→∞ �n = 1, but then Lemma 2 assures
us thatu∗

B = ∞ as well.
The first of the two conclusions in the preceding sentence implies that lim supn→∞ �nB = 1 (use

(37)), but the second conclusion implies that limn→∞ �nB = 0 (use (39)). These two implications
contradict each other.
So 0� (u∗

A, u
∗
B) � ∞, but we know then from Lemma 2 that(�n, �n) → (�, �) asn → ∞.

Simple computation using (38) and (39) then yields (8). It should be noted that this limit (which
is unique in the class of strictly positive limits) hasu∗

A < u∗
B ; that is, it is a “limit” minority

equilibrium.
Next, we prove part (2); the proof of part (3) is completely analogous. Suppose, then, that

u∗
A = 0. We first prove the sufficiency of the restriction onp. To this end, assume thatu∗

B = ∞.
Consider some subsequence in which�n and�n converge (to some�∗ and�∗). Then (38) implies
that

�∗(1− �∗)
1− �∗�∗ = p. (40)

while at the same time, (39) implies that

�∗(1− �∗)
1− �∗�∗ = 0, (41)

(41) implies either that�∗ = 0 or that�∗ = 1. But the latter cannot happen, for then (40) cannot
be satisfied (note that the LHS of (40) is well-defined even when�∗ = 1, because�∗ < 1 by
Lemma 2). So it must be that�∗ = 0. But then (40) implies thatp = �∗. Lemma 2 tells us that
�∗ ��/(1− �), so thatp��/(1− �).
Conversely, suppose thatu∗

B < ∞. Again, consider some subsequence in which�n and�n

converge to some�∗ and�∗. Therefore (38) implies that
�∗(1− �∗)
1− �∗�∗ = p. (42)
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while (39) implies that

�∗(1− �∗)
1− �∗�∗ = (1− p)[1− F(u∗

B)]. (43)

We can eliminate�∗ from this system. We also note that by Lemma2, �∗ must equal�/(1− �).
Using these observations along with some routine computation, we obtain precisely (9).
We also know thatF(u∗

B) < 1. Using this information in (9), we may conclude thatp <

�/(1− �).
Finally, we establish part (4). Assume, to the contrary, there exists no sequence of equilibria

whose limit is given by the first configuration. By parts (2) and (3) of the proposition, the limit
of any sequence of minority equilibria has eitheru∗

A = 0 oru∗
A > u∗

B . To reach a contradiction,
pick anyuA > 0 satisfying (16). By Lemma 1, there exists an integerN such that for alln�N ,
there exists a minority equilibrium(un

A, u
n
B)with un

A > uA. From Proposition 1 it follows that for
anyp < 1

2 and for anyn, there does not exist a pair of numbers(u, u) that solve the equilibrium
conditions (5) and (6).We therefore conclude that for alln�N , there exists aminority equilibrium
(un

A, u
n
B) with 0< uA < un

A < un
B , in contradiction to our initial assumption.

Suppose next that there exists no sequence of equilibria whose limit is given by the second
configuration. Then by parts (1) and (3) of the proposition, the limit of any minority equilibrium
must satisfy thatu∗

A�� > 0. Let � ∈ (0, �). By Lemma 1, there exists a finiteN > 0 such that
for all n�N there exists a minority equilibrium

(
un
A, u

n
B

)
with un

A < �. But this means that the
limit of any such sequence cannot satisfy thatu∗

A��, a contradiction.
Finally, assume there exists no sequence of equilibria whose limit is given by the third con-

figuration. This implies, by (1) and (2), that the limit of any sequence of equilibrium cutoffs
hasu∗

A < u∗
B . But this contradicts Proposition 1, which states that for everyn there exists an

equilibrium withun
A > un

B . �

Proof of Proposition 7. The proofs of (1) and (2) are given in the discussion following the
statement of the proposition in the text.We now proceed to prove (3).Assume thatq < n−1

2 (when
q = n−1

2 the probability of disagreement is zero). Note that the probability of disagreement is
equal to Pr(|A| > q, |B| > q), where|.| stands for cardinality. Because

Pr(|A| > q, |B| > q)� min{Pr(|A| > q),Pr(|B| > q)},
it suffices to show that Pr(A > q) and Pr(B > q) cannot both converge to one along some
subsequence ofn.
Suppose, on the contrary, that Pr(A > q) and Pr(B > q) do converge to one along some

subsequence ofn (retain notation). The proof proceeds in two steps. In the first step we show
that for largen both�A and�B are strictly above�. Moreover, if either�A or �B converges to�,
then it converges at a rate slower than1√

n
. In the second step we show that this implies that the

equilibrium cutoffs,uA anduB , must be growing to infinity, in contradiction to step 1.

