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Abstract

This chapter surveys a sizable and growing literature on coalition formation. We refer to theories in
which one or more groups of agents (“coalitions”) deliberately get together to jointly determine within-
group actions, while interacting noncooperatively across groups. The chapter describes a variety of
solution concepts, using an umbrella model that adopts an explicit real-time approach. Players band
together, perhaps disband later and re-form in shifting alliances, all the while receiving payoffs at
each date according to the coalition structure prevailing at the time. We use this model to nest two
broad approaches to coalition formation, one based on cooperative game theory, the other based on
noncooperative bargaining. Three themes that receive explicit emphasis are agent farsightedness, the
description of equilibrium coalition structures, and the efficiency implications of the various theories.
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5.1. INTRODUCTION

This chapter surveys the sizable and growing literature on coalition formation. We refer
to theories in which one or more groups of agents (“coalitions”) deliberately get together
to jointly determine their actions. The defining idea of a coalition, in this chapter, is
that of a group which can enforce agreements among its members, while it interacts
noncooperatively with other nonmember individuals and the outside world in general.

It is hard to overstate the importance of coalition formation in economic, political,
and social analysis. Ray (2007) gives several examples in which such a framework comes
to life: cartel formation, lobbies, customs unions, conflict, public goods provision,
political party formation, and so on. Yet as one surveys the landscape of this area of
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research, the first feature that attracts attention is the fragmented nature of the literature.
The theories that bear on our questions range from collusive behavior in repeated games,
to models of bargaining, to cooperative game-theoretic notions of the core, or notions
of coalition proofness in noncooperative games. To unravel the many intricacies of this
literature would take far more than a survey. To prevent our terms of inquiry from
becoming unmanageably large, we impose a basic restriction.

Two fundamental notions are involved (usually separately) in the many theories that
coexist. One has to do with the formation of groups, the “process” through which a
coalition comes together to coordinate its subsequent actions. The other aspect involves
the enforcement of group actions, say as an equilibrium of an appropriate game. In this
survey, we deliberately omit the latter issue.We presume that the problem of enforcement
is solved, once coalitions have chosen to form and have settled on the joint actions they
intend to take. Of course, that does not necessarily mean that we are in a frictionless
world such as the one that Coase (1960) envisaged. After all, the negotiations that lead
up to an agreement are fundamentally noncooperative. In addition, it is entirely possible
that a negotiation once concluded will be renegotiated. Such considerations generate
enough analytical demands that we exclude the additional question of implementing an
agreement, perhaps via dynamic considerations, from this survey. On the other hand, we
are centrally interested in the former issue, which also involve “no-deviation” constraints
as the implementation of an agreement would, but a different set of them. Just because
a coalition—once formed—is cooperative, does not mean that the creation of that
coalition took place in fully cooperative fashion.

An example will make this clear. Suppose that a market is populated by several
oligopolists, who contemplate forming a monopolistic cartel. Once formed, the cartel
will charge the monopoly price and split the market. A standard question in repeated
games (and in this particular case, in the literature on industrial organization) is whether
such an outcome can be sustained as an “equilibrium.” If a player deviates from the cartel
arrangement by taking some other action, there will be punitive responses. One asks that
all such play (the initial action path as well as subsequent punishments) be sustainable as
an equilibrium of noncooperative play. This is the problem of enforcement. Ignore it by
assuming that an agreement, once made, can be implemented. In contrast, we emphasize
the question of formation. Say that the terms of the cartel are being negotiated. A firm
might make proposals to the others about cost and revenue sharing. Other firms might
contemplate alternative courses of action, such as the possibility of standing alone. In that
case, they would have to predict what their compatriots would do; for instance, whether
they would form a smaller cartel made up of all the remaining firms, thus effectively
converting the situation into a duopoly. This sort of reasoning in the negotiations process
is as noncooperative as the enforcement problem, but it is a different problem. It can exist
even if we assume that an agreement, once made, can be enforced without cost. And
indeed, that is just what we do here.
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So questions of enforcement may be out of the way, but a variety of models and
theories remain. The literature on coalition formation embodies two classical approaches
that essentially form two parts of this chapter:

(i) The blocking approach, in which we require the immunity of a coalitional
arrangement to “blocking,” perhaps subcoalitions or by other groups which intersect
the coalition in question. Traditionally, the notion of blocking has been deployed in a
negative way, as something that undermines or destroys proposed arrangements. As we
shall show, blocking can also be viewed as part of the “negotiation process” that leads
up to an agreement.1

There is, of course, an entire area of cooperative game theory devoted to suchmatters,
beginning with the monumental work of von Neumann and Morgenstern (1944). This
literature includes notions such as the stable set, the core, and the bargaining set (Aumann
andMaschler, 1964; Gillies 1953; Shapley 1953; vonNeumann andMorgenstern, 1944).
Extensions of these ideas to incorporate notions of farsighted behavior were introduced
by Harsanyi (1974) and later by Aumann and Myerson (1988). The farsightedness
notion—one that is central to this chapter—was further developed by Chwe (1994),
Ray and Vohra (1997), Diamantoudi and Xue (2003), and others.

(ii) Noncooperative bargaining, in which individuals make proposals to form a coalition,
which can be accepted or rejected. Rejection leads to fresh proposal-making. The suc-
cessive rounds of proposal, acceptance, and rejection take the place of blocking. Indeed,
on the noncooperative front, theories of bargaining have served as the cornerstone
for most (if not all) theories of coalition formation. The literature begins with the
celebrated papers of Ståhl (1977), Rubinstein (1982), and Baron and Ferejohn (1989),
the subsequent applications to coalition formation coming from Chatterjee et al. (1993),
Okada (1996), Seidmann and Winter (1998), and several others. There is also a literature
on coalition formation that has primarily concerned itself with situations that involve
pervasive externalities across coalitions, such as Bloch (1996), Yi (1996), and Ray and
Vohra (1999). In several of these papers bargaining theory explicitly meets coalition
formation.

We mean to survey these disparate literatures. This is no easy task. After all, the
basic methodologies differ—apparently at an irreconcilable level—over cooperative and
noncooperative game approaches, and even with each methodological area there is a
variety of contributions. Moreover, this is by no means the first survey of this literature:
Bloch (2003), Mariotti and Xue (2003), and Ray (2007) are other attempts and while
the survey component varies across these references, all of them provide a perspective on
the literature. It is, therefore, important to explain how we approach the current task,
and in particular why our survey is so very different from these other contributions.

1 While we recognize that the term “block” has not been in favor since Shapley (1973), “the blocking
approach” seems to us to be preferable to “the improve-upon approach,” or to the coining of a new term.
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We proceed by suggesting a unifying way of assessing the literature and perhaps
taking it further. We propose a framework for coalition formation that has the following
properties:
A. It nests the blocking and bargaining approaches under one umbrella model, and in

particular, it permits a variety of existing contributions to be viewed from a single
perspective.

B. It allows for players to be farsighted or myopic, depending on the particular model
at hand.

C. It deals with possible cycles in chains of blocking, a common problem in cooperative
game theory.

D. It allows for the expiry or renegotiation of existing agreements or insists that all deals
are irreversible, depending on the context at hand.
The chapter is organized as follows. In the next section, we present an abstract,

dynamic model of coalition formation, followed by a definition of an equilibrium process
of coalition formation (EPCF). This framework will be shown to be general enough to
unify the various strands of the literature, and to suggest interesting directions for further
research in the area. Section 5.3 concerns the blocking approach to coalition formation.
Here we review some of the basic concepts in classical cooperative game theory, which
are based on notions of coalitional objections or “blocking.” We show how some of
the standard notions of coalitional stability, such as the core of characteristic function
games, can be subsumed under our general notion of an EPCF, despite the fact that
these standard cooperative models are static while our general framework is a dynamic
one. We then illustrate some of the limitations of the blocking approach in environments
with externalities and argue that our explicitly dynamic model provides a way to resolve
some of these difficulties.

Section 5.4 is devoted to a review of coalitional bargaining in noncooperative games.
Here, “coalitional moves” are replaced by individual proposals to a group of agents, and
acceptance of such a proposal signifies the formation of a coalition. Externalities can
be incorporated by considering partition functions rather than characteristic functions,
and an equilibrium of the resulting bargaining game now implies the formation of a
coalition structure. There are three distinct branches of this literature depending on
whether agreements are permanently binding or temporary and whether renegotiation
of existing agreements is possible. A suitable specialization of our model seems well
suited to encompass all of the bargaining models. We show that in general the process
of coalition formation corresponding to an equilibrium of a bargaining game conforms
to our notion of an EPCF. We then describe some results on coalition formation from
this literature.

The general framework that we use lays bare a large degree of incompleteness in the
literature, something that’s evident in the asymmetry of exposition between Sections 5.3
and 5.4. In terms of the general framework that we lay out, the existing literature falls
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short on several counts, and in particular, different aspects receive disparate attention in
the bargaining and blocking approaches. For instance, the blocking approach has been
concerned with questions of “chains of coalitional objections” so that farsightedness has
appeared as a natural component, as in Harsanyi (1974) or Chwe (1994). In contrast, the
bargaining approach with its insistence on a well-defined game-theoretic structure has
invariably been more explicit about the structure of moves, which then lends itself more
naturally to considerations such as the renegotiation of agreements. Unfortunately, these
uneven developments are mirrored in the varying emphasis we lay on these matters at
different points of the text, and one can only hope that a survey 10 years hence would
be far more balanced.

Finally, Section 5.5 concerns one of the most important questions in coalition
formation; namely, the possibility of achieving efficiency when there is no impediment
to the formation of coalitions. For the clearest understanding of this issue, we assume
away the two most commonly recognized sources of inefficiency. First, decentralized
or noncooperative equilibria may quite naturally yield inefficient outcomes, as is
the case for Nash equilibria in games or competitive equilibria in the context of
“market failure” resulting from incomplete markets or externalities. These problems are
explicitly assumed away when we allow coalitions to write binding agreements.2 Second,
inefficiency may arise due to incompleteness of information, which we also assume
away. Thus, there may be a presumption that in our framework Pareto efficiency will
obtain in equilibrium. Indeed, much of cooperative theory is built on this presumption,
and the Coaseian idea that efficiency is inevitable in a world of complete information
and unrestricted contracting is very much part of the economics folklore. As the recent
literature shows, however, efficiency in the presence of externalities, even in a world with
complete information and no restrictions on coalition formation, may be more elusive.
If coalitional agreements are permanently binding, then the possibility of inefficiency in
equilibrium is a robust phenomenon. The ability to renegotiate agreements can restore
efficiency under certain conditions, e.g., in the absence of externalities, but not in
general. A detailed examination of these issues is provided in Section 5.5.

5.2. THE FRAMEWORK

In this section, we describe a general framework for coalition formation that serves as
an umbrella for a variety of different models in the literature. Central to our approach is
a description of coalition formation in real time, one which allows for both irreversible
and reversible agreements, and yields payoffs as the process unfolds.

2 For instance, in our framework inefficiency cannot arise in a two-player game even if there are externalities;
full cooperation (formation of the grand coalition) must be the equilibrium outcome if it Pareto dominates
the “noncooperative” outcome represented by singleton coalitions.
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5.2.1 Ingredients
Our framework contains the following components.

[1] A finite set N of players, a compact set X of states, an infinite set t = 0, 1, 2 . . . of
dates, and an initial state x−1 at the start of date 0.

[2] For each player i, a continuous one-period payoff function ui defined on X, and
a (common) discount factor δ ∈ (0, 1).

[3] For every pair of states x and y, a collection of coalitions E(x, y) that are effective
in moving the state from x to y, with E(x, x) being the collection of all coalitions.

[4] A protocol, ρ, which defines a probability over the choice of an “active coalition”
S at each date.

[5] Along with S, a (possibly empty) set of potential partners P ⊆ N � S, also chosen by
the protocol. The interpretation is that S has the exclusive right to propose to a (possibly
empty) set of partners Q ⊆ P a move to a new state for which S ∪Q is effective.

[6] An order of responses, again given by the protocol, for every set of partners Q
included by S in its proposed move. If any individual in Q rejects the proposal, the
state remains unchanged. The first such rejector is “responsible” for that move not
occurring.

[7] At each date t, possible histories ht that begin at x−1 and list all active coalitions,
partners, and moves up to period t − 1, as well as any individual “responsible” for the
refusal of past moves. The protocol ρ is conditioned on this history.

The basic idea is both general and simple. Each date t begins under the shadow of a
“going history” ht, as described in [7]. If a coalition St becomes active, as in [4], then it
moves to a possibly new state xt with the help of partners Qt chosen from the potential
set Pt (see [5]); by “move,” we refer to mt = (xt, St,Qt). Of course, St ∪Qt must be
effective in implementing the new state xt.3 Note that by [3], an active coalition always
has the option not to call upon any partners. It can also keep the state unchanged at
the status quo (that, too, is a move, by convention). Each player receives a return at
each state, with discounted returns added over time to obtain overall payoffs or values,
see [2]. The one additional feature we need to embed into histories is a record of the
“responsible” individual (if any) who rejected a proposed move in any previous period
in which the state did not change, see [6]. There will be no such individual if the active
coalition in that period suggested no change, or chose no partners, or if all its partners
accepted the proposedmove. (The reason we track the rejectors is that in some bargaining
models, the choice of future active proposers may depend on the identity of past
rejectors.)

It should be noted that implicit in the existence of a “pivotal” or “responsible”
individual for each rejected move is that a proposed move must be unanimously accepted

3 The importance of employing a notion of effectiveness in cooperative games was emphasized by Rosenthal
(1972).
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by partners who have been invited by the active coalition and who respond sequentially
given the protocol. As we discuss later in Section 5.4.1.4, there is a little loss of generality
in making the unanimity assumption, provided we redefine coalitional worths in an
appropriate way.

The process formally continues ad infinitum, but all movements in states may or may
not cease at a particular date. That will depend on the specification of the model. For
instance, it is possible that for some states x, E(x, y) = ∅ for all y �= x. If such an end state
is reached, the process ends, though our formalism requires payoffs to be received from
that final state “forever after.” The notion of end states will be useful in the blocking
approach. Another possibility is that the protocol shuts down after certain histories and
may cease to choose active coalitions. This is useful in models in which the renegotiation
of an existing agreement is not permitted.

The two leading applications of this general framework are, of course, to theories
of coalition formation based on cooperative game theory, or what we will refer to here
as the blocking approach, and a parallel theory based on noncooperative bargaining, what
we will call here the bargaining approach. In the blocking approach, active coalitions do
not make proposals to additional partners; formally, this is captured by having an empty
partner set at every history. In the bargaining approach, active coalitions are invariably
individuals, and proposals made by them to other players (the “partners”) will occupy
center stage. This allows us to nest a variety of solution concepts under a common
descriptive umbrella.

A schematic representation of the model is shown in Figure 5.1. Time goes from left
to right. The squares in the upper panel depict implemented states x−1, . . . , xt, while
the ovals in the lower panel denote various individuals. Following every history, the dark
ovals denote members of an active coalition and the light ovals are partners. Together,
these create histories for later dates. The process continues, possibly indefinitely, and
payoffs are received at every date.

X

t

xs

xt-1

xtx-1

N

ht

Time

= Active players = Partners

} (xt-1), xt)

t-1

Figure 5.1 Timeline.
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5.2.2 Process of coalition formation
A process of coalition formation (PCF) is a stochastic process λ that takes existing histories
(beginning with h0 ≡ {x−1}) to subsequent histories, which obeys the following
restrictions:
(i) At every history ht, λ is consistent with the probability measure induced by the

protocol in selecting an active coalition St and potential partner set Pt.
(ii) Every move mt = (xt, St,Qt) generated by λ has the properties that Qt ⊆ Pt and

St ∪Qt ∈ E(xt−1, xt).
Conditions (i) and (ii) describe obvious feasibility restrictions.
Why might the process be stochastic? One reason is that the protocol that selects

an active coalition may be stochastic; for instance, it may choose an active coalition
equiprobably from the set of all possible coalitions. In addition, agents and coalitions
may randomize their decisions, e.g., the choice of partners or moves.

A PCF defines values for every person i at every history ht:

Vi(ht, λ) ≡ IEλ

( ∞∑
s=t

δs−tui(xs)|ht
)
,

where all states from t onwards are generated by λ conditioned on the history ht. Note
that the expectation is taken prior to the choice of active coalition, which is “about to
happen” following that history.

5.2.3 Equilibrium process of coalition formation
We now define an equilibrium process of coalition formation. Suppose that a PCF λ is
in place and a particular coalition S is active at some date, along with a set of potential
partners. Both S and its chosen set of partners must “willingly participate in the law of
motion” of the process. We judge such participation by two criteria: (a) the move to a
new state—which includes the possibility of no move—must be “profitable” for both S
and any partners that are called upon to implement the move, and (b) of all the profitable
moves that can be entertained, there is no other move that S can make that would be
better for all the members of S.

Formally, a move m = (x, S,Q) at history ht and going state xt−1 is profitable for
S ∪Q if S ∪Q ∈ E(xt−1, x) and

Vi(ht+1, λ) ≥ Vi(h
i
t+1, λ) for every i ∈ S ∪Q,

where for each i ∈ S ∪Q, hit+1 is a subsequent history consistent with the state remaining
unaltered (xt = xt−1). For i ∈ Q, it is the history resulting from i’s rejection of the
proposedmove, under the presumption that all earlier respondents accepted the proposal.
For i ∈ S, it is the history resulting from the status quo move. That is, a move is profitable
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if no member of the active coalition would have been better off with the status quo move
and no member of the partner set would have been better off rejecting the move.

Given active coalition S and potential partner set P, a move m = (x, S,Q) at history
ht with state xt−1 is maximal for S if there is no other move, say m′ = (z, S,Q′), that is
profitable for S ∪Q′ for some Q′ ⊆ P, such that

Vi(h
′
t+1, λ) > Vi(ht+1, λ) for every i ∈ S,

where, as before, ht+1 is the history created by implementing m and h′t+1 is the history
created by the alternative profitable move m′. The interpretation is that S can always form
the coalition S ∪Q′ and make the move m′, so no such move must strictly dominate
what S actually does under the going PCF.

Note well that profitability and maximality are defined relative to an ongoing process:
the value functions will vary with the process in question.

An equilibrium process of coalition formation (EPCF) is a PCF with the property that at
every history, every active coalition, faced with a given set of potential partners, makes a
profitable and maximal move. That is, all movers (weakly) prefer their “prescribed”move
to inaction and that move is not dominated for members of S by some other profitable
move that S can engineer.

Our formulation is related to the equilibrium definition introduced by Konishi
and Ray (2003) and extended by Hyndman and Ray (2007). It is also related to the
solution concept used in Gomes and Jehiel (2005) and Gomes (2005). As in these
papers, the definition allows for a fully dynamic model of widespread externalities in
which coalitions are farsighted in “blocking” a status quo. But there are some important
differences. The current approach is designed to allow for a level of generality substantial
enough to encompass not only the blocking approach but also the bargaining approach.
We include the possibility that an active coalition can enlist the help of others to form an
“approval committee” that is capable of carrying the proposed move. As we shall see by
example, bargaining is a special case of our formulation in which S is always a singleton
asking for acceptance of a proposal from other players (the “partners”). On the other
hand, the blocking approach corresponds to the polar case in which the partner set is
always empty. This formulation also opens up intermediate and unexplored possibilities,
in which a (nonsingleton) coalition can choose partners.

Setting this innovation aside, Konishi and Ray also define profitable and maximal
moves. However, there is no protocol that determines which coalition is active at a
given date. Konishi and Ray require that if there is some coalition for which a strictly
profitable move exists from the current state, then the state must change. That is, some
such coalition must perforce become active. Under our definition, it is possible that
some coalition has a profitable move, but is not active. This distinction is blurred if
different “dates” are very closely bunched together, for then (under a natural full-support
assumption) every coalition must sooner or later become active. Moreover, as we shall
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see, having an explicit protocol has the distinct advantage of overcoming coordination
problems that can arise with the blocking approach in a dynamic context.4

Since we will be showing how various solution concepts in the literature correspond
to an EPCF of a suitably specialized version of our general model, existence of an EPCF
in each of these cases will follow from corresponding existence results in the literature.
While it would be desirable to provide a general result on the existence of an EPCF,
we shall not attempt to do so here.

5.2.4 Some specific settings
The framework presented so far is quite general and potentially amenable to a wide
range of applications. It will be useful to present some concrete illustrations of how
this overall structure can be specialized to cover various models of coalition formation.
In particular, we shall discuss state spaces, protocols, and effectivity correspondences in
a more explicitly game-theoretic setting.

5.2.4.1 State spaces
So far we have let the state space be an entirely abstract object. Given our specific interest
in coalition formation, however, it should be the case that at a minimum, a state must
describe the coalitions that have formed as well as the (one-period) payoffs to each of
the agents.

But states can be suitably “tagged” to encode more information. For instance, in a
situation in which all previous actions are irreversible, it is important to keep track of
precisely which agents are “free” to engage in further negotiation. In such cases it suffices
to tag every agent as “committed” or “uncommitted.” When agreements are temporary
or renegotiable, every agent is open in principle to further negotiation. However, the
concept of effectivity will need to be suitably altered; for instance, with renegotiation,
existing signatories to an agreement will need to be part of an effective coalition in any
move to a new state even if they are physically not required in the implementation of
that state.

In other models, a description of the state in terms of ongoing action vectors may be
necessary. This will be the case if such actions (rather than the formation of coalitions)
are viewed as irreversible, at least for a certain length of time. In yet others, there might
be limits on the number of times a particular coalition is permitted to move, so that a
state will need to keep track of this information.

4 Both our definition and that of Konishi and Ray’s share the feature that they implicitly rely on dynamic
programming; in particular, on the use of the one-shot deviation principle. Because coalitions have vector-
valued payoffs, it is possible that the one-shot deviation principle fails when every member of a coalition
is required to be better off from a deviation. This issue is discussed in Konishi and Ray (2003) and Ray
(2007).
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Finally, in other settings that we do not emphasize in this survey, a state might describe
a network structure, in which the links of each agent to every other agent are fully
described.5

5.2.4.2 Characteristic functions and partition functions
A particularly important object that is used to create the state space in a variety of
situations is a mapping that assigns each coalition structure (or partition of the player
set) to a set of payoffs for each of its member coalitions. The simplest version of
such a mapping comes from a cooperative game in characteristic function form as
defined by von Neumann and Morgenstern (1944). Such a game is defined as (N ,V ),
where N denotes a finite set of players and for every coalition S (a nonempty subset
of N ), the set of feasible payoff profiles is denoted V (S) ⊆ IRS.6 In this setting, a
state may consist simply of a coalition structure and a feasible payoff profile. Typically,
for a state x, we will denote by π(x) the corresponding coalition structure and u(x)
the profile of payoffs, and by u(x)S the restriction of u(x) to coalition S. In some
applications, we will find it more convenient to restrict payoffs to be efficient, i.e.,
u(x)S ∈ V̄ (S) for each S ∈ π(x), where V̄ (S) = {w ∈ V (S) | there is no w′ ∈ V (S)
with w′ � w}.7

The presumption that the feasible payoffs for coalition S can be described indepen-
dently of the players in N � S is easily justified if there are no external effects across
coalitions. In many interesting models of coalition formation, however, the feasible
payoffs to a coalition depend on the behavior of outsiders. As we shall see, externalities
can be very effectively incorporated into the analysis by generalizing the notion of a
characteristic function to a partition function (see Thrall and Lucas, 1963), and this is the
formulation we adopt for this chapter.8 In such a game, the feasible payoff profile for
a coalition depends on just how the “outsiders” are organized into coalitions of their
own. For a partition function game (N ,V ), the feasible set for S is, therefore, written as
V (S,π) ⊆ IRS, where π is a coalition structure that contains S. The interpretation
is that a coalition S embedded in an ambient structure π can freely choose from
the set of payoffs V (S,π). In this setting, again, at a minimum, a state x will refer
to a pair consisting of a coalition structure π(x) and a payoff profile u(x) such that
u(x)S ∈ V̄ (S,π(x)) for every S ∈ π(x).

5 There is a literature on networks that we do not address in this survey, but it is worth pointing out
that our general framework incorporates the case of network formation as well. See Jackson (2010) for a
comprehensive review of the literature on networks. For network formation in particular, see for example,
Jackson and Wolinsky (1996), Dutta et al. (2005), Page et al. (2005), and Herings et al. (2009).

6 IRS denotes the |S| dimensional Euclidean space with coordinates indexed by members of S.
7 We use the convention �,>,≥ to order vectors in IRS.
8 For an extended discussion of the historical background on characteristic functions and partition functions
see Chapter 11.2.1 of Shubik (1982) and Chapter 2.2 of Ray (2007).
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Note, however, that all externalities in a partition function are fed through the
existing coalition structure rather than on specific actions that noncoalitional members
might take. How might a partition function be then compared to the more familiar
setting of a game in which players choose actions from their respective strategy sets and
the payoff for players in a coalition depends on the actions of all players? The answer is
that the partition function, while a primitive object for our purposes, is often derived
from just such a normal form setting. The idea is that each coalition in the structure
(never mind for the moment how they have formed) can freely coordinate the actions
of their members (they can write binding agreements), but they cannot commit to a
binding course of play vis-à-vis other coalitions and so play noncooperatively “against”
them. More precisely, given a coalition structure for a normal form game, equilibrium
noncooperative play across coalitions can be defined by first defining coalitional best
responses as those which generate vector-valued maximal payoffs for each coalition,
and then imposing Nash-like equilibrium conditions, see e.g., Ichiishi (1981), Ray and
Vohra (1997), Zhao (1992), and Haeringer (2004). The resulting set of equilibrium
payoffs may then be viewed as a partition function.9 In this way, a partition function can
be constructed from a normal form game, with the understanding that an equilibrium
concept is already built into the function to begin with.

Here are four examples of partition functions; for others, see Ray (2007).

Example 5.1. (Cournot oligopoly) A given number, n, of Cournot oligopolists produce
output at a fixed unit cost, c. The product market is homogeneous with a linear demand curve:
p = A− bz, where z is aggregate output. Standard calculations tell us that the payoff to a single
firm in an m-firm Cournot oligopoly is

(A− c)2

b(m+ 1)2
.

If each “firm” is actually a cartel of firms, the formula is no different as long as each cartel attempts
to maximize its total profits (and then allocate those profits among its members). Define

v(S,π) = (A− c)2

b [m(π) + 1]2
,

where m(π) is the number of cartels in the coalition structure π . Then for every S ∈ π , V (S,π)

is the collection of all payoff vectors for S that add up to no more than v(S,π).

9 In general, when the payoffs to members of a coalition depend on the actions of outsiders, this
procedure will yield a partition function rather than a characteristic function. It is possible, though in
our view not advisable, to make enough (heroic) assumptions on the behavior of outsiders to go all
the way from a normal form to a characteristic function. For example, assuming the worst in terms
of outsiders’ actions leads to the α-characteristic function. See Section 5.3.5.5 for a critique of this
approach.



252 Handbook of game theory

This partition function is particularly interesting in that it does not depend on S at all, but
only on the ambient coalition structure π .10

Example 5.2. (Public goods)Consider the provision of pollution control by n agents (regions,
countries). Suppose that r units of control by any agent generates a convex utility cost c(r) for that
agent. If sidepayments in utils are possible, a coalition of s agents will contribute a per-capita amount
r(s) to maximize

sr(s) + R̄ − c(r(s)),

where R̄ is the amount contributed by noncoalition agents.
It is easy to check that this formulation gives rise to a partition function.11

Example 5.3. (Customs unions) There are n countries, each specialized in the production
of a single good. There is a continuum of consumers equally dispersed through these countries.
They all have identical preferences. Impose the restriction that no country or coalition can interfere
with the workings of the price system except via the use of import tariffs. Then for each coalition
structure—a partition of the world into customs unions—there is a coalitional equilibrium, in which
each customs union chooses an optimal tariff on goods imported into it.

In particular, the grand coalition of all countries will stand for the free-trade equilibrium: a tariff
of zero will be imposed if lump-sum transfers are permitted within unions.

A specification of trade equilibrium for every coalition structure generates a partition function for
the customs union problem.12

Example 5.4. (Conflict) There are several individuals. Each coalition in a coalition structure of
individuals expends resources to obtain a reward (perhaps the pleasures of political office). Resources
may be spent on lobbies, finance campaigns, or cross-coalitional conflict, depending on the particular
application. Suppose that the probability pS that coalition S wins depends on the relative share of
resources r expended by it:

pS = rS
rS + r−S

. [5.1]

The per-capita value of the win will generally depend on the characteristics of the coalition (for
instance, coalitional size, |S| = s); write this value as wS. The coalition then chooses resource
contributions from its members to maximize

spSwS −
∑
i∈S

c(ri),

10 For literature related to this example, see Salant et al. (1983), Bloch (1996), and Ray and Vohra (1997).
11 See Ray and Vohra (2001).
12 For literature that relies on a similar formulation, see Krugman (1993), Yi (1996), Krishna (1998), Ray

(1998, Chapter 18), Aghion et al. (2007), and Seidmann (2009).
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where c is the individual cost function of contributions, rS = ∑
i∈S ri, and r−S is taken

as given.
This generates a well-defined transferable-utility partition function.13

5.2.4.3 Remarks on protocols and effectivity correspondences
Protocols, along with the specification of coalitions that are effective for each move, can
capture various levels of complexity and detail.

When a protocol chooses a nonsingleton coalition to be active, we are typically in
the world of cooperative game theory, in which that coalition takes the opportunity to
“block” an existing state: here, to be interpreted here in more positive light as moving the
current state to a new one. The reinterpretation is important. Under the classical view,
the issue of “what happens after” a state is blocked is sidestepped; blocking is viewed
more as a negation, as the imposition of a constraint that must be respected (think of the
notion of the core, for instance). Here, a “block” is captured by a physical move to a new
state made by the active coalition in question. Partner sets, while formally easy enough to
incorporate in the definition, generally do not exist in the theory of cooperative games.

In contrast, in the world of noncooperative coalition formation, as captured (for
instance) by Rubinstein bargaining, the protocol simply chooses a proposer: a singleton
active coalition.

Here are two examples of protocols.
Uniform Protocol: A coalition (or proposer) is randomly selected to be active from the
set of all possible coalitions (or proposers) at any date.
Rejector Proposes: The first rejector of the previous proposal is chosen to be the
new proposer, while if the previous proposal passed, a new proposer is chosen
equiprobably from the set of all “uncommitted” players.
Later, we adopt a generalization of both these well-known protocols.
Protocols that choose active coalitions must also address the question of potential

partner selection. As we’ve discussed, in the blocking approach, the potential partner set
is typically empty, or so it is taken to be in existing literature. An active coalition must
move on its own. In the bargaining approach, the potential partner set is typically the
set of all individuals who are free to receive proposals.

This last item depends intimately on the situation to be analyzed. In models of
irreversible agreements, every player who has previously moved (including one who
has committed to do so on her own) is no longer free to entertain new offers, or to
make them. In models of reversible agreements, every player is a potential partner at
every date. To be sure, what they can achieve will depend on whether their pre-existing
agreements have simply expired or are binding but renegotiable. That is a matter dealt
with by the effectivity correspondence, and some remarks on this are in order.

13 For related literature, see Esteban and Ray (1999), Esteban and Sákovics (2004), and Bloch et al. (2006).
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There are two broad sets of considerations that are involved in specifying effectivity.
The first has to do with which coalitions can move at a particular state. For instance,
as we have already seen, issues of renegotiation (or its absence) can preclude coalitions
from moving twice, or perhaps moving only with the blessings of ancillary players who
must then be incorporated into the specification of effectivity.

Other conditions that determine which coalitions can move might come from the
rules that describe the situation at hand. For instance, in multilateral bargaining with
unanimity, as in the Rubinstein model or its multiplayer extensions, only the grand
coalition of all players can be effective in making a move. On the other hand, in models
in which a majority of players are needed in determining if a new proposal can be
implemented, effective coalitions must be a numerical majority.

The second broad consideration that determines effectivity is an understanding of
just what a coalition can implement when it does move. After all, the new state specifies
payoffs not just for the coalition in question, but for every player. For instance, even when
the game is described by the relatively innocuous device of a characteristic function, a
coalition is presumably “effective” over moves that preserve existing payoffs to other
coalitions untouched by its formation, while implementing for itself any payoff vector
in its own characteristic function. But there still remains the question of what happens
to members of the “coalitional fragments” left behind as the coalition in question forms.
Often, the issue is settled by presuming that one can assign any payoff vector in the
characteristic function of those fragments, which are after all, coalitions in their own
right.

In summary, the effectivity correspondence describes the power that each set of
players possesses over the implementation of a new state. This entails the use of several
considerations that we discuss in greater detail as we go along. Effectivity specifies
both physical feasibility as well as the rules of the game: legalities, constitutions,
and voting rules. In addition, and provided the state is described carefully, effectivity
correspondences allow easily for situations with irreversible, temporary, or renegotiable
agreements. The protocol and the effectivity correspondence play complementary
roles.

Various combinations of protocol and effectivity correspondence can be used to serve
different descriptive needs. For instance, one might wish to capture the possibility that
a coalition which does not move at a particular state remains inactive until the state
changes:

A Single Chance at Any State. For any history ht, let m be the maximal date at which
the state last changed, i.e., m is the largest date τ such that xτ �= xτ−1. Then, if
m < t − 1, exclude all active coalitions chosen between m+ 1 and t, and choose a
coalition at random from the set of remaining players (no coalition is ever chosen
again if the remaining set is empty). This restriction guarantees that at any state,
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a chosen coalition that does not “actively move” is debarred from being active again,
until the state changes.

As another example, the protocol might only choose doubleton coalitions to be active, as
in Jackson and Wolinsky (1996) on networks:

Link Formation in Networks. The protocol chooses a pair of players (perhaps randomly,
and perhaps with restrictions depending on what has already transpired); such a pair
can form a link in a network. In addition, the protocol can be augmented to choose
singleton players to unilaterally sever existing links.

5.2.5 Remarks on the response protocol
We remark on two aspects of the response protocol, which requires individuals to respond
in some fixed order, the proposal being rejected as soon as a single individual turns down
the offer.

Sequential Responses. When an active individual or coalition has the opportunity to
make a proposal to a potential set of partners, as in item [5] of our description, that
set of individuals is given the opportunity to respond. This procedure is described in
[6]. We assume that such responses are sequential so as to rule out rather uninteresting
equilibria with coordination failures (“I say no, because I anticipate that you will say
no, and you think likewise.”). This is not a major issue, as long as we are prepared to
refine the set of equilibria to eliminate such dominated outcomes.
Unanimity.We’ve presumed that unanimity is needed in order to get a proposal passed.
It is not at all difficult to extend the definition to include majority or supermajority
rules for obtaining agreement. But some modeling decisions would need to be
confronted. Briefly, once unanimity is dropped at the level of the partner set, one
might ask whether it can (or should) be dropped at the level of the active coalition:
does every member of the active coalition need to agree? Furthermore, does the
renegotiation of proposals require unanimity, or does it suffice that some given fraction
of the original coalition is willing to tear up an existing agreement? To cut down
the resulting proliferation of cases, we have decided to avoid these extensions in our
exposition.
That said, our framework accommodates some important nonunanimity protocols
without any alteration at all. A leading example is the bargaining game of Baron
and Ferejohn (1989), in which a majority is enough to force agreement. These cases
can be easily covered by defining appropriate minimal winning coalitions, and then
regarding the original majority game as one in which a proposal requiring unanimous
support is made to a minimal winning subcoalition. See Section 5.4.1.4 for more
details.
An explicit consideration of nonunanimity protocols is warranted in other situations.
For example, in coalitional bargaining games with majority protocols, it may
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be important to record the fact that it is a particular coalition that has actually
concluded an agreement via majority, rather than simply track someminimal winning
subcoalition of it. An explicit use of the protocol will also be needed in situations in
which renegotiation of existing agreements is a possibility.

5.3. THE BLOCKING APPROACH: COOPERATIVE GAMES

The classical concepts in cooperative game theory are based on coalitions as the
primary units of decision making. These concepts rely on the notion of coalitional
“objections” or “blocking.” A proposed allocation is blocked by some coalition if there is
an alternative allocation, feasible for that coalition, that improves the payoffs of each of
its members. Blocking is used as a test to rule out certain allocations from membership
in the solution. What happens “after” a block is typically not part of the solution,
which consists only of those allocations that are not blocked. The notion of the core
is the leading example of the use of blocking as a negation.14 Various notions of the
bargaining set (for example, Aumann and Maschler, 1964, and Dutta et al. 1989), look
beyond the immediate consequence of an objection by considering the possibility of
counterobjections. However, these considerations are really meant to refine the logic
of negotiations underlying the stability of an allocation in the grand coalition rather
than to describe coalition formation. While we will not be reviewing this literature, the
interested reader is referred to Maschler (1992) for an extensive survey.

But the concept of blocking can also be used in a more “positive” way, as a generator
of actual moves that actively involve the formation of coalitions or coalition structures.
In these approaches, it becomes especially necessary to explicitly model what follows
a blocking action. Often, there will be repercussions: the blocking of an allocation
may be followed by additional moves. In such contexts, the question of farsightedness
becomes focal: do players only derive payoffs from the immediate results of their blocking
activities, or must they consider the ongoing implications of their initial actions as further
blocks are implemented in turn?

When taken to their logical limit, considerations such as these naturally provoke a
view of coalition formation as one that occurs in real time, on an ongoing basis, with
blocking translated into moves, and with the discount factor as a yardstick for judging
just how farsighted the players are.

With these notions in mind, we review the blocking approach to coalition formation.
First, we discuss several solution concepts that rely on blocking. We then show how
some of these solutions can be usefully subsumed in the general concept of an EPCF
introduced in the previous section. Finally, we show how the EPCF serves to both

14 The formal concept of the core for characteristic function games was introduced by Gillies (1953) and
Shapley (1953). See Chapter 6 of Shubik (1982) for additional background.
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illustrate and deal with some of the pitfalls of the blocking approach, in which a sequence
of moves is viewed more as an abstract shorthand rather than an actual course of actions.
The essence of the difficulties stems from the fact that the blocking approach does not
incorporate an analog of the maximality of profitable moves. We will argue that in many
contexts, the simplicity afforded by an abstract notion of blocking can become too
restrictive. In summary, in many special cases of interest, the findings from a fully dynamic
model parallel those from the classical, “timeless” theory of coalitional blocking. At the
same time, in the more general setting, the dynamic model yields a resolution to some
of the difficulties that arise with the traditional approach.

5.3.1 The setting
Much of the analysis that follows can be conducted in the setting of our general
framework in Section 5.2. However, both from an expositional perspective and in an
attempt to link directly to existing literature, it will be useful to work with partition
functions. (See Section 5.2.4.2 where we’ve already introduced them.)

Our state space, then, will explicitly track two objects. A state x contains information
about the going coalition structure π(x) and a vector of payoffs u(x). It is natural to
suppose that these arise from an underlying partition functionV (S,π) defined for every
π and every coalition S ∈ π . That is, u(x)S ∈ V̄ (S,π) for each S ∈ π(x).

We will augment this traditional setting with an effectivity correspondence, E(x, y),
that specifies the set of coalitions that have the power to change x to y. It is sometimes
more convenient to use the notation x →S y to denote S ∈ E(x, y). Denote by � =
(N ,V ,E) the (extended) partition function game.

While coalition structures directly generate externalities and affect payoffs in partition
function games, they are of interest (as outcomes) even in characteristic function games.
For an extensive treatment of various solution concepts in the context of exogenously
given coalition structures, see Aumann and Dreze (1974). Our interests are closer
to contributions such as Shenoy (1979) and Hart and Kurz (1983) that study the
endogenous formation of coalition structures. Although this literature is mostly concerned
with characteristic function games, thereby assuming away externalities, the payoff to
members of a coalition can still depend on the entire coalition structure for strategic
reasons.15 Greenberg (1994) provides an excellent review of this literature.

Note that the traditional cooperative game setting has no explicit notion of time. Yet
solution concepts abound that take stock of “farsightedness” and, therefore, implicitly
involve time. We will argue below that our abstract dynamic setting allows us to naturally
incorporate such farsightedness and thereby integrate different solution concepts in this
literature.

15 See in particular the Owen value; Owen (1977) and Hart and Kurz (1983).
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5.3.2 Blocking
We begin with the standard notion of blocking applied to Γ . A pair (T , y), where T is
a coalition and y is a state, is an objection to state x (or equivalently, T blocks x with y) if
T ∈ E(x, y) and u(y)T � u(x)T .

This notion of an objection leads to the fundamental concept of the core: a state is
in the core of Γ if there does not exist an objection to it:

C(N ,V ,E) = {x ∈ X | there does not exist an objection to x}.
The blocking notion also leads to the equally fundamental (abstract) stable set due to

von Neumann and Morgenstern (1944): a set Z ⊆ X of states is stable if no state in Z is
blocked by any other state in Z (internal stability) and if every state not in Z is indeed
blocked by some state in Z (external stability).

It is important to emphasize that we have defined blocking in the context of a
partition function game, with a state defined in terms of both a coalition structure
and a payoff allocation.16 In the context of a characteristic function game, the standard
practice is to take the set of states to be the set of imputations, which are indi-
vidually rational payoffs in V̄ (N), along with the implicit effectivity correspondence
E∗(u,w) = {T ⊆ N | wT ∈ V (T)}. The core of a characteristic function game is then
defined as:

C(N ,V ) = {u ∈ V̄ (N) | � ∃T ⊆ N , wT ∈ V (T) and wT � uT }.
As we will see (especially in Section 5.3.6.1), it is sometimes useful, even in characteristic
function games, to retain our general definition of a state as a partition as well as a
feasible payoff profile, instead of just an imputation. For now, we note that in our model,
C(N ,V ,E) is a reformulation of the standard notion of the core, C(N ,V ), to account
for this difference in the domain: states rather than imputations. To see this, suppose
(N ,V ) is a characteristic function game and, with some abuse of notation, let E∗ refer
to the corresponding effectivity correspondence over the domain of states, X, i.e., for
every wT ∈ V (T) there exists a state y where u(y)T = wT and T ∈ E∗(x, y). Then, if
x ∈ C(N ,V ,E∗) and π(x) = N , u(x) ∈ C(N ,V ). And if u ∈ C(N ,V ), then (u,N) ∈
C(N ,V ,E∗). For coalition structures other than the grand coalition, C(N ,V ,E∗) is
similarly related to the coalition structure core of (N ,V ), namely {x ∈ X |� ∃T ⊆ N , and
wT ∈ V (T) with wT � u(x)T }.

Finally, a similar relationship holds between the stable sets defined here and the vNM
stable sets for characteristic function games; see Section 5.3.6.1.

16 It is possible to define blocking in a still more general setting (see, for example, Lucas, 1992). An abstract
game is defined as (X ,�), where X is the set of states and �, referred to as a dominance relation, is a
binary irreflexive relation on X . Say that y blocks x if y � x. In this general formulation, the restrictions
imposed by an effectivity correspondence are implicit in the definition of dominance.
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5.3.3 Consistency and farsightedness
There are two (related) drawbacks of this notion of blocking, which have both been
studied in the recent literature. The first is that of consistency. The traditional notion
of the core has been criticized for not being consistent, see Ray (1989) and Greenberg
(1990). While allocations for the grand coalition are tested against possible objections
from subcoalitions, the objections are not similarly tested for further objections. In some
situations, this turns out only to be a conceptual issue that doesn’t affect the set of
states ultimately judged to be stable (see the discussion following Proposition 5.1 later).
However, in general, the issue becomes impossible to ignore. We illustrate this with the
following example.

Example 5.5. (Cournot oligopoly and farsightedness) Consider Example 5.1 with
three identical firms, each with a constant average cost of 2. Suppose the inverse demand function
is p = 14 − z, where z denotes aggregate output. Suppose that all firms within a coalition are
required to share profits equally.We will generally use πN to denote the coalition structure containing
the grand coalition alone, π i the coalition structure in which i is a singleton and the other two are
together, and π0 the finest partition of three singletons. With minor abuse of notation, we will
use i, j . . . to denote singleton coalitions as well as agents, and ij, ijk . . . to denote multi-agent
coalitions. Thus, πN = {123}, π i = {i, jk}, and π0 = {1, 2, 3}. Standard computation yields
the following partition function:

xN : πN = {123}, u(xN ) = (12, 12, 12)
x1 : π1 = {1, 23}, u(x1) = (16, 8, 8)
x2 : π2 = {2, 13}, u(x2) = (8, 16, 8)
x3 : π3 = {12, 3}, u(x3) = (8, 8, 16)
x0 : π0 = {1, 2, 3}, u(x0) = (9, 9, 9)

Clearly, any single player i can move from the grand coalition to π i and, in turn, either
j or k can move from π i to π0. So every singleton coalition i has a myopic objection to
the state corresponding to the grand coalition; it can get 16 rather than 12 by unilaterally
moving to π i. However, this is not a sustainable gain. The intermediate structure π i is
itself unstable: either player in the two-player coalition jkwill do better by moving to the
finest coalition structure. The myopic blocking notion fails to take such repercussions
into account.

The von Neumann-Morgenstern stable set resolves the consistency issue by only
taking seriously those objections that are themselves stable. But that brings us to
the second drawback of the traditional blocking notion: it is myopic. Such myopia
creates problems with the notion of the stable set, as Harsanyi (1974) first pointed
out. The following example, due to Xue (1998), provides a simple illustration of this
problem.
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a
(1, 1)

b
(0, 0)

c
(10, 10)

1 2

Figure 5.2 Illustration of Example 5.6.

Example 5.6. (Stability and farsightedness) Consider two players and three states.
Suppose that only player 1 is effective in moving from state a to b and only player 2 is effective
from b to c. The payoffs to the two players in each of the states are in parentheses in Figure 5.2.

The core consists of states a and c. These two states also constitute the unique stable
set. The stability of a, however, is based on myopic reasoning. Farsightedness on the part
of player 1 would surely cause her to move to b, anticipating that player 2’s self-interest
will then lead to c as the final outcome. Clearly, stability in the sense of von Neumann
and Morgenstern does not imply farsightedness.

This discussion motivates the concept of “farsighted blocking.” A coalition moves,
not necessarily because it has an immediate objection, but because its move can trigger
further changes, leading eventually to a favorable outcome.

(T , y) is a farsighted objection to x if there is a collection of states, y0, y1, . . . , ym (with
y0 = x and ym = y), and a corresponding collection of coalitions, T1, . . . ,Tm, where
T = T1, such that for all k = 1, . . . ,m, yk−1 →Tk yk and u(y)Tk � u(yk−1)Tk . We will
often refer to y as farsightedly blocking x, leaving the chain of coalitions implicit.

A farsighted objection pays no attention to what might transpire “immediately” after
the objection is made. The first coalition to move may induce an “intermediate” state,
in the anticipation that there may well be other states on the way to the “final” state.
The definition asks that the objecting coalition be better off at the “end” of this process.
Furthermore, it is required that every participant at every intermediate step, namely the
coalitions Tk, be better off “pushing” the process a step further at the corresponding
states yk−1, once again with the “final state” y in mind. Note that the coalition that
initiates the sequence of moves has an optimistic view of the ensuing path. After all,
there may be multiple potential continuations from the first step, but it is enough to find
some sequence of moves that makes all the participating coalitions better off at the “final
state.”

The notion of farsighted blocking was suggested by Harsanyi (1974) in his critique of
the stable set. It was formalized by Chwe (1994) in developing his notion of the largest
consistent set and introduced as “sequential blocking” in the context of equilibrium
binding agreements by Ray and Vohra (1997).

As we will discuss in Section 5.3.6, this definition of farsighted blocking is not
without its own drawbacks. For now, it is imperative to note that the definition cannot
make sense unless it is intimately tied to consistency. A farsighted objection y to x
has not much meaning unless matters indeed terminate at y. A state that acts as a
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“credible” farsighted objection must itself have immunity with respect to the same kind
of objections that can in turn be leveled at it. The “farsighted stable set” comes close to
addressing these issues.

5.3.4 The farsighted stable set
The marriage of farsightedness and consistency leads us to investigate the notion of a
farsighted stable set (Harsanyi, 1974).17 Say that a set Z∗ of states is a farsighted stable set if
no state in Z∗ is farsightedly blocked by any other state in Z∗ (internal stability), and if
every state not in Z∗ is farsightedly blocked by some state in Z∗ (external stability). Put
another way, if we attach a description to the states in (or not in) Z∗—call them stable
(or unstable)—then no stable state has a farsighted objection that terminates in another
stable state, while every unstable state does have such an objection.

Observe that at first sight, this appears to add very little at a conceptual level, simply
replacing the blocking relation used for von Neumann-Morgenstern stability by its
farsighted analog. But that is not the case. Recall from Example 5.6 that a coalition
might “exploit” the von Neumann-Morgenstern stable set by blocking some element
in it, while profiting from that block even if the initial objection is “counter-objected”
to by some other element in the stable set. In other words, a coalition could be better off
even by moving to an unstable state.