Step1: limn→∞ (�A−�)
√
n√

�A(1−�A)
= ∞ and limn→∞ (�B−�)

√
n√

�B(1−�B)
= ∞.

We prove limn→∞ |�A−�|√n√
�A(1−�A)

= ∞; similar arguments hold for�B.

Assume to the contrary that there exists a subsequence for which limn→∞
(�kn

A −�)
√
n√

�A(1−�A)
= c,

where−∞�c < ∞.
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LetXn denote the number of A announcements (i.e.,|A|). By the Berry-Esséen Theorem (see,
for example,[9, Chapter XVI.5, Theorem 1]), for someε < �(−c), there exists anN such that
for n > N :

Pr(Xn > q)=Pr


 Xn − n�knA√

n�knA (1− �knA )

>
−(�knA − �)

√
n√

�knA (1− �knA )


 < 1− �(−c) + ε < 1

and this contradicts our premise that limn→∞ Pr(|A| > q) = 1.

Recalling that� = �B

1−�A
and� = �A

1−�B
, it follows from step 1 that limn→∞

(�− �
1−� )

√
n√

�(1−�)
= ∞

and limn→∞
(�− �

1−� )
√
n√

�(1−�)
= ∞.

Step2: If limm→∞
(�− �

1−� )
√
m−1√

�(1−�)
= ∞ and limm→∞

(�− �
1−� )

√
m−1√

�(1−�)
= ∞, thenuA −→ ∞ and

uB −→ ∞.
As in step 1 we provide a proof foruA and similar arguments follow foruB.

Let Yn be the sum of successes from a binomial distribution with probability of success� and
with m − 1 draws. Then

q∑
k=0

(
m − 1

k

)
�k(1−�)m−1−k =Pr(Yn�q)� Pr(|Yn−(m−1)�|�(m−1)�−q)

<
Var(Yn)

((m − 1)� − q)2
= 1

(
(�− q

m−1 )
√
m−1√

�(1−�)
)2

→ 0,

where the last inequality is by Chebyshev’s inequality and the limit follows from the premise.
Therefore, by (5) it must be thatuA → ∞. This implies that�A → 0, in contradiction to
step 1. �

Proof of Observation 5. In place of the variableu, define a variableua for theA types by

ua ≡ �
v − v′

v′

and a corresponding variableub for theB types by

ub ≡ (1− �)
v − v′

v′ .

Nothing changes in our description of the equilibrium conditions (5) and (6), except that aZ-type
defines her thresholduZ using the variableuz. Notice that the cdfs ofua andub are now different,
but that

Fa(ua) = F

(
ua

2�

)
andFb(ub) = F

(
ub

2[1− �]
)
. (44)

Now, suppose that along some sequence� converging to 1,�B doesnot converge to zero. Then,
because�B = (1− p)[1− Fb(uB)], Fb(uB) fails to converge to 1, which means (using (44))
thatuB must converge to zero. Using (6), we must conclude that

� = �A
1− �B
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converges to 0. But this must imply in turn that�A converges to 0, or thatFa(uA) converges to
1. Using (44) again, we must conclude thatuA → ∞, so by (5),

� = �B
1− �A

converges to 1. With�A converging to 0 and�B bounded above by 1− p = 1
2, this is an

impossibility.
So we have shown that�B converges to zero. Because�A is bounded above byp = 1

2, this
means that

� = �B
1− �A

converges to zero as well. An inspection of (5) now shows thatuA must converge to 0. Using (44),
it follows thatFa(uA) also converges to 0, which proves that�A = p[1− Fa(uA)] converges to
p = 1

2. �

Proof of Observation 6. To prove part (1), define
 ≡ 1/(n − 1− 2q), and rewrite (12) as

(1+ w

B)[1− H(wB)] = 1/(1− p). (45)

Notice that whenwB = 1, the LHS of (45) equals 2, while the RHS is strictly smaller than 2
(becausep < 1

2).
Nowsuppose that there is somew such that the LHSof (45), evaluatedatwB = w, is strictly less

than 1/(1−p). In this case, consider some intersectionx = wB of the function(1+x
)[1−H(x)]
with the value 1/(1−p), along with the valuewA = 1. It can be verified that such an intersection
constitutes a semi-corner minority equilibrium.
It remains to show that the condition in the first line in the previous paragraph is satisfied for

all (n, q) large enough. To this end, fix somew such that 1−H(w) < 1
2(1−p). Now take(n, q)

to infinity and notice that
 → 0. Thereforew
 converges to 1. It follows that for large(n, q),

(1+ w
)[1− H(w)] < 1/(1− p)

and we are done.
Note that part (2) is trivially true for corner minority equilibria. To prove part (2) for semi-

corners, note that the probability that the minority outcome is implemented is given by

Pr(|A| �m) =
n∑

k=m

(
n

m

)
[p + (1− p)H (wB)]

k [(1− p) (1− H (wB))]
n−k .