That exploitation is not possible any more in the farsighted stable set. Suppose that
a coalition T replaces a “stable point” x ∈ Z∗ by a new state w. If w ∈ Z∗, then w is
“stable” and, by the internal stability property, T cannot be better off, so w cannot serve
as a farsighted objection to x. If w �∈ Z∗, then by external stability, there is a farsighted
objection to w that leads to some y ∈ Z∗, which is “stable.” But then T cannot be better
off under y, for if it were, the entire sequence of states starting with w and terminating
in y would act as a farsighted objection to x, which is ruled out by internal stability.

Thus, as we wrote earlier, the farsighted stable set captures the joint imposition of
consistency and farsightedness. But there is a certain degree of bootstrapping implicit
in the notion of a stable set. In the discussion earlier, a farsighted objection was treated
as “credible” if it terminates in a “stable” state, i.e., a state in Z∗. But “stability” does
not automatically guarantee that no further farsighted objection exists, only that such
an objection must itself terminate in an “unstable” state, defined to be a state not in Z∗.
Thus, stability and instability need to be simultaneously defined.

It might be thought that a recursive definition of stability can get around this
problem. Indeed, a recursive approach might help to some extent when the blocking

17 It is of interest to note that Harsanyi originally provided a definition that does not conform to the one
given here, insisting in addition to farsightedness that each step of the blocking chain results in an instant
improvement. However, in the last section of his paper, Harsanyi eliminates—correctly, in our opinion—
this extraneous requirement; see also Chwe (1994) which makes this point.
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relation is myopic, see, for instance the iterative procedure introduced in von Neumann
and Morgenstern (1944, Section 65.7) and extended by Roth (1976). To describe it
informally, say that a state is “admissible” if there exists no objection to it. Let A0 be the
set of all such states. (This is just the core). We should certainly label as “inadmissible” all
states to which there exists an objection emanating from A0. Let the set of such states be
denoted I0. Now proceed recursively, labeling additional states as admissible if the only
objections to such states stem from I0. Label all such states A1. (The set A0 is included.)
Let I1 be the set of all states to which there is an objection from A1. Now continue
this process until it terminates. The resulting “admissible limit set” will typically extend
beyond its starting point A0. Roth (1976) refers to these limits as “supercores.” It is
possible, but by no means guaranteed, that supercores will pick out stable sets. Examples
when this will not happen are abundant, but at least the recursion might offer some
traction beyond its initial stage.

Note that the general definition of a farsighted stable set in this section applies to any
effectivity correspondence. However, as we consider various applications of farsighted
stability, it will become clear that there may be natural restrictions on the effectivity
correspondence. And such restrictions may have an important bearing on the properties
of the farsighted stable set, see in Section 5.3.6.1. For instance, in the context of a
characteristic function game, this recursive procedure is doomed at the outset. Unless
restrictions are placed on the coalitions that can participate in such objections, it is often
the case that no state is immune from a farsighted objection: more on this in Section
5.3.6.1. In short, the analog of A0 is empty, and the recursion will simply fail to get off
the ground. Yet, as we shall see, farsighted stable sets can dramatically narrow the set of
outcomes. It is only that such sets are beyond the reach of recursive computability.

One restriction on coalition formation that does permit a recursive description is
that only subsets of already formed coalitions are allowed to move. We turn to this in
the next section.

5.3.5 Internal blocking
5.3.5.1 A recursive definition
A recursive approach to farsighted stability does work well when the effectivity corre-
spondence only permits subsets of existing coalitions to form. We refer to this as internal
blocking.18 Such situations may be important when communication becomes impossible
across already formed coalitions. In these cases, the potential circularity of farsighted
stability is easily avoided.

18 This is by no means the only situation in which the recursive approach works. More generally, if bounds
are placed on the number of times a coalition can move at any node, then one can carry out the same
recursive procedure provided that states are appropriately defined to keep track of those bounds. Mariotti
(1997) is an instance in which “cycles” of coalitions along a blocking path are ruled out.
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For a partition π and a subcoalition T of some S ∈ π , denote by π |T the partition
obtained from π by dividing S into T and S � T , leaving all other elements of π

unchanged. If π = (S, S1, . . . , Sm), and T ⊂ S, then π |T = (T , S � T , S1, . . . , Sm).
A partition π ′ is said to be a refinement of π if every T ∈ π ′ is a subset of some S ∈ π ,
and at least one is a strict subset. It is said to be an immediate refinement of π if π ′ = π |T
for some T ⊂ S ∈ π .

Now we can describe internal blocking by placing a necessary restriction on the
effectivity correspondence: if T ∈ E(x, y) and x �= y, then T ⊂ S for some S ∈ π(x),
T ∈ π(y), and π(y) is a refinement of π(x). Thus, only a subset of an existing coalition
is effective in making a nontrivial change to an existing state.

We will now describe a recursive procedure for constructing the farsighted stable set
with internal blocking.19

With the restriction to internal blocking (and the use of efficient payoffs), the state
corresponding to the finest partition, π0, is an end state and therefore trivially stable.
Consider a state x such that the only refinement of π(x) is π0. Since payoffs in each
state are required to be efficient, and objections can only make the coalition structure
finer, any objection to x must lead to π0. Now, say that x is inadmissible if there is
a (farsighted) objection to it, and it is admissible otherwise. Recursively, suppose that
all states with associated partitions of cardinality k+ 1 or greater (where k < n) have
been labeled either admissible or inadmissible. Consider any state x with associated
coalition structure of cardinality k. Since objections can only lead to states that have
already been labeled admissible or inadmissible, x can now be assigned a unique label:
admissible if no farsighted objection terminates in an admissible state and inadmissible
otherwise. Continuing all the way to the coalition structure πN , every state can therefore
be identified as either admissible or inadmissible. It is now easy to see that the admissible
states taken together constitute the unique farsighted stable set.

As we shall see, this set corresponds to different solution concepts depending on
the context. To explore those connections it will be useful to first draw a general
connection between the farsighted stable set and an equilibrium process of coalition
formation.

5.3.5.2 EPCF and the farsighted stable set with internal blocking
An important test of the versatility of our dynamic process of coalition formation is its
connection to the (static) notion of the farsighted stable set. To study this connection,
we consider a process of coalition formation that inherits some of the simplicity of the
static model. In particular, a state will refer to a partition and feasible payoffs to coalitions
within the partition, and the partner set for any active coalition will be taken to be empty.

19 The definition will resemble that of a coalition-proof Nash equilibrium of Bernheim et al. (1987). But
that concept is purely noncooperative and is not directly related to the theme of this chapter.
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In additional to the effectivity correspondence, the only additional ingredient that will
be necessary in defining a process of coalition formation is a protocol.

Recall that a protocol chooses an active coalition depending on the history. Here, we
will seek to condition the protocol on the history in a minimal way and require that at any
given state a coalition has at most one chance to make a move. Suppose xt−1 �= xt−2. In
other words, the immediate history at date t is not a result of inaction on the part of some
coalition. In such a case, the protocol will depend only on the current partition, i.e.,
on π(xt−1). Every subcoalition T of a coalition S ∈ π(xt−1) will be active with strictly
positive probability ρ(T | xt−1) > 0. Given the restriction to internal blocking ρ(T ′ |
xt−1) = 0 for anyT ′ that is not a subset of a coalition in π(xt−1).20 Suppose, on the other
hand, xt−i = x for all i = 1, . . . , k for some k ≥ 2 and xt−k �= xt−k−1. The protocol will
then assign a zero probability to any coalition that has declined to change the state, i.e,
any coalition that was active at dates t − i for i = 2, . . . , k. If all allowable coalitions in
π(xt−1) decline to move, the state remains unchanged and becomes an absorbing state.

We will now explore some conditions under which the absorbing states of an EPCF
coincide with the farsighted stable set, and thereby identify situations in which the
dynamic process predicts the same set of stable outcomes as those emerging from the
static model of internal blocking. To be consistent with the blocking definitions, we
will assume throughout the rest of this section that any nonstatus-quo profitable move
is strictly profitable for all members of the active coalition, i.e., there is a strict inequality
in the corresponding definition of Section 5.2.3.

A state x is said to be an absorbing state of an EPCF λ if the process does not move
from x whatever the history. Formally, x is an absorbing state of λ if λ(ht+1 | ht) = 1 for
all histories ht, ht+1 such that xt−1 = xt = x.

An EPCF is said to be absorbing if from any state it leads to an absorbing state in a
finite number of steps.

Given our restrictions on the protocol and because every change in a state only serves
to refine the coalition structure, it follows that every process defined on (N ,V ,E, ρ) is
absorbing.

We will now show that if the steps of a farsighted objection and those of a profitable
move can be compressed into a single step, then there is a tight connection between
the absorbing states of an EPCF and the farsighted stable set. This abstract result will be
useful in Sections 5.3.5.4 and 5.3.5.5.

We say that an EPCF is immediately absorbing if whenever x is a transient state, there
exists an objection (T , y) to x such that y is an absorbing state.

We say that an extended partition function (N ,V ,E) has the one-step objection property
if whenever x is not in the farsighted stable set there exists an objection, (T , y) such that

20 Strictly speaking, this is not necessary. The protocol could assign a positive probability to such a coalition,
but the only state this coalition would be effective for is xt−1, and the only change would be that one
unit of time would go by.
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y belongs to the farsighted stable set. Thus, the initiating coalition achieves a higher
payoff in the very first step.21 These situations are important not only because of the
added simplicity of the farsighted stable set but also because there is then no ambiguity
stemming from the possibility of multiple continuation paths in a farsighted objection.
The latter is crucial in drawing a connection with EPCFs. Otherwise, a farsighted
objection, while being profitable, may not be maximal. And then, as we will see in
Section 5.3.6, there may be good reason for not expecting the farsighted stable set to be
related to an EPCF.

We can now present a result connecting the farsighted stable set to absorbing states
of the dynamic model.

Lemma 5.1. Suppose (N ,V ,E) has the one-step objection property and λ is an immediately
absorbing EPCF of (N ,V ,E, ρ). Then all absorbing states of λ coincide with the farsighted stable
set of (N ,V ,E).
Proof. Consider an EPCF λ. The state corresponding to the finest coalition structure is
clearly an absorbing state. It is also by definition in the farsighted stable set. Thus, the
equivalence between absorbing states of an EPCF and the farsighted stable set holds for
the finest coalition structure. We now use an induction argument to prove the result.
Accordingly, assume that the result holds for all states with at least k+ 1 coalitions in the
coalition structure.

Suppose π(x) consists of k coalitions and x is not an absorbing state. Since λ is
immediately absorbing this means that there exists an objection (T , y) to x such that y is
an absorbing state for T . Note that T must be a strict subset of some S ∈ π(x) for it to
have an objection. Thus, π(y) is a refinement of π(x), and it follows from the induction
hypothesis that y is in the farsighted stable set. This implies that x is not in the farsighted
stable set and completes the proof that the farsighted stable set is contained in the set of
absorbing states of λ.

Next, we show that if x is an absorbing state, with π(x) consisting of k coalitions, it
must be in the farsighted stable set. Suppose not. Then, by the one-step objection prop-
erty, there exists y and a coalition T ⊂ S ∈ π(x), where T ∈ E(x, y) and y is in the far-
sighted stable set. Since π(y) is a strict refinement of π(x), it follows from the induction
hypothesis that y is an absorbing state. By hypothesis, no coalitionmoves from x regardless
of the history. There must be some history for which the protocol chooses T to be active
when the current state is x. (Recall that, subject to internal blocking, every subcoalition
of an existing coalition has a strictly positive probability of being chosen, as long as it has
not already exhausted its single chance to move). Coalition T receives u(x)T in perpetu-
ity by not moving and u(y)T in perpetuity by moving to y. Since u(y)T � u(x)T , this is a
strictly profitable move, and a contradiction to the hypothesis that x is an absorbing state.

21 Under this condition farsightedness reduces to consistency. The original definition of the modified vNM
set in Harsanyi (1974) satisfies this property.
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It is of course important to identify assumptions on the primitive model that will
allow us to appeal to Lemma 5.1. That we shall do in Sections 5.3.5.4 and 5.3.5.5.

5.3.5.3 Characteristic functions
Suppose the partition function is actually a characteristic function, so there are no
externalities. We shall now impose some restrictions on the effectivity correspondence,
which are natural yet implicit in this setting. Throughout this section, in addition to
internal blocking, it is assumed that22:
(i) [Noninterference] If T ∈ E(x, y), S ∈ π(x), and T ∩ S = ∅, then S ∈ π(y) and

u(x)S = u(y)S.
(ii) [Full Support] For every state x ∈ X, T ⊆ N , and v ∈ V̄ (T), there is y ∈ X such

that T ∈ E(x, y), T ∈ π(y), and u(y)T = v.
Condition (i) grants coalitional sovereignty to the untouched coalitions: the formation
of T cannot “interfere” with the membership of coalitions that are entirely unrelated
to T in the original coalition structure, nor can it influence the going payoffs to such
coalitions. Condition (ii) grants coalitional sovereignty to the deviating coalition: it can
choose not to break up, and it can choose its own payoff allocation from the “full support”
of its feasible set.

Noninterference acquires its present force because the situation in hand is described
by a characteristic function: T truly influences neither the composition of an
“untouched” coalition nor the payoffs it can achieve. (In games with externalities,
the condition would need to be suitably modified to allow those payoffs to change, but
not in a way that is deliberately dictated by the deviating coalition.) These conditions
will also be useful when the internal blocking restriction is dropped; see Section 5.3.6.1.

Given internal blocking, it is easy to see that x ∈ C(N ,V ,E) if and only if u(x)S ∈
C(S,V ) for every S ∈ π(x).23 As our next result shows, under these conditions, the
farsighted stable set coincides with the core.

Proposition 5.1. Suppose (N ,V ) is a characteristic function game, and E is restricted to
internal blocking and satisfies noninterference and full support. Then the farsighted stable set
coincides with C(N ,V ,E), i.e., x belongs to the farsighted stable set if and only if u(x)S ∈
C(S,V ) for all S ∈ π(x).

Proof. Suppose x ∈ C(N ,V ,E) but there exists a farsighted objection (T , y) to x.
Given internal blocking, the coalition structure corresponding to y, π(y), must contain
a coalition T ′ ⊆ T . Since (T , y) is a farsighted objection to x, u(y)T ′ � u(x)T ′ and

22 These conditions appear explicitly in Konishi and Ray (2003), Kóczy and Lauwers (2004), and Ray and
Vohra (2013).

23 For S ⊆ N , C(S,V ) refers to the core of the characteristic function (N ,V ) restricted to S.
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u(y)T ′ ∈ V̄ (T ′). So the full support condition implies that T ′ is effective in moving
from x to y′, where u(y′)T ′ = u(y)T ′ � u(x)T ′ . But this contradicts the hypothesis that
x ∈ C(N ,V ,E).

Suppose x is in the farsighted stable set. We now claim that it must be in C(N ,V ,E).
Suppose not. Then there exists S ∈ π(x) such that u(x)S /∈ C(S,V ). Let (S1, u1)
be an objection to u(x)S such that u1 ∈ C(S1,V ). This can always be assured by
taking S1 to be one of the smallest subcoalitions of S with an objection to u(x)S. By
full support, it follows that S1 ∈ E(x, y1), where u(y1)S1 = u1 and π(y1) = π(x)|S1 .
If u(y1)S�S1 ∈ C(S � S1,V ), then (S1, y1) is a farsighted objection to which there
cannot be any objection from a subset of S1 or S � S1. If u(y1)S�S1 /∈ C(S � S1,V )

we can find some subcoalition in S� S1, say S2, with an objection from the core of
S2. Note that by noninterference, a move by S2 will not affect the payoffs of coalition
S1 (or of any other coalition disjoint from S2). Continuing in this way it is possible
to construct a partition (S1, . . . , Sm) of S and (u1, . . . , um) such that ui ∈ C(Si,V ) for
every i. Clearly, there is no farsighted objection to ((S1, . . . , Sm), (u1, . . . , um)) from any
allowable coalition in (S1, . . . , Sm).

This procedure can be applied to any S′ ∈ π(x) for which u(x)S′ /∈ C(S′,V ). All
such objections can be collected into one farsighted objection that culminates in x′ where
π(x′) is a refinement of π(x) and u(x′)T ∈ C(T ,V ) for all T ∈ π(x′). Of course, this
must mean that there is no further farsighted objection to x′. But this contradicts the
hypothesis that x is in the farsighted stable set.

Note that one of the steps in the above proof relies on the property that if u �∈
C(N ,V ) then there exists an objection (S, u′) such that u′ ∈ C(S,V ). The only reason
this doesn’t imply the one-step objection property is because coalitions other than S
may also need to “move” in order to arrive at a stable outcome. If we ignore the rest of
the coalition structure, then farsighted blocking becomes equivalent to myopic blocking
and Proposition 5.1 can we be seen as the coalition structure analog of Ray (1989) and
Proposition 6.1.4, Greenberg (1990).

We can now turn to a formal connection between the core and the absorbing states
of an EPCF.

Proposition 5.2. Suppose (N ,V ) is a superadditive characteristic function game such that
V (S) is convex for all S ⊆ N. If x ∈ C(N ,V ,E), then x is an absorbing state of every EPCF
corresponding to (N ,V ,E, ρ).

Proof. Suppose x is in the core. Fix a history h at which x has just been arrived at, and sup-
pose that subsequently x is not an absorbing state for EPCF λ. Then, there is a coalition
that executes a profitable move when given a chance to move, possibly following other
coalitions having given up their opportunity to move from x. Consider the subset of all
histories which all begin with h, such that no subsequent coalition called by that history
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moves at x, and a new active coalition has just been chosen, which is about to announce
a move. Because each coalition has a single chance to move, this set is finite. Let h∗ be a
maximal history of this type. Suppose T is a coalition that moves from x to y following
such an history. Clearly, T could have earned u(x)T forever it chose not to move. If y is
an absorbing state, the fact that it is a profitable move for T contradicts the hypothesis
that x is in the core. Thus, with positive probability, there is a further move from y.

All possible paths leading from y must reach an absorbing state in a finite number of
steps. Let m be the maximum number of steps along any such path before an absorbing
state is reached. For every step i = 1, . . . ,m, following T ’s move, let μi be the probability
measure on the states generated by λ. Denote by ui the corresponding expected utility
profile at stage i: ui = ∫

u(x)dμi. Since T has a strictly profitable move,

u1T + δu2T + δ2u3T + · · · + δm−1

(1 − δ)
umT � 1

(1 − δ)
u(x)T . [5.2]

It follows from superadditivity and the convexity of V (S) that

ujT ∈ V (T) for all j = 1, . . . ,m.

Letting

û = (1 − δ)

[
u1 + δu2 + δ2u3 + · · · + δm−1

(1 − δ)
um
]

(5.2) can be rewritten as:

ûT � u(x)T . [5.3]

Note that û is a convex combination of u1, . . . , um. Since ujT ∈ V (T) for all j, it follows
that ûT ∈ V (T), but then (5.3) contradicts the hypothesis that x is in the core.

Proposition 5.3. Suppose x is an absorbing state of an EPCF of (N ,V ,E, ρ). If E satisfies
noninterference and full support, then x belongs to the farsighted stable set of (N ,V ,E).

Proof. Suppose x is an absorbing state but does not belong to the farsighted stable set. By
Proposition 5.1, there exists S ∈ π(x) such that u(x) /∈ C(S,V ). Moreover, there exists
T ⊂ S and u′ ∈ C(T ,V ) such that u′ � u(x)T . Since x is an absorbing state, T receives
u(x)T in perpetuity by not moving. However, by full support, it could move to a state
y in which it receives u′. Since u′ ∈ C(T ,V ), we know from the previous proposition
that no subcoalition of T can move to a higher payoff. The only possible moves from
y must come from coalitions in N � T . By noninterference, that has no effect on the
payoff to T , so we conclude that by moving to y coalition T can receive u′ � u(x)T .
But this contradicts the hypothesis that x is an absorbing state.
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Combining Propositions 5.2 and 5.3, we have:

Proposition 5.4. Suppose (N ,V ) is a superadditive characteristic function game such that
V (S) is convex for all S ⊆ N and E satisfies noninterference and full support. Then all absorbing
states of every EPCF of (N ,V ,E, ρ) coincide with the core (or farsighted stable set) of (N ,V ,E).

There is also an earlier literature that studies processes converging to core allocations.
Green (1972), Feldman (1972), and Sengupta and Sengupta (1996) show how in a
characteristic function game a process of recontracting can be constructed to lead from
any noncore allocation to a core allocation. Recontracting refers to a process in which
every active coalition makes a (myopic) improving move, without any guarantee of
gaining at the end of the process. In contrast, Proposition 5.4 applies to farsighted
behavior.

Konishi and Ray (2003) show how for a farsighted dynamic process can be
constructed so as to have any particular core allocation as its absorbing state. They also
provide conditions under which a deterministic process converges to a core allocation.
Proposition 5.4 provides a stronger connection between the core and absorbing states
since it concerns a coincidence of the set of core allocations and absorbing states of any
EPCF. The key features of our model that make this possible are internal blocking and
the specification of a protocol.

5.3.5.4 Effectivity without full support
It is important to stress that the full support property is not always natural. One class
of restrictions emanate from the possibility that the additional disintegration of a newly
formed coalition may be legally or politically impossible, thereby negating full support
for the finer subcoalitions. While we will have more to say about such “irreversible
agreements” in Sections 5.4 and 5.5, in the current section we discuss a model due to
Acemoglu et al. (2008) in which the full support property does not hold for a very
different reason. This is a model of a political game of coalition formation in which
coalitions are farsighted and their ability to make a nontrivial move depends in an
important way on the current state.

The political power of player i is described as γ i > 0. A coalition T ⊆ S is said to
be winning within S if γ T > αγ S, where γ T = ∑

i∈T γ i and α ∈ [0.5, 1) denotes the
degree of weighted supermajority required to win.

The payoff to players depends on the ruling coalition. If S is the ruling coalition,
w(S) denotes the unique profile of utilities for members of S. Players outside the ruling
coalition receive 0. A specific functional form, which we assume for convenience, is
w(S) = (γ i/γ S)i∈S.

In this model, the only coalition of interest at each state is the ruling coalition and
it will be useful therefore to define a state as x = (w(S), S) with the interpretation
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that S is the ruling coalition.24 We will use R(x) to refer to the ruling coalition at x.
Of course, coalition S can enforce such a state only from states in which it is a winning
coalition.

For x �= y, E(x, y) =
{
R(y) if R(y) is winning in R(x)
∅ otherwise

The effectivity correspondence does not satisfy the full support property because
whether or not a coalition can effect a nontrivial move depends on the current
state.25 The model implicitly assumes internal blocking because a winning coalition
must necessarily be a subset of the current ruling coalition. Given internal blocking,
the recursive procedure described in Section 5.3.5.1 can be applied to determine the
farsighted stable set. We illustrate this with the next example.

Example 5.7. There are three players with γ = (γ 1, γ 2, γ 3) = (4, 5, 6). A coalition T ⊆ S
is said to be winning within S if

∑
i∈T γ i > 0.5

∑
j∈S γ j. The payoff profile for a ruling coalition

is described as follows:

w(123) = (4/15, 5/15, 6/15),
w(12) = (4/9, 5/9),
w(13) = (0.4, 0.6),
w(23) = (5/11, 6/11),
w(i) = 1, for all i.

Each two-player coalition is winning inN and can therefore move to become a ruling
coalition and improve upon the status quo. However, within each two-player coalition,
the more powerful player can win to become a singleton ruling coalition and earn 1.
Thus, although there exist objections to the state corresponding to the grand coalition,
none of them is credible because the weaker of the two players in the objecting coalition
will be abandoned by the more powerful player at the next stage, ultimately doing worse
than at the grand coalition. For example, player 3, who is winning within any two-player

24 Although we have departed from our earlier formulation in replacing a coalition structure with a ruling
coalition, this difference is not substantive. In particular, notions of the farsighted stable set and EPCF, as
well as Lemma 5.1 are easily translated into the present model. Alternatively, we could retain the original
formalism by associating with each ruling coalition the coalition structure in which all other players are
singletons and, in addition, keeping track of the ruling coalition corresponding to every coalition structure
of this form. The latter consideration is important for the coalition structure consisting of all singletons
because in that case whether a singleton gets 0 or 1 depends on the identity of the ruling coalition.

25 Pillage games, studied in Jordan (2006), are another interesting model in which the effectivity correspon-
dence depends on the current state. There, the ability of a coalition to move depends on the payoffs,
rather than the coalition structure, at the current state.
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coalition is effective in becoming a singleton ruling coalition if the current state is (13)
or (23), but not if the current state is N . It is easy to see that N belongs to the farsighted
stable set even though it is not in the core.

Notice that since players who are not in a ruling coalition earn 0, it is always better
to belong to a ruling coalition than not. This implies that every farsighted objection
must immediately end in a stable state. Otherwise, there must be at least one member of
the initiating coalition who is left out of the final ruling coalition, and any such player
would have been better off not participating in the objection. In other words, every
farsighted objection that ends in the farsighted stable set must be a one-step objection:
the one-step objection property holds.

Now consider an EPCF for this model and assume that the protocol is deterministic:
at every state, there is a fixed order in which eligible coalitions are called upon to move.
(We will presently specialize the protocol even further.)

Suppose x is a transient state. Thus, there is a coalition T , winning in R(x), with
a profitable move. Without loss of generality, let T be the last such coalition given the
protocol. If T does not move it is guaranteed a payoff of u(x) forever, which must be
less than the discounted payoff from moving. Note that all members of T experience an
instantaneous gain by forming a winning coalition. However, if there is a further move
(from a subcoalition), those left out of the second move then receive 0. In other words, if
T is not an absorbing state, there is some i ∈ T who receives 0 in all subsequent periods.
The discounted payoff for i is therefore wi(T). For the move to be profitable, it must be
the case that

wi(T) >
1

1 − δ
ui(x).

Since wi(T) ≤ 1 and ui(x) is bounded below by mini∈N wi(N), δ can be chosen close
enough to 1 so that this is impossible. Thus, for δ high enough, every EPCF in this model
must be immediately absorbing. As we’ve already observed, the one-step objection
property holds. We can therefore appeal to Lemma 5.1 to assert:

Proposition 5.5. In the model of political coalition formation, for δ sufficiently close to 1, all
absorbing states of an EPCF coincide with the farsighted stable set.

With some additional assumptions, it becomes possible to provide a sharper charac-
terization of an EPCF in this model. Observe that for a winning coalition which can
induce a state in the farsighted stable set, there is never any advantage in forgoing such
an opportunity; a profitable move is maximally profitable. Given the protocol, there is a
unique move from any transient state: it is the move by the first coalition according to
the protocol which is both winning and moves immediately to a state in the farsighted
stable set. A lot depends, therefore, on the protocol.



272 Handbook of game theory

Let

T (S) = {T ⊂ S | T is winning within S and (w(T),T) is in the farsighted stable set}
and let the first coalition in T (S) according to the protocol be denoted T ∗(S). We can
now describe the equilibrium process by a mapping φ, where

φ(S) =
{
S if (w(S), S) is in the farsighted stable set
T ∗(S) otherwise.

Starting from the grand coalition as the initial state, the process moves, in at most one
step, to φ(N) as the absorbing state.

Acemoglu et al. (2008) provide a characterization of the subgame perfect equilibria
of their extensive form game of political coalition formation by assuming that the power
mapping γ , is generic in the sense that γ S �= γ T for S �= T . By adopting this assumption
and imposing a restriction on the protocol, we can obtain precisely their characterization
through our framework. Suppose the protocol is such that among all winning coalitions,
relative to the current state, priority is given to those with lower aggregate power. In
other words, winning coalitions are arranged in ascending order of aggregate power: if S
and S′ are both winning, γ S < γ S′ implies that the protocol chooses S before S′. Given
the genericity assumption, this means that T ∗(S) = argminA∈T (S) γ A. Now φ(S) can
be written inductively as follows. Suppose φ(.) has been defined for all coalitions with
fewer than k players. Then, for S with k players let

φ(S) = argminA∈T (S)∪Sγ A,

where
T (S) = {T ⊂ S | T is winning within S and T ∈ φ(T)}.

This is precisely the mapping φ defined by Acemoglu et al. (2008). They prove that
every subgame perfect equilibrium of their extensive form game leads to φ(N) as the
ultimate ruling coalition.

5.3.5.5 Internal blocking in the presence of externalities
The characteristic function has proved to be a very useful construction in studying
coalitional behavior. It was derived by von Neumann and Morgenstern (1944) from
a more general specification of a game by taking the feasible payoffs for a coalition to
be those it can achieve by assuming (from its point of view) the worst possible strategy
choices of the complementary coalition. While von Neumann and Morgenstern (1944)
adopted this conversion to a characteristic function mainly to study zero-sum games, it
was subsequently applied to more general (normal form) games by Aumann and Peleg
(1960) and Aumann (1961).26 For example, the α-characteristic function defines V (S)

26 See Chapter 2.2 of Ray (2007) for a historical background.
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for a coalition S as the set of payoffs S can achieve through some joint strategy regardless
of the actions of players outside S.27

In some settings, such as exchange economies without externalities, or zero-sum
games, this conversion involves no loss of generality. However, in the presence of
externalities, the standard construction is ad hoc, if not unreasonable. For example, in
the Cournot oligopoly, it is hard to see why a cartel should fear that the complementary
coalition will flood the market and drive profits to zero, as is implicit in the extreme
pessimism embodied in the α-core. It may even be argued that coalition formation
should be studied directly through a normal form game. The essence of the problem,
however, can usually be captured through a partition function game which makes
explicit the manner in which the feasible set of payoffs for a coalition depend on other
coalitions. To be sure, this does not completely eliminate the complexities stemming
from externalities. A blocking coalition must now predict how players outside the
coalition will organize themselves into coalitions. In what follows we will refer to this
as the prediction problem. Of course, one could again cut though these complexities
by making an assumption about how outsiders will organize themselves in response to
a move by a blocking coalition. For example, one could assume that all outsiders will
immediately break up into singletons or that all players left behind by a deviating coalition
will continue to stay together. The former is related to the notion of γ -stability in Hart
and Kurz (1983) and the latter to δ-stability.28 The question is how to replace such
assumptions with predictions about the equilibrium behavior of outsiders. Cooperative
game theory has traditionally eschewed such considerations, but it is hard to see how
coalitional behavior in the presence of externalities can be studied without making the
response of outsiders endogenous to the theory. As we shall discuss, considerable progress
has been made in resolving the prediction problem.29

Restricting attention to internal blocking, Ray and Vohra (1997) formulate the
notion of equilibrium binding agreements (EBA), which can be seen as a variant of
the farsighted stable set. In what follows, we shall consider EBA for a special class of
transferable utility (TU) partition function games. These are partition function games
in which the “worth” of coalition S in coalition structure π is denoted v(S,π):
V (S,π) = {w ∈ IRS | ∑i∈S wi ≤ v(S,π)}. (We will sometimes use (N , v) to denote a

27 The core of the α-characteristic function is referred to as the α-core. In the β-characteristic function
u ∈ V (S) if for every strategy of players outside S there is some joint strategy in S that yields at least u.

28 See also Carraro and Siniscalco (1993), Dutta and Suzumura (1993), Chander (2007), and Chander and
Tulkens (1997).

29 It bears mentioning that Aumann and Myerson (1988) tackled the prediction problem head on. We
do not discuss this paper here only because its axiomatic emphasis does not fit either the blocking or
the bargaining approach which we have confined this chapter to. Maskin (2003) is another important
contribution to this issue which doesn’t fall within the purview of the present chapter. See also de Clippel
and Serrano (2008a,b). For an axiomatic treatment of this issue within the blocking approach, see Bloch
and van den Nouweland (2013).
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TU partition function.) In a symmetric game, the worth of a coalition depends only on
the number of players in the coalition and the numerical coalition structure (number
of players in each of the coalitions). Suppose S ∈ π = {S1, . . . , Sk}. Now v(S,π) can
simply be denoted v(s, q), where s is the cardinality of S and q = (s1, . . . , sk), where si
is the cardinality of Si. A game is said to have positive externalities if a coalition’s worth
is higher when the other coalitions are merged. It is worth noting that the symmetric
Cournot oligopoly is one example that satisfies all of these assumptions.

It is reasonable to assume that if S ∈ π and a subcoalition T of S splits from S, in
the first step, it induces an immediate refinement, π |T , i.e., all the remaining players in
S stay together and all the coalitions in π remain unchanged. (Of course, there is no
presumption that π |T will remain unchanged.) When a process of coalition formation
refines a partition, there are some coalitions that are active movers, or perpetrators, in
splitting from a larger coalition while others can be thought of as residuals, players left
behind. If a coalition breaks into k new coalitions, k− 1 of them must be perpetrators.

Equilibrium binding agreements (EBA) are defined recursively. The state x0, correspond-
ing to the finest coalition structure is an EBA. If x is a state with a coalition structure
made up of singletons and one coalition, S, consisting of two players, it is said to be
blocked by x0 if one of the players in S prefers x0 to x. We can now proceed recursively.
Suppose EBA and the associated notion of blocking has been defined for all states with
coalition structures that are refinements of π(x). Then, x is said to be blocked by x′ if x′
is an EBA and there exists a collection of perpetrators in π ′(x) such that one of them, a
leading perpetrator, prefers x′ to x. Moreover, any re-merging of the other perpetrators
with their respective residuals is blocked by x′, with one of these perpetrators as the
leading perpetrator.30 Note that “blocking” is well defined in the previous sentence
because any re-merging of the other perpetrators results in a coalition structure which
is a refinement of π(x). A state x is an EBA if it is not blocked.

As shown in Ray and Vohra (1997), in a symmetric TU game with positive
externalities, a state is an equilibrium binding agreement if no coalition can obtain higher
aggregate utility in a binding agreement of some refinement of the original coalition
structure. In other words, EBA are simply all the states in the farsighted stable set when
the effectivity correspondence allows a coalition to move to any refinement. Throughout
this section, we assume that the effectivity correspondence has this form. Of course, this
immediately implies that the one-step objection property holds.

In this setting, additional simplicity comes from the fact that in identifying equi-
librium coalition structures, there is no loss of generality in assuming that coalitional
worth is divided equally among all members of a coalition, see Proposition 6.3 in Ray
and Vohra (1997). In other words, we can assume that states are restricted to satisfy the

30 The extreme optimism in the notion of a farsighted objection is somewhat tempered by allowing
subsequent coalitions to in any arbitrary order or, in fact, to move simultaneously.
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property that for any S ∈ π(x), for all i ∈ S, ui(x) = a(S,π) = v(S,π(x))
|S| . Thus, we can

take the number of states to be finite.
Let a(s, q) denote the average worth of a coalition of size s in a numerical structure q,

where q = (q1, . . . , qk) describes the sizes of the various coalitions in the partition. We
will assume that the distribution of average worths satisfies the genericity assumption in
the sense that a(s, q) �= a(s′, q′) if s′ �= s or q′ �= q.

Proposition 5.6. Suppose (N ,V ) is a symmetric, TU, partition function game with positive
externalities and the genericity assumption holds. Then, for δ close enough to 1, all absorbing states
of every EPCF of (N ,V ,E, ρ) coincide with EBA.

Proof. Suppose x is not an absorbing state of an EPCF. This means that for some history
at least one coalition has a profitable move. As in the proof of Proposition 5.2, let T be a
coalition that could have earned u(x)T in perpetuity by declining to move, but chooses
instead to move from x to y. Either y is an absorbing state or, with positive probability,
there is a further move from y. Consider the latter case.

All possible paths leading from y must reach an absorbing state in a finite number of
steps. Let m be the maximum number of steps along any such path before an absorbing
state is reached. Let ui denote the expected payoff at each step, i = 1, . . . ,m, with u1 =
u(y). Let Z be the set of states in the support of um and p(z) be the probability of z
being the state at stage m, i.e., um = ∑

z∈Z p(z)u(z).
The fact that T has a strictly profitable move means that

u1T + δu2T + δ2u3T + · · · + δm−1

(1 − δ)
umT � 1

(1 − δ)
u(x)T . [5.4]

Let a∗ = maxz∈Z,S∈π(z),S⊂T a(S,π(z)) be the maximum average worth across all
subcoalitions of T in any of the coalition structures corresponding to states in Z. Let z∗
be a state in which a∗ is attained and S∗ the corresponding subcoalition of T . Let ū be
the maximum utility that any player gets in any state. From (5.4) we obtain the following
inequality for coalition S∗.

(1 + δ + · · · + δm−2)ū+ δm−1

1 − δ
(a∗ − ui(x)) > 0 for all i ∈ S∗. [5.5]

Given that π(z∗) is a refinement of π(x) it follows that ui(x) = uj(x) for all i, j ∈ S∗.
We now claim that

a∗ > ui(x) for all i ∈ S∗. [5.6]
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Suppose not. Then a∗ < ui(x) for all i ∈ S∗ because, by the genericity assumption,
a∗ �= ui(x). Since the number of states is finite, there exists ε > 0 which denotes the
minimum (absolute) difference, between a(s, q) and a(s′, q′) for q �= q′. This means that
if a∗ < ui(x), then a∗ − ui(x) ≤ −ε. Substituting this in (5.5), we have

(1 + δ + · · · + δm−2)ū−
(

δm−1

1 − δ

)
ε > 0,

which is impossible if δ is close enough to 1. This establishes (5.6).
To summarize, we have shown that if x is a transient state, one of the following must

be true:
1. [(i)] there is a move by T to y which is an absorbing state and u(y)T � u(x)T ,
(ii) there is a coalition S∗ ⊂ T and an absorbing state z∗ such that S∗ ∈ π(z∗) and

u(z∗)S∗ � u(x)S∗ .
Since a coalition is effective in moving to any refinement of the current coalition
structure, it follows that in case (ii) S∗ can move directly from x to z∗. Thus, in any event,
there is a profitable move to an absorbing state, and the process must be immediately
absorbing. The proof now follows from Lemma 5.1 and the fact that the farsighted
stable set is the set of EBA.

Note that in the dynamic model, it is possible for a strictly profitable move to be
one in which the absorbing state results in the same utility profile as the current state,
with all the gains being reaped in the intervening, transitory periods. Such a move in
the dynamic model cannot possibly serve as an objection in the static model. To tie the
dynamic model to the static one, therefore, we have to impose additional assumptions.
In Proposition 5.6, this is achieved through the genericity assumption.

5.3.6 Beyond internal blocking
To extend the theory beyond internal blocking a recursive definition of farsighted
stability will not suffice. Despite the sometimes obscure nature of abstract stable sets,
which are typically defined on a nonrecursive basis, they do offer a promising approach
at this level of generality. And much of the literature we shall discuss in this section is
inspired, directly or indirectly, by farsighted stable sets.

5.3.6.1 Farsighted stability for characteristic functions
Some of the issues can be usefully discussed in the simpler setting of characteristic
function games. Recall that a set of feasible outcomes Z is a stable set if it is both
internally and externally stable (see Section 5.3.2). Consider a characteristic function
game (N ,V ). Let the set of states be the set of all imputations and let the effectivity
correspondence be E∗ where, for imputations u,w, E∗(u,w) = {T ⊆ N | wT ∈ V (T)}.
An application of external and internal stability now yields the vNM stable set.

A stable set includes the core. But it will generally have other elements: u ∈ Z may
well be dominated by u′ as long as u′ /∈ Z. To be sure, external stability guarantees
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that u′ in turn can be “blocked” by some other profile u′′ ∈ Z. The presumption,
then, is that u should still be considered “stable,” because u′ does not represent a lasting
benefit.

Harsanyi (1974) took issue with this presumption. He observed that this argument
is only valid if u′′ isn’t preferred by the coalition which caused u to be replaced by u′.
The vNM stable set is based on a myopic notion of dominance and does not address this
concern. Harsanyi replaced the dominance relationship by farsighted dominance.

However, Harsanyi followed von Neumann andMorgenstern in continuing to define
effectivity in exactly the same way as they did (withE∗ as the effectivity correspondence).
That is, S has the power to replace u with w as long as wS is feasible for S. In particular,
S dictates the complementary allocation wN−−S. That allocation need not even be
feasible for the complementary set of players. Moreover, even if it is feasible, the
presumption is that S has unlimited power in rearranging payoffs for N − −S. In effect,
the Harsanyi definition violates the noninterference condition of Section 5.3.5.3.

It so happens that with myopic blocking as in vNM, this makes no difference to the
stable set. But with farsighted blocking, it is entirely possible that with the vNM (and
Harsanyi) notion of effectivity, a coalition may be able to engineer a farsighted block
only by arranging the payoffs to outsiders in some particular way. To see an example
of the violation of coalitional sovereignty implied by this approach, consider a four-
player TU game with the following characteristic function. v(i) = 0 for all i, v(12) =
v(13) = v(23) = 2, v(123) = 6 and for all S, v(S ∪ 4) = v(S). Although Player 4 is a
dummy player, there is a singleton Harsanyi stable set in which the dummy receives a
positive payoff: u = (1, 1, 0, 4). As an illustration of how external stability is satisfied in
this case, consider w = (2, 2, 2, 0), a core allocation. There is a farsighted objection to
w culminating in u. It begins with a move by player 4 to w1 = (6, 0, 0, 0), followed by a
move by player 2 to w2 = (0, 0, 0, 6) and, finally, by coalition 12 to u. The logic depends
crucially on player 4 assigning 0’s to two of the other three players, and then on player 2
assigning 0’s to all players other than player 4.

In fact, the situation illustrated by the previous example is not an accident; the
problem runs deeper.

Proposition 5.7. (Béal et al., 2008) Suppose (N , v) is a TU-characteristic function in which
v(T) > 0 for some T ⊂ N. H is a Harsanyi stable set if and only if it is a singleton imputation,
u, such that uS � 0 and

∑
i∈S ui ≤ v(S) for some S ⊂ N.

This proposition implies that every interior core allocation31 must be excluded from any
Harsanyi stable set.32 This is an odd implication of stability, to say the least.

31 u is in the interior of the core if uS /∈ V (S) for any S ⊂ N .
32 This proposition can also be read as an existence theorem for the Harsanyi stable set. In an earlier

contribution, Diamantoudi and Xue (2005) showed that in Lucas’s (1968) celebrated example of
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To appreciate the extent to which such a result emerges from any lack of restrictions
on effectivity, it is important to specify what a coalition can (or cannot) do with some
care. The advantage of our overall approach, which explicitly employs the notion of
effectivity, is that it permits us to do this. As a first step, move back to the notion of a
state: it consists of a coalition structure and an associated feasible payoff profile, rather
than simply an imputation. As minimal conditions of coalitional sovereignty, we assume
that the effectivity correspondence satisfies the conditions of noninterference and full
support of Section 5.3.5.3. That is, when a coalition forms, it leaves unchanged the
payoffs to coalitions that are “untouched” by its departure, but it can choose any payoff
from its own feasible set.

As Ray and Vohra (2013) show, these restrictions dramatically alter the Harsanyi
stable set. The following proposition is a corollary of their Theorem 2:

Proposition 5.8. (Ray and Vohra, 2013) Consider any characteristic function, and suppose
that the effectivity correspondence satisfies noninterference and full support.
(a) If u belongs to the interior of the coalition-structure core, then there exists a farsighted stable

set with the single-payoff allocation u.
(b) If u is not in the coalition-structure core, there is no farsighted stable set containing the single

allocation u.

Contrast Proposition 5.8 with Proposition 5.7. The collection of singleton farsighted
sets for the two scenarios could not be more different. See Ray and Vohra (2013) for
additional discussion, examples and an application to simple games.

Notice that Propositions 5.7 and 5.8 also imply that no matter whether we consider
the Harsanyi stable or the modification discussed here, there is no hope of recursively
characterizing these sets along the lines described in Section 5.3.4. Because a multiplicity
of single-payoff stable sets exists in both cases, every state has a farsighted objection.
Consequently, the recursion cannot get off the ground.

Finally, Proposition 5.8 implies that the core has interesting farsighted stability
properties, even without the restriction to internal blocking. This is reminiscent of the
Konishi and Ray (2003) results mentioned earlier in Section 5.3.5.3.

A precursor to Proposition 5.8 was obtained by Diamantoudi and Xue (2003) for the
class of hedonic games with strict preferences. A hedonic game is one in which for every
coalition S, V̄ (S) is a singleton.33 This simplifies matters because there is no ambiguity
about the payoffs to outsiders, and noninterference and full support are automatically
satisfied. For matching games, a special case of hedonic games, Mauleon et al. (2012)

nonexistence of a vNM stable set, the Harsanyi stable set does exist. Bhattacharya and Brosi (2011)
extend the Béal et al. (2008) existence theorem to NTU games.

33 See, for example, Banerjee et al. (2001), Barberà and Gerber (2003, 2007), and Bogomolnaia and Jackson
(2002).
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prove that if preferences are strict, farsighted stable sets can be characterized as singleton
allocations in the core.

5.3.6.2 Farsighted stability for games with externalities
A definitive extension of the results in the previous section is yet to be obtained for
games with externalities. However, in the case of partition functions, more can be said
provided we restrict attention to hedonic games, and side-step the problem of coalitional
sovereignty discussed in the previous section. In this setting, Diamantoudi and Xue
(2007) show that the notion of blocking used in defining EBA can be reformulated in
terms of farsighted blocking, where the extreme optimism implicit in farsighted blocking
is modified to make it robust to the precise manner in which perpetrators move. And this
makes it possible, in the context of internal blocking, to interpret EBA as a stable set with
an appropriate notion of dominance. They then go on to argue that a suitable extension
of EBA to the general case, extended equilibrium binding agreements (EEBA), is the
farsighted stable set. Although neither the existence of EEBA nor its efficiency when
it does exist can be guaranteed in general, extending the notion of blocking beyond
internal blocking can help sustain efficiency. Their positive result on efficiency includes
the important example of a Cournot oligopoly; see Section 5.5.

As Greenberg (1990) has shown, it is possible to formulate various stable standards of
behavior along the lines of the stable set by assuming conservative rather than optimistic
behavior on the part of a blocking coalition. Many of the solution concepts based on
farsightedness can be comprehensively viewed through Greenberg’s theory of social
situations. As a complement to the current section, we refer the reader to Mariotti and
Xue (2003) for an excellent review of this approach.

The largest consistent set of Chwe (1994) is a prime example of the blocking approach
with farsightedness assuming pessimism on the part of a blocking coalition. Chwe
considers a more general game than an extended partition function in the sense that
the set of states, X, is an abstract set, not necessarily based on a partition function.
A set Z ⊂ X is said to be consistent if x ∈ Z if and only if for all y, S such that x →S y,
there exists z ∈ Z such that z = y or z is a farsighted objection to y and there exists
some i ∈ S such that u(z)i ≤ ui(x). Chwe proves that there is a unique consistent set,
the largest consistent set (LCS), which contains all consistent sets.34

At this stage, one may be tempted to leave well enough alone and accept the idea,
as in Knightian uncertainty, that stable outcomes can be modeled either with optimistic
beliefs or conservative beliefs or perhaps some combination of the two. However, this
is serious drawback of the blocking approach. It is no less ad hoc than making some
exogenous assumption about remaining players will organize themselves into a coalition

34 Chwe also shows how LCS can be related to a conservative stable standard of behavior in Greenberg’s
theory of social situations.
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Figure 5.3 Illustration of Example 5.8.

structure in response to a coalitional deviation. The problem is easily shown through the
following example.35

Example 5.8. Modify Example 5.6 so that player 2 can move to either state c or d; see
Figure 5.3.

The unique farsighted stable set is {c, d}. State a is not in the farsighted stable set
because player 1 expects player 2 to replace b with c. But now this is too optimistic a
prediction. From b player 2 has the choice to move to either c or d, and obliviously
the rational decision for player 2 is to move to d. Thus, the (farsighted) reasoning for
discarding a now appears to be flawed. In this example, the LCS resolves this problem.
For a state to be in the LCS, it is enough that every initial move have some continuation
that results in a stable outcome which would deter the initial “objection.” By this
criterion, the LCS is {a, c, d}; unlike the farsighted stable set, LCS considers a to be stable.
In this example, the path from b should lead only to d since that is the only rational move
by coalition 2. It so happens that this corresponds to coalition 1 being conservative in its
evaluation of the move from a to b. In general, however, a conservative forecast by the
initiating coalition need not be “rational,” as the next example shows.

Example 5.9. Modify Example 5.8 by interchanging player 2’s payoffs in c and d as shown in
Figure 5.4.

The farsighted stable set and LCS remain unchanged (the former is {c, d} and the
latter is {a, c, d}). But now, it should be clear that an “optimistic” view by player 1 is
indeed the correct one; player 2 in his own interest will replace b by c, not d. Thus, in
this example, it is the LCS which comes to the wrong conclusion.