Similarly,

Pr(|B| �m) =
n∑

k=m

(
n

m

)
[(1− p) (1− H (wB))]

k [p + (1− p)H (wB)]
n−k .

Thus, Pr(|A| �m) > Pr(|B| �m) if and only if (1− p) (1− H (wB)) < p + (1− p)H (wB),
which may be rewritten as

1

2(1− p)
> 1− H (wB) . (46)
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Now (45) tells us that

1− H (wB) = 1

(1− p)
(
1+ w


B

) ,

wherewB > 1. Hence,(1− p)
(
1+ w


B

)
> 2(1− p), which implies (46). �

Proof of Observation 7. Letw∗
B be the solution to the following equation:

p + (1− p)H(w∗
B) = (1− p)

[
1− H(w∗

B)
]
.

Notice thatw∗
B is well-defined and greater than 1, as long asp < 1

2.We now proceed in two steps.
Step1: There exists a sequence of semi-corner minority equilibria that converges to(1, w∗

B).
To see this, note that whenwB = w∗

B the RHS of (13) is smaller than the LHS. For anyε > 0,

setwB = w∗
B + ε. Because

p+(1−p)H(w∗
B+ε)

(1−p)[1−H(w∗
B+ε)] > 1, there existsN (ε) < ∞ such that for all

n�N (ε), the LHS of (13) is strictly greater than its RHS. It follows that for alln�N (ε), there
exists an equilibrium

(
1, wn

B

)
wherewn

B ∈ (
w∗

B,w
∗
B + ε

)
.

Step2: By Step 1, asn → ∞, the probabilities with which a random voter votes forA or forB
(along the above sequence of semi-corner minority equilibria) both converge to1

2. In particular,
there exists anNabove which these probabilities are bounded below by�̄ > � and above by 1− �̄.
The probability of disagreement is equal to 1− Pr(|A| �m) − Pr(|B| �m). We now show that
Pr(|A| �m) goes to zero asn → ∞. By essentially the same argument, Pr(|B| �m) also goes
to zero asn → ∞.
Recall that

Pr(|A| �m) =
n∑

k=m

(
n

m

)
[p + (1− p)H (wB)]

k [(1− p) (1− H (wB))]
n−k .

Note that
∣∣m
n

− (1− �)
∣∣ < 1

n
. Because 1− �̄ < 1− � it follows that for large enoughn,

1− �̄ <
m

n
− � (47)

for some� > 0. By stochastic dominance,

Pr(|A| �m) �
n∑

k=m

(
n

m

)
(1− �̄)k (�̄)n−k . (48)

By inequality (47) and the SLLN, the RHS of (48) goes to zero.�

Observation 8. Consider the model with a majority tie-breaking rule. All symmetric equilibria
in this model are interior.

Proof. We proceed in three steps.
Step1: No side can use an infinite cutoff in equilibrium. Suppose that sideA does. Then note

that no matter what rule sideB follows, 	+ 	′ > 0. This is because the sum of probabilities	+ 	′
is greater than the probability that both sides have exactly zero votes, which in turn, is at least
as high as the probability that all individuals but one areA types. Since the latter probability is
positive we obtain the desired inequality.
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In order for anA-type to declare neutrality in equilibrium, hisu value must satisfy
(
	 + 	′) u <

P+. But this inequality cannot hold for an infiniteu because we have just shown that	 + 	′ > 0,
a contradiction. Hence, equilibrium cutoffs of both sides are bounded.

Step2:P+ > 0.To prove this, fix someperson, say of typeA, and simply take the event inwhich
exactlyq compatriots are of typeA (apart from the special individual) and the rest are of type
B, and all value realizations are above the cutoffs. Because cutoffs are bounded, the probability
of this event is strictly positive. But this event is contained within the one covered byP+. So
P+ > 0.

Step3: In any equilibrium, cutoffs are strictly positive. To see this, note by step 2 thatP+ > 0.
Now takeu very small; the inequality

(
	 + 	′) u�P+ cannot hold. �
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