35 Many of the examples in this section are based on those in Xue (1998) and Herings et al. (2004). They can
all be transformed (with the addition of players) into hedonic partition function games (with appropriately
defined effectivity correspondences) and still retain the features discussed in the text.
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Mauleon and Vannetelbosch (2004) introduce “cautiousness” in the notion of the
LCS by assigning strictly positive probability to all farsighted objections that may follow
from a coalitions initial move. In Examples 5.8 and 5.9, the cautious LCS yields the
same prediction as the farsighted stable set, which is reasonable in Example 5.9, but
not in 5.8. The important point illustrated by these examples is that the prediction of
player 2’s move at state b should not be based not on optimism or pessimism, or some
combination thereof. Instead, it should rely on what is in player 2’s best interest. In the
language of our dynamic model, player 2 has two profitable moves, only one of which
is maximally profitable, and that’s the one which ought to be predicted.

It is easy to see that in both these examples, the notion of an EPCF provides a simple
resolution. But how far can one go with the traditional blocking approach? Xue (1998)
argues, persuasively, that a resolution to this issue requires us to define stability not for
allocations, such as a, b, c, and d in the above examples, but for paths such as (a, b, c)
or (a, b, d). He then considers a stable standard of behavior for a situation with perfect
foresight as a collection of paths satisfying internal and external stability.

For a stable standard of behavior σ , let σ(a) denote all stable paths originating from
a. If α ∈ σ(a), internal stability requires that there not exist a node b ∈ α, a coalition S,
which is effective form moving from b to c such that S “prefers” σ(c) to α. The same
idea is used in defining external stability. The term “prefers” leads to two versions of
stability: one based on optimism and other on conservatism.

It is easy to show that this notion of stability yields the correct answer for both
Examples 5.8 and 5.9. However, in the next example the problem reappears.

Example 5.10. Modify Example 5.9 by adding one more player and one more state, as shown
in Figure 5.5.

First consider the stable paths originating from d. Player 2 would like to move to e′
while 3 would prefer to move to e. Neither can satisfy internal stability and therefore
σ(d) = ∅. Note that while Xue (1998) shows that an acyclicity condition is sufficient
for σ to be nonempty valued, this condition is violated at d. (This is similar to Figure 4
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Figure 5.4 Illustration of Example 5.9.
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Figure 5.5 Illustration of Example 5.10.

in Xue, 1998). The problem arises because neither of the two objecting coalitions has a
priority to make a move. Because σ(d) = ∅, the stability of (a, b, c) is vacuously satisfied;
it is not possible to test if it can be deterred by a move from b to d and some β ∈ σ(d).
Indeed, (a, b, c) is a stable path. But this doesn’t seem reasonable because for players 2
and 3 both e and e′ dominate c, so coalition 23 should move from b to d, not c.36

Unfortunately, this kind of situation is rather common, and it seriously limits
the applicability of this solution concept. Note that if there was a protocol, even a
probabilistic one, to decide who has the first move, the problem wouldn’t arise.37 For
example, if upon arriving at state d, the protocol selects each of two permissible singleton
coalitions with equal probability, then the expected payoff to players 2 and 3 (following
state d) is 15 each. From state b, therefore, the move by coalition 23 to d is maximally
profitable (in the terminology of our dynamic model) but to c is not. And this implies
that a is an absorbing state of every EPCF.

Taken together, these examples demonstrate a serious drawback of the blocking
approach in dealing with farsightedness, especially in environments with externalities.
A key requirement that is missing in the notion of farsighted blocking, is that of
constraining objecting coalitions to make maximal moves among their profitable
alternatives. As Proposition 5.8 shows, there are conditions under which there exist
singleton farsighted stable sets in characteristic function games (without externalities).

36 For a further discussion of these, and other related issues, see also Herings et al. (2004) and Bhattacharya
and Ziad (2012).

37 Recall that one major difference between our dynamic model and that of Konishi and Ray (2003) is
that the latter operates without a protocol. This can result in inefficiencies arising from a “coordination
failure.” Simply having a protocol of the kind we outlined in Section 5.3.5.2 can help avoid these kinds
of inefficiencies.
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In such situations, all farsighted blocking paths lead to the same terminal state, and
therefore, there is no ambiguity of the kind that plagues the examples discussed above.38

But, in general, there are limits to how effectively one can capture farsightedness in
a static concept of stability. The traditional approach in cooperative game theory has
emphasized the virtues of abstracting away from the details of the negotiation process
to highlight the essential features of cooperative behavior. In many situations that has
indeed been a very fruitful approach, but in the present context, it seems too confining
not to introduce some details (as well as explicit dynamics). As the previous examples
demonstrate, simply adding the notion of a protocol, and postulating rational behavior
on the part of coalitions, can provide a way out of the conundrum that the standard
approach produces. The dynamic process of coalition formation described in Section 5.2
is a direct way of studying farsighted coalitional behavior, especially in the presence of
externalities. If this framework seems more complex than, say, the characteristic function
form, it nevertheless seems to be necessary for the questions at hand. It could even be
argued while there is additional structure on the model, the equilibrium concept is
much more straightforward that ones we have discussed earlier, for example, EBA, LCS,
or farsighted stable sets. The fact that in some of the simpler cases, such as characteristic
function games and symmetric TU games with positive externalities, we get the standard
conclusions makes it possible to see this approach as a conceptual generalization rather
than an alternative. At the same time, as we discuss in Section 5.6, it may be possible,
and desirable, to incorporate the principle of maximality into the blocking approach, at
least in some classes of games, and thereby resolve this issue without the apparatus of a
dynamic model.

5.4. THE BARGAINING APPROACH: NONCOOPERATIVE GAMES

In this section, we study an approach to coalition formation based on noncooperative
bargaining. Attention now shifts from active coalitions to active individuals, and the notion
of blocking is replaced by a direct emphasis on proposals and responses. In summary, all
negotiations are expressed formally as a bargaining game, for which we draw inspiration
from Ståhl (1977), Rubinstein (1982), Chatterjee et al. (1993), Okada (1996), and several
others.39

Throughout, the primitive object on which our analysis is based is the partition
function, with the idea that underlying this function is a game in strategic form.

38 It is plausible to conjecture that, under some reasonable conditions, if a state is a singleton farsighted
stable set then it must be the absorbing state of any EPCF. It will be desirable to formally establish such a
connection to justify a singleton farsighted stable set as the “right” solution.

39 For related literature on bargaining, see Selten (1981), Binmore (1985), Baron and Ferejohn (1989), Gul
(1989), Winter (1993), Perry and Reny (1994), Krishna and Serrano (1995), Moldovanu and Winter
(1995), Hart and Mas-Colell (1996), Bloch and Gomes (2006), and Compte and Jehiel (2010).
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As already discussed, a partition function has the virtue of incorporating a number
of different situations. Two-person or multiperson bargaining is, of course, included
quite trivially. So is coalitional bargaining over a characteristic function, where different
coalitions have access to different worths which could each be divided. Over and above
these instances, partition functions can also accommodate externalities across coalitions
in the determination of coalitional surplus.

We define a noncooperative bargaining game on the partition function. A history-
dependent protocol selects an active proposer at each date, perhaps stochastically. In the
language of our general framework, active coalitions are now restricted to be singletons.
A proposer is free to propose a particular (feasible) payoff allocation to any subset of
a partner set specified by the protocol. For each proposal, the protocol also specifies
the order in which the responders respond, either to accept or to reject the proposal.40

Observe that a partner set was of no importance in the blocking approach (at least as it
currently appears in the literature), but in the present context, it is crucial: proposers must
have others to make proposals to. Coalitions form through the course of this bargaining
process as proposals are made and either accepted or rejected by responders.

The several ingredients of a bargaining model can be combined in different ways
to generate distinct branches of the literature. In the next section, we show how a
combination of the effectivity correspondence and protocol can be used to cover a
diverse set of models.

5.4.1 Ingredients of a coalitional bargaining model
5.4.1.1 The protocol
When a proposer is chosen by the protocol, she makes a proposal to a subset of
eligible partners. The proposal concerns a division of the worth of that subset among
its members. If all respondents unanimously accept, the proposed coalition forms, and
the process shifts to the set of eligible players remaining in the game. The rejection of a
proposal creates a bargaining friction: payoffs are delayed by the passage of some time,
which is discounted by everybody using the discount factor δ.

The probability with which different individuals are chosen to be proposers will
generally depend on the history of events up to that date. Perhaps the simplest protocol
is one in which an agent is chosen with uniform probability to be a proposer. This is
known as the uniform protocol, see, e.g., Baron and Ferejohn (1989) and Okada (1996).
Another simple protocol recognizes different individuals in a given order and anoints
the first rejector of the previous proposal (if any) as the next proposer. This is the rejector-
proposes protocol, see, e.g., Rubinstein (1982) and Chatterjee et al. (1993). One way to
combine these two protocols while retaining each of them as special cases is to suppose

40 This avoids the possibility of coordination failure, and is consistent with the rest of the literature.
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that an active individual (from the set of free individuals) is chosen randomly at any stage
if the previous proposal has been accepted. Otherwise, if the previous proposal has been
rejected by some individual, the rejector gets to be the next proposer with probability
μ. With probability 1 − μ an exogenous randomization chooses one of the remaining
eligible agents to be active. Observe that if μ � 1, the rejector is likely to be the next
proposer, while if μ � 0, the rejector is excluded from making a proposal in the next
round. This class of protocols accommodates a wide variation in rejector power, includ-
ing models studied by Eraslan (2002), Okada (2011), and Eraslan and McLennan (2013).

A central feature of our protocol concerns the recognition of those players who
are eligible, either to make new proposals or to entertain them from others. Which
agent is eligible will depend, of course, on the situation to be modeled. In the case
of irreversibly binding agreements, a player once included in some previous coalitional
agreement is never again recognized by the protocol. When agreements are reversible,
so that renegotiation is permitted, the partner set could include a player who belongs
to a previously formed coalition, but only if all other members of that coalition are
also included as responders. (Their agreement is needed to “free” the player to sign a
new deal.) Such restrictions on the protocol can often be substituted by corresponding
restrictions on the effectivity correspondence; recall footnote 20.

In short, our description of protocols can be construed as an attempt to model the
essential elements of the situation at hand: how easy it is for a rejector to seize the
initiative and make a fresh proposal, or how constrained previous signatories are in
participating in further bargaining. In this survey, we do not concern ourselves with other
approaches to “design” a proposal to deliberately “implement” some known solution
concept. For instance, Gul (1989) shows how the Shapley value can be implemented as
a stationary perfect equilibrium of a game with pairwise meetings. Hart and Mas-Colell
(1996) do so in a more general context, through a bargaining game in which proposers
are required to make proposals to the complete set of available players. Moreover, the
rejection of a proposal leads, with some positive probability, to the proposer being entirely
eliminated from future rounds of bargaining. These restrictions are clearly in the spirit of
implementing a particular solution concept, as the description makes it clear that there is
no particular attempt to identify the protocol with any observed bargaining situation.41

Indeed, incorporating strategic coalition formation in these models remains an important
direction for future work. For a review of this literature we refer the reader to Winter
(2002).

41 It should be added, however, that the above depiction makes more descriptive sense in a two-person
bargaining context; see Binmore et al. (1986), and Sutton (1986). There these restrictions reduce, more
realistically, to the possibility that the entire bargaining process might break down following any round
of negotiation.
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5.4.1.2 Possibilities for changing or renegotiating agreements
Whether or not a coalitional agreement once made is subject to future revision is a
fundamental issue.

Bargaining with Binding or Irreversible Agreements: In much of the literature, all
agreements to form a coalition are “fully” binding, in the sense that they are irreversible.
A coalition once formed cannot disintegrate or be subsequently absorbed into a larger
group.42 The protocol responds to histories by choosing only players (as proposers or
respondents) who were not part of any previously formed coalition. It follows, therefore,
that once all players are included in some formed coalition, the process of coalition
formationmust come to an end, though payoffs continue to be received as per the various
agreements. In particular, the protocol ceases to choose new proposers. For examples of
this sort of model, see Chatterjee et al. (1993) and Okada (1996) for characteristic func-
tion games, and Bloch (1996) and Ray and Vohra (1999) for partition function games.

Bargaining with Reversible Agreements: Situations in which agreements are only in force
for a limited period of time can be modeled by suitably specifying the protocol. For
example, it can be supposed that agreements only last for one period, and active proposers
are chosen from the entire population of players, so that partner sets are never restricted
by the history of past coalition formation. For examples, see Stole and Zwiebel (1996),
Gomes and Jehiel (2005), and Konishi and Ray (2003).

The possibility of renegotiating existing agreements yields another situation in which
agreements may be reversible. In this case, an existing agreement may be changed, but
only with the blessings of existing signatories. Such signatories must include all individ-
uals who are party to any ongoing agreement that may need to be modified as a conse-
quence of the new proposal. This is captured by an appropriate restriction on the effectiv-
ity correspondence or on the protocol. For examples, see Seidmann and Winter (1998),
Okada (2000), Gomes and Jehiel (2005), Gomes (2005), and Hyndman and Ray (2007).

5.4.1.3 Payoffs in real time or not
A substantial part of the literature studies models in which payoffs are only experienced
after all coalitions have formed. This includes Rubinstein (1982), Bloch (1996),
Chatterjee et al. (1993), Ray and Vohra (1999) for binding agreements and Seidmann
and Winter (1998) and Okada (2000) for renegotiable agreements. A more recent
literature, e.g., Konishi and Ray (2003), Hyndman and Ray (2007), Gomes (2005),
Gomes and Jehiel (2005), and Xue and Zhang (2011), considers situations in which
payoffs are realized continually, as coalitions can form and continue to renegotiate or
discard previous agreements.

It is of course only natural for reversible agreements to be cast in a real-time
framework. It should be clear that our general framework is well suited to cover such

42 In the special case of n-person bargaining, in which only the grand coalition has a surplus to divide, this
is hardly an assumption as there is no collective incentive to alter any agreed-upon division of the surplus.
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situations and, as we will see below, it can also encompass models in which payoffs are
realized at the end of the coalition formation process.

5.4.1.4 Majority versus unanimity
There is also a distinction to be drawn using the rules of the game that determine when a
proposal is to be passed. Two major candidates are unanimity, as in the Ståhl-Rubinstein
model and its descendants, and majority vote, as in the Baron-Ferejohn model (and
political economy models more generally). Once again, it is often easy to accommodate
a variety of such rules as part of the general framework.When agreements are irreversible,
we can often adopt the unanimity approach without any loss of generality, by absorbing
other decision rules into the description of the partition function and the form of the
effectivity function.

As an example, consider three-person bargaining with majority. The “true” function
that describes this example sets the worth of the grand coalition equal to the surplus at
stake (say 1 unit), while setting the worth of all subcoalitions to zero. Yet it is possible to
use instead the characteristic function

v(S) = 1 if and only if |S| >
n
2
,

and use the unanimity protocol. What is altered is essentially a matter of interpretation: a
proposal is never actually made to a subcoalition S, but it’s as if it is: the proposal is in fact
made to the grand coalition, with the implicit strategic presumption that the “targeted”
majority subgroup S is effective for the change and will approve it.

In short, bargaining models that require majority approval can be easily embedded in
coalitional bargaining models in which subcoalitions have power. In this sense, there is
little loss of generality in studying unanimity games, provided we are general enough to
accommodate subcoalitional worths. That said, we hasten to add that the use of majority
rules in coalitional settings—especially with reversible agreements—is an interesting and
not well-studied research topic.43

5.4.2 Bargaining on partition functions
5.4.2.1 Equilibrium in a real-time bargainingmodel
We begin with a baseline model for bargaining in real time. As in the blocking approach,
we consider a partition function (N ,V ) which assigns to each partition π and to each
coalition S in that partition, a set of payoff allocations V (S,π).

43 The absorption of the rules into the description of the partition function can sometimes be inadequate
when agreements are reversible or can be renegotiated. It may be that coalition {12} is enough to
implement an agreement for {123}, but it is not enough to track the situation with coalition {12} alone,
when agreements are reversible. Later, when renegotiation might occur, we must recognize that it is
coalition {123}, and not {12}, which is bound by an ongoing agreement.
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A state is denoted x = (π , u,C) where uS ∈ V (S,π) for every S ∈ π and C
is the collection of “committed” players (N�C being the set of “uncommitted”
or “free” players). We use the convention that all free players consist of singletons,
while committed players belong to formed coalitions (including possibly stand-alone
singletons). In other words, i /∈ C implies that {i} ∈ π and every j ∈ S ∈ π such
that |S| ≥ 2 implies that j ∈ C. Uncommitted players can be proposers or potential
partners in all variations of the model; the others may be included to different degrees
if agreements are reversible immediately or later.

At each stage of the bargaining process, we keep track of past proposers, proposals,
rejectors (if any), and all formed coalitions as well as free agents.

A history at some stage is a list of such objects up to, but not including, the events
that will occur at that stage. Such stages may be of various kinds: a proposer is about to
be chosen, or a proposal about to be made, or a responder about to respond, or—such
matters concluded—a state about to be implemented. Obvious nomenclature may be
employed to distinguish between the histories leading up to different stages: “proposer
histories,” “responder histories,” and “implementation histories.”

At proposer or responder histories players must either make proposals or react to
them. A full listing of a particular player’s actions—proposals and responses—for all
such histories is a strategy for that player. To describe strategies more formally, consider
an individual k. For a proposer history h at which k is meant to propose, she must
choose a payoff vector and a coalition S that can implement the payoff in question.
In standard bargaining theory such a vector would be given by a division of aggregate
surplus among the individuals (see, e.g., Rubinstein, 1982, and Baron and Ferejohn,
1989). In coalitional bargaining theory, it would be a division of coalitional surplus among
the members of that coalition (see, e.g., Chatterjee et al., 1993, Seidmann and Winter,
1998, and Okada, 1996). In bargaining theory with externalities, the payoff vector must
come from a “conditional proposal”: if coalition structure π forms, we divide in this
way, and if π ′ forms, we divide in that way, and so on (see, e.g., Ray and Vohra, 1999).
In our real-time model, the payoffs at each date are feasible given the going coalition
structure. For already formed coalitions, they must also reflect the agreed-upon payoff
allocation corresponding to this coalition structure. (This can be seen as a restriction on
the effectivity correspondence.)

An active agent proposes a new state to one or more of her available partners. She will
employ a behavior strategy, which would imply at each history a probability distribution
over (y, S), where y represents the new state and S a coalition containing i and a subset
of available partners jointly capable of implementing that state. Denote by μk(h) the
probability distribution that the active agent employs at proposer history h.

Likewise, at a responder history h at which k is meant to respond, denote by λk(h) the
probability that k will accept the going proposal under that history. The full collection
σ = {μk, λk} over all players k is a strategy profile.
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A strategy profile σ induces value functions for each player. These are defined at all
histories of the game, but the only ones that we will need to track are those just prior
to the implementation of a fresh state, or the unaltered continuation of a previous state.
Call these implementation histories. On the space of such histories, every strategy profile
σ (in conjunction with the given protocol) defines a stochastic process Pσ as follows.
Begin with an implementation history. Then a (possibly new) state is “implemented” at
that history. Subsequently, a new proposer is determined. The proposer proposes a state.
The state is then accepted or rejected. (The outcome in each of these last three events
may be stochastic.) At this point, a new implementation history h′ is determined. The
entire process is summarized by the transition Pσ on implementation histories.

For each person i and given an implementation history h, the value for i at that date
is given by

V σ
i (h) = ui(x) + δ

∫
V σ
i (h′)Pσ (h, dh′), [5.7]

where x is the state implemented at h. Given any transition Pσ , a standard contraction
mapping argument ensures that V σ

i is uniquely defined for every i.
Say that a strategy profile σ is an equilibrium if two conditions are met for each player i:

(a) At every proposer history h for i, μi(h) has support within the set of proposals that
maximize the expected value V σ

i (h′) of i, where h′ is the subsequent implementa-
tion history induced by i’s actions and the given responder strategies.

(b) At every responder history for i, λi(h) equals 1 if V σ
i (h′) > V σ

i (h′′), equals 0
if the opposite inequality holds, and lies in [0, 1] if equality holds, where h′ is
the implementation history induced by acceptance, and h′′ is the implementation
history induced by rejection.

5.4.2.2 Two elementary restrictions
To ease the exposition, we impose two simple restrictions on equilibrium. First, equi-
libria might involve delay: a proposal could be rejected on the equilibrium path. To be
sure, it is natural for delays to arise in bargaining with incomplete information.44 But in
complete information models such delays are more artificial and stem from two possible
sources. The first is a typical folk theorem-like reason in which history-dependent
strategies are bootstrapped to generate inefficient outcomes, including equilibria with
delay. More subtly, equilibria may involve delay because an unacceptable proposal is
made to deliberately affect the identity of the rejector and subsequently the choice of
the next proposer. For examples, see Chatterjee et al. (1993) and Ray and Vohra (1999).
This will only happen for protocols that are sensitive to the identity of previous rejectors.
In several models such as Rubinstein (1982) and random proposer models as in Baron

44 For a recent example that attempts to get around the Coase conjecture in models of one-sided incomplete
information; see Abreu et al. (2012).
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and Ferejohn (1989) and Okada (1996, 2006, 2011), this phenomenon is impossible.
Moreover, even in situations in which the protocol is sensitive to past rejections, the
literature provides reasonable conditions under which all equilibria involve no delay; see
in particular Chatterjee et al. (1993) and Ray and Vohra (1999). Accordingly, in what
follows, we shall restrict ourselves to no-delay equilibria, in which at each proposer history,
a proposer makes an acceptable proposal.

We will also restrict ourselves to equilibria which satisfy a minor additional restric-
tion, which we call “compliance.” Say that an individual is compliant if, whenever she
responds to a proposal, she takes an action that makes the proposer better off, provided
that this does not harm her in any way. The terms “better off” and “harm” are defined
with respect to equilibrium value functions, in just the same way as equilibrium payoffs
are. This refinement is of a lexicographic nature: it only applies when there is no danger
to the payoff of the individual concerned. Alternatively, one could just as easily think
of compliance as an equilibrium refinement rather than as a lexicographic restriction
on individual preferences. Thus, an equilibrium strategy profile is compliant if for no
individual and no history is there a deviation by a responder which increases the payoffs
of a proposer, while not decreasing the responder’s payoff.

To the extent that we are aware, there is no serious departure from compliance in
any part of the literature, so we have no hesitation in imposing this requirement.45

5.4.2.3 EPCF and bargaining equilibrium
In this section, we link up bargaining equilibrium (which will nest classical models of
two-player noncooperative bargaining but contain muchmore) with the general solution
concept of this chapter, that of an EPCF.

The central feature of such a connection is the link between an acceptable proposal
on the one hand, and the notion of a maximally profitable move on the other.

Proposition 5.9. Consider any bargaining game. Then the equilibrium process Pσ correspond-
ing to any no delay, compliant, bargaining equilibrium σ is an EPCF.

Proof. Pick any bargaining equilibrium σ . It generates a process Pσ on all implementation
histories. This is a PCF, once we identify every implementation history with the notion
of a “history” under the EPCF. Specifically, retain the list of all active coalitions, partners,
moves, and previous rejectors up to period t − 1.

Fix a history, as just identified, and consider the choice of any active (singleton)
coalition—the proposer—together with a set of potential partners, as dictated by the

45 In many cases, compliance is a freely obtained equilibrium property and so imposes no additional
restriction. This is true, for instance, of Markovian equilibrium coalitional bargaining with fully
transferable utility. Otherwise the proposer could slightly increase his offer to all responders and guarantee
acceptance.
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protocol of the bargaining game. Consider the equilibrium proposal made. Since, by
the no-delay hypothesis each partner accepts the proposal, doing so must yield a value
that is at least as high as the value following a rejection. So it is immediate that the
proposal is profitable for all the partners concerned. We now establish maximality (and
therefore profitability46). Suppose, on the contrary, that there is an alternative profitable
proposal that makes the proposer strictly better off (in terms of value under Pσ ). That
proposal must involve at least one partner, otherwise the proposer can unilaterally achieve
his alternative, which is impossible in equilibrium. Consider the equilibrium responses
to this proposal in the order given by the protocol, up to all the respondents or the
first equilibrium rejection, if any.47 By compliance, each respondent (working back
recursively from this point) will take the action that benefits the proposer, in case the
respondent is indifferent between the equilibrium action and some other. Therefore, the
alternative move can be implemented by a proper deviation. This makes him better off
relative to the putative equilibrium, a contradiction.

Compliance is needed for this result. As an example, consider a discrete two-player
bargaining model in which a unit surplus can be divided in just two ways: (3/4, 1/4) and
(1/4, 3/4), where the first entry belongs to player 1 and the second to player 2. Suppose
that only player 1 makes offers, and that player 2 has an outside option of 1/4 which she
can enjoy instantly on rejection of an offer. Suppose, moreover, that all agreements are
irreversible, and the agreed-on payoffs are enjoyed for all time. There are two equilibria:
one in which the division (3/4, 1/4) is proposed and accepted, and the other in which
this proposal is rejected, leading to an equilibrium division of (1/4, 3/4). The first can
be identified with the unique EPCF of the model, while the second equilibrium is not
an EPCF. It is also not compliant.

In addition, there could be more complex history-dependent equilibria of fully
transferable-utility bargaining games which are not compliant (and not identifiable with
EPCFs). As we do not find noncompliant equilibria particularly interesting, we do not
pursue this line any further.

5.4.3 Some existingmodels of noncooperative coalition formation
In this section, we describe somemodels of coalition formation and embed these into the
real-time setup developed in the previous section. In most cases, these existing models
are not real-time theories, and the resulting embedding is perforce somewhat unnatural.
That, to us, is a virtue: not only will we be able to describe the positive and useful
features of these models, but—to the extent that a real-time description is actually called

46 With a singleton proposer, verification of maximality suffices to guarantee profitability for the proposer.
47 Our assumption of no-delay equilibrium does not rule out the possibility that a deviating proposal must be

accepted even if the responder is indifferent between doing and not doing so. This is where compliance
is used.
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for in some situations—we will also be able to point out potential inadequacies in the
existing literature.

5.4.3.1 The standard bargaining problem
Much of what we do relies on the solution to a standard bargaining problem, due to
Ståhl (1977) and Rubinstein (1982). In this section, we briefly recapitulate that problem.
A group of n persons divide a cake of size 1; there are no subcoalitions of any value, and
there are no externalities. A protocol chooses a proposer in every round, and everyone
else responds sequentially to the proposal in some given order. If the proposal is rejected,
a new round begins. Future rounds are discounted by a common discount factor.

To cover both the uniform-proposer and rejector-proposes protocols, we consider a
general protocol in which the first rejector of a proposal is chosen to be the next proposer
with probability μ ∈ [0, 1], and with probability 1 − μ, another uncommitted agent is
equiprobably chosen to be the new proposer.

As we will see, in the pure bargaining problem, the (Markov) equilibrium will be
one in which the grand coalition forms immediately. Since there are no intervening
states before the end of the coalition formation process, there is no distinction between
a real-time model and one in which payoffs are received at the end of the process.

If n = 2, we have two-person bargaining. A remarkable property of this two-person
model is that subgame perfection fully pins down equilibrium payoffs. The proposition
that follows extends Rubinstein (1982) to a broader class of protocols:

Proposition 5.10. There is a unique subgame perfect equilibrium payoff vector in the two-person
bargaining model.

Proof. Existence will be shown below; assume it for now and prove uniqueness. Let M
and m be the supremum and infimum equilibrium payoff to either player as a responder,
conditional on her rejecting the current offer but before the next proposer has been
decided.48 Then, because a proposer can always assure herself an infimum of at least
1 −M , and because a responder must be given at least m,

m ≥ δ[μ(1 −M) + (1 − μ)m],

where μ is the probability that a current rejector gets to propose next. That implies

m ≥ δμ(1 −M)

1 − δ(1 − μ)
. [5.8]

48 When discount factors are not the same, these values vary across the players but the proof follows exactly
the same lines.
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But no proposer can obtain more than 1 − m, so it is also true that

M ≤ δ[μ(1 − m) + (1 − μ)M]

or

M ≤ δμ(1 − m)

1 − δ(1 − μ)
. [5.9]

Combining (5.8) and (5.9), it is easy to see that

m ≥
δμ
(
1 − δμ(1−m)

1−δ(1−μ)

)
1 − δ(1 − μ)

,

and simplifying this yields the inequality

m ≥ δμ

1 − δ(1 − 2μ)
. [5.10]

Following an analogous line of reasoning,

M ≤ δμ

1 − δ(1 − 2μ)
. [5.11]

and together (5.10) and (5.11) show that

M = m = δμ

1 − δ(1 − 2μ)
≡ m∗, [5.12]

which establishes uniqueness.
Existence can now be shown by construction. Have each player accept an offer if

it yields her at least m∗ (defined in (5.12)) and always make the proposal (1 − m∗,m∗)
when it is her turn to propose. It is easy to verify that this strategy profile constitutes a
perfect equilibrium.

This proposition and its accompanying proof reveal that the equilibrium involves
immediate agreement, with the proposer and the responder receiving

1 − δ(1 − μ)

1 − δ(1 − 2μ)
and

δμ

1 − δ(1 − 2μ)
,

respectively. It is worth noting that no matter how small μ is, as long as it is strictly
positive, the division of the cake must converge to an equal split as “bargaining frictions”
vanish; i.e., as δ converges to 1. It is true that the first individual to propose may acquire a
lot of power, especially ifμ is small, but the value of that added power becomes negligible
provided both players are extremely patient.

To extend this analysis of the bargaining problem to n > 2, we restrict attention to
equilibria with stationary strategy profiles. It is easy to see that in equilibrium each player
must make an acceptable proposal to the grand coalition. Let mi be the amount that i
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will accept as a responder, provided that all responders after her in the response order are
planning to accept that proposal.49

In equilibrium, (mi) must be built from an expectation about payoffs conditional
on rejection; these would be a probabilistic combination of i’s payoff as a proposer
(1 −∑

j �=i mj) and as a responder (mi). Therefore, mi must solve the following equation:

mi = δ{μ[1 −
∑
j �=i

mj] + (1 − μ)mi}

or

(1 − δ)mi = δμ

⎡
⎣1 −

n∑
j=i

mj

⎤
⎦ ,

which tells us that mi = m for all i, and

m = δμ

(1 − δ) + δμn
. [5.13]

This solution extends the two-person case and once again, convergence occurs to
equal division as bargaining frictions disappear, provided that μ > 0.

While our derivation of (5.13) assumed that all players other than the first rejector
have an equal chance of becoming the active proposer, the uniqueness of stationary
equilibrium payoffs appears to be a more general feature. Eraslan (2002) and Eraslan and
McLennan (2013) establish this for a class of bargaining games that includes the Baron and
Ferejohn (1989) model and for a class of protocols in which the active proposer is chosen
with an exogenously given probability. A characterization of uniqueness for general
games and general protocols is yet to be fully explored.50 However, uniqueness certainly
fails to survive with three or more players if we allow for nonstationary equilibrium
strategies. The argument, due to Herrero (1985), Shaked (see Sutton, 1986), and Baron
and Ferejohn (1989) can be generalized to the full class of protocols we consider here;
see Ray (2007) for details. Moreover, when we consider general coalitional games, as we
do next, the exact protocol has a bearing on the actual equilibrium payoffs; see Examples
5.11 and 5.13 below.

5.4.3.2 Coalitional bargaining with irreversible agreements
In this section, we study a model of coalitional bargaining in which an agreement once
made is irreversible. The protocol is therefore restricted so that no agent who has made

49 It is unnecessary to describe here what happens if a later responder is planning to reject, as such a proposal
will be rejected anyway and that is all that matters for our argument.

50 For instance, with the pure rejector-proposes protocol, stationary equilibrium payoffs are not unique in
Example 5.11. See also Ray (2007, Section 5.3.4.3), which uses a wider class of protocols.
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a deliberate decision to join a coalition can participate in future negotiations.51 This is
indeed the framework for most of the bargaining literature that we have already cited.
The real-time model developed in Section 5.4.2, which in turn is a special case of an
EPCF, can be further simplified to set up a canonical example of irreversible coalitional
bargaining with externalities. On still further specialization, the latter yields the bulk of
the models used in the literature.

Recall that a proposal refers to a division of the worth of a coalition among its
members. In a characteristic function game, for coalition S, this is simply a point in
V (S). But in a partition function, the worth of a coalition will vary with the going
coalition structure. Therefore, a proposal must consist of a set of conditional statements
that describe a proposed division of coalitional worth for every contingency, i.e., for
every conceivable coalition structure that finally forms. More precisely, a proposal is a
pair (S, v), where v is a collection of allocations {v(π)}, one for each partition π that
contains S, feasible in the sense that for every coalition S in π ,

vS(π) ∈ V (S,π).

We continue with the protocol in which the first rejector of a proposal becomes the
next proposer with probability μ. Strategies and equilibrium are exactly as defined in
the general model.

The literature we will be describing in this section concerns bargaining with payoffs
assigned only after all coalitions have formed. However, it is easy enough to describe a
general procedure for embedding such models into our real-time framework. The first
step is to specify a way of assigning payoffs to the players each time a coalition gets formed
(leading to a new state). We do this by presuming that at date 0 all agents are free and
the initial coalition structure is one of singletons.52 From then on, payoffs are received
in every period in a perfectly well-defined fashion. For individuals i who have yet to
form a coalition or have deliberately decided to stand alone, they are given by V (i,π t)

at date t, where π t is the coalition structure prevailing at that date. For individuals i who
are part of some coalition S, they are given by vS(π t) at date t, which comes from the
agreement v that members of S have entered into at some earlier date.

Next, we need to show that an equilibrium of a standard bargaining game, say σ , is
a also an equilibrium in the real-time framework with payoffs defined at and added over
all dates. We know that no player has a deviation that can result in higher payoff after
all coalitions have formed. So the only possibility of a profitable deviation must come from
capturing some gains before the coalition formation process comes to an end. If the long-

51 That includes agents who have deliberately made the decision to stand on their own.
52 In the irreversible agreements model, this assumption is without any serious loss of generality, especially

if we assume that already formed coalitions at the start of the game have made their agreements to begin
with.
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run payoff to the deviating player is lower, then for δ close to one, the transitory payoffs
cannot make up for the long-run loss. The only possibility that remains for a profitable
deviation is that it reaps some transitory gains but eventually results in the same payoff as
σ . Moreover, because agreements are irreversible, any such deviationmust result in a final
coalition structure different from the one under σ . But this can be ruled out by a mild
genericity assumption that a different coalition structure cannot yield the deviating player
exactly the same payoff as the equilibrium payoff. In many models, the equilibrium payoff
to a player is closely related to the average worth of her coalition, and this genericity
assumption can be then be imposed directly on the partition function. Notice that this
genericity argument is very similar to the one we employed in Proposition 5.6 to connect
the static notion of an EBA to an EPCF.

It is well known that the perfect equilibria of such a model can generate a huge
multiplicity of outcomes. We already know, in fact, that the n-person bargaining game
is prey to multiplicity when n ≥ 3, and that game is a special case of the irreversible
agreements model described here. In what follows, then, we retreat to the use of stationary
Markovian strategies. They depend on a small set of state variables, and do so in a way
that’s insensitive to the passage of calendar time. The current proposal or response (while
permitted to be probabilistic in nature) is not permitted to depend on “past history.” Of
course, it must be allowed to depend on the current set of free players, on the coalition
structure that is currently in place and—in the case of a response—on the going proposal;
after all, these are all payoff-relevant objects.53

Note that under our initial condition, the coalition structure must steadily coarsen
(or remain unchanged) as time wears on. Thus, payoffs are received in real time, and they
must finally settle down to a limit value for all concerned. We have therefore successfully,
and at little cost, embedded a model of irreversible agreements into the real-time setting
of a PCF.

The existence of a stationary equilibrium (possibly with randomization) can be
proved along the lines of Ray and Vohra (1999) and Okada (2011).

It is instructive to see how the protocol affects the equilibrium payoffs. We illustrate
this with a simple three-player characteristic function.

Example 5.11. (N , v) is a TU-characteristic function with N = {1, 2, 3}, v(i) = 0 for all i,
v(S) = 1 for every nonsingleton S.

If the protocol chooses the first rejector to become the next proposer (μ = 1), it
is easy to see that in any stationary equilibrium, the first proposer offers δ/(1 + δ)

53 We will also permit proposers to condition their new proposals on the identity of the last rejector (in the
current round of negotiations) and for respondents to condition their responses on the identity of the
proposer.
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to one of other player and obtains 1/(1 + δ). The equilibrium payoffs are therefore
exactly as in Rubinstein bargaining with two players; as δ approaches 1, the two players
share the aggregate surplus approximately equally. If, however, a proposer is chosen with
equal probability (μ = 1/3), regardless of any previous rejection, again a two-player
coalition forms in equilibrium. However, the surplus is not shared equally between the
two players who form the “winning” coalition. The proposer offers δ/3 to one of the
other players and any such offer is accepted. For δ approaching 1, the proposer receives
approximately 2/3 and the other player in the winning coalition receives approximately
1/3. This conforms, of course, to the Baron and Ferejohn (1989) characterization of
equilibrium with majority voting.

We will have more to say about the efficiency of equilibrium in Section 5.5.

5.4.3.3 Equilibrium coalition structure
The central question of interest is the prediction of equilibrium coalition structure.
As the reader might imagine, this is an ambitious and complex undertaking, especially in
an ambient environment which allows for a variety of strategic situations and alternative
protocols. While we do not have a comprehensive understanding of this problem and
highlight it as a fundamental open question, it is possible to make progress in specific
cases. We outline some available results.54

In what follows, we consider only symmetric TU partition functions though the
analysis extends to nonsymmetric games and also to nontransferable payoffs under some
restrictions; see the end of this section.

A symmetric (TU) partition function has the property that the worth of a coalition
depends only on its size and the ambient numerical coalition structure it is embedded in;
namely, the collection of coalition sizes in the coalition structure. Use the notation n to
refer to both numerical coalition structures and substructures, the latter being collections
of positive integers (including the “null collection” φ) that add up to any number strictly
less than the total number of players. In the sequel, a substructure is to be interpreted
as a collection of coalitions that has “already formed” in a subgame. Define the size of a
substructure to be the number of all players in it; that is, the sum of coalition sizes in the
substructure.

With some abuse of notation, then, v(T ,π) may be written as v(t,n), where t is the
size of coalition T and n is the numerical coalition structure corresponding to π . Define
the average worth of t in n by

a(t,n) ≡ v(t,n)

t
.

We may interpret this number as the average worth of any coalition of size T embedded
in a coalition structure π with associated numerical structure n. In what follows, we

54 More detail on the discussion that follows can found in Ray (2007).
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impose for expository convenience the genericity condition

a(t,n) �= a(s,n′) for all t �= s. [5.14]

We now present an algorithm that calculates a particular coalition structure. Specifi-
cally, for each substructure n with size less than n, the algorithm assigns a positive integer
t(n), to be interpreted in the sequel as the size of the coalition that forms next. By
applying this rule repeatedly starting from the “null structure” with no coalitions, we
will generate a particular numerical coalition structure.
Step 1. For all n of size n− 1, define t(n) ≡ 1.
Step 2. Suppose that t(n) is defined for all substructures n of size greater than m, for

some m ≥ 0. For all such n, define

c(n) ≡ n.t(n).t(n.t(n)) . . . ,

where the notation n.t1. . . . tk simply refers to the numerical coalition structure
obtained by concatenating n with the integers t1, . . . , tk.

Step 3. For any n of size m, let t(n) be the integer in {1, . . . , n− m} that maximizes
the expression a(t, c(n.t)).

Step 4. Once the recursive definition is completed for all structures including the null
substructure φ, define a numerical coalition structure (by

n∗ ≡ c(φ).

This completes the description of the algorithm. Its connection to equilibria is striking
and direct under the rejector-proposes protocol, through the links are wider-reaching as
we shall see subsequently:

Proposition 5.11. Assume the rejector-proposes protocol (that is, μ = 1 in our class of
protocols). Then under the genericity condition on average worths, there exists δ∗ ∈ (0, 1) such
that if δ ∈ (δ∗, 1), every no-delay equilibrium must yield n∗ as the numerical coalition structure.

We omit the proof, but it is easy to construct one along the lines of Ray and Vohra
(1999). The main argument is based on the following steps. To begin with, when the
partition function is symmetric and the rejector gets to propose with probability one,
every compatriot to whom an individual makes offers has the same options conditional
on refusal as the proposer currently does. It follows that when the discount factor is close
to 1, the same argument used to show equal division in Rubinstein bargaining applies,
and any formed coalition must exhibit (roughly) equal division of their worth. It follows
from an inductive argument that at every stage with a substructure already formed, it pays
to form a coalition that maximizes “predicted” average worth, the qualifier “predicted”
coming from the fact that “final” average worths are not fully defined until the coalition
structure has fully formed. (That is where the induction is used.) That leaves a small
item to be verified. Even though coalition formation is occurring in real time and
these final payoffs won’t be received until every equilibrium coalition has formed, this
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does not worry the early-forming coalitions provided that they are sufficiently patient, a
requirement that will be picked up by the construction of the threshold δ∗. The real-time
structure is of little importance in a model with irreversible agreements (our genericity
condition (5.14) helps to substantially simplify matters here).

It should be noted that the proposition does not assert that an equilibrium imple-
menting n∗ actually exists. Sometimes it may not (see Ray and Vohra, 1999), but these
cases are easily ruled out by a mild restriction on average worths. Define algorithmic average
worth â(n) to be the maximized average worth a(t, c(n.t)) achieved by choosing t at any
stage of the algorithm (indexed by the substructure n). Say that algorithmic average
worth is nonincreasing (or that the partition function satisfies NAW, for “nonincreasing
average worth”) if â(n) ≥ â(n.t(n)) for every substructure n such that n.t(n) has size
smaller than n.

NAW has bite only for partition functions. For all characteristic functions, in which
the worth of a coalition depends only on the coalition itself, NAW must be trivially
satisfied.55 Whether or not NAW applies more generally (i.e., when externalities are
present) is a less transparent question, and the answer will largely depend on the
application at hand. But we haven’t come across an interesting economic or political
application where NAW isn’t satisfied. Both the Cournot oligopoly and the public goods
model satisfy NAW. It is also important to note that in both cases the algorithm yields
an equilibrium coalition structure which is typically not the grand coalition, resulting in
inefficient outcomes.

Now we apply NAW by showing that in its presence, n∗ is achieved under a variety
of protocols. Recall that in our class of protocols, a rejector counterproposes with
probability μ, while another uncommitted player is chosen uniformly otherwise. Say
that a protocol from this class is rejector-friendly if the rejector gets to counterpropose
with better than even probability: μ > 1/2. Of course, the familiar rejector-proposes
protocol is a special case.

Proposition 5.12. Under NAW and genericity, there is a discount factor δ∗ ∈ (0, 1) such that
if δ ∈ (δ∗, 1), there exists an equilibrium that yields the numerical coalition structure n∗.

We note once again that n∗ is singled out, because the equilibrium behavior we
identify is connected closely to equal division of the available worth as bargaining frictions
go to zero. For a more nuanced discussion of related issues and some qualifications, see
Ray and Vohra (1999) and Ray (2007).

55 The reason is simple. Our algorithm involves the stepwise maximization of average worth, setting each
maximizing coalition aside as the algorithm proceeds. If there are no externalities across coalitions, such
a process must result in a sequence of (maximal) average worths that can never increase; for if they did,
such coalitions would have been chosen earlier in the algorithm, not later. This simple observation also
assures us that NAW does not demand restrictions such as superadditivity: all (symmetric) characteristic
functions satisfy it.
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An uncomfortably familiar feature of bargaining models is that their predictions are
often sensitive to the finer points of procedure—to the protocol, in the language of this
chapter. This is why we are taking care to present results that cover a broad class of
protocols. One might worry, though, that the class isn’t broad enough. For instance,
the two propositions in this sections have been stated for the class of rejector-friendly
protocols, procedures in which the rejector has quite a bit of power. One can show,
however (see Ray 2007) that Proposition 5.12 can be extended to all the protocols we
consider, provided that the rejector always has a strictly positive probability of making
the next proposal and can also unilaterally exit with no time delay. The condition that is
needed is a strengthening of NAW to one in which average worth strictly declines along
the path of the algorithm56; see Ray (2007, p. 64, Proposition 5.3). It is also possible to
provide additional restrictions on algorithmic average with that guarantee that n∗ is the
unique equilibrium structure under the rejector-proposes protocol (see Ray and Vohra,
1999, Theorem 3.4). As shown in Ray and Vohra (1991, 2001), both the Cournot
oligopoly and the public goods model satisfy this additional condition for uniqueness.
Thus, n∗ appears to be a focal prediction.

We end our discussion by remarking that it is possible to incorporate nontransferable
utility, as well as nonsymmetric cases. First, suppose that we retain all the symmetry
assumptions, but replace the TU worth v(S,π) by some symmetric set of payoffs
V (S,π). Nothing of substance will change as long as we are willing to assume
that each such set is convex. It is easy to obtain an intuition of why the same
arguments go through. Average worth will now need to be replaced by the
symmetric utility obtained “along the diagonal” for each V (S,π), and the same
algorithm may be written down with average worth replaced by this symmetric
utility. Next, return to the TU case but suppose that the partition function is
nonsymmetric. Then the analysis is considerably more complicated, but nevertheless a
similar algorithm can be constructed. Ray and Vohra (1999) and Ray (2007) contain
the details of this procedure.

5.4.4 Reversibility
So far, we have assumed that a commitment to form a coalition, once made, cannot be
undone. In many situations, this isn’t a bad assumption. But there are numerous scenarios
in which agreements may be reversed freely (or at little cost). A free-trade area or customs
union may initially exclude certain countries and later incorporate them. Two groups
might form an alliance, or a multiproduct firm may also spin off divisions into sub-firms.
Political coalitions may form and reform.

Reversibility comes in two flavors. An agreement may be viewed as indefinitely in
place, unless signatories to that agreement voluntarily agree to dissolve it. We will call

56 That is, a(n) > a(n.t(n)) for every substructure n such that n.t(n) has size smaller than n.
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this the case of renegotiable agreements. Or an existing agreement may simply come with
an expiry date, after which new options can be freely explored. One might call this the
case of temporary agreements.57

What is the role played by a renegotiable commitment? Why would a commitment
to form a group first be made, then reversed? Why not simply eschew the making of
that commitment in the first place? As a concrete instance, consider a specific case of
the public goods model introduced in Example 5.2:

Example 5.12. (Public goods revisited) Consider Example 5.2 with three symmetric
agents and c(r) = (1/3)r3. As in the Cournot example earlier, let us construct a partition function
for this game. Then, it is easy to calculate the partition function. Writing v(π) to be the (ordered)
vector of coalitional worths in the coalition structure π , we have, following Ray (2007),

v(123) = {6√3},
v({1, 2, 3}) =

{
2
2
3
, 2

2
3
, 2

2
3

}
,

v({i, jk}) =
{
2
√
2 + 2

3
, 2
[
1 + 2

3

√
8
]}

.

Two features are to be noted. First, the per-capita worth of the grand coalition is smaller than the
payoff to i in the coalition structure {i, jk}. Second, the per-capita payoff to j and k in the coalition
structure {i, jk} exceeds their corresponding payoff in the coalition structure of singletons. So if one
agent commits to (irreversibly) exit the negotiations, it is in the interest of the remaining two players
to stay together.

For concreteness, assume that an initial proposer is drawn randomly, that proposals
must be universally acceptable to the players involved, and that the first rejector of a
going proposal gets to make a new proposal. Then, if group formation is irreversible,
there is only one (numerical) equilibrium structure. Player i stands alone, and players j
and k band together; the outcome is inefficient.

Now suppose that fresh proposals can always be made. Then, there are two
possibilities, both leading to an efficient outcome. First, if a player moves off on her own,
the other two players disband as well, incurring a temporary loss of payoff but thereby
getting into position to enforce a symmetric, efficient outcome with the all three players
coming together. If this path indeed constitutes credible play, then no player will move
off in the first place, and the outcome is efficient to begin with.

(This isn’t even a possibility if commitments are irreversible. Once player i moves off,
there is no bringing her back, so players j and k will never disband.)

57 To be sure, agreements may be both temporary and renegotiable (within the period for which the
agreement is in place), but here we only look at the two features separately.
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The second possibility concerns a situation in which once player i moves off, players
j and k do not find it worthwhile to disband. For instance, this could happen if player i
can make a commitment which is irreversible for some length of time, a situation which
can be readily modeled by lowering the discount factor of all players. In this case, the
outcome will still be efficient, but the path to efficiency as well as the final outcome
will look very different. Some player i must initially move off. Thereafter, players j and k
must cajole her back to the grand coalition with an offer that gives her more than what
she gets in the structure {i, jk}. So we are ultimately at an efficient outcome, one that
is “skewed” in favor of the individual who was lucky enough to be the first to make a
commitment. Notice that the commitment must have been made for her to take advantage
of it, and so the equilibrium path involves a transitory phase of inefficiency, followed by
a Pareto-superior outcome.

This example may be easily modified to take account of temporary agreements. For
instance, suppose that the signatories to the agreement to bring player i back into the
fold cannot commit to honor this agreement in the future. If—in that future—some
other player j were to unilaterally desert the agreement and take up the same stance as
player i did, then there may be little in the situation to induce player i to take up the
conciliatory offer in the first place. That could result in a permanent failure to achieve
an efficient outcome, a theme that we return to in Section 5.5.

Both renegotiable and temporary agreements (and several other variants) can be
defined using the effectivity correspondence. Suppose that a pair x = (π , u) represents
a going state, embodying certain agreements, and a move is contemplated to a new state
y = (π ′, u′), in which one or more of those agreements are disrupted.When agreements
are renegotiable, we would like to describe the coalitions that are effective in moving
the state from x to y. First, if a player’s coalitional membership is affected as a consequence
of a proposed move, the move must be disrupting some previous agreement to which
that player was a signatory. That player must be included in any group that is effective
for the proposed move. Second, the proposed move might affect the (ongoing) payoff to
a particular agent, without altering her coalitional membership. Must consent be sought
from that agent? The situation here is more subtle. It may be that the payoff is affected
because a fellow member of a coalition wishes to reallocate the worth of that coalition.
In that case—given that the existing allocation is in force—it is only reasonable that our
agent be on the approval committee for the move. On the other hand, our agent’s payoff
may be affected because of a coalitional change elsewhere in the system, which then
affects our agent’s coalition via an externality. Our agent is “affected,” but need not be
on the approval committee because she wasn’t part of the agreement “elsewhere” in the
first place.58

58 Notice that we wouldn’t insist that our player should not be on that approval committee; it’s just that our
definition is silent on the matter.
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More formally, for any move from x to y, let M(x, y) denotes the set of individuals
whose coalitional membership is altered by the move, andW (x, y) the set of individuals
j whose one-period payoffs are altered by the move: uj(x) �= uj(y). Say that agreements
are binding but renegotiable if the following restrictions are met:

1. [[B.1]] For every state x and proposed move y, M(x, y) ⊆ S whenever S ∈
E(x, y).

2. [[B.2]] Suppose that T ∩W (x, y) is nonempty for some existing coalition T .
Then if the proposed move involves no change in coalition structure, or if
payoffs are described by a characteristic function, T ∩W (x, y) ⊆ S whenever
S ∈ E(x, y).

[B.1] is obvious. To understand [B.2], note that the payoffs in coalition T have been
affected. But if there has been no change in the coalition structure, or if the situation is
describable by a characteristic function to begin with, how could that happen? It can only
happen if there is a deliberate reallocation within that coalition, and then [B.2] demands
that all individuals affected by that reallocation must approve it. It is in this sense that
[B.1] and [B.2] together formalize the notion of binding yet renegotiable agreements.

Restrictions such as [B.1] and [B.2] placed on the effectivity correspondence permit
us to explore all sorts of other variants. For instance, a theory of “temporary agreements”
can characterized as follows: a coalition that’s effective for moving x to y must contain
all members of at least m− 1 of the m new coalitions that form, and the coalition
not included must be a subset of an erstwhile coalition.59 As a second variant, allow
a coalition to break up or change if some given fraction (say a majority) of the members
in that coalition permit that change. Some political voting games or legislative bargaining
would come under this category. Now any effective coalition must consist of at least a
majority from every coalition affected by the move from one state to another. In the
reverse direction, [B.1] and [B.2] could be further strengthened: for instance, one might
require that a coalition once formed can never break up again. This would lead us back
to the model with irreversible commitments.

In the next section, we turn to the efficiency properties of models with both
irreversible and reversible agreements.

5.5. THEWELFARE ECONOMICS OF COALITION FORMATION

A central question in the theory of coalition formation has to do with the attainment of
efficiency. The Coaseian idea that efficiency is inevitable in the absence of informational
frictions and “unrestricted contracting” is deeply ingrained in the economics literature.
The fundamental impediments to efficiency are generally seen as arising from adverse
selection or moral hazard, these stemming from deeper asymmetries of information.

59 It is to be interpreted as a “residual” left by the other “perpetrating coalitions.”
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That incentive compatibility constraintsmay rule out first-best efficiency is, of course,
well understood. So it is no surprise that notions of second-best efficiency, such as the
concept of incentive efficiency of Holmström and Myerson (1984), are well studied.60

First-best efficiency can sometimes be restored by cleverly designing mechanisms, or
rules of the game, that align individual incentives with the social goal of efficiency.61

In our complete information framework, of course, these complications do not arise;
it is trivial to design an efficient mechanism. On the other hand, by granting agents
full freedom to form coalitions of their choice we implicitly rule out certain kinds of
mechanisms. In effect, every coalition is permitted to adopt an efficient mechanism of
its own.62

As we shall seek to explain in this section, there are many situations in which the very
possibility that groups can form serves as an impediment to efficiency. It isn’t a question
of incomplete information, though of course there must be some limits to contracting.
But what are these limits, and how exactly do these manifest themselves?

5.5.1 Two sources of inefficiency
There are two sources of inefficiency that we seek to make explicit in this section. The
first can cause inefficiency even when there are no externalities across coalitions. The
second is fundamental to situations with intercoalitional externalities, those typically
captured by partition functions. The heart of the first inefficiency is that the “correct”
coalition is often not formed, because the active set of players responsible for forming
the group seeks to maximize its own payoff (or more accurately, to find a maximal
payoff vector for itself), but in doing so it will generally need to enlist partners who
have to be suitably compensated. The nature and amount of that compensation depends
crucially on the protocol that governs the process of coalition formation. At the heart
of the second inefficiency is a more classical concept: that of externalities. In a typical
coalition formation problem, the two effects are often intertwined, but it is instructive
to see them separately. We shall begin this discussion by assuming that agreements are
irreversible.

Example 5.13.Consider a three-player TU-characteristic function with v(123) = 1 + ε, where
ε ∈ (0, 0.5), v(ij) = 1 for all i, j, and v(i) = 0 for all i.

60 For cooperative theory, though, the problem runs even deeper. Restricting all coalitions to incentive
compatible contracts does not necessarily yield core stability. Even in otherwise classical environments
without externalities, such as exchange economies, the incentive compatible core may be empty; see for
example, Vohra (1999) and Forges et al. (2002). For reviews of this literature we refer the reader to Forges
et al. (2002) and Forges and Serrano (2013).

61 See, for example, Palfrey (2002) for a review of the implementation literature.
62 Recall the discussion in Section 5.4.1.1. See also Ray and Vohra (2001) for further elaboration on this

point in the context of the free-riding problem.
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While efficiency requires that the grand coalition be formed, the blocking approach
does not yield this an equilibrium outcome. This is not a balanced game and its core is
empty; for any division of v(N) among the three players, there is a two-player coalition
with an objection. If only internal objections are permitted, the coarsest coalition
structure that is an EBA consists of a two-player coalition and a singleton. One way
to explain why no player will try to form the grand coalition and capture the additional
ε is that this is too small relative to the dangers posed by the possibility of a two-player
secession. Presumably, efficiency could be restored if ε is high enough (at least 0.5),
or if some player were given more power. To examine the latter possibility, suppose
coalitions form as follows: a person is chosen at random to be the “ringleader,” and she
chooses any coalition she pleases. Once the coalition forms, a fraction k of its worth
must be equally divided among the members. The ringleader gets to keep the rest. At
one extreme, k = 1 and all worths must be equally divided, a case emphasized by Farrell
and Scotchmer (1988) and Bloch (1996). At the other extreme, k = 0 and the ringleader
is a perfect dictator.

It is easy to see in this example that efficiency obtains if and only if k is below a certain
threshold k∗, given by

k∗ = 6ε

1 + 4ε
< 1.

The intuition is straightforward. When k is small, the ringleader picks up almost the
entire worth and will therefore seek to maximize coalitional worth. The division of
payoffs may be distasteful to an inequality-averse social planner, but the outcome is
efficient in the Pareto sense. On the other hand, when k exceeds the threshold k∗,
the amount that the ringleader has to share with her chosen compatriots becomes an
obstacle to efficiency. It is easy to see that in the equal division limit with k = 1, the
ringleader will seek to maximize average worth, which results in a two-player coalition
being formed.

To see how the presence of externalities creates a distinct source of inefficiency, we
consider a partition function version of the ringleader example.

Example 5.14. There are six players in a symmetric TU partition function game. The only
(numerical) coalition structures that matter (all others result in 0 to each player) are π(a) =
(3, 3),π(b) = (3, 2, 1), and π(c) = (2, 2, 1, 1), corresponding to three kinds of states, described
as follows.

a : π(a) = (3, 3), v(3,π(a)) = 4
b : π(b) = (3, 2, 1), v(3,π(b)) = 2, v(2,π(b)) = 5, v(1,π(b)) = 0.5
c : π(c) = (2, 2, 1, 1), v(2,π(c)) = 3, v(1,π(c)) = 0.5

Suppose the player with the lowest index in any coalition is the ringleader who can
capture the entire worth of the coalition (k = 0). Although (3, 3) is the only efficient
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coalition structure, it is not an “equilibrium.” If a three-person coalition were to form,
the next ringleader will form a two-player coalition rather than three. But this results
in the first ringleader receiving only 2. The equilibrium strategy for the first ringleader
will therefore be to form a two-player coalition, which leads to state c, an inefficient
outcome.

In summary, we have shown two things so far. First, the ability to internalize the
marginal gains from coalition formation is crucial to the formation of the “right”
coalitions. Second, when there are externalities, that ability may not be enough to
guarantee efficiency. We proceed now to examine a variety of models of coalition
formation and their associated implications for efficiency.

5.5.2 Irreversible agreements and efficiency
We begin by studying irreversible agreements, and we draw on both the bargaining and
blocking approaches as needed. We address both sources of inefficiency. For the first, it
suffices to study characteristic functions.

We have already seen that the stationary equilibria of any reasonable bargaining game
will impose some restrictions on how far the payoff to the proposer can diverge from
the average worth of the coalition she seeks to form.63 If this divergence is small enough
(effectively giving very little extra power to the ringleader of Example 5.13), the first
coalition to form in equilibrium will be the one which maximizes average worth among
all coalitions. (In Example 5.13, a two-player coalition will form.) Indeed, as we saw
in Section 5.4.3.3, for a wide variety of protocols, the unique equilibrium coalition
structure in symmetric games is given by an application of the algorithm that recursively
maximizes average worth. In Example 5.13, we can say more. For any general protocol
in which μ, the probability of the first rejector being the next proposer, is greater than ε,
there is a unique equilibrium which results in the formation of a two-player coalition64;
see Ray (2007), p. 143 for details.

As the next proposition shows, inefficiency is even more pervasive than this simple
example would suggest. The formation of the grand coalition in equilibrium implies
that no other coalition has higher average worth, a condition that may not hold even in
a balanced (but non-symmetric) game.

Proposition 5.13. Suppose (N ,V ) is a characteristic function game and the first rejector
of a proposal is chosen to be the next proposer with probability μ ∈ (0, 1]. If, for all discount

63 Implicitly, the blocking approach also imposes similar restrictions.
64 The division of the surplus between the proposer and her partner will, however, depend on the precise

form of the protocol. In the rejector-proproses protocol, the proposer receives a little more than 1/2,
whereas in the random proposer protocol, she receives a little more than 2/3, exactly as in Example 5.11.
The difference, of course, is that in the present example the equilibrium outcome is inefficient.
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factors sufficiently close to one, there is an equilibrium in which grand coalition forms immediately,
regardless of the identity of the first proposer, then v(N)

|N | ≥ v(S)
|S| for all S ⊆ N.

Proof. Suppose in equilibrium each proposer makes an acceptable proposal to the grand
coalition. This must mean that the proposer cannot do better by making an acceptable
proposal to a subcoalition of N . Letting mi denote the minimum amount that i will
accept from a proposer, provided all remaining responders plan to accept, this implies

v(N) −
∑

j∈N ,j �=i
mj ≥ v(S) −

∑
j∈S,j �=i

mj, for all S ⊆ N . [5.15]

Since the grand coalition forms immediately in equilibrium, regardless of the
proposer’s identity, we can apply the same argument used in Section 5.4.3.1 to show
that mi = m for all i, where

m = μv(N)

(1 − δ) + δμ|N | ,
and rewrite (5.15) as:

v(N) − (|N | − 1)m ≥ v(S) − (|S| − 1)m

or

v(N) − (|N | − |S|)m ≥ v(S).

Substituting for m, this is equivalent to

v(N)
(1 − δ) + δμ|S|
(1 − δ) + δμ|N | ≥ v(S)

or
v(N)

(1 − δ) + δμ|N | ≥ v(S)
(1 − δ) + δμ|S| .

As δ converges to 1, this yields v(N)
|N | ≥ v(S)

|S| .
Thus, if agreements are irreversible, inefficiency cannot be ruled out even in simple

characteristic function games for any reasonable bargaining process that doesn’t artificially
restrict the coalitions that can form.65,66 A converse of Proposition 5.13 holds for

65 Bargaining games that implement the Shapley value deliver efficiency a fortiori, but they do not allow
a proposal to be made to any coalition of the proposer’s choosing. For example, Hart and Mas-Colell
(1996) require proposals to be made to the full set of available players, and Gul (1989) considers a process
of pairwise meetings in which one player buys out the other’s resources and continues to bargain with
the remaining players. In this respect Gul’s model is similar in spirit to models of renegotiation such as
Okada (2000) and Seidmann and Winter (1998) in which coalitions form gradually.

66 Xue and Zhang (2011) suggest another modification of the bargaining model to establish the existence
of an efficient equilibrium for a partition function game with irreversible agreements. In their model,
the choice of an individual proposer through a protocol is replaced by a bidding mechanism as in Perez-
Castrillo and Wettstein (2002). All players bid simultaneously on each of the feasible moves from a given
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the rejector-proposer protocol (Chatterjee et al. 1993) as well as the random proposer
protocol (Okada 1996, 2011). Since we are focusing on inefficiency, we refrain from
trying to establish the converse for the more general protocol, but settling this remains
an interesting open question.

We now turn to the question of externalities across coalitions. As we observed in
Section 5.4.3.3, both the Cournot oligopoly and the public goods model typically yield
inefficient equilibria. To explain the nature of the problem, we return to the simple
three-player public goods model described in Examples 5.2 and 5.12. The highest social
surplus requires full cooperation, and the complete breakdown of cooperation, with
each player acting as a singleton, is the worst outcome (in terms of aggregate surplus).
However, it is profitable for a single player to break away from the grand coalition if the
other two stay together. Let us mimic this example with some simple numbers:

Example 5.15. (Another variation on public goods) Define the per-capita payoffs of
a three-player partition function as follows:

xN : πN = {123}, a(xN ) = 12
x1 : π1 = {1, 23}, a(x1) = (16, 7)
x2 : π2 = {2, 13}, a(x2) = (16, 7)
x3 : π3 = {12, 3}, a(x3) = (7, 16)
x0 : π0 = {1, 2, 3}, a(x0) = (6, 6, 6)

The effectivity relations for a three-player hedonic game are as follows. For internal blocking, where
i �= j �= k:

πN →i π i, πN →jk π i, π i →j π0.

When external blocking is permitted we also have:

π0 →N πN , π0 →jk π i.

With internal blocking, it is easy to see that each π i is an EBA since none of the
two players in the larger coalition would gain by precipitating π0. In fact, these are the
coarsest coalition structures corresponding to EBA. It is easiest to see this (though not at
all necessary, following Ray and Vohra, 1997) by presuming that there is no transferable
utility and that all aggregate payoffs are equally divided. Then, it is clear that the grand
coalition is not an EBA because player i gains by moving to π i and free riding on the
other two players. Of course, this conclusion depends critically on the restriction to

state, with the “winning move” being one that attracts the maximum aggregate bid. In particular, player
i has an influence on the move, even if the move involves a change in the coalition structure that leaves
i’s coalition unchanged. As they show, there is at least one stationary equilibrium in which this turns out
to be sufficient to internalize the gains from forming the “correct” coalition structure.
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internal blocking. Indeed, with internal blocking, the absorbing states of an EPCF yield
precisely the same set of outcomes (Proposition 5.6). Which player is able to gain the
free-riding advantage starting from the grand coalition depends on the protocol: the first
player given an opportunity to move will decide to stand alone. It is natural now to ask
how this may change if we depart from the assumption of internal blocking.

Consider the notion of farsighted blocking as embodied in the notion of EEBA
introduced by Diamantoudi and Xue (2007) for a hedonic partition function. Recall
that this is the set of farsighted stable sets in the present context. Interpret Example
5.15 as a hedonic partition function in which payoffs correspond to the average
worth of each coalition. It is not difficult to see that πN is an EEBA. Since it is a
singleton set, it obviously satisfies internal stability. All other coalition structures have
farsighted objections culminating in πN : π0 →N πN and π i →j π0 →N πN . Each π i
also constitutes an EEBA. Clearly, πN →i π i and π0 →N πN →i π i. Moreover, for
j �= i, π j →i π0 →N πN →i π i. Note that in the last step, the (optimistic) presumption
is that player i will have the opportunity to move from πN to π i. In our dynamic model,
this presumption will be justified only if the protocol selects player i to be the first
potential mover from πN .

The observation in Example 5.15, that efficiency can be supported through EEBA
even when it’s not possible to do so through EBA, can be extended to a class of hedonic
partition function games in which πN dominates π0 and every other coalition structure
π contains a player in a non-singleton coalition for whom πN dominates π .

Proposition 5.14. (Diamantoudi and Xue, 2007). Consider a hedonic partition function and
suppose πN is a Pareto efficient coalition and Pareto dominates π0. Then πN is an EEBA if for
all π �= πN and π �= π0 there is a coalition S ∈ π such that |S| ≥ 2 and ui(πN ) > ui(π)

for some i ∈ S.

This is an important positive result because its assumptions are satisfied in symmetric
games with positive externalities, e.g., pure public goods economies and the Cournot
oligopoly. Thus, efficiency can be restored in such games if we remove the restriction
to internal blocking and adopt EEBA as the equilibrium concept. As Diamantoudi and
Xue (2007) show, if the assumptions of Proposition 5.14 are not satisfied, all EEBAs may
be inefficient.

The intuition for Proposition 5.14 should be clear from our discussion of Example
5.15. If πN Pareto dominates π0 a coalition seeking to reach πN only needs to engineer
a chain of moves that lead to π0 as the penultimate step in a far sighted objection
terminating in πN . This argument relies of course on an optimistic view of the world
which, as we saw in Example 5.8, can be problematic. Moreover, matters can be more
complicated if we properly take account of payoffs on the path to equilibrium. This will
be become clear from our continued discussion of Example 5.15 in the next section.
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5.5.3 Reversible agreements and efficiency
Agreements may be reversible either because they are temporary or because they can, in
principle, be renegotiated. We consider each of these cases in turn.

5.5.3.1 Temporary agreements
Suppose that agreements are only valid for one period of time (assuming them to last
for some other fixed period of time would make no difference to the analysis). We shall,
i.e. allowing for several interim moves, illustrate the efficiency issue by re-examining
Example 5.15 through our dynamic model. In doing so, we assume that the protocol
has the form described in Section 5.3.5.2. In particular, at each state, a coalition is given
at most one chance to make a move. For simplicity, we also assume that when the state
is πN each of the singletons who have not yet been given a chance to move are chosen
with equal probability. Also assume that at state π0 the first coalition chosen to make a
potential move is N .

For δ sufficiently high, there does exist an EPCF with πN as the unique absorbing
state. This EPCF has the grand coalition moving from π0 to πN and a player j �= i
moving from π i to π0. The grand coalition represents an absorbing state because the
only coalition that could possibly gain by moving away from this is state is a singleton,
say i, hoping to obtain 16 by moving to π i. However, this is immediately followed by
a payoff of 6 and then a return to 12 forever. For δ > 2/3, this is not profitable since
12 + δ12 > 16 + δ6. In fact, it can be shown that πN is the only possible absorbing
state for any EPCF in this example. In particular, π i cannot be an absorbing state.
Suppose it is. This means of course that π0 is not an absorbing state because jk would
then have a profitable move to the absorbing state π i. Nor can πN be an absorbing state
because then jk has an efficient and profitable move to πN via π0. (Note that from π0
player i cannot move to π i). Now consider a move by player j from π i to π0 followed
by a move by N to πN . From here, the process will either get absorbed into π i or
move to π j or πk. The worst possible outcome for player j is that it moves immediately
to π i. Thus, the worst that this yields to player j for these steps is 6 + 12δ + δ27
compared to 7 + δ7 + δ27. For δ > 1/5, this is a profitable move, contradicting the
hypothesis that π i is an absorbing state. Thus, for δ > 2/3, the unique absorbing state
is πN . In particular, unlike EEBA, it is no longer possible to sustain π i as an absorbing
state of an EPCF. This difference results from the explicit accounting of temporary
gains which can make it worthwhile for players to move even if there is an eventual
return to the status quo. As we shall next show, this reasoning can make it impossible
to achieve efficiency through the dynamic process even under the assumptions of
Proposition 5.14

Now change Example 5.15 so that in the intermediate coalition structure π , the
singleton, i, receives 19 rather than 16 (all other payoffs remain unchanged). Proposition
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5.14 continues to apply, and πN therefore remains an EEBA. However, we will now
show that πN cannot be an absorbing state of an EPCF. In fact, there are no absorbing
states, and it is impossible to achieve Pareto efficiency in any EPCF.67 We claim that πN
cannot be an absorbing state. Consider the case in which player 1 is selected to make
a move at πN and she moves to π1. The worst that can happen for player 1 from that
state is a move to π0 followed by a move to πN . This yields player 1 the payoff 19 + δ6
compared to 12 + δ12 in the next two periods (with no change in future periods). Since
δ < 1, this is a profitablemove, contradicting the hypothesis that πN is an absorbing state.
In fact, the unique EPCF is one in which there is no absorbing state and the transitions
between states are the following:

π0 →N πN ,

π i →j π0 whenever j is selected to move,

πN →i π i whenever i is selected to move.

The equilibrium process immediately moves from π0 to πN ; from πN to each of the
intermediate coalition structures with probability 1/3 and then immediately to π0.
Thus, the process visits π0 and πN one-third of the time, and the remainder is equally
divided between the other three intermediate states. The expected payoff to each player,
ignore discounting, is therefore (1/3)12 + (1/3)(11) + (1/3)6 = 9.67 which is clearly
inefficient.

5.5.3.2 Renegotiation
We’ve seen that proposer incentives are often distorted by the potential loss of control that
accompanies a rejected proposal. In short, a proposer must always give some fraction of
the surplus away, and a wedge is driven between socially and privately optimal actions.
On the other hand, intuition suggests that if outcomes can be renegotiated, then the
already agreed-upon arrangements safeguard existing payoffs against any loss of control
frommaking a fresh proposal. This suggests two things. First, if there is surplus left on the
table, then that surplus should eventually be seized and divided in some way among all
parties. Second—and somewhat in contrast to the first point—the seizure of that surplus
won’t generally happen at the very first round. The safeguards may have to be put in
place in earlier rounds, necessitating step-by-step progress toward efficiency (and hence
a sacrifice of full dynamic efficiency). These ideas lie at the heart of contributions by
Seidmann and Winter (1998), Okada (2000), Gomes and Jehiel (2005), Gomes (2005),
and Hyndman and Ray (2007).

To make the point about gradualism completely explicit, recall Example 8. It
describes a three-player symmetric characteristic function with v(123) = 1 + ε, where

67 Konishi and Ray (2003) provide other examples of abstract games with similar features in their model.
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ε ∈ (0, 0.5), v(ij) = 1 for all i, j, and v(i) = 0 for all i. Apply to this the rejector-proposes
protocol. Then, if only irreversible arrangements are possible, and the discount factor is
close enough to unity, an (inefficient) two-person coalition forms and a valuable third
player is omitted, for reasons already discussed. With renegotiation, matters are different.
A two-person coalition will still form at first, but the eventual outcome is efficient, as the
third person can be taken in without any fear of dilution to the already committed players
in the two-person coalition. The formation of an “intermediate coalition” essentially
protects the parties to that agreement. The agents included in the intermediate coalition
can block any attempt by the excluded agent to undercut them, because they are already
signatory to a binding agreement that can only be abolished with the consent of both
players. That reduces the power of the excluded agent to extract surplus, and the grand
coalition can finally form.

One feature of this example is that ultimately all renegotiation ceases and the
economy “settles down.” More importantly, are those limit payoffs efficient? Consider
the following example of a four-person characteristic function, with v(S) = 3, if S = N ,
v(12) = v(34) = 1, and v(S) = 0 otherwise. Suppose that the protocol is “rejector
proposes.” Provided that the discount factor is close enough to unity, there is an
equilibrium in which the coalition structure {12, 34} forms but no further progress is
made: all proposals to the grand coalition are rebuffed and the rejector demands the
entire surplus net of existing payoffs to the other three agents).

Notice, however, that the failure to achieve efficiency is based on rather knife-
edge considerations. An efficiency-enhancing proposal may be rejected, true, but events
postrejection cannot hurt our existing players by too much, because ongoing agreements
are binding. If a proposer does not mind being rejected as long as subsequent play
benefits others and does not hurt her, such history-dependent inefficiencies can be
broken provided that the status quo agreements are binding. That motivates the following
concept: say that an individual is benign if she prefers an outcome in which some other
individuals are better off, provided that she (and every individual) is just as well off. The
benignness “refinement” is of a lexicographic nature. Our individual first and foremost
maximizes her own payoff, and benignness only kicks in when comparisons are made
over outcomes in which her payoff is unaffected. There is no danger to the payoff of the
individual concerned.

Benignness has found support in a number of different experimental settings
(including bargaining); see, e.g., Andreoni and Miller (2002), Charness and Grosskopf
(2001), and Charness and Rabin (2002), among others. Indeed, these studies suggest
something stronger: people are sometimes willing to sacrifice their own payoff in order to
achieve a socially efficient outcome. Given its lexicographic insistence on maximizing
one’s own payoff, benignness certainly doesn’t go that far.

Under benignness, asymptotic efficiency must be attained under every possible
equilibrium:
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Proposition 5.15. Assume [B.1] and [B.2]. In characteristic function games all equilibria
are absorbing. Moreover, if the set of states is finite, every pure strategy benign equilibrium is
asymptotically efficient: every limit payoff is static efficient.

This proposition, taken from Hyndman and Ray (2007), is to be contrasted with
the folk theorem-like results obtained in Herrero (1985) and Chatterjee et al. (1993)
for the case of irreversible agreements. With repeated negotiation, no amount of history
dependence in strategies can hold players away from an (ultimately) efficient outcome.
In this sense, Proposition 5.15 represents a substantial extension of Okada (2000) and
Seidmann and Winter (1998), who showed that renegotiation achieves efficiency in
superadditive characteristic functions when equilibria are restricted to be Markovian.
(Neither superadditivity nor the Markovian assumption is needed here.) The issue of
how far these results can be pushed by restricting attention to Markovian equilibria is
addressed by Proposition 5.16 later.

While we omit a formal proof, it is easy to see the intuition behind this result.
Suppose, contrary to our assertion, that convergence occurs to an inefficient limit. Then
a proposer will have the incentive to propose a payoff vector that Pareto dominates this
payoff. This follows from two observations. First, because agreements are binding, the
proposer cannot be hurt by making such a proposal. She can always continue to enjoy her
going payoff.68 Second, the proposer is benign. She certainly gains from the proposal if
it is accepted, and there is no reason to invoke benignness. But the point is that she prefers
to make the proposal even if it is rejected. For rejection must entail that all the rejectors
are better off by not accepting the proposal, while the assumption that agreements are
binding ensures that no one is strictly hurt (see previous paragraph). A benign proposer
would therefore prefer the resulting outcome to the presumed equilibrium play, which
is continued stagnation at the inefficient payoff vector.

It must be reiterated, though, that the ability to write binding agreements cannot
guarantee full efficiency in the dynamic sense. As we’ve seen, absorption will generally
require time—i.e., the formation of intermediate coalition structures—before a final
outcome is finally settled upon. These intermediate outcomes may well be inefficient.
So the path taken as a whole cannot be dynamically efficient.69

Most importantly, with externalities across coalitions, matters can be very different.
To be sure, renegotiation might restore efficiency, as is easily illustrated by allowing for
renegotiation in Example 5.15. Once the two partners j and k in π i willingly break up
to precipitate π0, and all three join forces to go to πN , no further changes can occur

68 To make this argument work, we must “already” be at the limit payoff, otherwise the proposer may do
some (small, but positive) damage to her own prospects by the very act of making the proposal. This is
why we assume a finite set of states, though the finiteness can be dropped; see Hyndman and Ray (2007).

69 There is another reason for the failure of dynamic efficiency: such efficiency may necessitate ongoing
cycles across different states. See Hyndman and Ray (2007) for an extended discussion.
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because player i can no longer trigger π i without the consent of the other two. Thus,
renegotiation yields efficiency in this example. Unfortunately, this is not generally the
case. The ubiquitous absorption results reported for characteristic functions break down
when externalities are present. Equilibrium payoffs may cycle, and even if they don’t,
inefficient outcomesmay arise and persist. Finally—and in sharp contrast to characteristic
functions—such outcomes are not driven by the self-fulfilling contortions of history
dependence. They occur even for Markovian equilibria.

It is tempting to think of inefficiencies as entirely “natural” equilibrium outcomes
when externalities exist. Such an observation is generally true, of course, for games in
which there are no binding agreements. When agreements can be costlessly written,
however, no such presumption can and should be entertained. These are models of
binding agreements, a world in which the so-called “Coase theorem” is relevant. For
instance, all two-player games invariably yield efficiency, quite irrespective of whether
there are externalities across the two players. This is not to say that the “usual intuition”
plays no role here. It must, because the process of negotiation is itself modeled as a
noncooperative game. But that is a very different object from the “stage game” over
which agreements are sought to be written.

Consider a three-player example.

Example 5.16. (The Failed Partnership) There are three agents, any two of whom can
become “partners.” The outsider to the partnership gets a “low” payoff: zero, say. A three-player
partnership is assumed not to be feasible (or has very low payoffs)

xN : πN = {123}, u(xN ) = (0, 0, 0)
x1 : π1 = {1, 23}, u(x1) = (0, 10, 10)
x2 : π2 = {2, 13}, u(x2) = (5, 0, 5)
x3 : π3 = {12, 3}, u(x3) = (5, 5, 0)
x0 : π0 = {1, 2, 3}, u(x0) = (6, 6, 6)

and use any effectivity correspondence that satisfies (B.1) and (B.2), yet allows all free players to
get together without any further consultation or clearance.

The crucial feature of this example is that player 1 is a bad partner, or—for the
purposes of better interpretation—a failed partner. Partnerships between him and any
other individual are dominated—both for the partners themselves and for the outsider—
by all three standing alone. In contrast, the partnership between agents 2 and 3 is
rewarding (for those agents).

In this example, and provided δ lies sufficiently close to 1, the outcomes x2 and
x3—which are inefficient—must be absorbing states in every equilibrium.

A formal proof of this observation isn’t needed; the discussion to follow will suffice.
Why might x2 and x3 be absorbing? The reason is very simple. Despite the fact that x2
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(or x3) is Pareto dominated by x0, player 1 won’t accept a transition to x0. If she did,
players 2 and 3 would initiate a further transition to x1. Player 1 might accept such a
transition if she is very myopic and prefers the short-term payoff offered by x0, but if she
is patient enough she will see ahead to the infinite phase of “outsidership” that will surely
follow the short-term gain. That is why it is impossible—in the game as described—to
negotiate one’s way out of x2 or x3. This inefficiency persists in all equilibria, history
dependent or otherwise.

This example raises four important points:
1. The Nature of Agreements. Notice that the players could negotiate themselves out of

x2 or x3 if 2 and 3 could credibly agree never to write an agreement while at x0. Are
such promises reasonable in their credibility? It may be difficult to imagine that from
a legal point of view, player 1, who has voluntarily relinquished all other contractual
agreements between 2 and 3, could actually hold 2 and 3 to such a meta-agreement.
Could one interpret the stand-alone option (x0) as an agreement from which further
deviations require universal permission? Or does “stand-alone” mean freedom from all
formal agreement, in which case further bilateral deals only need the consent of the
two parties involved? It is certainly possible to take the latter view. One might even
argue that this is the only compelling view. In that case, efficiency will need to be
sacrificed.

But there are situations in which the former viewmight make sense. No-competition
clauses that require an ex-employee not to join a rival firm, at least for some length
of time, may be interpreted as an example. Such clauses allow a firm to let a top-level
executive or partner go when it is in the interest of both of them (and therefore efficient)
to do so, but at the same time prevent—perhaps temporarily—another move in which
the executive gets absorbed by a third party. While that latter move is, in itself, also
efficient, it might prevent the former move from even being entertained.

2. The Efficiency Criterion: From Every State, or Some?Observe that the inefficient states
x2 or x3 wouldn’t be reached starting from any other state. This is why the interpretation,
the “failed partnership,” is useful. The example makes sense in a situation in which
players have been locked in with 1 on a past deal, on expectations which have failed
since. The game “begins” with the failed partnership, so to speak. Nevertheless, that
raises the question of whether there invariably exists some initial condition for which
efficiency obtains. (That answer is trivially yes in the current example.)

For all three-player games, and provided we are willing to make some minimal
assumptions, the answer is in the affirmative. That is, for all δ close enough to 1, there
exists an initial state and a stationary Markov equilibrium with efficient absorbing payoff
limit from that state (see Proposition 4 in Hyndman and Ray, 2007). But it is also true
that a general result in this direction is elusive: there is a four-player partition function
such that for δ sufficiently close to 1, every stationary Markov equilibrium is inefficient
starting from any initial state (see the four-player example in Hyndman and Ray, 2007).
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3. More on Transfers. Recall that upfront transfers are not permitted in the failed
partnership. Were they allowed in unlimited measure, players 2 and 3 could reimburse
player 1 for the present discounted value of his losses in relinquishing his partner.
Depending on the discount factor, the amounts involved may be considerable and might
strain the presumption of deep pockets or perfect credit markets needed to carry such
transfers out. But they would break the deadlock.

How does the ability to make transfers feed into efficiency? It is important to
distinguish between two kinds of transfers. Coalitional or partnership worth could be
freely transferred between the players within a coalition. Additionally, players might be
able to make large upfront payments in order to induce certain coalitions to form. In all
cases, of course, the definition of efficiency should match the transfer environment.70

Within-coalition transferability often does nothing to remove inefficiency. For
instance, nothing changes in the failed partnership of Example 5.16. On the other hand,
upfront transfers across coalitions have an immediate and salubrious effect in that example.
Efficiency is restored from every initial state. The reason is simple. If player 1 is offered
any (discount normalized) amount in excess of 5, he will “release” player 2. In view of
the large payoffs that players 2 and 3 enjoy at state x1, they will be only too pleased to
make such a payment. The final outcome, then, from any initial condition is the state
x1, and we have asymptotic efficiency.

But transfers can be a double-edged sword. The discussion that follows is based on
Gomes and Jehiel (2005).

Example 5.17. (Ubiquitous Bad Partnerships)Consider the following three-player game:

xN : πN = {123}, u(xN ) = (0, 0, 0)
x1 : π1 = {1, 23}, u(x1) = (0, a, a)
x2 : π2 = {2, 13}, u(x1) = (a, 0, a)
x3 : π3 = {12, 3}, u(x3) = (a, a, 0)
x0 : π0 = {1, 2, 3}, u(x0) = (b, b, b)

Assume that b > a > 0.

As in Example 5.16, use any effectivity correspondence that satisfies (B.1) and (B.2),
yet allows all free players to get together.

In this symmetric example, there is a unique efficient state by any criterion. It is state
x0. It Pareto dominates every other state. In particular, every two-player partnership is
an unambiguous disaster. It is obvious that in any reasonable description of this game
that precludes upfront transfers, there is a unique absorbing state, which is the state x0.

70 For instance, if transfers are not permitted, it would be inappropriate to demand efficiency in the sense
of aggregate surplus maximization.
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But the introduction of upfront transfers changes this rather dramatically. Under the
uniform proposer protocol, every stationary Markov equilibrium is inefficient starting from any
initial state: the state x0 can never be absorbing.

This remarkable observation highlights very cleanly the negative effects of upfront
transfers. The usefulness of a transfer is that it frees agents from inefficient outcomes,
as in the case of the failed partnership in Example 5.16. But its potential danger lies
in the possibility that individuals may deliberately generate inefficient outcomes to seek
such transfers. This notion of transfers as ransom turns out to be particularly vivid in
this example. Whenever it is the turn of an agent to move at state x0, she creates a bad
partnership with another agent and then waits for a transfer to unlock the partnership.
That situation recurs again and again. Can we still be sure that transfers will actually
be paid, and that all of these actions properly lock together as an equilibrium? The
answer is yes; for details, see Gomes and Jehiel (2005) and the detailed exposition in
Ray (2007).

In short, the deviating players do suffer a loss in current payoff when they move away
from the efficient state. But the prospect of inflicting a still greater loss on the outsider
raises the possibility that the outsider will pay to have the state moved back—albeit
temporarily—to the efficient point. Thus, the presumption that unlimited transfers act
to restore or maintain efficiency is wrong.

Notice how the example stands on the presumption (just as in the failed partnership)
that two players can always form a partnership starting from the situation in which all
three players stand alone. If this contractual right can be eliminated in the act of making
an upfront transfer, then efficiency can be restored: once state x0 is regained, there can
be no further deviations from it. This line of discussion is exactly the same as in the
failed partnership and there is nothing further to add here.

More generally, the efficient state in this example has the property that a subset of
agents can move away from that state, leaving other agents worse off in terms of current
payoffs.Whenever this is possible, there is scope for collecting a ransom, and the potential
for a breakdown in efficiency. Gomes and Jehiel (2005) develop this idea further.

4. What About Superadditive Games? Both the failed partnership, as well as the four-
player game mentioned earlier, involve situations that are not superadditive. If, for
instance, the grand coalition can realize the Pareto improvement, then player 1 can
control any subsequent shenanigans by 2 and 3 (he will need to be part of any coalition
that is effective for further change), and he will therefore permit the improvement,
thereby restoring efficiency.

There are subtle issues that need to be addressed here. First, in games with
externalities, superadditivity is generally not to be expected. For instance, in Example
5.1 (the Cournot oligopoly), it is easy to see that if there are just three firms, firms 1 and
2 do worse together than apart, provided that firm 3 stands separately in both cases. At
the same time, this argument does not apply to the grand coalition of all firms. Indeed,
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it is not hard to show that every partition function derived from a game in strategic form
must satisfy grand coalition superadditivity (GCS):

[GCS] For every state x = (u,π), there is x′ = (u′, {N}) such that u′ ≥ u.

Is GCS a reasonable assumption? It may or may not be. One possible interpretation
of GCS is that it is a “physical” phenomenon; e.g., larger groups organize transactions
more efficiently or share the fixed costs of an enterprise such as a business or public
good provision. But such superadditivities are often the exception rather than the rule.
After all, the entire doctrine of healthy competition is based on the notion that physical
superadditivity, after a point, is not to be had. In general, too many cooks do spoil the
broth: competition among groups can lead to efficiency gains not possible when there
is a single, and perhaps larger, group attempting to act cooperatively. To be sure, in all
of the cases, the argument must be based on some noncontractible factor, such as the
creativity or productivity created by the competitive urge, or ideological differences, or
the possible presence of stand-alone players who are outside the definition of our set
of players but nevertheless have an effect on their payoffs (such as the stand-alone third
player in the Cournot example).

But there is a different notion of GCS, summarized in the notion of the superadditive
cover. After all, the grand coalition can write a contract which exactly replicates the
payoffs obtainable in some other coalition structure. For instance, companies do spin
off certain divisions, and organizations do set up competing R&D groups. In principle,
the grand coalition can agree not to cooperate, if need be, and yet write agreements
that bind across all players. For instance, in the failed partnership of Example 5.17,
the ability to insert no-compete clauses at will effectively converts the game into its
superadditive cover. However, to the extent that such clauses cannot be enforced for an
infinite duration, the model without grand-coalition superadditivity can be viewed as a
simplification of this and other real-world situations.

In fact, Gomes and Jehiel (2005) demonstrate that in many situations, efficiency can
be restored if there exists an efficient state that is negative-externality free (ENF) in the
sense that no coalition, or collection of coalitions, can move away from it and hurt a
player who is not party to such a change.

[ENF] There exists an efficient state, x = (u,π), such that for all i ∈ N and x →S1
x1 →S2 x2 · · · →Sk y, such that i /∈ Sk for all k, ui(y) ≥ ui(x).

Note that ENF is not satisfied in Example 5.15. It is easy to see that ENF is weaker
than GCS since a move from the grand coalition requires unanimous consent. And it
holds trivially in characteristic function games since there are no externalities.

Proposition 5.16. Consider a TU partition function. Every Markovian equilibrium is
asymptotically efficient under either one of the following set of conditions:
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1. [(i)] Upfront transfers are permitted, the set of states is finite (modulo transfers) and there exists
an ENF state; Gomes and Jehiel (2005).

2. [(ii)] There are no upfront transfers and GCS is satisfied; Hyndman and Ray (2007).

Gomes (2005) establishes a related efficiency result under GCS, without assuming
a finite number of states but by assuming that coalitions once formed cannot become
smaller. He also provides an example to show that GCS cannot be weakened to ENF
without allowing upfront transfers across coalitions.

5.6. COALITION FORMATION: THE ROAD AHEAD

This chapter confronts a plethora of solution concepts in the literature on coalition
formation with one umbrella model. That model adopts an explicit real-time approach
to the formation of coalitions. That is, a group of players band together, perhaps disband
later and re-form in shifting alliances, all the while receiving payoffs at each date (or
instant) according to the coalition structure prevailing at the time.

What constrains or disciplines such an approach? Perhaps the most important feature
is a specification of the nature of commitment. For instance, one might posit that a
coalition, once formed, and an agreement among its members, once reached, is frozen
for ever after, in which case the dynamic game in question acquires a new focus, not so
much on the implementation of an agreement (which, after all, is guaranteed by the rules
of such a game), but on the negotiation of an agreement. Or, turning to the opposite
extreme, one might posit that all agreements have force for just a single period. In that
case we are back, not to a standard game (after all, a binding agreement can be written if
only for a single period), but to one in which the implementation of existing agreements
also acquire focus. Or one might be interested in a situation in which agreements are
binding unless renegotiated with the permission of all concerned. The choice of which
environment is relevant will be dictated by the particular application that the researcher
has in mind, but one thing is common to all of them: that to some degree, binding
agreements can be written.

When this “equilibrium process of coalition formation” is taken back to particular
models, such as characteristic function games, partition function games or models of
noncooperative bargaining, it will make predictions. It is of interest to compare such
predictionswith existing solution concepts designed for such situations, but not explicitly
based on dynamic considerations. This is what we have done throughout the chapter. It
has been our hope that a common umbrella model serves to illuminate both the strengths
and the limitations of existing solution concepts.

Yet our approach is, at present, just that: an approach and not much more. We do
not claim to have found a general theory, in the sense of having overarching theorems of
existence and behavior that transcend the specific scenarios that have been traditionally
dealt with. At the same time, we believe that progress along these lines is possible, perhaps
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in ways that parallel the modern theory of dynamic noncooperative games. That defines
a large and fundamental open area of research, but it is just one half of the program.

The second half of the program would consist in applying those general principles
to particular situations, and using those principles either to validate existing solution
concepts, or to modify them in useful ways. In a sense this second part of the program
is like the reverse of the Nash program. Recall that program asks for noncooperative
“implementation” of well-known solution concepts in cooperative game theory, such
as the Nash bargaining solution. The Nash program is, we feel, a good statement of
implementation theory or mechanism design, but our goal here is different. It is to have
a broad positive theory of coalition formation in real time, and then let the cards fall
where they may in specific situations, without necessarily tailoring the theory to “fit”
specific solution concepts. Rather, the theory would be used to sift through the existing
concepts, perhaps discarding some and replacing them by the new “projections” of the
theory on to the specific situation at hand.

Two aspects of this approach appear to be applicable to a wide range of situations.
First, there is the question of intracoalitional division of surplus, once a coalition has
formed. Our approach is general enough to encompass several existing theories, but
viewed from a broader perspective is quite primitive. We have emphasized two routes
to intracoalitional division: the blocking approach, in which any allocation is a potential
candidate as long as it is not “objected to” by other coalitions, and the bargaining
approach, in which a chosen proposer, cognizant of the “outside options” of her partners,
makes a proposal to them that they prefer not to refuse.

But there are other approaches. For instance, a social norm, or a voting process,
might dictate how a coalition allocates its surplus. The simplest example of a social
norm is unrestricted equal division of the surplus of any coalition that happens to form,
as in Farrell and Scotchmer (1988). The simplest example of a voting process is majority
rule within a coalition, as in the recent work of Barberà et al. (2013). The impact of
such norms or processes on equilibrium coalition structures is nontrivial, interesting,
and largely unexplored. Such restrictions placed on division increase the vulnerability of
a coalition to threats from other coalitions, but at the same time reduce the flexibility
of other coalitions to issue threats. The resulting sets of equilibrium coalition structures
are therefore unlikely to be nested.

There are also conceptual issues to be addressed. Perhaps the most fundamental of
these is whether a coalitional norm must respect the participation constraints of indi-
viduals when it is applied. To return to the example of egalitarian division, it is entirely
possible that unrestricted equal division will be blocked by “high-ability” individuals
refusing to form coalitions with “low-ability” individuals for fear of expropriation. The
resulting outcome will display a high degree of within-coalition equality, but possibly
significant amounts of cross-coalitional inequality. If, on the other hand, the egalitarian
norm takes into account the participation constraints of individuals, one obtains the
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egalitarian solution of Dutta and Ray (1989), in which the “most egalitarian” division
subject to participation constraints is chosen. To be sure, the same considerations apply
to all processes and norms. For instance, within-coalition voting in Barberà et al. (2013)
is carried out in a manner that parallels unrestricted equal division: the possibility that
the coalition could lose its viability is not considered. If it were, that would lead to a
new equilibrium set of coalition structures. We should emphasize that we do not take a
stand on these fundamental issues, and in particular, we do not claim that one option is
inevitably superior. But we ask for a general theory that is cognizant of these alternatives.

The second aspect of the real-time approach is that it naturally contends with the
question of farsightedness. The static counterparts of farsightedness (that are dominant
in the literature) do a mixed job in capturing its various nuances. They work well in some
special situations, e.g., the core in characteristic function games under the assumption of
internal blocking, or singleton farsighted stable sets in characteristic function games. But
in general, as we discussed in Section 5.3, farsighted stability brings up complications
that are not always fully resolved by solution concepts such as the farsighted stable set,
the largest consistent set, or equilibrium binding agreements. In contrast, the explicitly
dynamic notion of an EPCF has several advantages. It can handle cycles and incorporate
explicitly the idea that coalitions make not just profitable moves but maximally profitable
moves. At the same time, it is an abstract concept and many of the details, such as
the protocol and the effectivity correspondence have to be carefully specified in each
particular case. These are unwelcome, but they appear to be unavoidable as well.

In going beyond the special cases in which existing static concepts work well, it would
be very useful to see if the general framework can provide a “reduced form” solution
concept that can be recast in terms of the traditional blocking approach. Indeed, as
soon as we take this approach, we see that a key ingredient is missing in the standard
models. This is the condition of maximality, which comes so naturally to the real-time
formulation: the idea that coalitions will not just make profitable moves but will choose
moves that are maximal, or Pareto optimal, for it. In contrast, in the static theory,
although a farsighted objection corresponds to a profitable move for the coalitions
involved, it does not necessarily ensure that coalitional moves are maximally profitable.
The reason is that the counterfactuals against which maximality is to be defined are
generally ill-defined in the static model. This neglect of counterfactuals has a history. As
we noted in Section 5.3, blocking has traditionally been used as a way of ruling out a
particular state, without comparing the (possibly)multiple objections that a coalitionmay
possess. In short, it is traditionally a negation: a block is enough to rule out an allocation,
why worry about the “maximal block”? There are two reasons why maximality may be
important. First, when blocking is used in a theory of coalition formation, it is no longer
to be used as a negative concept: the block itself determines which coalition forms, and
what they do. Second, if blocking is defined in a farsighted sense, imposing maximality
becomes important even in testing the stability of a given state. It is possible that a state
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has a farsighted objection, but every such objection involves some coalition (in the chain
of objections) making a profitable move that is not maximal. Consequently, neglecting
the maximality requirement may lead to farsighted stability concepts that are suspect
(see the examples in Section 5.3.6.2). We hope that future work based on the EPCF,
or on the principles of profitability and maximality embodied in it, will provide a more
satisfactory blocking concept, at least in the absence of cycles.

We end by reminding the reader that there are several aspects of coalition formation
that have been beyond the purview of this chapter, e.g., network formation, coalition
formation under incomplete information, and axiomatic approaches to coalition forma-
tion. For a discussion of future directions for research in some of these areas see Chapter
14 in Ray (2007).
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